[go: up one dir, main page]

JP7477290B2 - Anode resin composition, anode and secondary battery - Google Patents

Anode resin composition, anode and secondary battery Download PDF

Info

Publication number
JP7477290B2
JP7477290B2 JP2019234949A JP2019234949A JP7477290B2 JP 7477290 B2 JP7477290 B2 JP 7477290B2 JP 2019234949 A JP2019234949 A JP 2019234949A JP 2019234949 A JP2019234949 A JP 2019234949A JP 7477290 B2 JP7477290 B2 JP 7477290B2
Authority
JP
Japan
Prior art keywords
negative electrode
resin composition
mass
conductive material
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234949A
Other languages
Japanese (ja)
Other versions
JP2021103664A (en
Inventor
達也 永井
佑守 北江
晃 與田
哲哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2019234949A priority Critical patent/JP7477290B2/en
Publication of JP2021103664A publication Critical patent/JP2021103664A/en
Application granted granted Critical
Publication of JP7477290B2 publication Critical patent/JP7477290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、負極樹脂組成物、負極及び二次電池に関する。 The present invention relates to a negative electrode resin composition, a negative electrode, and a secondary battery.

環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高い出力特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められている。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性およびサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
In response to growing environmental and energy issues, there has been active development of technologies aimed at realizing a low-carbon society that reduces dependency on fossil fuels. Examples of such technological development are diverse and include the development of low-emission vehicles such as hybrid electric vehicles and electric vehicles, the development of natural energy generation and storage systems such as solar and wind power generation, and the development of next-generation power transmission networks that supply electricity efficiently and reduce transmission losses.
Batteries are one of the key devices commonly required for these technologies, and high energy density is required for such batteries to miniaturize the systems. In addition, high output characteristics are required to enable stable power supply regardless of the temperature of the operating environment. Furthermore, good cycle characteristics that can withstand long-term use are also required. For this reason, conventional lead-acid batteries, nickel-cadmium batteries, and nickel-metal hydride batteries are being rapidly replaced by lithium-ion secondary batteries, which have higher energy density, output characteristics, and cycle characteristics.

従来、リチウムイオン二次電池の負極は、負極活物質及び結着材(バインダー)を含有する電極ペーストを、集電体に塗工することにより製造されている。負極活物質としては、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、ケイ素化合物、チタン酸リチウム等が用いられてきた。最近では、リチウムイオンの受入れ性を向上させて、充放電時間を短縮するためや、充放電時に負極活物質が繰り返し膨張収縮して導電性が損なわれるのを防止するために、アグリゲート(一次粒子が複数融着した構造:一次凝集体)が発達したカーボンブラックや、円筒状で結晶が発達したカーボンナノチューブ等の導電材を添加することが検討されている。 Conventionally, the negative electrode of a lithium-ion secondary battery is manufactured by coating a current collector with an electrode paste containing a negative electrode active material and a binder. As the negative electrode active material, natural graphite, artificial graphite, difficult-to-graphitize carbon, easy-to-graphitize carbon, silicon compounds, lithium titanate, etc. have been used. Recently, in order to improve the lithium ion acceptance and shorten the charge/discharge time, and to prevent the repeated expansion and contraction of the negative electrode active material during charging and discharging, which would impair conductivity, the addition of conductive materials such as carbon black with developed aggregates (a structure in which multiple primary particles are fused together: primary agglomerates) and cylindrical carbon nanotubes with developed crystals has been considered.

負極での導電材の基本的な役割は二つある。一つ目は、負極活物質間に均一な導電経路を形成することであり、充放電時に負極活物質が繰り返し膨張収縮して導電性が損なわれるのを防止する。二つ目は、リチウムイオンが溶解した電解液を保液して、全ての負極活物質に十分なリチウムイオンを供給することであり、充放電時にリチウムイオンの供給が不足して、電池性能が損なわれるのを防止する。そのため、負極作製において、導電材として使用されるカーボンブラックは、平均一次粒子径と比表面積の大きさがある範囲内に制御されていることが重要である。制御が十分でない場合や負極活物質間での分散が悪い場合には、負極活物質とカーボンブラックの接触が十分得られず、導電経路が確保できなくなると共に、一部の活物質にしか十分なリチウムイオンの供給ができなくなる。結果として、電極内に導電性や電解液の保液性が劣る部分が局所的に現れ、負極活物質が有効に利用されずに放電容量が低下したり、電池の寿命が短くなったりする原因となっている。 The conductive material in the negative electrode has two basic roles. The first is to form a uniform conductive path between the negative electrode active materials, preventing the negative electrode active materials from repeatedly expanding and contracting during charging and discharging, which would impair conductivity. The second is to hold the electrolyte in which lithium ions are dissolved, and to supply sufficient lithium ions to all the negative electrode active materials, preventing a shortage of lithium ions during charging and discharging, which would impair battery performance. For this reason, it is important that the average primary particle size and specific surface area of the carbon black used as the conductive material in the negative electrode production be controlled within a certain range. If the control is insufficient or the dispersion between the negative electrode active materials is poor, the negative electrode active material and the carbon black cannot be in sufficient contact, the conductive path cannot be secured, and sufficient lithium ions can only be supplied to some active materials. As a result, parts of the electrode that are poor in conductivity and electrolyte retention appear locally, which causes the negative electrode active material to be used ineffectively, resulting in a decrease in discharge capacity and a shortened battery life.

そこで、特許文献1には、負極活物質、導電材、ビニルアルコールとエチレン性不飽和カルボン酸アルカリ金属中和物との共重合体からなる結着材、及び分散助剤を用いたリチウムイオン二次電池電極用合剤についての技術が開示されている。特許文献1によれば、このような構成とすることで、リチウムイオン二次電池電極用合剤の保存安定性が増し、その合剤により作製した負極を用いた電池は、50サイクル後の保持率が良好になることが記されている。 Patent Document 1 discloses a technique for a lithium-ion secondary battery electrode mixture that uses a negative electrode active material, a conductive material, a binder made of a copolymer of vinyl alcohol and an alkali metal neutralized ethylenically unsaturated carboxylic acid, and a dispersion aid. Patent Document 1 describes that this configuration increases the storage stability of the lithium-ion secondary battery electrode mixture, and that a battery using a negative electrode made from this mixture has a good retention rate after 50 cycles.

また特許文献2には、負極活物質、導電材及び鹸化度が87~99.9モル%のポリビニルアルコール樹脂である結着材を電極合剤層に用いた非水電解質二次電池用負極についての技術が開示されている。特許文献2によれば、この負極を用いた電池は、100サイクル後の容量維持率が良好になることが記載されている。 Patent Document 2 also discloses technology for a negative electrode for a non-aqueous electrolyte secondary battery, in which a negative electrode active material, a conductive material, and a binder that is a polyvinyl alcohol resin with a saponification degree of 87 to 99.9 mol % are used in the electrode mixture layer. Patent Document 2 describes that a battery using this negative electrode has a good capacity retention rate after 100 cycles.

特開2015-201267号公報JP 2015-201267 A 特開2016-181414号公報JP 2016-181414 A

このように、リチウムイオン二次電池の負極の結着材として、ポリビニルアルコールやその共重合体を用いる技術が従来提案されてきたが、未だ実用上十分な分散性と電池性能を両立する技術はなかった。例えば特許文献1に開示された技術によれば、導電材の分散性が向上するものの、この技術を用いた負極をリチウムイオン二次電池に用いると、高い電流負荷での放電時に放電容量が低下してしまう問題があった。しかし、現在のリチウムイオン二次電池市場では、高い電流負荷での充電・放電でも容量が低下しない性能が望まれており、分散性と電池性能を両立した負極樹脂組成物が必要不可欠である。 As described above, techniques using polyvinyl alcohol or its copolymers as binders for the negative electrodes of lithium-ion secondary batteries have been proposed in the past, but there has been no technique that combines sufficient dispersibility and battery performance for practical use. For example, the technique disclosed in Patent Document 1 improves the dispersibility of conductive materials, but when a negative electrode using this technique is used in a lithium-ion secondary battery, there is a problem that the discharge capacity decreases during discharge at a high current load. However, in the current lithium-ion secondary battery market, performance that does not reduce capacity even when charging and discharging at a high current load is desired, and a negative electrode resin composition that combines dispersibility and battery performance is essential.

本発明は、上記問題と実情に鑑み、分散性と電池性能に優れた負極樹脂組成物を提供することを目的の一つとする。加えて、本発明は、この負極樹脂組成物を用いて製造される極板抵抗が低い負極、更にこの負極を用いて製造される放電レート特性及びサイクル特性に優れた二次電池を提供することを別の目的とする。 In view of the above problems and current circumstances, one of the objects of the present invention is to provide a negative electrode resin composition that has excellent dispersibility and battery performance. In addition, another object of the present invention is to provide a negative electrode having low plate resistance manufactured using this negative electrode resin composition, and further a secondary battery having excellent discharge rate characteristics and cycle characteristics manufactured using this negative electrode.

本発明者等は、上記目的を達成するために鋭意研究した結果、特定の鹸化度を有するポリビニルアルコールを分散剤として含有し、且つ、特定の平均一次粒子径を有するカーボンブラックを導電材として含有する負極樹脂組成物を用いることにより、上記課題が解決できることを見出した。
具体的には、本発明者は、導電材としてカーボンブラック、結着材、及び分散剤として特定の鹸化度を有するポリビニルアルコールを含有する負極樹脂組成物を用いて製造した負極は、極板抵抗が低く、加えて、この負極を用いて製造した二次電池は、放電レート特性及びサイクル特性に優れることを見出した。本発明は当該知見に基づき、完成されたものである。
As a result of intensive research conducted by the present inventors to achieve the above object, they have found that the above problem can be solved by using a negative electrode resin composition containing polyvinyl alcohol having a specific saponification degree as a dispersant and carbon black having a specific average primary particle size as a conductive material.
Specifically, the present inventors have found that a negative electrode manufactured using a negative electrode resin composition containing carbon black as a conductive material, a binder, and polyvinyl alcohol having a specific saponification degree as a dispersant has low plate resistance, and further, a secondary battery manufactured using this negative electrode has excellent discharge rate characteristics and cycle characteristics. The present invention has been completed based on this finding.

すなわち、上記課題を解決する本発明は、下記に例示される。
[1]
導電材、結着材及び分散剤を含有する負極樹脂組成物であって、前記分散剤が少なくともポリビニルアルコールを含み、前記導電材が少なくともカーボンブラックを含み、前記ポリビニルアルコールの鹸化度が85.5~96.5モル%であり、前記カーボンブラックの平均一次粒子径が16~50nmである負極樹脂組成物。
[2]
前記ポリビニルアルコールの平均重合度が250~1800である[1]に記載の負極樹脂組成物。
[3]
前記カーボンブラックの比表面積が35~400m2/gである[1]又は[2]に記載の負極樹脂組成物。
[4]
前記分散剤と導電材の固形分で比べたときの質量比{分散剤の質量/導電材の質量}が0.03~0.15である[1]~[3]のいずれか1項に記載の負極樹脂組成物。
[5]
前記結着材がスチレン-ブタジエン共重合体である[1]~[4]のいずれか1項に記載の負極樹脂組成物。
[6]
[1]~[5]のいずれか1項に記載の負極樹脂組成物を含む負極。
[7]
[6]に記載の負極を備えた二次電池。
なお、本明細書において、特にことわりがない限り、「~」という記号は両端の値「以上」および「以下」の範囲を意味する。例えば、「A~B」というのは、A以上、B以下であるという意味である。
That is, the present invention which solves the above problems is exemplified as follows.
[1]
The negative electrode resin composition contains a conductive material, a binder, and a dispersant, wherein the dispersant contains at least polyvinyl alcohol, the conductive material contains at least carbon black, the polyvinyl alcohol has a saponification degree of 85.5 to 96.5 mol %, and the carbon black has an average primary particle size of 16 to 50 nm.
[2]
The negative electrode resin composition according to [1], wherein the average polymerization degree of the polyvinyl alcohol is 250 to 1,800.
[3]
The negative electrode resin composition according to [1] or [2], wherein the carbon black has a specific surface area of 35 to 400 m 2 /g.
[4]
[4] The negative electrode resin composition according to any one of [1] to [3], wherein the mass ratio of the dispersant to the conductive material in terms of solid content {mass of dispersant/mass of conductive material} is 0.03 to 0.15.
[5]
The negative electrode resin composition according to any one of [1] to [4], wherein the binder is a styrene-butadiene copolymer.
[6]
A negative electrode comprising the negative electrode resin composition according to any one of [1] to [5].
[7]
A secondary battery comprising the negative electrode according to [6].
In this specification, unless otherwise specified, the symbol "to" means a range of values "greater than or equal to" and "less than or equal to" the values at both ends. For example, "A to B" means A or greater and B or less.

本発明の一実施形態によれば、分散性及び電池性能に優れた負極樹脂組成物を提供することができる。
本発明の一実施形態によれば、極板抵抗が低い負極を提供することができる。
本発明の一実施形態によれば、放電レート特性及びサイクル特性に優れた二次電池を提供することができる。
また、本発明の好適な実施態様によれば、エネルギー密度が高く、放電レート特性、サイクル特性に優れた二次電池を簡便に得ることができる負極を提供することができる。
According to one embodiment of the present invention, it is possible to provide a negative electrode resin composition having excellent dispersibility and battery performance.
According to one embodiment of the present invention, a negative electrode having low plate resistance can be provided.
According to one embodiment of the present invention, a secondary battery having excellent discharge rate characteristics and cycle characteristics can be provided.
Furthermore, according to a preferred embodiment of the present invention, it is possible to provide a negative electrode from which a secondary battery having high energy density and excellent discharge rate characteristics and cycle characteristics can be easily obtained.

本発明に用いられるリチウムイオン二次電池の模式図である。FIG. 1 is a schematic diagram of a lithium ion secondary battery used in the present invention.

以下、本発明を詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 The present invention will be described in detail below. Note that the present invention is not limited to the embodiments described below.

以下、本発明の構成材料について詳細に説明する。 The constituent materials of the present invention are described in detail below.

<導電材>
本発明における導電材は、少なくともカーボンブラックを含有する。導電材中のカーボンブラックの含有濃度は例えば50質量%以上とすることができ、好ましくは70質量%以上とすることができ、より好ましくは90質量%以上とすることができる。導電材としてカーボンブラックのみを使用することもできる。カーボンブラックは、一般の電池用導電材としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックが好ましい。
<Conductive material>
The conductive material in the present invention contains at least carbon black. The content concentration of carbon black in the conductive material can be, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. Carbon black alone can be used as the conductive material. The carbon black is selected from acetylene black, furnace black, channel black, etc., like carbon black used as a general conductive material for batteries. Among them, acetylene black, which has excellent crystallinity and purity, is preferred.

本発明におけるカーボンブラックの平均一次粒子径は16~50nmであることが好ましい。平均一次粒子径を好ましくは50nm以下、より好ましくは40nm以下とすることで、負極活物質及び集電体との接点が多くなり、良好な導電性付与効果と保液性が得られる。平均一次粒子径を16nm以上、より好ましくは18nm以上とすることで、粒子間の相互作用が抑制されるため、負極活物質の間に均一に分散され、良好な導電経路と保液性が得られる。この観点から、カーボンブラックの平均一次粒子径は18~40nmであることがより好ましい。なお、本発明において、カーボンブラックの平均一次粒子径は、透過型電子顕微鏡などで撮影した写真をもとに測定した粒子径を平均した値である。具体的には、透過電子顕微鏡JEM-2000FX(日本電子社製)を用いて10万倍の画像5枚を撮影し、無作為に抽出した200個以上の1次粒子について画像解析により粒子径を求め、それらの個数平均を算出することによって測定した。なお、粒子径とは、一次粒子の円相当径のことである。 In the present invention, the average primary particle diameter of the carbon black is preferably 16 to 50 nm. By setting the average primary particle diameter to preferably 50 nm or less, more preferably 40 nm or less, the number of contacts with the negative electrode active material and the current collector is increased, and good conductivity imparting effect and liquid retention are obtained. By setting the average primary particle diameter to 16 nm or more, more preferably 18 nm or more, the interaction between the particles is suppressed, and the particles are uniformly dispersed between the negative electrode active material, and good conductive paths and liquid retention are obtained. From this viewpoint, the average primary particle diameter of the carbon black is more preferably 18 to 40 nm. In the present invention, the average primary particle diameter of the carbon black is the average value of the particle diameters measured based on photographs taken with a transmission electron microscope or the like. Specifically, five images at 100,000 times magnification were taken using a transmission electron microscope JEM-2000FX (manufactured by JEOL Ltd.), and the particle diameters of 200 or more randomly selected primary particles were obtained by image analysis, and the number average was calculated to measure. The particle diameter is the circle equivalent diameter of the primary particle.

本発明におけるカーボンブラックの比表面積は35~400m2/gであることが好ましい。比表面積を400m2/g以下とすることで、粒子間の相互作用が抑制されるため、負極活物質の間に均一に分散され、良好な導電経路と保液性が得られ易くなる。また、35m2/g以上、より好ましくは40m2/g以上とすることで、負極活物質及び集電体との接点が多くなり、良好な導電性付与効果と保液性が得られ易くなる。なお、本発明において、比表面積は、JIS K6217-2:2017に準拠して測定した単点法窒素吸着比表面積を指す。 The specific surface area of the carbon black in the present invention is preferably 35 to 400 m 2 /g. By making the specific surface area 400 m 2 /g or less, the interaction between particles is suppressed, so that the carbon black is uniformly dispersed among the negative electrode active material, and good conductive paths and liquid retention are easily obtained. In addition, by making the specific surface area 35 m 2 /g or more, more preferably 40 m 2 /g or more, the number of contacts with the negative electrode active material and the current collector increases, and good conductivity-imparting effect and liquid retention are easily obtained. In the present invention, the specific surface area refers to the single point nitrogen adsorption specific surface area measured in accordance with JIS K6217-2:2017.

本発明におけるカーボンブラックの体積抵抗率はとくに限定されるものではないが、導電性の観点から低いほど好ましい。具体的には、7.5MPa圧縮下で測定した体積抵抗率は0.30Ω・cm以下が好ましく、0.25Ω・cm以下がより好ましい。 The volume resistivity of the carbon black in the present invention is not particularly limited, but from the viewpoint of electrical conductivity, the lower the volume resistivity, the better. Specifically, the volume resistivity measured under a compression of 7.5 MPa is preferably 0.30 Ω·cm or less, and more preferably 0.25 Ω·cm or less.

本発明におけるカーボンブラックの灰分及び水分は特に限定されるものではないが、副反応の抑制の観点から、どちらも少ないほど好ましい。具体的には、灰分は0.04質量%以下が好ましく、水分は0.10質量%以下が好ましい。 The ash and moisture content of the carbon black in the present invention are not particularly limited, but from the viewpoint of suppressing side reactions, the lower the content, the better. Specifically, the ash content is preferably 0.04% by mass or less, and the moisture content is preferably 0.10% by mass or less.

<結着材>
本発明で用いる結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、(メタ)アクリル酸エステル共重合体が挙げられる。結着材としてのポリマーの構造には制約がなく、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体なども使用できる。これらの中では、電池性能の点でスチレン-ブタジエン共重合体が好ましい。
<Binding material>
Examples of the binder used in the present invention include polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, and (meth)acrylic acid ester copolymer. There are no restrictions on the structure of the polymer used as the binder, and random copolymers, alternating copolymers, graft copolymers, block copolymers, and the like can also be used. Among these, styrene-butadiene copolymers are preferred in terms of battery performance.

<分散剤>
本発明で用いる分散剤は、少なくともポリビニルアルコール(以下、PVAと略すことがある。)を含有する。分散剤中のPVAの含有濃度は例えば50質量%以上とすることができ、好ましくは70質量%以上とすることができ、より好ましくは90質量%以上とすることができる。分散剤としてPVAのみを使用することもできる。PVAはそれ自体既知の重合方法、例えば、酢酸ビニルに代表される脂肪酸ビニルエステルを重合し、加水分解することにより得ることができる。
<Dispersant>
The dispersant used in the present invention contains at least polyvinyl alcohol (hereinafter, sometimes abbreviated as PVA). The content concentration of PVA in the dispersant can be, for example, 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. It is also possible to use only PVA as the dispersant. PVA can be obtained by a polymerization method known per se, for example, by polymerizing and hydrolyzing a fatty acid vinyl ester, such as vinyl acetate.

上記脂肪酸ビニルエステルとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルおよびその他の直鎖または分岐状の飽和脂肪酸ビニルエステルが挙げられる。なかでも酢酸ビニルが好ましい。 Examples of the fatty acid vinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caprate, vinyl laurate, vinyl palmitate, vinyl stearate, and other linear or branched saturated fatty acid vinyl esters. Of these, vinyl acetate is preferred.

上記ポリビニルアルコールは、脂肪酸ビニルエステル以外の重合性不飽和モノマーと共重合して得ることもできる。脂肪酸ビニルエステルと共重合可能な重合性不飽和モノマーとしては、例えば、エチレン、プロピレンなどのオレフィン類;アルキル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレートなどの(メタ)アクリロイル基含有モノマー;アリルグリシジルエーテルなどのアリルエーテル;塩化ビニル、塩化ビニリデン、フッ化ビニルなどのハロゲン化ビニル系化合物;アルキルビニルエーテル、4-ヒドロキシビニルエーテルなどのビニルエーテルなどが挙げられる。これらは1種を単独で又は2種以上を併用して用いることができる。 The polyvinyl alcohol can also be obtained by copolymerizing with a polymerizable unsaturated monomer other than the fatty acid vinyl ester. Examples of polymerizable unsaturated monomers copolymerizable with the fatty acid vinyl ester include olefins such as ethylene and propylene; (meth)acryloyl group-containing monomers such as alkyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and glycidyl (meth)acrylate; allyl ethers such as allyl glycidyl ether; halogenated vinyl compounds such as vinyl chloride, vinylidene chloride, and vinyl fluoride; and vinyl ethers such as alkyl vinyl ethers and 4-hydroxyvinyl ether. These can be used alone or in combination of two or more.

ポリビニルアルコールの重合方法は、それ自体既知の重合方法、例えば、酢酸ビニルをアルコール系有機溶媒中で溶液重合してポリ酢酸ビニルを製造し、これを鹸化する等の方法により製造することができるが、これに限られるものではなく、例えば、バルク重合や乳化重合や懸濁重合等でもよい。溶液重合を行う場合には、連続重合でもよいしバッチ重合でもよく、単量体は一括して仕込んでもよいし、分割して仕込んでもよく、あるいは連続的又は断続的に添加してもよい。 Polyvinyl alcohol can be produced by a polymerization method known per se, such as a method of producing polyvinyl acetate by solution polymerization in an alcohol-based organic solvent, and then saponifying the polyvinyl acetate, but is not limited to this, and may be produced by, for example, bulk polymerization, emulsion polymerization, suspension polymerization, etc. When performing solution polymerization, it may be continuous polymerization or batch polymerization, and the monomers may be charged all at once or in portions, or may be added continuously or intermittently.

溶液重合において使用する重合開始剤は、特に限定するものではないが、アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ化合物;アセチルパーオキサイド、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキシド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等の過酸化物;ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アゾビスジメチルバレロニトリル、アゾビスメトキシバレロニトリル等の公知のラジカル重合開始剤を使用することができる。 The polymerization initiator used in the solution polymerization is not particularly limited, but may be azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, and azobis(4-methoxy-2,4-dimethylvaleronitrile); peroxides such as acetyl peroxide, benzoyl peroxide, lauroyl peroxide, acetylcyclohexylsulfonyl peroxide, and 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate; percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; perester compounds such as t-butylperoxyneodecanate, α-cumylperoxyneodecanate, and t-butylperoxyneodecanate; and known radical polymerization initiators such as azobisdimethylvaleronitrile and azobismethoxyvaleronitrile.

重合反応温度は、特に限定するものではないが、通常30~150℃程度の範囲で設定することができる。 The polymerization reaction temperature is not particularly limited, but can usually be set in the range of about 30 to 150°C.

ポリビニルアルコールを製造する際の鹸化条件は特に限定されず、公知の方法で鹸化することができる。一般的には、メタノール等のアルコール溶液中において、アルカリ触媒又は酸触媒の存在下で、分子中のエステル部を加水分解することで行うことができる。アルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラート等のアルカリ金属の水酸化物や、アルコラート等を用いることができる。酸触媒としては、例えば、塩酸、硫酸等の無機酸水溶液、p-トルエンスルホン酸等の有機酸を用いることができるが、水酸化ナトリウムを用いることが望ましい。鹸化反応の温度は、特に限定されないが、好ましくは10~70℃、より好ましくは30~40℃の範囲であることが望ましい。反応時間は、特に限定されないが、30分~3時間の範囲で行なうことが望ましい。 The saponification conditions for producing polyvinyl alcohol are not particularly limited, and saponification can be performed by a known method. In general, saponification can be performed by hydrolyzing the ester moiety in the molecule in an alcohol solution such as methanol in the presence of an alkali catalyst or an acid catalyst. Examples of alkali catalysts that can be used include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, sodium methylate, sodium ethylate, and potassium methylate, and alcoholates. Examples of acid catalysts that can be used include aqueous solutions of inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as p-toluenesulfonic acid, but it is preferable to use sodium hydroxide. The temperature of the saponification reaction is not particularly limited, but is preferably in the range of 10 to 70°C, more preferably 30 to 40°C. The reaction time is not particularly limited, but is preferably in the range of 30 minutes to 3 hours.

本発明におけるポリビニルアルコールの鹸化度は85.5~96.5モル%であることが好ましい。鹸化度を96.5モル%以下とすることで、N-メチル-2-ピロリドン等の溶媒への溶解性が高まるため、導電材の分散性が向上し、均一で低粘度の負極樹脂組成物を含むスラリーが得られ易くなる。鹸化度を85.5モル%以上とすることで、高い耐電圧性を得られ易くなる。尚、ここでいうポリビニルアルコールの鹸化度は、JIS K 6726:1994に準ずる方法で測定される値である。 In the present invention, the degree of saponification of the polyvinyl alcohol is preferably 85.5 to 96.5 mol%. By setting the degree of saponification to 96.5 mol% or less, the solubility in a solvent such as N-methyl-2-pyrrolidone is increased, improving the dispersibility of the conductive material and making it easier to obtain a slurry containing a uniform, low-viscosity negative electrode resin composition. By setting the degree of saponification to 85.5 mol% or more, it becomes easier to obtain high voltage resistance. The degree of saponification of the polyvinyl alcohol referred to here is a value measured by a method conforming to JIS K 6726:1994.

本発明におけるポリビニルアルコールの平均重合度は250~1800であることが好ましい。平均重合度を好ましくは1800以下、より好ましくは1300以下とすることで、N-メチル-2-ピロリドン等の溶媒への溶解性が高まるため、導電材の分散性が向上し、均一で低粘度の負極樹脂組成物を含むスラリーが得られ易くなる。平均重合度を250以上、より好ましくは500以上とすることで、負極活物質及び導電材の分散性が高まり、良好な導電経路が得られ易くなる。尚、ここでいう平均重合度は、JIS K 6726:1994に準ずる方法で測定される値である。 In the present invention, the average degree of polymerization of the polyvinyl alcohol is preferably 250 to 1800. By setting the average degree of polymerization to preferably 1800 or less, more preferably 1300 or less, the solubility in a solvent such as N-methyl-2-pyrrolidone is increased, improving the dispersibility of the conductive material, and making it easier to obtain a slurry containing a uniform and low-viscosity negative electrode resin composition. By setting the average degree of polymerization to 250 or more, more preferably 500 or more, the dispersibility of the negative electrode active material and the conductive material is increased, making it easier to obtain a good conductive path. The average degree of polymerization here is a value measured by a method conforming to JIS K 6726:1994.

<負極活物質>
負極活物質としては、天然黒鉛や人造黒鉛等の黒鉛や難黒鉛化炭素、易黒鉛化炭素ポリアセン等の炭素材料、ケイ素原子含有物質、スズ原子含有物質及びチタン酸リチウム等が挙げられる。これらは単独で使用しても、2種以上を併用してもよい。これらの中では、炭素材料、及びケイ素原子含有物質から選択される少なくとも1種以上が好ましく、黒鉛、及びケイ素原子含有物質から選択される少なくとも1種以上がより好ましい。
<Negative Electrode Active Material>
Examples of the negative electrode active material include graphite such as natural graphite and artificial graphite, carbon materials such as non-graphitizable carbon and graphitizable carbon polyacene, silicon atom-containing materials, tin atom-containing materials, and lithium titanate. These may be used alone or in combination of two or more. Among these, at least one selected from carbon materials and silicon atom-containing materials is preferred, and at least one selected from graphite and silicon atom-containing materials is more preferred.

ケイ素原子含有物質としては、例えば、(i)シリコン微粒子、(ii)マグネシウム、カルシウム、リチウム、スズ、ニッケル、銅、鉄、コバルト、モリブデン、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、タンタル、ビスマス、バナジウム、タングステン、ニオブ、アンチモン又はクロムと、珪素との合金又は化合物、(iii)ホウ素、窒素、酸素又は炭素と珪素との化合物等が挙げられる。珪素の合金あるいは化合物の一例としては、SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si34、Si22O、SiOx(0<x≦2)あるいはLiSiO等が挙げられる。
スズ原子含有物質としては、例えば、(i)珪素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン又はクロムと、スズとの合金又は化合物、(ii)酸素又は炭素とスズとの化合物等が挙げられる。
Examples of silicon atom-containing substances include (i) silicon microparticles, (ii) alloys or compounds of silicon and magnesium, calcium, lithium, tin, nickel, copper, iron, cobalt, molybdenum, manganese, zinc, indium, silver, titanium, germanium, tantalum, bismuth, vanadium, tungsten, niobium, antimony or chromium, and (iii) compounds of silicon and boron, nitrogen, oxygen or carbon. Examples of silicon alloys or compounds include SiB4 , SiB6 , Mg2Si , Ni2Si , TiSi2 , MoSi2 , CoSi2, NiSi2 , CaSi2 , CrSi2, Cu5Si , FeSi2 , MnSi2 , NbSi2 , TaSi2, VSi2 , WSi2 , ZnSi2 , SiC, Si3N4 , Si2N2O , SiOx (0<x≦2) or LiSiO , etc.
Examples of tin-atom-containing substances include (i) alloys or compounds of tin with silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony or chromium, and (ii) compounds of tin with oxygen or carbon.

<増粘剤>
負極樹脂組成物の粘度調整のために増粘剤を適宜添加することが可能である。後述する分散媒が水である場合、増粘剤は、ポリエチレングリコール、セルロース、ポリアクリルアミド、ポリ(N-ビニルアミド)、ポリ(N-ビニルピロリドン)及びこれらの誘導体等が挙げられる。それらの中でも、増粘剤は、ポリエチレングリコール、セルロース及びこれらの誘導体が好ましく、カルボキシメチルセルロース(CMC)がさらに好ましい。
<Thickener>
A thickener can be appropriately added to adjust the viscosity of the negative electrode resin composition. When the dispersion medium described later is water, examples of the thickener include polyethylene glycol, cellulose, polyacrylamide, poly(N-vinylamide), poly(N-vinylpyrrolidone), and derivatives thereof. Among these, the thickener is preferably polyethylene glycol, cellulose, or a derivative thereof, and more preferably carboxymethylcellulose (CMC).

<負極樹脂組成物>
本発明に用いる負極樹脂組成物の製造には公知の方法を用いることができる。例えば、負極活物質、導電材、結着材及び分散剤の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、スラリーにして用いられる。負極樹脂組成物には増粘剤等の慣用成分を添加することも可能である。前記の負極活物質、導電材、結着材及び分散剤としては、既述したものを用いれば良い。負極樹脂組成物を含むスラリーの分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。高分子結着材としてスチレン-ブタジエン共重合体を使用する際は水が好ましく、ポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチル-2-ピロリドンが好ましい。
<Negative Electrode Resin Composition>
A known method can be used to manufacture the negative electrode resin composition used in the present invention. For example, the negative electrode resin composition is obtained by mixing a solvent dispersion solution of the negative electrode active material, conductive material, binder, and dispersant with a ball mill, a sand mill, a two-axis kneader, a rotation-revolution type mixer, a planetary mixer, a dispersant mixer, or the like, and is generally used as a slurry. It is also possible to add a conventional component such as a thickener to the negative electrode resin composition. As the negative electrode active material, conductive material, binder, and dispersant, those already described may be used. Examples of the dispersion medium of the slurry containing the negative electrode resin composition include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, and methyl isobutyl ketone. When a styrene-butadiene copolymer is used as the polymer binder, water is preferred, and when polyvinylidene fluoride is used, N-methyl-2-pyrrolidone is preferred in terms of solubility.

本発明に用いる負極樹脂組成物中の分散剤と導電材の固形分で比べたときの質量比{分散剤の質量/導電材の質量}は0.03~0.15であることが好ましく、0.04~0.12がより好ましく、0.05~0.1が最も好ましい。負極樹脂組成物中の分散剤と導電材の質量比を0.03~0.15にすることで分散剤が導電材に吸着し、より高い分散効果が得られ易くなり、0.05~0.1にすることでより高い分散効果に加えて、過剰な分散剤が導電材表面を被覆し電荷移動反応を妨害する効果を抑えるので、電池の高抵抗化を抑制できる。 The mass ratio (mass of dispersant/mass of conductive material) of the solid content of the dispersant in the negative electrode resin composition used in the present invention is preferably 0.03 to 0.15, more preferably 0.04 to 0.12, and most preferably 0.05 to 0.1. By setting the mass ratio of the dispersant to the conductive material in the negative electrode resin composition to 0.03 to 0.15, the dispersant is adsorbed to the conductive material, making it easier to obtain a higher dispersion effect, and by setting it to 0.05 to 0.1, in addition to the higher dispersion effect, the effect of excess dispersant covering the conductive material surface and interfering with the charge transfer reaction is suppressed, thereby suppressing the increase in battery resistance.

<負極>
本発明に用いる負極は以下の手順で作製可能である。まず、上記の負極樹脂組成物を含むスラリーを銅箔等の集電体上に塗布した後、加熱によりスラリーに含まれる溶媒を除去し、負極活物質が結着材を介して集電体表面に結着された多孔質体である負極合材層を形成する。次いで、集電体と負極合材層をロールプレス等により加圧して密着させることにより、目的とする負極を得ることができる。
<Negative Electrode>
The negative electrode used in the present invention can be produced by the following procedure. First, a slurry containing the above-mentioned negative electrode resin composition is applied onto a current collector such as a copper foil, and then the solvent contained in the slurry is removed by heating to form a negative electrode composite layer, which is a porous body in which the negative electrode active material is bound to the current collector surface via a binder. Next, the current collector and the negative electrode composite layer are pressed together by a roll press or the like to be in close contact with each other, thereby obtaining the desired negative electrode.

<リチウムイオン二次電池>
本発明に用いられるリチウムイオン二次電池の作製方法には、特に制限は無く、従来公知の電池の作製方法を用いて行えば良いが、例えば、図1に模式的に示した構成で、以下の方法により作製することもできる。すなわち、正極1にアルミ製タブ5を溶接し、前記の負極を用いた負極2にニッケル製タブ6を溶接した後、正極1と負極2の間に絶縁層となるポリオレフィン製微多孔膜3を配し、正極1、負極2およびポリオレフィン製微多孔膜3の空隙部分に非水電解液が十分に染込むまで注液し、外装4で封止することで作製することができる。
<Lithium-ion secondary battery>
The method for producing the lithium ion secondary battery used in the present invention is not particularly limited, and may be any conventionally known method for producing a battery, but for example, the battery may be produced by the following method using the structure diagrammatically shown in Fig. 1. That is, an aluminum tab 5 is welded to a positive electrode 1, a nickel tab 6 is welded to a negative electrode 2 using the above-mentioned negative electrode, a polyolefin microporous membrane 3 serving as an insulating layer is disposed between the positive electrode 1 and the negative electrode 2, a nonaqueous electrolyte is poured into the voids of the positive electrode 1, the negative electrode 2, and the polyolefin microporous membrane 3 until the nonaqueous electrolyte is sufficiently impregnated, and the battery is sealed with an exterior 4.

本発明のリチウムイオン二次電池の用途は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリッド自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。 The applications of the lithium ion secondary battery of the present invention are not particularly limited, but it can be used in a wide range of fields, such as portable AV devices such as digital cameras, video cameras, portable audio players, and portable LCD televisions, portable information terminals such as notebook computers, smartphones, and mobile PCs, as well as portable game devices, power tools, electric bicycles, hybrid cars, electric cars, and power storage systems.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明は、その趣旨を損なわない限り、以下に示す実施例に限定されるものではない。また、実施例および比較例ともに使用した負極は、吸着した水分を揮発させるために100℃で4時間真空乾燥を行った。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the examples shown below as long as the gist of the invention is not lost. In addition, the negative electrodes used in both the examples and comparative examples were vacuum dried at 100°C for 4 hours to volatilize the adsorbed moisture.

<実施例1>
(負極樹脂組成物を含むスラリーの調製)
溶媒として純水(関東化学社製)、導電材としてカーボンブラック(デンカ社製、「Li-435」、以下、Li-435と記載)、分散剤としてポリビニルアルコール(ポリビニルアルコールAと記載)、結着材としてスチレン-ブタジエン共重合体(以下、SBRと記載)、増粘剤としてカルボキシメチルセルロース(以下、CMCと記載)、活物質として人造黒鉛(Shenzhen BTR社製、「AGP-2A」)をそれぞれ用意した。Li-435が固形分で1質量%、ポリビニルアルコールAが固形分で0.1質量%(分散剤の質量/導電材の質量=0.1)、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%となるように秤量して混合し、この混合物に純水を添加し、自転公転式混合機(シンキー社製、「あわとり練太郎ARV-310」)を用いて、均一になるまで混合した。さらに、SBRが固形分で1.9質量%となるように秤量し、上記混合物に添加し、自転公転式混合機(シンキー社製、「あわとり練太郎ARV-310」)を用いて、均一になるまで混合し、固形分濃度50質量%の負極樹脂組成物を含むスラリーを得た。
Example 1
(Preparation of slurry containing negative electrode resin composition)
Pure water (manufactured by Kanto Chemical Co., Ltd.) was used as a solvent, carbon black (manufactured by Denka Co., Ltd., "Li-435", hereinafter referred to as Li-435) was used as a conductive material, polyvinyl alcohol (referred to as polyvinyl alcohol A) was used as a dispersant, styrene-butadiene copolymer (hereinafter referred to as SBR) was used as a binder, carboxymethyl cellulose (hereinafter referred to as CMC) was used as a thickener, and artificial graphite (manufactured by Shenzhen BTR Co., Ltd., "AGP-2A") was used as an active material. Li-435 was weighed and mixed to a solid content of 1 mass%, polyvinyl alcohol A was weighed and mixed to a solid content of 0.1 mass% (mass of dispersant/mass of conductive material = 0.1), CMC was weighed and mixed to a solid content of 1 mass%, and artificial graphite was weighed and mixed to a solid content of 96 mass%, and pure water was added to this mixture, and the mixture was mixed until uniform using a rotation-revolution type mixer (manufactured by Thinky Corporation, "Awatori Rentaro ARV-310"). Furthermore, SBR was weighed out so as to have a solid content of 1.9 mass%, added to the above mixture, and mixed until homogenous using a planetary centrifugal mixer (manufactured by Thinky Corporation, "Awatori Rentaro ARV-310") to obtain a slurry containing a negative electrode resin composition with a solid content concentration of 50 mass%.

[分散性の評価(負極樹脂組成物を含むスラリーの粘度)]
負極樹脂組成物を含むスラリーの分散性をJIS K7244-10に記載される回転型レオメータを用いた方法で粘度を評価した。具体的には、回転型レオメータ(アントンパール社製、「MCR300」)を用いて、固形分含有量が50質量%の負極樹脂組成物を含むスラリー1gをディスク上に塗布し、せん断速度を100s-1から0.01s-1まで変化させて測定を行い、せん断速度1s-1の粘度を評価した。粘度の数値が低い程、良好な分散性を意味する。本実施例の粘度は、3.5Pa・sであった。
[Evaluation of Dispersibility (Viscosity of Slurry Containing Negative Electrode Resin Composition)]
The dispersibility of the slurry containing the negative electrode resin composition was evaluated by a method using a rotational rheometer described in JIS K7244-10. Specifically, using a rotational rheometer (manufactured by Anton Paar, "MCR300"), 1 g of a slurry containing a negative electrode resin composition with a solid content of 50 mass% was applied onto a disk, and the shear rate was changed from 100 s -1 to 0.01 s -1 to perform measurements, and the viscosity at a shear rate of 1 s -1 was evaluated. The lower the viscosity value, the better the dispersibility. The viscosity in this example was 3.5 Pa·s.

(負極の作製)
負極樹脂組成物を含むスラリーを、厚さ10μmの銅箔(UACJ社製)上にアプリケータにて成膜し、乾燥機内に静置して60℃、一時間で予備乾燥させた。次に、ロールプレス機にて100kg/cmの線圧でプレスし、厚さ10μmの銅箔を含んだ塗膜の厚さが50μmになるように調製した。残留水分を完全に除去するため、120℃で3時間真空乾燥して負極を得た。
(Preparation of negative electrode)
The slurry containing the negative electrode resin composition was applied to a copper foil (manufactured by UACJ) having a thickness of 10 μm by an applicator, and was pre-dried at 60° C. for one hour by placing it in a dryer. Next, the film was pressed with a linear pressure of 100 kg/cm using a roll press machine to prepare a coating film containing the copper foil having a thickness of 10 μm to a thickness of 50 μm. In order to completely remove residual moisture, the film was vacuum dried at 120° C. for 3 hours to obtain a negative electrode.

[負極の極板抵抗評価]
作製した負極を直径14mmの円盤状に切り抜き、表裏をSUS304製平板電極によって挟んだ状態で、電気化学測定システム(ソーラトロン社製、「ファンクションジェネレーター1260」および「ポテンショガルバノスタット1287」)を用いて、振幅電圧10mV、周波数範囲1Hz~100kHzにて交流インピーダンスを測定した。得られた抵抗成分値に、切り抜いた円盤状の面積を掛けた抵抗値を極板抵抗とした。本実施例の負極の極板抵抗は1.2Ω・cm2であった。
[Evaluation of negative electrode plate resistance]
The prepared negative electrode was cut into a disk shape with a diameter of 14 mm, and the front and back were sandwiched between SUS304 flat plate electrodes. Using an electrochemical measurement system (manufactured by Solartron, "Function Generator 1260" and "Potentiogalvanostat 1287"), AC impedance was measured at an amplitude voltage of 10 mV and a frequency range of 1 Hz to 100 kHz. The resistance value obtained by multiplying the obtained resistance component value by the area of the cut-out disk was taken as the plate resistance. The plate resistance of the negative electrode in this example was 1.2 Ω cm 2 .

(正極の作製)
溶媒としてN-メチル-2-ピロリドン(関東化学株式会社製、以下、NMPと記載)、結着材としてポリフッ化ビニリデン(アルケマ社製、「HSV900」、以下、PVdFと記載)、導電材としてカーボンブラック(デンカ社製、「Li-435」、以下、Li-435と記載)、分散剤としてポリビニルアルコール(ポリビニルアルコールAと記載)、活物質としてLiNi0.5Mn0.3Co0.22(ユミコア社製、「TX10」平均一次粒子径(D50)10μm、以下、「NMC532」と記載)をそれぞれ用意した。PVdFが固形分で1.9質量%、Li-435が固形分で1質量%、ポリビニルアルコールAが固形分で0.1質量%(分散剤の質量/導電材の質量=0.1)、NMC532が固形分で97質量%となるように秤量して混合し、この混合物に固形分含有量が68質量%になるようにNMPを添加し、自転公転式混合機(シンキー社製、「あわとり練太郎ARV-310」)を用いて、均一になるまで混合し正極樹脂組成物を含むスラリーを得た。調製した正極樹脂組成物を含むスラリーを、厚さ15μmのアルミニウム箔(UACJ社製)の片面上に、アプリケータにて成膜し、乾燥機内に静置して105℃、一時間で予備乾燥させ、NMP溶媒を完全に除去した。次に、ロールプレス機にて200kg/cmの線圧でプレスし、厚さ15μmのアルミニウム箔を含んだ塗膜の厚さが80μmになるように調製した。次いで、残留水分を完全に除去するため、170℃で3時間真空乾燥して正極を得た。
(Preparation of Positive Electrode)
N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Ltd., hereafter referred to as NMP) was prepared as a solvent, polyvinylidene fluoride (manufactured by Arkema, "HSV900", hereafter referred to as PVdF) was prepared as a binder, carbon black (manufactured by Denka, "Li-435", hereafter referred to as Li-435) was prepared as a conductive material, polyvinyl alcohol (referred to as polyvinyl alcohol A) was prepared as a dispersant, and LiNi0.5Mn0.3Co0.2O2 (manufactured by Umicore, "TX10" , average primary particle size (D50) 10 μm, hereafter referred to as "NMC532") was prepared as an active material. PVdF was 1.9% by mass in solids, Li-435 was 1% by mass in solids, polyvinyl alcohol A was 0.1% by mass in solids (mass of dispersant / mass of conductive material = 0.1), and NMC532 was weighed and mixed to be 97% by mass in solids, and NMP was added to this mixture so that the solid content was 68% by mass, and a rotating and revolving mixer (manufactured by Thinky Corporation, "Awatori Rentaro ARV-310") was used to mix until uniform to obtain a slurry containing a positive electrode resin composition. The slurry containing the prepared positive electrode resin composition was formed into a film on one side of an aluminum foil (manufactured by UACJ Corporation) having a thickness of 15 μm with an applicator, and was left to stand in a dryer and pre-dried at 105 ° C. for one hour, and the NMP solvent was completely removed. Next, it was pressed with a linear pressure of 200 kg / cm with a roll press machine, and the thickness of the coating film containing the aluminum foil having a thickness of 15 μm was adjusted to be 80 μm. Next, in order to completely remove residual moisture, the resultant was dried in a vacuum at 170° C. for 3 hours to obtain a positive electrode.

(リチウムイオン二次電池の作製)
露点-50℃以下に制御したドライルーム内で、上記正極を40mm×40mmに加工し、負極を44mm×44mmに加工した後、正極にアルミ製タブ、負極にニッケル製タブを溶接した。正極と負極それぞれの合材塗工面が中央で対向するようにし、さらに正極と負極間に45mm×45mmに加工したポリオレフィン製微多孔質膜を配置した。次に70mm×140mm角に切断・加工したシート状の外装を長辺の中央部で二つ折りにした。次いで、正極用アルミ製タブと負極用ニッケル製タブが外装の外部に露出するように外装を配置しながら、二つ折りにした外装によって正極-ポリオレフィン製微多孔質膜-負極の積層体を挟んだ。次にヒートシーラーを用いて、外装の正極用アルミ製タブと負極用ニッケル製タブが露出した辺を含む2辺を加熱融着した後、加熱融着していない一辺から、2gの電解液(キシダ化学製、エチレンカーボネート/ジエチルカーボネート=1/2(体積比)+1M LiPF6溶液、以下、電解液と記載)を注液し、正極、負極およびポリオレフィン製微多孔膜に十分に染み込ませてから、真空ヒートシーラーにより、電池の内部を減圧しながら、外装の残り1辺を加熱融着してリチウムイオン二次電池を得た。
(Fabrication of lithium ion secondary battery)
In a dry room controlled to a dew point of -50°C or less, the positive electrode was processed to 40mm x 40mm, and the negative electrode was processed to 44mm x 44mm, and then an aluminum tab was welded to the positive electrode and a nickel tab was welded to the negative electrode. The composite coated surfaces of the positive electrode and the negative electrode were arranged to face each other in the center, and a polyolefin microporous membrane processed to 45mm x 45mm was placed between the positive electrode and the negative electrode. Next, a sheet-like exterior cut and processed to a 70mm x 140mm square was folded in half at the center of the long side. Next, the exterior was arranged so that the aluminum tab for the positive electrode and the nickel tab for the negative electrode were exposed to the outside of the exterior, and the laminate of the positive electrode-polyolefin microporous membrane-negative electrode was sandwiched between the folded exterior. Next, using a heat sealer, two sides of the exterior including the side where the aluminum tab for the positive electrode and the nickel tab for the negative electrode were exposed were heat-sealed, and then 2 g of electrolyte (ethylene carbonate/diethyl carbonate=1/2 (volume ratio)+1M LiPF6 solution, manufactured by Kishida Chemical Co., Ltd., hereinafter referred to as electrolyte) was poured from the other side that was not heat-sealed and allowed to fully soak into the positive electrode, negative electrode, and polyolefin microporous membrane. Then, using a vacuum heat sealer, the remaining side of the exterior was heat-sealed while reducing the pressure inside the battery, to obtain a lithium-ion secondary battery.

作製したリチウムイオン二次電池について、以下の方法により電池性能を評価した。 The battery performance of the lithium-ion secondary batteries was evaluated using the following method.

(リチウムイオン二次電池の評価)
[放電レート特性(3C放電時の放電容量維持率)]
作製したリチウムイオン二次電池を、25℃において、4.3V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で3.0Vまで放電した。次いで、再度4.3V、0.2C制限の定電流定電圧で回復充電した後、放電電流を0.2Cとして3.0Vまで放電させ、このときの放電容量を測定した。引き続き、前記の回復充電の条件は毎回保って充電し、一方で放電電流は0.5C、1C、2C、3Cと段階的に変化させながら、回復充電と放電とを繰り返し、各放電電流に対する放電容量を測定した。電池の放電レート特性の指標として、0.2C放電時に対する3C放電時の放電容量維持率を算出した。本実施例のリチウムイオン二次電池の3C放電時の放電容量維持率は83.5%であった。
(Evaluation of lithium-ion secondary batteries)
[Discharge rate characteristics (discharge capacity maintenance rate at 3C discharge)]
The lithium ion secondary battery thus prepared was charged at a constant current and constant voltage of 4.3 V and 0.2 C limit at 25 ° C., and then discharged to 3.0 V at a constant current of 0.2 C. Next, after recovery charging again at a constant current and constant voltage of 4.3 V and 0.2 C limit, the discharge current was set to 0.2 C and discharged to 3.0 V, and the discharge capacity at this time was measured. Subsequently, the above recovery charge conditions were maintained each time for charging, while the discharge current was changed stepwise to 0.5 C, 1 C, 2 C, and 3 C, and recovery charging and discharging were repeated, and the discharge capacity for each discharge current was measured. As an index of the discharge rate characteristics of the battery, the discharge capacity retention rate at 3 C discharge relative to 0.2 C discharge was calculated. The discharge capacity retention rate at 3 C discharge of the lithium ion secondary battery of this embodiment was 83.5%.

[サイクル特性(サイクル後の放電容量維持率)]
作製したリチウムイオン二次電池を、25℃において、4.3V、1C制限の定電流定電圧充電をした後、1Cの定電流で3.0Vまで放電した。上記充放電を500サイクル繰り返し、各サイクルにおける放電容量を測定した。電池のサイクル特性の指標として、特に1サイクル後に対する500サイクル後の放電容量維持率を算出した。本実施例のリチウムイオン二次電池のサイクル後の放電容量維持率は91%であった。
[Cycle characteristics (discharge capacity retention rate after cycling)]
The lithium ion secondary battery thus prepared was charged at a constant current and constant voltage of 4.3 V and limited to 1 C at 25° C., and then discharged to 3.0 V at a constant current of 1 C. The above charge and discharge were repeated 500 cycles, and the discharge capacity in each cycle was measured. As an index of the cycle characteristics of the battery, the discharge capacity retention rate after 500 cycles relative to that after 1 cycle was calculated. The discharge capacity retention rate after cycling of the lithium ion secondary battery of this example was 91%.

実施例1~9、比較例1~4で使用したポリビニルアルコールの鹸化度及び平均重合度を表1に示す。また、実施例1~9、比較例1~6で使用したカーボンブラックの平均一次粒子径及び比表面積を表2に示す。 The saponification degree and average polymerization degree of the polyvinyl alcohol used in Examples 1 to 9 and Comparative Examples 1 to 4 are shown in Table 1. The average primary particle size and specific surface area of the carbon black used in Examples 1 to 9 and Comparative Examples 1 to 6 are shown in Table 2.

<実施例2>
実施例1の負極用分散剤を、ポリビニルアルコールBへ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表3に示す。
Example 2
A negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1, except that the negative electrode dispersant in Example 1 was changed to polyvinyl alcohol B. The results are shown in Table 3.

<実施例3>
実施例1の負極用分散剤を、ポリビニルアルコールCへ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表3に示す。
Example 3
A negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1, except that the negative electrode dispersant in Example 1 was changed to polyvinyl alcohol C. The results are shown in Table 3.

<実施例4>
実施例1の負極用分散剤を、ポリビニルアルコールDへ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表3に示す。
Example 4
A negative electrode, a positive electrode, and a lithium ion secondary battery were produced and evaluated in the same manner as in Example 1, except that the negative electrode dispersant in Example 1 was changed to polyvinyl alcohol D. The results are shown in Table 3.

<実施例5>
実施例1の負極用導電材を、SAB(デンカ社製)へ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表3に示す。
Example 5
A negative electrode, a positive electrode, and a lithium ion secondary battery were prepared in the same manner as in Example 1, except that the negative electrode conductive material in Example 1 was changed to SAB (manufactured by Denka Co., Ltd.), and each evaluation was performed. The results are shown in Table 3.

<実施例6>
実施例1の負極用導電材を、Li-250(デンカ社製)へ変更し、負極樹脂組成物の固形分組成を、Li-250が固形分で1質量%、ポリビニルアルコールAが固形分で0.05質量%(分散剤の質量/導電材の質量=0.05)、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%、SBRが固形分で1.95質量%となるように変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
Example 6
The negative electrode conductive material of Example 1 was changed to Li-250 (manufactured by Denka Co., Ltd.), and the solid content composition of the negative electrode resin composition was changed so that Li-250 was 1 mass% in solid content, polyvinyl alcohol A was 0.05 mass% in solid content (mass of dispersant/mass of conductive material = 0.05), CMC was 1 mass% in solid content, artificial graphite was 96 mass% in solid content, and SBR was 1.95 mass% in solid content. Except for this, a negative electrode, a positive electrode, and a lithium ion battery were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 3.

<実施例7>
実施例1の負極用導電材を、Li-400(デンカ社製)へ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
Example 7
A negative electrode, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the conductive material for the negative electrode in Example 1 was changed to Li-400 (manufactured by Denka Co., Ltd.), and each evaluation was performed. The results are shown in Table 3.

<実施例8>
実施例1の導電材を、ECP(ライオン社製)へ変更し、負極樹脂組成物の固形分組成を、ECPが固形分で1質量%、ポリビニルアルコールAが固形分で0.16質量%(分散剤の質量/導電材の質量=0.16)、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%、SBRが固形分で1.84質量%となるように変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
Example 8
A negative electrode, a positive electrode, and a lithium ion battery were produced in the same manner as in Example 1, except that the conductive material in Example 1 was changed to ECP (manufactured by Lion Corporation), and the solid content composition of the negative electrode resin composition was changed so that ECP was 1 mass% in solid content, polyvinyl alcohol A was 0.16 mass% in solid content (dispersant mass/conductive material mass=0.16), CMC was 1 mass% in solid content, artificial graphite was 96 mass% in solid content, and SBR was 1.84 mass% in solid content, and each evaluation was performed. The results are shown in Table 3.

<実施例9>
実施例1の負極用導電材を、Li-250(デンカ社製)へ変更し、負極樹脂組成物の固形分組成を、Li-250が固形分で1質量%、ポリビニルアルコールAが固形分で0.02質量%(分散剤の質量/導電材の質量=0.02)、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%、SBRが固形分で1.98質量%となるように変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Example 9>
The negative electrode conductive material of Example 1 was changed to Li-250 (manufactured by Denka Co., Ltd.), and the solid content composition of the negative electrode resin composition was changed so that Li-250 was 1 mass% in solid content, polyvinyl alcohol A was 0.02 mass% in solid content (mass of dispersant/mass of conductive material = 0.02), CMC was 1 mass% in solid content, artificial graphite was 96 mass% in solid content, and SBR was 1.98 mass% in solid content. Except for this, a negative electrode, a positive electrode, and a lithium ion battery were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 3.

<比較例1>
実施例1の分散剤を、ポリビニルアルコールEへ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 1>
A negative electrode, a positive electrode, and a lithium ion battery were produced and evaluated in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol E. The results are shown in Table 3.

<比較例2>
実施例1の分散剤を、ポリビニルアルコールFへ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 2>
A negative electrode, a positive electrode, and a lithium ion battery were produced and evaluated in the same manner as in Example 1, except that the dispersant in Example 1 was changed to polyvinyl alcohol F. The results are shown in Table 3.

<比較例3>
実施例1の導電材を、#3030B(三菱化学社製)へ変更し、負極樹脂組成物の固形分組成を、#3030Bが固形分で1質量%、ポリビニルアルコールAが固形分で0.03質量%(分散剤の質量/導電材の質量=0.03)、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%、SBRが固形分で1.97質量%となるように変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 3>
The conductive material of Example 1 was changed to #3030B (manufactured by Mitsubishi Chemical Corporation), and the solid content composition of the negative electrode resin composition was changed so that #3030B was 1 mass% in solid content, polyvinyl alcohol A was 0.03 mass% in solid content (mass of dispersant/mass of conductive material = 0.03), CMC was 1 mass% in solid content, artificial graphite was 96 mass% in solid content, and SBR was 1.97 mass% in solid content. Except for this, a negative electrode, a positive electrode, and a lithium ion battery were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 3.

<比較例4>
実施例1の導電材を、BlackPearls2000(キャボット社製)へ変更し、負極樹脂組成物の固形分組成を、BlackPearls2000が固形分で1質量%、ポリビニルアルコールAが固形分で0.15質量%(分散剤の質量/導電材の質量=0.15)、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%、SBRが固形分で1.85質量%となるように変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 4>
The conductive material of Example 1 was changed to BlackPearls 2000 (manufactured by Cabot Corporation), and the solid content composition of the negative electrode resin composition was changed to BlackPearls 2000 at 1% by mass in solid content, polyvinyl alcohol A at 0.15% by mass in solid content (dispersant mass/conductive material mass=0.15), CMC at 1% by mass in solid content, artificial graphite at 96% by mass in solid content, and SBR at 1.85% by mass in solid content. Except for this, a negative electrode, a positive electrode, and a lithium ion battery were produced in the same manner as in Example 1, and each evaluation was performed. The results are shown in Table 3.

<比較例5>
実施例1の導電材を、ポリビニルピロリドン(日本触媒社製、「K-90」)へ変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 5>
A negative electrode, a positive electrode, and a lithium ion battery were prepared in the same manner as in Example 1, except that the conductive material in Example 1 was changed to polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., "K-90"), and each evaluation was performed. The results are shown in Table 3.

<比較例6>
実施例1の分散剤を添加せずに、負極樹脂組成物の固形分組成を、Li-435が固形分で1質量%、CMCが固形分で1質量%、人造黒鉛が固形分で96質量%、SBRが固形分で2質量%となるように変更した以外は、実施例1と同様な方法で負極、正極及びリチウムイオン電池を作製し、各評価を実施した。結果を表3に示す。
<Comparative Example 6>
A negative electrode, a positive electrode, and a lithium ion battery were produced in the same manner as in Example 1, except that the dispersant of Example 1 was not added and the solid content composition of the negative electrode resin composition was changed to 1 mass% Li-435, 1 mass% CMC, 96 mass% artificial graphite, and 2 mass% SBR, and each evaluation was performed. The results are shown in Table 3.

Figure 0007477290000001
Figure 0007477290000001

Figure 0007477290000002
Figure 0007477290000002

Figure 0007477290000003
Figure 0007477290000003

実施例1~9の負極樹脂組成物は、比較例1~6の負極樹脂組成物に比べて分散性が高いことが明らかになった。これにより本発明の実施例の負極は極板抵抗が低くなり、放電時の電圧降下を抑えられることが分かった。 It was found that the negative electrode resin compositions of Examples 1 to 9 had higher dispersibility than the negative electrode resin compositions of Comparative Examples 1 to 6. This resulted in the negative electrodes of the examples of the present invention having lower plate resistance and suppressing voltage drop during discharge.

さらに、実施例1~9のリチウムイオン二次電池は、比較例1~6のリチウムイオン二次電池に比べて放電レート特性が高く、サイクル特性も高いことが明らかになった。これにより本発明の負極樹脂組成物を用いたリチウムイオン二次電池は放電電流の増加に伴う放電レート特性の低下を抑えられ、高い寿命も兼ね備えていることが分かった。 Furthermore, it was found that the lithium ion secondary batteries of Examples 1 to 9 had higher discharge rate characteristics and higher cycle characteristics than the lithium ion secondary batteries of Comparative Examples 1 to 6. This shows that the lithium ion secondary batteries using the negative electrode resin composition of the present invention are able to suppress the decrease in discharge rate characteristics that accompanies an increase in discharge current, and also have a long life.

1 リチウムイオン二次電池正極
2 リチウムイオン二次電池負極
3 ポリオレフィン製微多孔膜
4 外装
5 アルミ製タブ
6 ニッケル製タブ
1 Lithium ion secondary battery positive electrode 2 Lithium ion secondary battery negative electrode 3 Polyolefin microporous membrane 4 Outer packaging 5 Aluminum tab 6 Nickel tab

Claims (8)

導電材、結着材及び分散剤を含有する負極樹脂組成物であって、前記分散剤が少なくともポリビニルアルコールを含み、前記導電材が少なくともカーボンブラックを含み、前記ポリビニルアルコールの鹸化度が85.5~96.5モル%であり、平均重合度が600~1700であり、前記カーボンブラックの平均一次粒子径が16nm~50nmである負極樹脂組成物(但し、結着材として、カルボキシル基を有するアニオン性ビニル系ポリマーと多官能アミンの両方を含むものを除く)。 A negative electrode resin composition containing a conductive material, a binder, and a dispersant, the dispersant containing at least polyvinyl alcohol, the conductive material containing at least carbon black, the polyvinyl alcohol having a degree of saponification of 85.5 to 96.5 mol %, an average degree of polymerization of 600 to 1700 , and an average primary particle size of the carbon black being 16 nm to 50 nm (excluding those containing both an anionic vinyl-based polymer having a carboxyl group and a polyfunctional amine as binders). 前記結着材がスチレン-ブタジエン共重合体である請求項1に記載の負極樹脂組成物。2. The negative electrode resin composition according to claim 1, wherein the binder is a styrene-butadiene copolymer. 導電材、結着材及び分散剤を含有する負極樹脂組成物であって、前記分散剤が少なくともポリビニルアルコールを含み、前記導電材が少なくともカーボンブラックを含み、前記ポリビニルアルコールの鹸化度が85.5~96.5モル%であり、平均重合度が600~1800であり、前記結着材がスチレン-ブタジエン共重合体であり、前記カーボンブラックの平均一次粒子径が16nm~50nmである負極樹脂組成物(但し、結着材として、カルボキシル基を有するアニオン性ビニル系ポリマーと多官能アミンの両方を含むものを除く)。A negative electrode resin composition containing a conductive material, a binder, and a dispersant, wherein the dispersant contains at least polyvinyl alcohol, the conductive material contains at least carbon black, the polyvinyl alcohol has a degree of saponification of 85.5 to 96.5 mol % and an average degree of polymerization of 600 to 1800, the binder is a styrene-butadiene copolymer, and the carbon black has an average primary particle size of 16 nm to 50 nm (however, the negative electrode resin composition does not include a binder containing both an anionic vinyl-based polymer having a carboxyl group and a polyfunctional amine). 前記ポリビニルアルコールの平均重合度が600~1300である請求項1~3のいずれか1項に記載の負極樹脂組成物。 4. The negative electrode resin composition according to claim 1 , wherein the polyvinyl alcohol has an average degree of polymerization of 600 to 1,300. 前記カーボンブラックの比表面積が35m2/g~400m2/gである請求項1~4のいずれか1項に記載の負極樹脂組成物。 5. The negative electrode resin composition according to claim 1 , wherein the carbon black has a specific surface area of 35 m 2 /g to 400 m 2 /g. 前記分散剤と導電材の固形分で比べたときの質量比{分散剤の質量/導電材の質量}が0.03~0.15である請求項1~のいずれか1項に記載の負極樹脂組成物。 The negative electrode resin composition according to any one of claims 1 to 5 , wherein the mass ratio of the dispersant to the conductive material in terms of solid content {mass of dispersant/mass of conductive material} is 0.03 to 0.15. 請求項1~のいずれか1項に記載の負極樹脂組成物を含む負極。 A negative electrode comprising the negative electrode resin composition according to any one of claims 1 to 6 . 請求項に記載の負極を備えた二次電池。 A secondary battery comprising the negative electrode according to claim 7 .
JP2019234949A 2019-12-25 2019-12-25 Anode resin composition, anode and secondary battery Active JP7477290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019234949A JP7477290B2 (en) 2019-12-25 2019-12-25 Anode resin composition, anode and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234949A JP7477290B2 (en) 2019-12-25 2019-12-25 Anode resin composition, anode and secondary battery

Publications (2)

Publication Number Publication Date
JP2021103664A JP2021103664A (en) 2021-07-15
JP7477290B2 true JP7477290B2 (en) 2024-05-01

Family

ID=76755325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234949A Active JP7477290B2 (en) 2019-12-25 2019-12-25 Anode resin composition, anode and secondary battery

Country Status (1)

Country Link
JP (1) JP7477290B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220526A (en) 2008-03-18 2009-10-01 Ricoh Co Ltd Thermosensitive recording material
WO2011062232A1 (en) 2009-11-18 2011-05-26 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
JP2015229716A (en) 2014-06-04 2015-12-21 東洋インキScホールディングス株式会社 Carbon black dispersion and use of the same
JP2017143027A (en) 2016-02-12 2017-08-17 株式会社豊田自動織機 Slurry for negative pole electrode and method of manufacturing negative pole electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220526A (en) 2008-03-18 2009-10-01 Ricoh Co Ltd Thermosensitive recording material
WO2011062232A1 (en) 2009-11-18 2011-05-26 三井化学株式会社 Aqueous paste for electrochemical cell, electrode plate for electrochemical cell obtained by application of the aqueous paste, and battery comprising the electrode plate
JP2015229716A (en) 2014-06-04 2015-12-21 東洋インキScホールディングス株式会社 Carbon black dispersion and use of the same
JP2017143027A (en) 2016-02-12 2017-08-17 株式会社豊田自動織機 Slurry for negative pole electrode and method of manufacturing negative pole electrode

Also Published As

Publication number Publication date
JP2021103664A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP6512606B2 (en) Negative electrode mixture for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery containing the mixture, non-aqueous electrolyte secondary battery including the negative electrode, and electric device
US11028209B2 (en) Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP7056642B2 (en) Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements
KR20150135207A (en) Binder composition for electricity storage devices
JPWO2002039518A1 (en) Slurry composition for secondary battery positive electrode, secondary battery positive electrode and secondary battery
WO2019107463A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
JP4273687B2 (en) Binder composition for secondary battery electrode and secondary battery
CN105900271B (en) Secondary cell adhesive composition
WO2019216275A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
CN112599719A (en) Negative plate, preparation method of negative plate and battery
KR20200062082A (en) Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electrical equipment
JP2010174058A (en) Polymer particle and binder resin composition for nonaqueous electrolyte energy device using the same
JP7423247B2 (en) Positive electrode resin composition, positive electrode and secondary battery
JP7477290B2 (en) Anode resin composition, anode and secondary battery
CN114041218A (en) Water-based PVDF slurry formulations for silicon graphite anodes
CN111316476B (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5835581B2 (en) Binder composition for electrode of power storage device
JP2016143552A (en) Composition for power storage device, slurry for power storage device electrode, and storage device electrode and power storage device
JP2016143553A (en) Slurry for power storage device electrode, power storage device electrode, and power storage device
JP2014203805A (en) Particulate binder for lithium ion secondary battery negative electrode, slurry composition for lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP2002305026A (en) Sheet-type lithium secondary battery
JP2016201228A (en) Active material and battery using the same
WO2024207442A1 (en) Electrode sheet, battery, and electrical device
CN116247205A (en) Preparation method of telescopic negative electrode plate and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418

R150 Certificate of patent or registration of utility model

Ref document number: 7477290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150