JP2021068552A - Positive electrode resin composition, positive electrode and secondary battery - Google Patents
Positive electrode resin composition, positive electrode and secondary battery Download PDFInfo
- Publication number
- JP2021068552A JP2021068552A JP2019192255A JP2019192255A JP2021068552A JP 2021068552 A JP2021068552 A JP 2021068552A JP 2019192255 A JP2019192255 A JP 2019192255A JP 2019192255 A JP2019192255 A JP 2019192255A JP 2021068552 A JP2021068552 A JP 2021068552A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- resin composition
- conductive material
- mass
- dispersant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 55
- 239000004020 conductor Substances 0.000 claims abstract description 49
- 239000002270 dispersing agent Substances 0.000 claims abstract description 44
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 36
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 35
- 239000006229 carbon black Substances 0.000 claims abstract description 35
- 239000011164 primary particle Substances 0.000 claims abstract description 15
- 238000007127 saponification reaction Methods 0.000 claims abstract description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 14
- 239000011230 binding agent Substances 0.000 claims description 13
- 238000006116 polymerization reaction Methods 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 40
- 229910001416 lithium ion Inorganic materials 0.000 description 40
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 31
- 239000007787 solid Substances 0.000 description 25
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 20
- 239000011149 active material Substances 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 239000002002 slurry Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229920000098 polyolefin Polymers 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- -1 polytetrafluoroethylene Polymers 0.000 description 5
- 229920003048 styrene butadiene rubber Polymers 0.000 description 5
- 229920001567 vinyl ester resin Polymers 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910013275 LiMPO Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910015868 MSiO Inorganic materials 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000011267 electrode slurry Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001170 xLi2MnO3-(1−x)LiMO2 Inorganic materials 0.000 description 2
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- NXVGUNGPINUNQN-UHFFFAOYSA-N 2-phenylpropan-2-yl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C1=CC=CC=C1 NXVGUNGPINUNQN-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- RTANHMOFHGSZQO-UHFFFAOYSA-N 4-methoxy-2,4-dimethylpentanenitrile Chemical compound COC(C)(C)CC(C)C#N RTANHMOFHGSZQO-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910014195 BM-400B Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910012748 LiNi0.5Mn0.3Co0.2O2 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- DBUPOCYLUHVFHU-UHFFFAOYSA-N carboxyoxy 2,2-diethoxyethyl carbonate Chemical compound CCOC(OCC)COC(=O)OOC(O)=O DBUPOCYLUHVFHU-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- CMDXMIHZUJPRHG-UHFFFAOYSA-N ethenyl decanoate Chemical compound CCCCCCCCCC(=O)OC=C CMDXMIHZUJPRHG-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- UJRIYYLGNDXVTA-UHFFFAOYSA-N ethenyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC=C UJRIYYLGNDXVTA-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002356 laser light scattering Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229920003066 styrene-(meth)acrylic acid ester copolymer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、正極樹脂組成物、正極及び二次電池に関する。 The present invention relates to a positive electrode resin composition, a positive electrode and a secondary battery.
環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。 Due to growing environmental and energy problems, technologies for the realization of a low-carbon society that reduces dependence on fossil fuels are being actively developed. Examples of such technological development include the development of low-emission vehicles such as hybrid electric vehicles and electric vehicles, the development of renewable energy power generation and power storage systems such as solar power generation and wind power generation, the efficient supply of electric power, and transmission loss. There is a wide range of activities such as the development of next-generation power grids that reduce the number of electricity.
これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高いレート特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められている。そのため、従来の鉛蓄電池、ニッケル−カドミウム電池、ニッケル−水素電池から、より高いエネルギー密度、レート特性およびサイクル特性を有するリチウムイオン二次電池(以下、「リチウムイオン電池」ともいう。)への置き換えが急速に進んでいる。 One of the key devices commonly required for these technologies is a battery, and such a battery is required to have a high energy density for miniaturizing the system. In addition, high rate characteristics are required to enable stable power supply regardless of the operating environment temperature. Further, good cycle characteristics and the like that can withstand long-term use are also required. Therefore, the conventional lead-acid batteries, nickel-cadmium batteries, and nickel-hydrogen batteries are replaced with lithium ion secondary batteries (hereinafter, also referred to as "lithium ion batteries") having higher energy density, rate characteristics, and cycle characteristics. Is progressing rapidly.
従来、リチウムイオン二次電池の正極は、正極活物質、導電材及びバインダー(結着材)を含有する正極ペーストを、集電体に塗工することにより製造されている。正極活物質としては、コバルト酸リチウム、マンガン酸リチウム等のリチウム含有複合酸化物が用いられてきた。活物質自体は導電性に乏しいことから、導電性を付与する目的で、アグリゲート(一次粒子が複数融着した構造:一次凝集体)が発達したカーボンブラックや、異方性で結晶が発達した黒鉛等の導電材を添加することが行われてきた(特許文献1)。 Conventionally, a positive electrode of a lithium ion secondary battery is manufactured by applying a positive electrode paste containing a positive electrode active material, a conductive material, and a binder (binding material) to a current collector. Lithium-containing composite oxides such as lithium cobalt oxide and lithium manganate have been used as the positive electrode active material. Since the active material itself has poor conductivity, carbon black with developed aggregates (structure in which multiple primary particles are fused: primary agglomerates) and anisotropic crystals have developed for the purpose of imparting conductivity. It has been practiced to add a conductive material such as graphite (Patent Document 1).
導電材の基本的な役割は、導電性の乏しい活物質に、充放電時に正極活物質が繰り返し膨張収縮しても、損なわれることの少ない安定した導電性を付与することである。そのため、正極作製において、導電材として使用されるカーボンブラックは、アグリゲートの大きさがある範囲内に制御されていることが重要である。制御が十分でない場合や活物質間での分散が悪い場合には、活物質とカーボンブラックの接触が十分得られず、導電パスが確保できなくなり、活物質であるリチウム含有複合酸化物の性能を十分に引き出せないという問題が生じる。結果として、正極内に導電性の劣る部分が局所的に現れ、活物質が有効に利用されずに放電容量が低下、電池の寿命が短くなる原因となっている。 The basic role of the conductive material is to impart stable conductivity to an active material having poor conductivity, which is not impaired even if the positive electrode active material repeatedly expands and contracts during charging and discharging. Therefore, it is important that the size of the aggregate is controlled within a certain range in the carbon black used as the conductive material in the production of the positive electrode. If the control is not sufficient or the dispersion between the active materials is poor, sufficient contact between the active material and carbon black cannot be obtained, a conductive path cannot be secured, and the performance of the lithium-containing composite oxide, which is the active material, is improved. There is a problem that it cannot be pulled out sufficiently. As a result, a portion having poor conductivity appears locally in the positive electrode, which causes the active material to not be effectively used, the discharge capacity to decrease, and the battery life to be shortened.
そこで、特許文献2には、スラリー中のカーボンブラックの分散性を改善するため、分散剤であるポリビニルピロリドンの存在下でカーボンブラックを高圧ジェットミルにより溶剤にサブミクロンオーダーで分散させる方法が行われている。特許文献2によれば、分散状態が安定したカーボンブラックを正極に使用することで、高容量で、かつサイクル特性が優れたリチウムイオン二次電池を得ることができることが記載されている。
Therefore, in
特許文献3には、リチウムイオン二次電池用正極において、分散安定性と少量添加で優れた導電性を発揮する導電材について記載されている。具体的には、N−メチル−2−ピロリドンを分散媒とし、これに平均粒径0.1〜1μmのカーボンブラックを3〜30質量%の割合で懸濁させると共に、ビニルピロリドン系ポリマーを0.1〜10質量%添加してなることを特徴とするカーボンブラックスラリーが提案されている。特許文献3の実施例には、レーザー回折・散乱分光法により求めた平均粒径が0.3μmであるカーボンブラックが記載されており、当該カーボンブラックを正極の導電材として用いて作製したリチウムイオン二次電池は放電容量が高かったことが示されている。 Patent Document 3 describes a conductive material that exhibits dispersion stability and excellent conductivity with a small amount of addition in a positive electrode for a lithium ion secondary battery. Specifically, N-methyl-2-pyrrolidone is used as a dispersion medium, and carbon black having an average particle size of 0.1 to 1 μm is suspended in a proportion of 3 to 30% by mass, and a vinylpyrrolidone-based polymer is 0. A carbon black slurry having been added in an amount of 1 to 10% by mass has been proposed. An example of Patent Document 3 describes carbon black having an average particle size of 0.3 μm determined by laser diffraction / scattering spectroscopy, and lithium ions produced by using the carbon black as a conductive material for a positive electrode. It is shown that the secondary battery had a high discharge capacity.
導電材の分散不良を克服する手段として、ポリビニルピロリドン系高分子とノニオン系界面活性剤を分散剤として添加する方法もある(特許文献4)。 As a means for overcoming poor dispersion of the conductive material, there is also a method of adding a polyvinylpyrrolidone-based polymer and a nonionic surfactant as dispersants (Patent Document 4).
特許文献5には、カーボンブラックと、分散剤としてのポリビニルアルコールと、溶剤としてのN−メチル−2−ピロリドンとを含んでなるカーボンブラック分散液を用い、電池正極合材層の表面抵抗および50サイクル後の放電容量維持率が良好になることが記されている。 In Patent Document 5, a carbon black dispersion liquid containing carbon black, polyvinyl alcohol as a dispersant, and N-methyl-2-pyrrolidone as a solvent is used, and the surface resistance of the battery positive electrode mixture layer and 50 It is noted that the discharge capacity retention rate after the cycle is improved.
このように、分散剤として高分子を用いる方法が従来提案されてきたが、未だ十分な分散性を有しているとは言えない。例えば特許文献4に記載の分散剤により、導電材の分散不良を改善できるものの、この分散剤を含有した正極をリチウムイオン電池として使用した際に4.35Vのフロート充電後に放電容量が極端に低下するといった問題があった。しかしながら、現在のリチウムイオン二次電池市場では、同電池の耐電圧性が望まれており、分散性と耐電圧性を両立した正極用導電性樹脂組成物が必要不可欠である。
As described above, a method of using a polymer as a dispersant has been conventionally proposed, but it cannot be said that it has sufficient dispersibility yet. For example, the dispersant described in
本発明は、上記問題と実情に鑑み、分散性及び耐電圧性に優れた正極樹脂組成物を提供することを目的とする。加えて、この正極樹脂組成物を用いて製造される極板抵抗が低い正極、更にこの正極を用いて製造される耐電圧性、放電レート特性及びサイクル特性に優れた二次電池を提供することを目的とする。 An object of the present invention is to provide a positive electrode resin composition having excellent dispersibility and withstand voltage in view of the above problems and circumstances. In addition, it is intended to provide a positive electrode having a low electrode plate resistance manufactured by using this positive electrode resin composition, and a secondary battery manufactured by using this positive electrode and having excellent withstand voltage, discharge rate characteristics and cycle characteristics. With the goal.
本発明者等は、上記目的を達成するために鋭意研究した結果、特定の鹸化度を有するポリビニルアルコールを分散剤として含有し、且つ、特定の平均一次粒子径を有するカーボンブラックを含有する正極樹脂組成物を用いることにより、上記課題が解決できることを見出した。
具体的には、本発明者は、導電材としてカーボンブラック、結着材、及び分散剤として特定の鹸化度を有するポリビニルアルコールを含有する正極樹脂組成物を用いて製造した正極は、極板抵抗が低く、加えて、この正極を用いて製造した二次電池は、耐電圧性、放電レート特性及びサイクル特性に優れることを見出した。本発明者当該知見に基づき、完成されたものである。
As a result of diligent research to achieve the above object, the present inventors have conducted a positive electrode resin containing polyvinyl alcohol having a specific degree of saponification as a dispersant and carbon black having a specific average primary particle size. It has been found that the above problems can be solved by using the composition.
Specifically, the present inventor has prepared a positive electrode using a positive electrode resin composition containing carbon black as a conductive material, a binder, and polyvinyl alcohol having a specific degree of saponification as a dispersant. In addition, it was found that the secondary battery manufactured by using this positive electrode is excellent in withstand voltage, discharge rate characteristics and cycle characteristics. The present inventor has been completed based on the above findings.
すなわち、上記課題を解決する本発明は、下記に例示される。
[1]
導電材、結着材及び分散剤を含有する正極樹脂組成物であって、前記分散剤が少なくともポリビニルアルコールを含み、前記導電材が少なくともカーボンブラックを含み、前記ポリビニルアルコールの鹸化度が85.5〜96.5モル%であり、前記カーボンブラックの平均一次粒子径が18nm〜40nmであることを特徴とする正極樹脂組成物。
[2]
前記ポリビニルアルコールの平均重合度が500〜1500であることを特徴とする[1]に記載の正極樹脂組成物。
[3]
前記カーボンブラックのDBP吸収量が250〜310ml/100gであることを特徴とする[1]又は[2]に記載の正極樹脂組成物。
[4]
前記分散剤と導電材の質量比{分散剤の質量/導電材の質量}が0.03〜0.15であることを特徴とする[1]〜[3]のいずれか1項に記載の正極樹脂組成物。
[5]
前記結着材がポリフッ化ビニリデンであることを特徴とする[1]〜[4]のいずれか1項に記載の正極樹脂組成物。
[6]
[1]〜[5]のいずれか1項に記載の正極樹脂組成物を含む正極。
[7]
[6]に記載の正極を備えた二次電池。
なお、本明細書において、特にことわりがない限り、「〜」という記号は両端の値「以上」および「以下」の範囲を意味する。例えば、「A〜B」というのは、A以上、B以下であるという意味である。
That is, the present invention that solves the above problems is exemplified below.
[1]
A positive electrode resin composition containing a conductive material, a binder and a dispersant, wherein the dispersant contains at least polyvinyl alcohol, the conductive material contains at least carbon black, and the degree of saponification of the polyvinyl alcohol is 85.5. A positive electrode resin composition having an average primary particle size of ~ 96.5 mol% and the carbon black having an average primary particle size of 18 nm to 40 nm.
[2]
The positive electrode resin composition according to [1], wherein the polyvinyl alcohol has an average degree of polymerization of 500 to 1500.
[3]
The positive electrode resin composition according to [1] or [2], wherein the DBP absorption amount of the carbon black is 250 to 310 ml / 100 g.
[4]
The item according to any one of [1] to [3], wherein the mass ratio of the dispersant to the conductive material {mass of the dispersant / mass of the conductive material} is 0.03 to 0.15. Positive electrode resin composition.
[5]
The positive electrode resin composition according to any one of [1] to [4], wherein the binder is polyvinylidene fluoride.
[6]
A positive electrode containing the positive electrode resin composition according to any one of [1] to [5].
[7]
A secondary battery provided with the positive electrode according to [6].
In the present specification, unless otherwise specified, the symbol "~" means a range of values "greater than or equal to" and "less than or equal to" at both ends. For example, "A to B" means that it is A or more and B or less.
本発明の一実施形態によれば、分散性及び耐電圧性に優れた正極樹脂組成物を提供することができる。
本発明の一実施形態によれば、極板抵抗が低い正極を提供することができる。
本発明の一実施形態によれば、耐電圧性、レート特性及びサイクル特性に優れた二次電池を提供することができる。
また、本発明の好適な実施態様によれば、エネルギー密度が高く、耐電圧性、レート特性、サイクル特性に優れた二次電池を簡便に得ることができる正極を提供することができる。
According to one embodiment of the present invention, it is possible to provide a positive electrode resin composition having excellent dispersibility and withstand voltage.
According to one embodiment of the present invention, it is possible to provide a positive electrode having a low electrode plate resistance.
According to one embodiment of the present invention, it is possible to provide a secondary battery having excellent withstand voltage resistance, rate characteristics and cycle characteristics.
Further, according to a preferred embodiment of the present invention, it is possible to provide a positive electrode capable of easily obtaining a secondary battery having a high energy density and excellent withstand voltage resistance, rate characteristics and cycle characteristics.
以下、本発明を詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail. The present invention is not limited to the embodiments described below.
以下、本発明の構成材料について詳細に説明する。 Hereinafter, the constituent materials of the present invention will be described in detail.
<導電材>
本発明における導電材は、少なくともカーボンブラックを含有する。導電材中のカーボンブラックの含有濃度は例えば50質量%以上とすることができ、好ましくは70質量%以上とすることができ、より好ましくは90質量%以上とすることができる。導電材としてカーボンブラックのみを使用することもできる。カーボンブラックは、一般の電池用導電材としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックが好ましい。
<Conductive material>
The conductive material in the present invention contains at least carbon black. The content concentration of carbon black in the conductive material can be, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. It is also possible to use only carbon black as the conductive material. Carbon black is selected from acetylene black, furnace black, channel black, and the like, like carbon black as a general conductive material for batteries. Of these, acetylene black, which has excellent crystallinity and purity, is preferable.
本発明におけるカーボンブラックの平均一次粒子径は18〜40nmである。平均一次粒子径を40nm以下とすることで、活物質及び集電体との電気的接点が多くなり、良好な導電性付与効果が得られる。平均一次粒子径を18nm以上とすることで、粒子間の相互作用が抑制されるため、正極活物質の間に均一に分散され、良好な導電経路が得られる。この観点から、カーボンブラックの平均一次粒子径は20〜35nmであることがより好ましい。なお、本発明において、カーボンブラックの平均一次粒子径は、透過型電子顕微鏡などで撮影した写真をもとに測定した粒子径を平均した値である。具体的には、透過電子顕微鏡JEM−2000FX(日本電子社製)を用いて10万倍の画像5枚を撮影し、無作為に抽出した200個以上の1次粒子について画像解析により粒子径を求め、それらの個数平均を算出することによって測定した。なお、粒子径とは、一次粒子の円相当径のことである。 The average primary particle size of carbon black in the present invention is 18 to 40 nm. By setting the average primary particle size to 40 nm or less, the number of electrical contacts with the active material and the current collector is increased, and a good conductivity-imparting effect can be obtained. By setting the average primary particle size to 18 nm or more, the interaction between the particles is suppressed, so that the particles are uniformly dispersed between the positive electrode active materials, and a good conductive path can be obtained. From this point of view, the average primary particle size of carbon black is more preferably 20 to 35 nm. In the present invention, the average primary particle size of carbon black is a value obtained by averaging the particle size measured based on a photograph taken with a transmission electron microscope or the like. Specifically, five images of 100,000 times were taken using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.), and the particle size of 200 or more primary particles randomly selected was determined by image analysis. It was calculated and measured by calculating the average of the number of them. The particle size is the equivalent circle diameter of the primary particles.
本発明におけるカーボンブラックのDBP吸収量は250〜310ml/100gであることが好ましい。DBP吸収量を250ml/100g以上とすることで、導電材として使用される際のアグリゲートが十分な長さと広がりを持ち、良好な導電経路と非水電解液の保液性が得られる。また、310ml/100g以下とすることで、アグリゲート同士の絡み合いによる凝集が抑えられるため、正極活物質の間に均一に分散され、良好な導電経路の形成と十分な非水電解液の保液性を両立することができる。なお、本発明において、DBP吸収量は、JIS K6217−4:2008に準拠して測定した値である。 The amount of DBP absorbed by carbon black in the present invention is preferably 250 to 310 ml / 100 g. By setting the DBP absorption amount to 250 ml / 100 g or more, the aggregate when used as a conductive material has a sufficient length and spread, and a good conductive path and liquid retention property of a non-aqueous electrolytic solution can be obtained. Further, by setting the amount to 310 ml / 100 g or less, aggregation due to entanglement between the aggregates is suppressed, so that the aggregates are uniformly dispersed between the positive electrode active materials, a good conductive path is formed, and a sufficient non-aqueous electrolyte solution is retained. It is possible to achieve both sex. In the present invention, the amount of DBP absorbed is a value measured in accordance with JIS K6217-4: 2008.
本発明におけるカーボンブラックの体積抵抗率はとくに限定されるものではないが、導電性の観点から低いほど好ましい。具体的には、7.5MPa圧縮下で測定した体積抵抗率は0.30Ω・cm以下が好ましく、0.25Ω・cm以下がより好ましい。 The volume resistivity of carbon black in the present invention is not particularly limited, but the lower the volume resistivity is, the more preferable it is from the viewpoint of conductivity. Specifically, the volume resistivity measured under 7.5 MPa compression is preferably 0.30 Ω · cm or less, more preferably 0.25 Ω · cm or less.
本発明におけるカーボンブラックの灰分及び水分は特に限定されるものではないが、副反応の抑制の観点から、どちらも少ないほど好ましい。具体的には、灰分は0.04質量%以下が好ましく、水分は0.10質量%以下が好ましい。 The ash content and water content of carbon black in the present invention are not particularly limited, but from the viewpoint of suppressing side reactions, the smaller the amount, the more preferable. Specifically, the ash content is preferably 0.04% by mass or less, and the water content is preferably 0.10% by mass or less.
<結着材>
本発明で用いる結着材は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレンブタジエン共重合体、(メタ)アクリル酸エステル共重合体が挙げられる。結着材としてのポリマーの構造には制約がなく、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。これらの中では、耐電圧性の点でポリフッ化ビニリデンが好ましい。
<Bundling material>
Examples of the binder used in the present invention include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, and (meth) acrylic acid ester copolymer. There are no restrictions on the structure of the polymer as a binder, and random copolymers, alternating copolymers, graft copolymers, block copolymers, and the like can also be used. Of these, polyvinylidene fluoride is preferable in terms of withstand voltage.
<分散剤>
本発明で用いる分散剤は、少なくともポリビニルアルコール(以下、PVAと略すことがある。)を含有する。分散剤中のPVAの含有濃度は例えば50質量%以上とすることができ、好ましくは70質量%以上とすることができ、より好ましくは90質量%以上とすることができる。分散剤としてPVAのみを使用することもできる。PVAはそれ自体既知の重合方法、例えば、酢酸ビニルに代表される脂肪酸ビニルエステルを重合し、加水分解することにより得ることができる。
<Dispersant>
The dispersant used in the present invention contains at least polyvinyl alcohol (hereinafter, may be abbreviated as PVA). The concentration of PVA in the dispersant can be, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. It is also possible to use only PVA as the dispersant. PVA can be obtained by a polymerization method known per se, for example, by polymerizing and hydrolyzing a fatty acid vinyl ester typified by vinyl acetate.
上記脂肪酸ビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルおよびその他の直鎖または分岐状の飽和脂肪酸ビニルエステルが挙げられる。なかでも酢酸ビニルが好ましい。 Examples of the fatty acid vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caprate, vinyl laurate, vinyl palmitate, vinyl stearate and other linear or branched saturated fatty acid vinyl esters. Can be mentioned. Of these, vinyl acetate is preferable.
上記ポリビニルアルコールは、脂肪酸ビニルエステル以外の重合性不飽和モノマーと共重合して得ることもできる。脂肪酸ビニルエステルと共重合可能な重合性不飽和モノマーとしては、例えば、エチレン、プロピレンなどのオレフィン類;アルキル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等などの(メタ)アクリロイル基含有モノマー;アリルグリシジルエーテルなどのアリルエーテル;塩化ビニル、塩化ビニリデン、フッ化ビニルなどのハロゲン化ビニル系化合物;アルキルビニルエーテル、4−ヒドロキシビニルエーテルなどのビニルエーテルなどが挙げられる。これらは1種を単独で又は2種以上を併用して用いることができる。 The polyvinyl alcohol can also be obtained by copolymerizing with a polymerizable unsaturated monomer other than the fatty acid vinyl ester. Examples of the polymerizable unsaturated monomer copolymerizable with the fatty acid vinyl ester include olefins such as ethylene and propylene; alkyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, glycidyl (meth) acrylate and the like ( Meta) Acryloyl group-containing monomer; Allyl ether such as allyl glycidyl ether; Vinyl halide compound such as vinyl chloride, vinylidene chloride and vinyl fluoride; Vinyl ether such as alkyl vinyl ether and 4-hydroxy vinyl ether. These can be used alone or in combination of two or more.
ポリビニルアルコールの重合方法は、それ自体既知の重合方法、例えば、酢酸ビニルをアルコール系有機溶媒中で溶液重合してポリ酢酸ビニルを製造し、これを鹸化する等の方法により製造することができるが、これに限られるものではなく、例えば、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 The method for polymerizing polyvinyl alcohol can be produced by a polymerization method known per se, for example, by solution-polymerizing vinyl acetate in an alcohol-based organic solvent to produce polyvinyl acetate, and then saponifying the polyvinyl acetate. However, the present invention is not limited to this, and for example, bulk polymerization, emulsion polymerization, suspension polymerization and the like may be used. When solution polymerization is carried out, continuous polymerization or batch polymerization may be performed, the monomers may be charged all at once, may be charged separately, or may be added continuously or intermittently.
溶液重合において使用する重合開始剤は、特に限定するものではないが、アゾビスイソブチロニトリル、アゾビス−2,4−ジメチルバレロニトリル、アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4−トリメチルペンチル−2−パーオキシフェノキシアセテート等の過酸化物;ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t−ブチルパーオキシネオデカネート、α−クミルパーオキシネオデカネート、t−ブチルパーオキシネオデカネート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用することができる。 The polymerization initiator used in solution polymerization is not particularly limited, but is azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobis (4-methoxy-2,4-dimethylvaleronitrile), etc. Azo compounds; peroxides such as acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate; diisopropylperoxydicarbonate, diisopropylperoxydicarbonate. Percarbonate compounds such as -2-ethylhexyl peroxydicarbonate and diethoxyethyl peroxydicarbonate; such as t-butylperoxyneodecanate, α-cumylperoxyneodecanate and t-butylperoxyneodecanate. Perester compounds; known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile can be used.
重合反応温度は、特に限定するものではないが、通常30〜150℃程度の範囲で設定することができる。 The polymerization reaction temperature is not particularly limited, but can usually be set in the range of about 30 to 150 ° C.
ポリビニルアルコールを製造する際の鹸化条件は特に限定されず、公知の方法で鹸化することができる。一般的には、メタノール等のアルコール溶液中において、アルカリ触媒又は酸触媒の存在下で、分子中のエステル部を加水分解することで行うことができる。アルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物や、アルコラート等を用いることができる。酸触媒としては、例えば、塩酸、硫酸等の無機酸水溶液、p−トルエンスルホン酸等の有機酸を用いることができるが、水酸化ナトリウムを用いることが望ましい。鹸化反応の温度は、特に限定されないが、好ましくは10〜70℃、より好ましくは30〜40℃の範囲であることが望ましい。反応時間は、特に限定されないが、30分〜3時間の範囲で行なうことが望ましい。 The saponification conditions for producing polyvinyl alcohol are not particularly limited, and saponification can be performed by a known method. Generally, it can be carried out by hydrolyzing the ester portion in the molecule in the presence of an alkali catalyst or an acid catalyst in an alcohol solution such as methanol. As the alkali catalyst, for example, hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, potassium methylate and the like, alcoholates and the like can be used. As the acid catalyst, for example, an aqueous inorganic acid solution such as hydrochloric acid or sulfuric acid or an organic acid such as p-toluenesulfonic acid can be used, but it is desirable to use sodium hydroxide. The temperature of the saponification reaction is not particularly limited, but is preferably in the range of 10 to 70 ° C, more preferably 30 to 40 ° C. The reaction time is not particularly limited, but it is desirable to carry out the reaction in the range of 30 minutes to 3 hours.
本発明におけるポリビニルアルコールの鹸化度は85.5〜96.5モル%である。鹸化度を96.5モル%以下とすることで、N−メチル−2−ピロリドン等の溶媒への溶解性が高まるため、導電材の分散性が向上し、均一で低粘度の正極樹脂組成物を含むスラリーが得られ易くなる。鹸化度を85.5モル%以上とすることで、高い耐電圧性を得られ易くなる。尚、ここでいうポリビニルアルコールの鹸化度は、JIS K 6726:1994に準ずる方法で測定される値である。 The degree of saponification of polyvinyl alcohol in the present invention is 85.5 to 96.5 mol%. By setting the saponification degree to 96.5 mol% or less, the solubility in a solvent such as N-methyl-2-pyrrolidone is improved, so that the dispersibility of the conductive material is improved, and a uniform and low viscosity positive electrode resin composition is prepared. It becomes easy to obtain a slurry containing. By setting the saponification degree to 85.5 mol% or more, it becomes easy to obtain high withstand voltage resistance. The degree of saponification of polyvinyl alcohol referred to here is a value measured by a method according to JIS K 6726: 1994.
本発明におけるポリビニルアルコールの平均重合度は500〜1500であることが好ましい。平均重合度を1500以下とすることで、N−メチル−2−ピロリドン等の溶媒への溶解性が高まるため、導電材の分散性が向上し、均一で低粘度の正極樹脂組成物を含むスラリーが得られ易くなる。平均重合度を500以上とすることで、活物質及び導電材の分散性が高まり、良好な導電経路が得られ易くなる。 The average degree of polymerization of polyvinyl alcohol in the present invention is preferably 500 to 1500. By setting the average degree of polymerization to 1500 or less, the solubility in a solvent such as N-methyl-2-pyrrolidone is improved, so that the dispersibility of the conductive material is improved, and the slurry containing the uniform and low viscosity positive electrode resin composition is improved. Is easy to obtain. By setting the average degree of polymerization to 500 or more, the dispersibility of the active material and the conductive material is enhanced, and a good conductive path can be easily obtained.
<活物質>
本発明で用いる活物質は、リチウム含有複合酸化物またはリチウム含有ポリアニオン化合物であり、カチオンを可逆的に吸蔵放出可能な正極活物質のことである。例えば、LiCoO2、LiMn2O4、LiNiO2、LiMPO4、Li2MSiO4、LiNiXMn(2-X)O4、Li(MnXNiYCoZ)O2、Li(AlXNiYCoZ)O2またはxLi2MnO3−(1−x)LiMO2などがあげられる。但し、LiNiXMn(2-X)O4中のXは0<X<2という関係を満たし、Li(MnXNiYCoZ)O2中又はLi(AlXNiYCoZ)O2中のX、Y及びZは、X+Y+Z=1という関係を満たし、かつ0<X<1、0<Y<1、0<Z<1という関係を満たし、xLi2MnO3−(1−x)LiMO2中のxは0<x<1という関係を満たし、さらにLiMPO4中、Li2MSiO4中又はxLi2MnO3−(1−x)LiMO2中のMはFe、Co、Ni、Mnから選ばれる元素の1種以上であることが好ましい。
<Active material>
The active material used in the present invention is a lithium-containing composite oxide or a lithium-containing polyanion compound, which is a positive electrode active material capable of reversibly occluding and releasing cations. For example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiMPO 4 , Li 2 MSiO 4 , LiNi X Mn (2-X) O 4 , Li (Mn X Ni Y Co Z ) O 2 , Li (Al X Ni Y). Examples thereof include Co Z ) O 2 and xLi 2 MnO 3- (1-x) LiMO 2 . However, X in LiNi X Mn (2-X) O 4 satisfies the relationship of 0 <X <2, and is in Li (Mn X Ni Y Co Z ) O 2 or Li (Al X Ni Y Co Z ) O 2 X, Y and Z in the above satisfy the relationship of X + Y + Z = 1 and satisfy the relationship of 0 <X <1, 0 <Y <1, 0 <Z <1, and xLi 2 MnO 3- (1-x). X in LiMO 2 satisfies the relationship of 0 <x <1, and M in LiMPO 4 , Li 2 MSiO 4 or xLi 2 MnO 3- (1-x) LiMO 2 is Fe, Co, Ni, Mn. It is preferable that it is one or more of the elements selected from.
上記活物質の内、本発明で用いる活物質はレーザー光散乱法で測定した体積基準の粒度の累積分布から求められる平均粒子径(D50)が20μm以下、好ましくは5μm以下であることが好ましい。このような構成にすることで、正極樹脂組成物を含むスラリー粘度の低減効果が十分に発現され、導電材の分散性が向上した正極と高いサイクル特性を有する二次電池が得られ易くなる。 Among the above active materials, the active material used in the present invention preferably has an average particle size (D50) of 20 μm or less, preferably 5 μm or less, which is obtained from the cumulative distribution of volume-based particle sizes measured by the laser light scattering method. With such a configuration, the effect of reducing the viscosity of the slurry containing the positive electrode resin composition is sufficiently exhibited, and it becomes easy to obtain a positive electrode having improved dispersibility of the conductive material and a secondary battery having high cycle characteristics.
<正極樹脂組成物>
本発明に用いる正極樹脂組成物の製造には公知の方法を用いることができる。例えば、活物質、導電材、結着材及び分散剤の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、スラリーにして用いられる。前記の活物質、導電材、結着材及び分散剤としては、既述したものを用いれば良い。正極樹脂組成物を含むスラリーの分散媒としては、水、N−メチル−2−ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。高分子結着材としてポリフッ化ビニリデンを使用する際は、溶解性の点でN−メチル−2−ピロリドンが好ましく、スチレンブタジエン共重合体を使用する際は水が好ましい。
<Positive electrode resin composition>
A known method can be used for producing the positive electrode resin composition used in the present invention. For example, it can be obtained by mixing a solvent dispersion solution of an active material, a conductive material, a binder and a dispersant with a ball mill, a sand mill, a twin-screw kneader, a rotating or revolving stirrer, a planetary mixer, a disperser mixer, or the like. Is used as a slurry. As the active material, the conductive material, the binder, and the dispersant, those described above may be used. Examples of the dispersion medium of the slurry containing the positive electrode resin composition include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, methyl isobutyl ketone and the like. When polyvinylidene fluoride is used as the polymer binder, N-methyl-2-pyrrolidone is preferable in terms of solubility, and when a styrene-butadiene copolymer is used, water is preferable.
本発明に用いる正極樹脂組成物中の分散剤と導電材の質量比{分散剤の質量/導電材の質量}は0.03〜0.15であり、0.04〜0.12がより好ましく、0.05〜0.1が最も好ましい。正極樹脂組成物中の分散剤と導電材の質量比を0.03〜0.15にすることで分散剤が導電材に吸着し、より高い分散効果が得られ易くなり、0.05〜0.1にすることでより高い分散効果に加えて、過剰な分散剤が導電材表面を被覆し電荷移動反応を妨害する効果を抑え、電池の高抵抗化を抑制できる。 The mass ratio of the dispersant to the conductive material in the positive electrode resin composition used in the present invention {mass of the dispersant / mass of the conductive material} is 0.03 to 0.15, more preferably 0.04 to 0.12. , 0.05 to 0.1 is the most preferable. By setting the mass ratio of the dispersant to the conductive material in the positive electrode resin composition to 0.03 to 0.15, the dispersant is adsorbed on the conductive material, and a higher dispersion effect can be easily obtained, which is 0.05 to 0. By setting it to 1.1, in addition to a higher dispersion effect, the effect of excess dispersant covering the surface of the conductive material and interfering with the charge transfer reaction can be suppressed, and high resistance of the battery can be suppressed.
<正極>
本発明に用いる正極は以下の手順で作製可能である。まず、上記の正極樹脂組成物を含むスラリーをアルミニウム箔等の集電体上に塗布した後、加熱によりスラリーに含まれる溶媒を除去し、活物質が結着材を介して集電体表面に結着された多孔質体である正極合材層を形成する。次いで、集電体と正極合材層をロールプレス等により加圧して密着させることにより、目的とする正極を得ることができる。
<Positive electrode>
The positive electrode used in the present invention can be produced by the following procedure. First, the slurry containing the above positive electrode resin composition is applied onto a current collector such as aluminum foil, and then the solvent contained in the slurry is removed by heating, and the active material is applied to the surface of the current collector via the binder. A positive electrode mixture layer, which is a bonded porous body, is formed. Next, the target positive electrode can be obtained by pressing the current collector and the positive electrode mixture layer with a roll press or the like to bring them into close contact with each other.
<リチウムイオン電池>
本発明に用いられるリチウムイオン電池の作製方法には、特に制限は無く、従来公知の電池の作製方法を用いて行えば良いが、例えば、図1に模式的に示した構成で、以下の方法により作製することもできる。すなわち、前記の正極を用いた正極1にアルミ製タブ5を溶接し、負極2にニッケル製タブ6を溶接した後、正極と負極の間に絶縁層となるポリオレフィン製微多孔膜3を配し、正極1、負極2およびポリオレフィン製微多孔膜3の空隙部分に非水電解液が十分に染込むまで注液し、外装4で封止することで作製することができる。
<Lithium-ion battery>
The method for producing the lithium ion battery used in the present invention is not particularly limited, and a conventionally known method for producing a battery may be used. For example, the following method has the configuration schematically shown in FIG. It can also be produced by. That is, after welding the aluminum tab 5 to the positive electrode 1 using the positive electrode and welding the nickel tab 6 to the
本発明のリチウムイオン電池の用途は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリッド自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。 The application of the lithium ion battery of the present invention is not particularly limited, but for example, a digital camera, a video camera, a portable audio player, a portable AV device such as a portable LCD TV, a notebook computer, a smartphone, a mobile information terminal such as a mobile PC, and the like. In addition, it can be used in a wide range of fields such as portable game devices, electric tools, electric bicycles, hybrid vehicles, electric vehicles, and power storage systems.
以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を損なわない限り、以下に示す実施例に限定されるものではない。また、実施例および比較例ともに使用した正極は、吸着した水分を揮発させるために170℃で3時間真空乾燥を行った。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples shown below as long as the gist thereof is not impaired. The positive electrodes used in both Examples and Comparative Examples were vacuum dried at 170 ° C. for 3 hours in order to volatilize the adsorbed water.
<実施例1>
(正極樹脂組成物を含むスラリーの調製)
溶媒としてN−メチル−2−ピロリドン(関東化学社製、以下、NMPと記載)、結着材としてポリフッ化ビニリデン(アルケマ社製、「HSV900」、以下、PVdFと記載)、導電材としてカーボンブラック(デンカ社製、「Li−435」、以下、Li−435と記載)、分散剤としてポリビニルアルコール(ポリビニルアルコールAと記載)、活物質としてLiNi0.5Mn0.3Co0.2O2(ユミコア社製、「TX10」平均粒子径(D50)10μm、以下、NMC532と記載)をそれぞれ用意した。PVdFが固形分で1.9質量%、Li−435が固形分で1質量%、ポリビニルアルコールAが固形分で0.1質量%(分散剤の質量/導電材の質量=0.1)、NMC532が固形分で97質量%となるように秤量して混合し、この混合物に固形分含有量が68質量%になるようにNMPを添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV−310)を用いて、均一になるまで混合し正極樹脂組成物を含むスラリーを得た。
<Example 1>
(Preparation of slurry containing positive electrode resin composition)
N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Inc., hereinafter referred to as NMP) as a solvent, polyvinylidene fluoride (manufactured by Alchema, hereinafter referred to as PVdF) as a binder, carbon black as a conductive material. (Manufactured by Denka, "Li-435", hereinafter referred to as Li-435), polyvinyl alcohol as a dispersant (described as polyvinyl alcohol A), LiNi 0.5 Mn 0.3 Co 0.2 O 2 as an active material (manufactured by Yumicore, " TX10 ”average particle size (D50) 10 μm, hereinafter referred to as NMC532) was prepared. PVdF is 1.9% by mass in solid content, Li-435 is 1% by mass in solid content, polyvinyl alcohol A is 0.1% by mass in solid content (mass of dispersant / mass of conductive material = 0.1), NMC532 is weighed and mixed so that the solid content is 97% by mass, NMP is added to this mixture so that the solid content is 68% by mass, and a rotating and revolving mixer (manufactured by Shinky Co., Ltd., Awatori). Using Kentarou ARV-310), the mixture was mixed until uniform to obtain a slurry containing a positive electrode resin composition.
[分散性の評価(正極樹脂組成物を含むスラリーの粘度)]
正極樹脂組成物を含むスラリーの分散性をJIS K7244−10に記載される回転型レオメータを用いた方法で粘度を評価した。具体的には、回転型レオメータ(アントンパール社製、MCR300)を用いて、固形分含有量が68質量%の正極樹脂組成物を含むスラリー1gをディスク上に塗布し、測定温度を25℃に設定し、せん断速度を100s-1から0.01s-1まで変化させて測定を行い、せん断速度10s-1の粘度を評価した。粘度の数値が低い程、良好な分散性を意味する。本実施例の粘度は、1.24Pa・sであった。
[Evaluation of dispersibility (viscosity of slurry containing positive electrode resin composition)]
The dispersibility of the slurry containing the positive electrode resin composition was evaluated by the method using a rotary rheometer described in JIS K7244-10. Specifically, using a rotary rheometer (MCR300 manufactured by Anton Pearl Co., Ltd.), 1 g of a slurry containing a positive electrode resin composition having a solid content of 68% by mass was applied onto a disk, and the measurement temperature was set to 25 ° C. The shear rate was set and the shear rate was changed from 100 s -1 to 0.01 s -1 for measurement, and the viscosity at the shear rate of 10 s -1 was evaluated. The lower the viscosity value, the better the dispersibility. The viscosity of this example was 1.24 Pa · s.
(正極の作製)
調製した正極樹脂組成物を含むスラリーを、厚さ15μmのアルミニウム箔(UACJ社製)の片面上に、アプリケータにて成膜し、乾燥機内に静置して105℃、一時間で予備乾燥させ、NMP溶媒を完全に除去した。次に、ロールプレス機にて200kg/cmの線圧でプレスし、厚さ15μmのアルミニウム箔を含んだ塗膜の厚さが80μmになるように調製した。次いで、残留水分を完全に除去するため、170℃で3時間真空乾燥して正極を得た。
(Preparation of positive electrode)
A slurry containing the prepared positive electrode resin composition was formed on one side of a 15 μm-thick aluminum foil (manufactured by UACJ Corporation) with an applicator, and allowed to stand in a dryer for pre-drying at 105 ° C. for 1 hour. The NMP solvent was completely removed. Next, it was pressed with a roll press machine at a linear pressure of 200 kg / cm, and the thickness of the coating film containing the aluminum foil having a thickness of 15 μm was adjusted to 80 μm. Then, in order to completely remove the residual water, vacuum drying was performed at 170 ° C. for 3 hours to obtain a positive electrode.
[正極の極板抵抗評価]
作製した正極を直径14mmの円盤状に切り抜き、表裏をSUS304製平板電極によって挟んだ状態で、電気化学測定システム(ソーラトロン社製、ファンクションジェネレーター1260およびポテンショガルバノスタット1287)を用いて、振幅電圧10mV、周波数範囲1Hz〜100kHzにて交流インピーダンスを測定した。得られた抵抗成分値に切り抜いた円盤状の面積を掛けた抵抗値を極板抵抗とした。本実施例の正極の極板抵抗は120Ω・cm2であった。
[Evaluation of electrode plate resistance of positive electrode]
The prepared positive electrode was cut out into a disk shape with a diameter of 14 mm, and the front and back sides were sandwiched between SUS304 flat plates, and the amplitude voltage was 10 mV using an electrochemical measurement system (Solartron, Function Generator 1260 and Potential Galvanostat 1287). The AC impedance was measured in the frequency range of 1 Hz to 100 kHz. The resistance value obtained by multiplying the obtained resistance component value by the cut-out disk-shaped area was defined as the electrode plate resistance. The electrode plate resistance of the positive electrode of this example was 120 Ω · cm 2 .
(負極の作製)
溶媒として純水(関東化学社製)、負極活物質として人造黒鉛(日立化成社製、「MAG−D」)、結着材としてスチレンブタジエンゴム(日本ゼオン社製、「BM−400B」、以下、SBRと記載)、分散剤としてカルボキシメチルセルロース(ダイセル社製、「D2200」、以下、CMCと記載)をそれぞれ用意した。次いで、CMCが固形分で1質量%、人造黒鉛が固形分で97質量%となるように秤量して混合し、この混合物に純水を添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV−310)を用いて、均一になるまで混合した。さらに、SBRが固形分で2質量%となるように秤量し、上記混合物に添加し、自転公転式混合機(シンキー社製、あわとり練太郎ARV−310)を用いて、均一になるまで混合し、負極スラリーを得た。次いで、負極スラリーを、厚さ10μmの銅箔(UACJ社製)上にアプリケータにて成膜し、乾燥機内に静置して60℃、一時間で予備乾燥させた。次に、ロールプレス機にて100kg/cmの線圧でプレスし、銅箔を含んだ塗膜の厚さが50μmになるように調製した。残留水分を完全に除去するため、120℃で3時間真空乾燥して負極を得た。
(Preparation of negative electrode)
Pure water (manufactured by Kanto Chemical Co., Inc.) as a solvent, artificial graphite (manufactured by Hitachi Kasei Co., Ltd., "MAG-D") as a negative electrode active material, styrene-butadiene rubber (manufactured by Nippon Zeon Co., Ltd., "BM-400B") as a binder, and the following , SBR), and carboxymethyl cellulose (manufactured by Daicel Corporation, "D2200", hereinafter referred to as CMC) was prepared as a dispersant. Next, the CMC was weighed and mixed so that the solid content was 1% by mass and the artificial graphite was 97% by mass in the solid content, pure water was added to this mixture, and a rotation / revolution type mixer (manufactured by Shinky Co., Ltd., Awa) was added. It was mixed using Tori Rentaro ARV-310) until it became uniform. Further, the SBR is weighed so as to have a solid content of 2% by mass, added to the above mixture, and mixed using a rotation / revolution type mixer (Sinky Co., Ltd., Awatori Rentaro ARV-310) until uniform. Then, a negative electrode slurry was obtained. Next, the negative electrode slurry was formed on a copper foil (manufactured by UACJ Corporation) having a thickness of 10 μm with an applicator, allowed to stand in a dryer, and pre-dried at 60 ° C. for 1 hour. Next, it was pressed with a roll press machine at a linear pressure of 100 kg / cm, and the thickness of the coating film containing the copper foil was adjusted to 50 μm. In order to completely remove the residual water, vacuum drying was performed at 120 ° C. for 3 hours to obtain a negative electrode.
(リチウムイオン電池の作製)
露点−50℃以下に制御したドライルーム内で、上記正極を40×40mmに加工し、負極を44×44mmに加工した後、正極にアルミ製タブ、負極にニッケル製タブを溶接した。正極と負極それぞれの合材塗工面が中央で対向するようにし、さらに正極と負極間に45×45mmに加工したポリオレフィン微多孔質膜を配置した。次に70×140mm角に切断・加工したシート状の外装を長辺の中央部で二つ折りにした。次いで、正極用アルミ製タブと負極用ニッケル製タブが外装の外部に露出するように外装を配置しながら、二つ折りにした外装によって正極−ポリオレフィン微多孔質膜負極の積層体を挟んだ。次にヒートシーラーを用いて、外装の正極用アルミ製タブと負極用ニッケル製タブが露出した辺を含む2辺を加熱融着した後、加熱融着していない一辺から、2gの電解液(キシダ化学製、エチレンカーボネート/ジエチルカーボネート=1/2(体積比)+1M LiPF6溶液、以下、電解液と記載)を注液し、正極、負極およびポリオレフィン微多孔膜に十分に染み込ませてから、真空ヒートシーラーにより、電池の内部を減圧しながら、外装の残り1辺を加熱融着してリチウムイオン電池を得た。
(Making a lithium-ion battery)
In a dry room controlled to have a dew point of −50 ° C. or lower, the positive electrode was processed to 40 × 40 mm, the negative electrode was processed to 44 × 44 mm, and then an aluminum tab was welded to the positive electrode and a nickel tab was welded to the negative electrode. The coated surfaces of the mixture of the positive electrode and the negative electrode were opposed to each other in the center, and a microporous polyolefin film processed to 45 × 45 mm was arranged between the positive electrode and the negative electrode. Next, the sheet-shaped exterior cut and processed into a 70 × 140 mm square was folded in half at the center of the long side. Next, the exterior was arranged so that the aluminum tab for the positive electrode and the nickel tab for the negative electrode were exposed to the outside of the exterior, and the laminated body of the positive electrode-polyolefin microporous film negative electrode was sandwiched between the two-folded exterior. Next, using a heat sealer, two sides including the exposed side of the aluminum tab for the positive electrode and the nickel tab for the negative electrode of the exterior are heat-sealed, and then 2 g of the electrolytic solution (2 g of the electrolytic solution) is applied from one side that is not heat-sealed. Pour an ethylene carbonate / diethyl carbonate = 1/2 (volume ratio) + 1M LiPF 6 solution (hereinafter referred to as an electrolytic solution) manufactured by Kishida Chemical Co., Ltd., and allow it to sufficiently soak into the positive electrode, negative electrode and polyolefin microporous film. A lithium ion battery was obtained by heating and fusing the remaining one side of the exterior while depressurizing the inside of the battery with a vacuum heat sealer.
作製したリチウムイオン電池について、以下の方法により電池性能を評価した。 The battery performance of the produced lithium-ion battery was evaluated by the following method.
(リチウムイオン電池の評価)
[放電レート特性(3C放電時の放電容量維持率)]
作製したリチウムイオン電池を、25℃において、4.3V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で3.0Vまで放電した。次いで、再度4.3V、0.2C制限の定電流定電圧で回復充電した後、放電電流を0.2Cとして3.0Vまで放電させ、このときの放電容量を測定した。引き続き、前記の回復充電の条件は毎回保って充電し、一方で放電電流は0.5C、1C、2C、3Cと段階的に変化させながら、回復充電と放電とを繰り返し、各放電電流に対する放電容量を測定した。電池の放電レート特性の指標として、0.2C放電時に対する3C放電時の放電容量維持率を算出した。本実施例のリチウムイオン電池の3C放電時の放電容量維持率は80.5%であった。
(Evaluation of lithium-ion batteries)
[Discharge rate characteristics (discharge capacity retention rate during 3C discharge)]
The produced lithium ion battery was charged at a constant current constant voltage of 4.3 V and 0.2 C limit at 25 ° C., and then discharged to 3.0 V at a constant current of 0.2 C. Then, after recovering and charging again at a constant current constant voltage limited to 4.3 V and 0.2 C, the discharge current was set to 0.2 C and the battery was discharged to 3.0 V, and the discharge capacity at this time was measured. Subsequently, the recovery charging conditions are maintained and charged each time, while the recovery charging and discharging are repeated while the discharge current is gradually changed to 0.5C, 1C, 2C, and 3C, and the discharge for each discharge current is performed. The capacity was measured. As an index of the discharge rate characteristic of the battery, the discharge capacity retention rate at the time of 3C discharge with respect to the time of 0.2C discharge was calculated. The discharge capacity retention rate of the lithium ion battery of this example during 3C discharge was 80.5%.
[サイクル特性(サイクル後の放電容量維持率)]
作製したリチウムイオン電池を、25℃において、4.3V、1C制限の定電流定電圧充電をした後、1Cの定電流で3.0Vまで放電した。上記充放電を500サイクル繰り返し、各サイクルにおける放電容量を測定した。電池のサイクル特性の指標として、特に1サイクル後に対する500サイクル後の放電容量維持率を算出した。本実施例のリチウムイオン電池のサイクル後の放電容量維持率は90%であった。
[Cycle characteristics (discharge capacity retention rate after cycle)]
The produced lithium ion battery was charged at a constant current constant voltage of 4.3 V and 1 C limit at 25 ° C., and then discharged to 3.0 V at a constant current of 1 C. The above charge and discharge were repeated for 500 cycles, and the discharge capacity in each cycle was measured. As an index of the cycle characteristics of the battery, the discharge capacity retention rate after 500 cycles with respect to one cycle was calculated. The discharge capacity retention rate after the cycle of the lithium ion battery of this example was 90%.
[耐電圧性(フロート充電後の放電容量維持率)]
作製したリチウムイオン電池を、25℃において、4.35V、0.5C制限の定電流定電圧で2時間フロート充電した後、0.5Cの定電流で3.0Vまで放電させ、このときの放電容量を測定した。次いで、再度4.35V、0.5C制限の定電流定電圧で48時間フロート充電した後、同様に0.5Cの定電流で3.0Vまで放電させ、このときの放電容量を測定した。電池の耐電圧性の指標として、2時間充電時に対する48時間充電時のフロート充電後の容量維持率を算出した。本実施例のリチウムイオン電池のフロート充電後の容量維持率は94%であった。
[Withstand voltage (discharge capacity retention rate after float charging)]
The produced lithium-ion battery was float-charged at 25 ° C. at a constant current constant voltage limited to 4.35 V and 0.5 C for 2 hours, and then discharged to 3.0 V at a constant current of 0.5 C. The capacity was measured. Then, the float was charged again with a constant current constant voltage limited to 4.35 V and 0.5 C for 48 hours, and then discharged to 3.0 V with a constant current of 0.5 C in the same manner, and the discharge capacity at this time was measured. As an index of the withstand voltage of the battery, the capacity retention rate after float charging during 48 hours charging with respect to 2 hours charging was calculated. The capacity retention rate of the lithium-ion battery of this example after float charging was 94%.
実施例1〜8、比較例1〜4で使用したポリビニルアルコールの鹸化度及び平均重合度を表1に示す。また、実施例1〜8、比較例1〜6で使用したカーボンブラックの平均一次粒子径及びDBP吸油量を表2に示す。 Table 1 shows the saponification degree and the average degree of polymerization of the polyvinyl alcohols used in Examples 1 to 8 and Comparative Examples 1 to 4. Table 2 shows the average primary particle size and DBP oil absorption of carbon black used in Examples 1 to 8 and Comparative Examples 1 to 6.
<実施例2>
実施例1の分散剤を、ポリビニルアルコールBへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 2>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the dispersant of Example 1 was changed to polyvinyl alcohol B, and each evaluation was carried out. The results are shown in Table 3.
<実施例3>
実施例1の分散剤を、ポリビニルアルコールCへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 3>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the dispersant of Example 1 was changed to polyvinyl alcohol C, and each evaluation was carried out. The results are shown in Table 3.
<実施例4>
実施例1の分散剤を、ポリビニルアルコールDへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 4>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the dispersant of Example 1 was changed to polyvinyl alcohol D, and each evaluation was carried out. The results are shown in Table 3.
<実施例5>
実施例1の導電材を、SAB(デンカ社製)へ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 5>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the conductive material of Example 1 was changed to SAB (manufactured by Denka Co., Ltd.), and each evaluation was carried out. The results are shown in Table 3.
<実施例6>
実施例1の導電材を、Li−250(デンカ社製)へ変更し、PVdFが固形分で1.95質量%、Li−250が固形分で1質量%、ポリビニルアルコールAが固形分で0.05質量%(分散剤の質量/導電材の質量=0.05)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 6>
The conductive material of Example 1 was changed to Li-250 (manufactured by Denka Co., Ltd.), PVdF was 1.95% by mass in solid content, Li-250 was 1% by mass in solid content, and polyvinyl alcohol A was 0 in solid content. The positive electrode resin composition, the positive electrode, and the lithium ion battery were prepared in the same manner as in Example 1 except that they were weighed and mixed so as to be 0.05% by mass (mass of dispersant / mass of conductive material = 0.05). It was prepared and each evaluation was carried out. The results are shown in Table 3.
<実施例7>
実施例1の導電材を、ECP(ライオン社製)へ変更し、PVdFが固形分で1.84質量%、ECPが固形分で1質量%、ポリビニルアルコールAが固形分で0.16質量%(分散剤の質量/導電材の質量=0.16)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 7>
The conductive material of Example 1 was changed to ECP (manufactured by Lion), PVdF was 1.84% by mass in solid content, ECP was 1% by mass in solid content, and polyvinyl alcohol A was 0.16% by mass in solid content. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that they were weighed and mixed so as to be (mass of dispersant / mass of conductive material = 0.16). Evaluation was carried out. The results are shown in Table 3.
<実施例8>
実施例1の導電材を、Li−250(デンカ社製)へ変更し、PVdFが固形分で1.98質量%、Li−250が固形分で1質量%、ポリビニルアルコールAが固形分で0.02質量%(分散剤の質量/導電材の質量=0.02)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 8>
The conductive material of Example 1 was changed to Li-250 (manufactured by Denka Co., Ltd.), PVdF was 1.98% by mass in solid content, Li-250 was 1% by mass in solid content, and polyvinyl alcohol A was 0 in solid content. The positive electrode resin composition, the positive electrode, and the lithium ion battery were prepared in the same manner as in Example 1 except that they were weighed and mixed so as to be 0.02% by mass (mass of dispersant / mass of conductive material = 0.02). It was prepared and each evaluation was carried out. The results are shown in Table 3.
<比較例1>
実施例1の分散剤を、ポリビニルアルコールEへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 1>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the dispersant of Example 1 was changed to polyvinyl alcohol E, and each evaluation was carried out. The results are shown in Table 3.
<比較例2>
実施例1の分散剤を、ポリビニルアルコールFへ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 2>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the dispersant of Example 1 was changed to polyvinyl alcohol F, and each evaluation was carried out. The results are shown in Table 3.
<比較例3>
実施例1の導電材を、#3040B(三菱化学社製)へ変更し、PVdFが固形分で1.97質量%、#3040Bが固形分で1質量%、ポリビニルアルコールAが固形分で0.03質量%(分散剤の質量/導電材の質量=0.03)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 3>
The conductive material of Example 1 was changed to # 3040B (manufactured by Mitsubishi Chemical Corporation), PVdF was 1.97% by mass in solid content, # 3040B was 1% by mass in solid content, and polyvinyl alcohol A was 0. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that they were weighed and mixed so as to be 03% by mass (mass of dispersant / mass of conductive material = 0.03). Then, each evaluation was carried out. The results are shown in Table 3.
<比較例4>
実施例1の導電材を、BlackPearls2000(キャボット社製)へ変更し、PVdFが固形分で1.85質量%、BlackPearls2000が固形分で1質量%、ポリビニルアルコールAが固形分で0.15質量%(分散剤の質量/導電材の質量=0.15)となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 4>
The conductive material of Example 1 was changed to BlackPearls2000 (manufactured by Cabot), PVdF was 1.85% by mass in solid content, BlackPearls2000 was 1% by mass in solid content, and polyvinyl alcohol A was 0.15% by mass in solid content. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that they were weighed and mixed so as to be (mass of dispersant / mass of conductive material = 0.15). Evaluation was carried out. The results are shown in Table 3.
<比較例5>
実施例1の分散剤を、ポリビニルピロリドン(日本触媒社製、K−90)へ変更した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative example 5>
A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1 except that the dispersant of Example 1 was changed to polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., K-90), and each evaluation was performed. Was carried out. The results are shown in Table 3.
<比較例6>
実施例1の分散剤を添加せずに、PVdFが固形分で2質量%、Li−435が固形分で1質量%となるように秤量して混合した以外は、実施例1と同様な方法で正極樹脂組成物、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 6>
The same method as in Example 1 except that PVdF was weighed and mixed so that the solid content was 2% by mass and Li-435 was 1% by mass in the solid content without adding the dispersant of Example 1. A positive electrode resin composition, a positive electrode, and a lithium ion battery were prepared in 1 and each evaluation was carried out. The results are shown in Table 3.
実施例1〜8の正極樹脂組成物は、比較例1〜6の正極樹脂組成物に比べて分散性が高いことが明らかになった。これにより本発明の実施例の正極は極板抵抗が低くなり、放電時の電圧降下を抑えられることが分かった。 It was revealed that the positive electrode resin compositions of Examples 1 to 8 had higher dispersibility than the positive electrode resin compositions of Comparative Examples 1 to 6. As a result, it was found that the positive electrode of the embodiment of the present invention has a low electrode plate resistance and can suppress the voltage drop during discharge.
さらに、実施例1〜8のリチウムイオン電池は、比較例1〜6のリチウムイオン電池に比べて放電レート特性が高く、サイクル特性も高く、耐電圧性が高いことが明らかになった。これにより本発明の正極樹脂組成物を用いたリチウムイオン電池は放電電流の増加に伴う放電レート特性の低下を抑えられ、高い寿命も兼ね備えていることが分かった。 Further, it was revealed that the lithium ion batteries of Examples 1 to 8 have higher discharge rate characteristics, higher cycle characteristics, and higher withstand voltage resistance than the lithium ion batteries of Comparative Examples 1 to 6. As a result, it was found that the lithium ion battery using the positive electrode resin composition of the present invention can suppress the decrease in the discharge rate characteristic due to the increase in the discharge current, and also has a long life.
1 リチウムイオン電池正極
2 リチウムイオン電池負極
3 ポリオレフィン製微多孔膜
4 アルミ製タブ
5 ニッケル製タブ
6 外装
1 Lithium-ion battery
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019192255A JP7423247B2 (en) | 2019-10-21 | 2019-10-21 | Positive electrode resin composition, positive electrode and secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019192255A JP7423247B2 (en) | 2019-10-21 | 2019-10-21 | Positive electrode resin composition, positive electrode and secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021068552A true JP2021068552A (en) | 2021-04-30 |
JP7423247B2 JP7423247B2 (en) | 2024-01-29 |
Family
ID=75638577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019192255A Active JP7423247B2 (en) | 2019-10-21 | 2019-10-21 | Positive electrode resin composition, positive electrode and secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7423247B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238495A1 (en) * | 2022-06-08 | 2023-12-14 | デンカ株式会社 | Slurry, method for producing electrodes, and method for producing batteries |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005268026A (en) * | 2004-03-18 | 2005-09-29 | Dainippon Printing Co Ltd | Coating composite for active material layer, electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery |
JP2016046188A (en) * | 2014-08-26 | 2016-04-04 | 東洋インキScホールディングス株式会社 | Carbon black dispersion and use of the same |
JP2017054650A (en) * | 2015-09-08 | 2017-03-16 | 株式会社豊田自動織機 | Composition containing positive electrode active material, dispersant and solvent |
WO2018021073A1 (en) * | 2016-07-28 | 2018-02-01 | デンカ株式会社 | Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery |
WO2018037910A1 (en) * | 2016-08-24 | 2018-03-01 | デンカ株式会社 | Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery |
-
2019
- 2019-10-21 JP JP2019192255A patent/JP7423247B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005268026A (en) * | 2004-03-18 | 2005-09-29 | Dainippon Printing Co Ltd | Coating composite for active material layer, electrode plate for non-aqueous electrolytic liquid secondary battery, and non-aqueous electrolytic liquid secondary battery |
JP2016046188A (en) * | 2014-08-26 | 2016-04-04 | 東洋インキScホールディングス株式会社 | Carbon black dispersion and use of the same |
JP2017054650A (en) * | 2015-09-08 | 2017-03-16 | 株式会社豊田自動織機 | Composition containing positive electrode active material, dispersant and solvent |
WO2018021073A1 (en) * | 2016-07-28 | 2018-02-01 | デンカ株式会社 | Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery |
WO2018037910A1 (en) * | 2016-08-24 | 2018-03-01 | デンカ株式会社 | Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023238495A1 (en) * | 2022-06-08 | 2023-12-14 | デンカ株式会社 | Slurry, method for producing electrodes, and method for producing batteries |
Also Published As
Publication number | Publication date |
---|---|
JP7423247B2 (en) | 2024-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7056642B2 (en) | Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements | |
JP4135074B2 (en) | Negative electrode manufacturing method and battery manufacturing method | |
JP7007270B2 (en) | Conductive resin composition and electrode composition for electrodes, and electrodes and lithium-ion batteries using the same | |
US10164259B2 (en) | Binder for use in positive electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery containing said binder, lithium ion secondary battery using said positive electrode, and electrical machinery and apparatus | |
JP2019075387A (en) | Binder composition, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2001035496A (en) | Binder composition for lithium ion secondary battery electrode and use thereof | |
JP6414201B2 (en) | Secondary battery binder composition | |
CN107925086B (en) | Electrode for electrochemical element | |
CN112106233A (en) | Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JPH11312535A (en) | Solid electrolyte secondary battery | |
KR20200062082A (en) | Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electrical equipment | |
CN118970147B (en) | Battery cell, preparation method thereof and lithium ion battery | |
JP2019160789A (en) | Negative electrode for lithium ion battery and lithium ion battery | |
CN111316476B (en) | Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP6822892B2 (en) | Secondary battery negative electrode slurry, secondary battery electrode, secondary battery, secondary battery electrode manufacturing method, and use of water-soluble binder as secondary battery negative electrode slurry | |
JP7423247B2 (en) | Positive electrode resin composition, positive electrode and secondary battery | |
CN114188504A (en) | Electrochemical device and electronic device | |
CN103258989B (en) | Electrode, manufacture method and lithium secondary battery for lithium secondary battery | |
JP2016021391A (en) | Conductive material fluid dispersion for electrochemical devices, slurry for electrochemical device positive electrodes, positive electrode for electrochemical devices, and electrochemical device | |
JPH11329439A (en) | Non-aqueous electrolyte secondary battery | |
CN114843518B (en) | Negative electrode active material, method for producing negative electrode active material, and electrochemical device | |
JP7477290B2 (en) | Anode resin composition, anode and secondary battery | |
JP2016201228A (en) | Active material and battery using the same | |
JP2014203805A (en) | Particulate binder for lithium ion secondary battery negative electrode, slurry composition for lithium ion secondary battery negative electrode, and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230815 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7423247 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |