[go: up one dir, main page]

JP2021041365A - Biogas power generation system - Google Patents

Biogas power generation system Download PDF

Info

Publication number
JP2021041365A
JP2021041365A JP2019166721A JP2019166721A JP2021041365A JP 2021041365 A JP2021041365 A JP 2021041365A JP 2019166721 A JP2019166721 A JP 2019166721A JP 2019166721 A JP2019166721 A JP 2019166721A JP 2021041365 A JP2021041365 A JP 2021041365A
Authority
JP
Japan
Prior art keywords
biogas
power generation
water
heat
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019166721A
Other languages
Japanese (ja)
Other versions
JP7388853B2 (en
Inventor
良 田中
Makoto Tanaka
田中  良
康彰 城
Yasuaki Jo
康彰 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP2019166721A priority Critical patent/JP7388853B2/en
Publication of JP2021041365A publication Critical patent/JP2021041365A/en
Application granted granted Critical
Publication of JP7388853B2 publication Critical patent/JP7388853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Drying Of Gases (AREA)
  • Treatment Of Sludge (AREA)

Abstract

To provide an improved biogas power generation system capable of reliably preventing moisture from becoming condensate and interfering with the supply of biogas in piping, or causing problems in a generator due to moisture being supplied into the biogas power generator, by removing moisture from the biogas while minimizing cost increase for water removal and deterioration of power generation efficiency.SOLUTION: In a system which generates electricity by supplying biogas extracted from fermented organic waste to a gas engine generator, the biogas is cooled and dehumidified by using diluted water which is mixed with the organic waste to make a slurry in a pre-fermentation stage.SELECTED DRAWING: Figure 1

Description

本発明は、家畜糞尿や食品残渣等の有機廃棄物をバイオマス資源として、これを嫌気性発酵させることによって得られるバイオガスを原燃料として発電する発電システムの改良に関する。 The present invention relates to an improvement of a power generation system that uses organic waste such as livestock manure and food residue as a biomass resource and uses biogas obtained by anaerobic fermentation as a raw material to generate electricity.

化石燃料などの資源に乏しい我国においては、太陽光や風力、地熱、バイオマスといった再生可能エネルギーの導入メリットは大きく、資源の海外依存度の減少や化石燃料調達費の削減等が可能となる。 In Japan, where resources such as fossil fuels are scarce, the benefits of introducing renewable energies such as solar power, wind power, geothermal power, and biomass are great, and it will be possible to reduce the dependence of resources on overseas and reduce fossil fuel procurement costs.

また、これら再生可能エネルギーは、火力発電などと比較し、二酸化炭素の排出量が少なく、地球温暖化対策にも有効である。地熱やバイオマスは太陽光や風力に比べて普及が遅れているが、家畜糞尿や食品残渣などの有機性廃棄物のリサイクル率向上のために、これらをバイオマス資源として発電に有効活用することが期待されている。 In addition, these renewable energies emit less carbon dioxide than thermal power generation and are effective against global warming. Geothermal and biomass are lagging behind compared to solar and wind power, but it is expected that they will be effectively used for power generation as biomass resources in order to improve the recycling rate of organic waste such as livestock manure and food residues. Has been done.

バイオマスを利用した発電にはバイオマス発電とバイオガス発電がある。バイオマス発電は、家畜の糞尿、食品廃棄物等の有機ゴミを直接燃焼し、発生する熱を利用して蒸気でタービンを回し発電する仕組みである。バイオガス発電は、家畜の糞尿、食品廃棄物等の有機ゴミを発酵させて可燃性のバイオガスを取り出し、そのバイオガスで発電する仕組みである。いずれの場合もバイオマスを用いた発電はカーボンニュートラルであり、大気中の二酸化炭素の増減に影響を与えないとされるため、環境対策に有効である。 There are two types of power generation using biomass: biomass power generation and biogas power generation. Biomass power generation is a mechanism that directly burns organic waste such as livestock manure and food waste, and uses the generated heat to turn a turbine with steam to generate electricity. Biogas power generation is a mechanism in which organic waste such as livestock manure and food waste is fermented to extract flammable biogas, and the biogas is used to generate electricity. In either case, power generation using biomass is carbon-neutral and does not affect the increase or decrease of carbon dioxide in the atmosphere, so it is effective for environmental measures.

バイオガス発電としては、下記特許文献1に記載されるように、取り出したバイオガスを水素に改質して燃料電池によって発電するものや、下記特許文献2に記載されるように、取り出したバイオガスによってマイクロタービン発電機(ガスエンジン発電機)を回転させて発電するものが知られている。 As biogas power generation, as described in Patent Document 1 below, the extracted biogas is reformed into hydrogen to generate electricity by a fuel cell, or as described in Patent Document 2 below, the extracted biogas is generated. It is known that a micro-turbine generator (gas engine generator) is rotated by gas to generate electricity.

特開2010−198920号JP-A-2010-198920 特許第3606854号Patent No. 36068554

有機性廃棄物を嫌気性発酵させて得られるバイオガスは高湿度(水分が多く含まれる)であるので、水分を十分に分離・除湿する必要があることは、上記特許文献1,2に記載されている。 Since the biogas obtained by anaerobic fermentation of organic waste has high humidity (containing a large amount of water), it is necessary to sufficiently separate and dehumidify the water, as described in Patent Documents 1 and 2 above. Has been done.

燃料電池で発電する特許文献1の場合、バイオガスを一旦貯留するガスタンクや、その後、脱硫器や燃料改質装置に供するための配管における放熱によってバイオガスの温度が低下し、バイオガス中に含まれる水蒸気の一部が凝縮水となる。 In the case of Patent Document 1 in which power is generated by a fuel cell, the temperature of the biogas is lowered by heat radiation in the gas tank for temporarily storing the biogas and then in the piping for use in the desulfurization device and the fuel reformer, and the biogas is contained in the biogas. A part of the steam is condensed water.

生成した凝縮水は前記配管中でバイオガスの流通を阻害するので、燃料電池へのガスの供給が不安定となって、燃料電池の発電出力に見合った供給が行われなくなるおそれがある。また、バイオガスを供給する経路上の各種機器および装置の故障原因にもなる。 Since the generated condensed water obstructs the flow of biogas in the piping, the supply of gas to the fuel cell becomes unstable, and the supply corresponding to the power generation output of the fuel cell may not be performed. It also causes failures of various devices and devices on the biogas supply path.

そこで、特許文献1では、バイオガスの冷却器を設け、当該冷却器に冷水を循環させてバイオガスを冷却し、ガス中の水蒸気含有率を下げる方法が採用されている。さらに、加熱器を設け、バイオガスを加熱することにより、残存する水蒸気をさらに除去している。加熱器の熱源は排ガスの熱が利用される。 Therefore, in Patent Document 1, a method is adopted in which a biogas cooler is provided and cold water is circulated in the cooler to cool the biogas and reduce the water vapor content in the gas. Further, a heater is provided to heat the biogas to further remove the remaining water vapor. The heat of the exhaust gas is used as the heat source of the heater.

このように、特許文献1の場合は、冷却器に冷水を循環させてバイオガスを冷却し、ガス中の水蒸気を除去するので、冷水を循環させるための装置(温水式冷温水機)が必要になりコストアップする。また、当該装置による水の冷却に電力が必要なため、発電システムの電力効率が悪い。 As described above, in the case of Patent Document 1, cold water is circulated in the cooler to cool the biogas and the water vapor in the gas is removed. Therefore, a device (hot water type chiller / heater) for circulating the cold water is required. And the cost increases. In addition, the power efficiency of the power generation system is poor because power is required to cool the water by the device.

一方、特許文献2のマイクロタービン発電機で発電する場合は、ガス中に含まれる水分が液化や凍結することによって、タービンの運転に支障をきたすことがある。そこで、ガスを圧縮器で圧縮した後、放熱器によって冷却して水分を凝縮させ、凝縮した水分を水分除去手段によって分離、除去する。水分除去手段としては、機械的な気液分離器や吸着剤等が利用される。 On the other hand, when the micro-turbine generator of Patent Document 2 generates electricity, the water contained in the gas may be liquefied or frozen, which may hinder the operation of the turbine. Therefore, after the gas is compressed by a compressor, it is cooled by a radiator to condense water, and the condensed water is separated and removed by a water removing means. As the water removing means, a mechanical gas-liquid separator, an adsorbent, or the like is used.

また、水分が除去された後は、圧縮器の排熱でガスを加熱することで、大部分の水分を除去する。 After the water is removed, most of the water is removed by heating the gas with the exhaust heat of the compressor.

このように、特許文献2の場合は、ガス中の水分を除去するための電力が不要なため、発電システムの電力効率は良いが、気液分離器や吸着剤等を別途用意する必要があり、コストアップする。 As described above, in the case of Patent Document 2, since the electric power for removing the water in the gas is not required, the electric power efficiency of the power generation system is good, but it is necessary to separately prepare a gas-liquid separator, an adsorbent and the like. , Cost up.

そこで、本発明は、水分除去のためのコストアップや発電効率の悪化を極力抑制しつつ、バイオガス中の水分を除去することで、水分が凝縮水となって配管中でバイオガスの供給を阻害したり、水分がバイオガス発電機内に供給されることによって、発電機に不具合を発生することを確実に防止できる改良したバイオガス発電システムを提供するものである。 Therefore, the present invention removes the water in the biogas while suppressing the cost increase for removing the water and the deterioration of the power generation efficiency as much as possible, so that the water becomes condensed water and the biogas is supplied in the pipe. It provides an improved biogas power generation system that can surely prevent a malfunction of the generator by inhibiting or supplying water into the biogas generator.

請求項1記載の発明は、有機ゴミを発酵させて取り出したバイオガスをガスエンジン発電機に供給して発電するシステムにおいて、発酵の前処理段階において、有機ゴミと混ぜてこれをスラリー化する希釈水を利用してバイオガスを冷却し、除湿することに特徴を有する。 The invention according to claim 1 is a system in which biogas extracted by fermenting organic waste is supplied to a gas engine generator to generate electricity. In a pretreatment stage of fermentation, the biogas is mixed with organic waste to form a slurry. It is characterized by cooling and dehumidifying biogas using water.

請求項2記載の発明は、請求項1記載のバイオガス発電システムにおいて、ガスエンジン発電機を冷却する冷却水から熱を回収し、当該熱を利用して有機ゴミの発酵処理を行う発酵槽を加熱したり、加熱器によってバイオガスを加熱するように構成したことに特徴を有する。 The invention according to claim 2 is the biogas power generation system according to claim 1, wherein the fermenter recovers heat from the cooling water for cooling the gas engine generator and uses the heat to ferment organic waste. It is characterized in that it is configured to be heated or to heat the biogas with a heater.

請求項3記載の発明は、請求項1記載のバイオガス発電システムにおいて、ガスエンジン発電機による発電後の排ガスから熱回収し、当該熱を利用して有機ゴミの発酵処理を行う発酵槽を加熱したり、加熱器によってバイオガスを加熱するように構成したことに特徴を有する。 According to the third aspect of the present invention, in the biogas power generation system according to the first aspect, heat is recovered from the exhaust gas after power generation by the gas engine generator, and the heat is used to heat a fermenter for fermenting organic waste. It is characterized in that it is configured to heat the biogas with a heater.

請求項4記載の発明は、請求項2又は請求項3の何れかに記載のバイオガス発電システムにおいて、前記冷却水および排ガスから回収した熱によって前記発酵槽や加熱器が最適な温度に加熱された場合は、当該発酵槽や加熱器への熱の供給を停止することに特徴を有する。 In the invention according to claim 4, in the biogas power generation system according to any one of claims 2 or 3, the fermenter and the heater are heated to an optimum temperature by the heat recovered from the cooling water and the exhaust gas. If so, it is characterized by stopping the supply of heat to the fermenter or heater.

請求項1記載の発明によれば、電力を用いずにバイオガスを冷却することができ、発電効率が向上する。 According to the invention of claim 1, the biogas can be cooled without using electric power, and the power generation efficiency is improved.

請求項2記載の発明によれば、請求項1の効果に加え、ガスエンジンの冷却水の排熱を利用して発酵槽や加熱器を加熱することができ、発電効率が向上する。 According to the invention of claim 2, in addition to the effect of claim 1, the fermenter and the heater can be heated by utilizing the exhaust heat of the cooling water of the gas engine, and the power generation efficiency is improved.

請求項3記載の発明によれば、請求項1,2の効果に加え、発電後の排ガスの熱を利用して発酵槽や加熱器を加熱することができ、発電効率が向上する。 According to the invention of claim 3, in addition to the effects of claims 1 and 2, the heat of the exhaust gas after power generation can be used to heat the fermenter and the heater, and the power generation efficiency is improved.

請求項4記載の発明によれば、請求項2,3の効果に加え、発酵槽や加熱器が過剰に加熱されることを防止でき、発酵槽でのメタン発酵を阻害したり、加熱器においてバイオガスを過度に加熱することを防止できる。 According to the invention of claim 4, in addition to the effects of claims 2 and 3, it is possible to prevent the fermenter and the heater from being excessively heated, thereby inhibiting methane fermentation in the fermenter and in the heater. It is possible to prevent the biogas from being overheated.

本発明のバイオガス発電システムの概念図である。It is a conceptual diagram of the biogas power generation system of this invention. 本発明のバイオガス発電システムの他の実施例に係る構成図である。It is a block diagram which concerns on other embodiment of the biogas power generation system of this invention.

以下、本発明の実施の形態を図1により説明する。図1は本発明に係るバイオガス発電システムAの全体構成を示す概念図であり、図1において、1は家畜の糞尿、食品廃棄物等の有機ゴミ(以下、原料という)を収容し、原料希釈水と混ぜて細分化(スラリー化)する原料槽を示している。 Hereinafter, embodiments of the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram showing the overall configuration of the biogas power generation system A according to the present invention. In FIG. 1, 1 is a raw material containing organic waste such as livestock manure and food waste (hereinafter referred to as raw material). A raw material tank that is mixed with diluted water and subdivided (slurried) is shown.

2は原料槽1に供給する希釈水を貯蔵する貯水槽であり、3はスラリー化した原料を投入し、メタン発酵させてバイオガスを取り出す発酵槽である。 Reference numeral 2 denotes a water storage tank for storing the diluted water to be supplied to the raw material tank 1, and reference numeral 3 denotes a fermenter in which the slurryed raw material is charged and methane-fermented to take out biogas.

4は発酵槽3から取り出したバイオガスを貯蔵するガスホルダであり、5はガスホルダ4から取り出したバイオガスを冷却する冷却器を示している。 Reference numeral 4 denotes a gas holder for storing the biogas taken out from the fermenter 3, and 5 indicates a cooler for cooling the biogas taken out from the gas holder 4.

6は冷却したバイオガスを加熱する加熱器であり、7は加熱後のバイオガスから有害作用のある硫黄分を除去する脱硫槽を示している。 Reference numeral 6 denotes a heater for heating the cooled biogas, and 7 indicates a desulfurization tank for removing harmful sulfur from the heated biogas.

8は硫黄分を除去した後のバイオガスを燃料として発電するガスエンジン発電機であり、ガスエンジン発電機で発電された電気は、系統連系設備Bを介して例えば、電力系統に供給される。 Reference numeral 8 denotes a gas engine generator that uses biogas as fuel to generate electricity after removing sulfur, and the electricity generated by the gas engine generator is supplied to, for example, the power system via the grid interconnection facility B. ..

以上の如く構成したバイオガス発電システムAで発電する場合の動作としては、まず、原料槽1にバイオガスを生成するための原料と、当該原料を希釈するための希釈水を投入する。 As an operation in the case of power generation by the biogas power generation system A configured as described above, first, a raw material for generating biogas and diluted water for diluting the raw material are put into the raw material tank 1.

この希釈水は貯水槽2から供給される。貯水槽2内の水は冷却器5を介して事前に貯水されている。なお、貯水槽2に十分貯水された場合に備えて、冷却器5を通した水を外部へ放出する配管を備えても良い。 This diluted water is supplied from the water storage tank 2. The water in the water storage tank 2 is stored in advance via the cooler 5. In addition, a pipe for discharging the water passed through the cooler 5 to the outside may be provided in case the water is sufficiently stored in the water storage tank 2.

原料槽1内では発酵の前処理として、希釈水によって希釈された原料が細分化(スラリー化)される。スラリー化した原料は、発酵槽3内へ移される。 In the raw material tank 1, the raw material diluted with diluted water is subdivided (slurried) as a pretreatment for fermentation. The slurried raw material is transferred into the fermenter 3.

発酵槽3は所定温度に管理されており、発酵槽3内で原料はメタン発酵し、バイオガスを発生させる。 The fermenter 3 is controlled to a predetermined temperature, and the raw material is methane-fermented in the fermenter 3 to generate biogas.

発酵槽3で発生したバイオガス(例えば、38〜42℃)はガスホルダ4に回収された後、冷却器5で冷却される。冷却は、バイオガス中に含まれる水分を除去する目的で行う。 The biogas generated in the fermenter 3 (for example, 38 to 42 ° C.) is recovered in the gas holder 4 and then cooled in the cooler 5. Cooling is performed for the purpose of removing the water contained in the biogas.

有機性廃棄物である原料をメタン発酵(嫌気性発酵)させて得られるバイオガスは高湿度であるので、水分を十分に分離・除湿しないと、水分が配管内で結露し、閉塞する原因となったり、バイオガスを供給するガスエンジン発電機の故障原因となる。 Biogas obtained by methane fermentation (anaerobic fermentation) of raw materials that are organic waste has high humidity, so if water is not sufficiently separated and dehumidified, water will condense in the piping and cause blockage. It may cause a failure of the gas engine generator that supplies biogas.

本発明では、この冷却器5によるバイオガスの冷却方法が従来技術と相違する。本発明では、バイオガスは貯水槽2を介して原料槽1に供給される希釈水(例えば、0〜30℃)を冷却器5に通すことで、冷却器5を通過するバイオガスを冷却する点に特徴を有する。 In the present invention, the method for cooling biogas by the cooler 5 is different from the prior art. In the present invention, the biogas cools the biogas passing through the cooler 5 by passing the diluted water (for example, 0 to 30 ° C.) supplied to the raw material tank 1 through the water storage tank 2 through the cooler 5. It is characterized by points.

つまり、前述した特許文献1記載技術のように、バイオガスを冷却するために、冷水を循環させる装置(温水式冷温水機)を用意する必要がなく、コストを抑制することができる。 That is, unlike the technique described in Patent Document 1 described above, it is not necessary to prepare a device (hot water type chiller / heater) for circulating cold water in order to cool the biogas, and the cost can be suppressed.

また、温水式冷温水機を駆動するための電力が不要であるので、発電システムAの電力効率を向上させることができる。 Further, since the electric power for driving the hot water type chiller / heater is not required, the electric power efficiency of the power generation system A can be improved.

さらに、特許文献2記載技術のように、気液分離器や吸着剤等を別途用意する必要もない。 Further, unlike the technique described in Patent Document 2, it is not necessary to separately prepare a gas-liquid separator, an adsorbent, or the like.

冷却器5に供給する水は、例えば水栓に接続され、バイオガスを冷却するタイミングで水栓を開放する。冷却器5を通過した水はその後、貯水槽2に貯められ、原料槽1への供給が必要なタイミングで貯水槽2から原料槽1へ必要量送られる。 The water supplied to the cooler 5 is connected to, for example, a faucet, and the faucet is opened at the timing of cooling the biogas. The water that has passed through the cooler 5 is then stored in the water storage tank 2, and the required amount of water is sent from the water storage tank 2 to the raw material tank 1 at the timing when the supply to the raw material tank 1 is required.

冷却器5で冷却され結露した水分は、冷却器5のドレンから回収される。 Moisture that has been cooled by the cooler 5 and condensed is recovered from the drain of the cooler 5.

水分が取り除かれたバイオガスは、その後、加熱器6で加熱され、再び結露することを防止する。加熱器6は、バイオガス発電機8で例えば、70〜90℃に温められたバイオガス発電機8の冷却水(以下、発電機冷却水という)の熱を利用して、バイオガスを再加熱する。つまり、発電機冷却水は、加熱器6とバイオガス発電機8間を図示しないポンプによって循環する。 The biogas from which the water has been removed is then heated by the heater 6 to prevent dew condensation again. The heater 6 reheats the biogas by using the heat of the cooling water (hereinafter referred to as generator cooling water) of the biogas generator 8 heated to, for example, 70 to 90 ° C. by the biogas generator 8. To do. That is, the generator cooling water is circulated between the heater 6 and the biogas generator 8 by a pump (not shown).

また、発電機冷却水は、発酵槽3とガスエンジン発電機8間でも図示しないポンプによって循環し、バイオガス発電機8で例えば、70〜90℃に温められた発電機冷却水の熱を利用して発酵槽3内の原料を温める。 Further, the generator cooling water is circulated between the fermenter 3 and the gas engine generator 8 by a pump (not shown), and the heat of the generator cooling water heated to, for example, 70 to 90 ° C. in the biogas generator 8 is used. Then, the raw material in the fermenter 3 is warmed.

つまり、本発明では、加熱器6におけるバイオガスの再加熱と、発酵槽3における原料の加熱にバイオガス発電機8の排熱を利用するので、発電効率が向上する。 That is, in the present invention, since the exhaust heat of the biogas generator 8 is used for reheating the biogas in the heater 6 and heating the raw material in the fermenter 3, the power generation efficiency is improved.

なお、発電機冷却水の循環によって発酵槽3や加熱器6が最適な温度に加熱された場合、ポンプを停止することによって、発酵槽3や加熱器6が過度に加熱されることを防止する構成としても良い。 When the fermenter 3 and the heater 6 are heated to the optimum temperature by the circulation of the generator cooling water, the pump is stopped to prevent the fermenter 3 and the heater 6 from being excessively heated. It may be configured.

加熱器8で再加熱されたバイオガスは、脱硫器(乾式脱硫器など)7で硫黄分が取り除かれた後、ガスエンジン発電機8へ送られる。ガスエンジン発電機8は、供給されたバイオガスを燃料として発電し、系統連系設備Bを介して電力系統へ電気を供給する。 The biogas reheated by the heater 8 is sent to the gas engine generator 8 after the sulfur content is removed by the desulfurizer (dry desulfurizer or the like) 7. The gas engine generator 8 uses the supplied biogas as fuel to generate electricity, and supplies electricity to the power system via the grid interconnection facility B.

図2は本発明の他の実施例にかかるバイオガス発電システムA´のうち、図1の発電システムAと相違する部分だけを抽出して示す構成図である。図2に示す発電システムA´では、発酵槽3と加熱器6の熱源を、ガスエンジン発電機8の排ガスの排熱を利用している。 FIG. 2 is a configuration diagram showing by extracting only a portion different from the power generation system A of FIG. 1 from the biogas power generation system A ′ according to another embodiment of the present invention. In the power generation system A'shown in FIG. 2, the heat source of the fermenter 3 and the heater 6 uses the exhaust heat of the exhaust gas of the gas engine generator 8.

具体的には、ガスエンジン発電機8から排出される排ガスを、熱交換器9を介して外部へ排出することで、熱交換器9によって回収された排熱を利用して発酵槽3と加熱器6を加熱する。 Specifically, the exhaust gas discharged from the gas engine generator 8 is discharged to the outside via the heat exchanger 9, and the exhaust heat recovered by the heat exchanger 9 is used to heat the fermenter 3 and the fermenter. Heat the vessel 6.

図2の場合も、図1の発電システムAと同様、不要な熱を利用して発酵槽3や加熱器6を加熱するので、発電効率を向上させることができる。 In the case of FIG. 2, as in the power generation system A of FIG. 1, the fermenter 3 and the heater 6 are heated by using unnecessary heat, so that the power generation efficiency can be improved.

なお、排ガスによって発酵槽3や加熱器6が最適な温度に加熱された場合、ポンプを停止することによって、発酵槽3や加熱器6が過度に加熱されることを防止する構成としても良い。 When the fermenter 3 and the heater 6 are heated to the optimum temperature by the exhaust gas, the pump may be stopped to prevent the fermenter 3 and the heater 6 from being excessively heated.

以上説明したように、本発明のバイオガス発電システムA,A´によれば、バイオガスを冷却するための電力を要しないので、発電効率を向上することができる。 As described above, according to the biogas power generation systems A and A'of the present invention, since electric power for cooling the biogas is not required, the power generation efficiency can be improved.

水の供給を必要とするガス機器に適用可能である。 It is applicable to gas appliances that require water supply.

1 原料槽
2 貯水槽
3 発酵槽
4 ガスホルダ
5 冷却器
6 加熱器
7 脱硫器
9 熱交換器
10 ファン
A,A´ バイオガス発電システム
B 系統連系設備
1 Raw material tank 2 Water storage tank 3 Fermentation tank 4 Gas holder 5 Cooler 6 Heater 7 Desulfurizer 9 Heat exchanger 10 Fan A, A'Biogas power generation system B System interconnection equipment

Claims (4)

有機ゴミを発酵させて取り出したバイオガスをガスエンジン発電機に供給して発電するシステムにおいて、発酵の前処理段階において、有機ゴミと混ぜてこれをスラリー化する希釈水を利用してバイオガスを冷却し、除湿することを特徴とするバイオガス発電システム。 In a system that generates electricity by supplying biogas extracted by fermenting organic waste to a gas engine generator, biogas is generated using diluted water that is mixed with organic waste and slurried in the pretreatment stage of fermentation. A biogas power generation system characterized by cooling and dehumidifying. 前記ガスエンジン発電機を冷却する冷却水から熱を回収し、当該熱を利用して前記有機ゴミの発酵処理を行う発酵槽を加熱したり、加熱器によって前記バイオガスを加熱するように構成したことを特徴とする請求項1記載のバイオガス発電システム。 The heat is recovered from the cooling water for cooling the gas engine generator, and the heat is used to heat the fermenter for fermenting the organic waste, or the biogas is heated by a heater. The biogas power generation system according to claim 1, wherein the biogas power generation system is characterized in that. 前記ガスエンジン発電機による発電後の排ガスから熱回収し、当該熱を利用して前記有機ゴミの発酵処理を行う発酵槽を加熱したり、加熱器によって前記バイオガスを加熱するように構成したことを特徴とする請求項1記載のバイオガス発電システム。 Heat is recovered from the exhaust gas after power generation by the gas engine generator, and the heat is used to heat the fermenter for fermenting the organic waste, or the biogas is heated by a heater. The biogas power generation system according to claim 1, wherein the biogas power generation system is characterized. 前記冷却水および排ガスから回収した熱によって前記発酵槽や加熱器が最適な温度に加熱された場合は、当該発酵槽や加熱器への熱の供給を停止することを特徴とする請求項2又は請求項3の何れかに記載のバイオガス発電システム。 2. When the fermenter or heater is heated to an optimum temperature by the heat recovered from the cooling water and the exhaust gas, the heat supply to the fermenter or heater is stopped. The biogas power generation system according to any one of claims 3.
JP2019166721A 2019-09-13 2019-09-13 Biogas power generation system Active JP7388853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166721A JP7388853B2 (en) 2019-09-13 2019-09-13 Biogas power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166721A JP7388853B2 (en) 2019-09-13 2019-09-13 Biogas power generation system

Publications (2)

Publication Number Publication Date
JP2021041365A true JP2021041365A (en) 2021-03-18
JP7388853B2 JP7388853B2 (en) 2023-11-29

Family

ID=74863478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166721A Active JP7388853B2 (en) 2019-09-13 2019-09-13 Biogas power generation system

Country Status (1)

Country Link
JP (1) JP7388853B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156091A (en) * 1981-03-23 1982-09-27 Kurita Water Ind Ltd Treating device for organic waste
JPS5955397A (en) * 1982-09-24 1984-03-30 Kubota Ltd How to operate a digester
JPS6024400U (en) * 1983-07-28 1985-02-19 株式会社明電舎 Methane fermentation equipment
JPH0326400U (en) * 1989-07-20 1991-03-18
JPH09299994A (en) * 1996-05-13 1997-11-25 Oohiro:Kk Methane fermentation treatment method of chicken manure
JP2009034569A (en) * 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156091A (en) * 1981-03-23 1982-09-27 Kurita Water Ind Ltd Treating device for organic waste
JPS5955397A (en) * 1982-09-24 1984-03-30 Kubota Ltd How to operate a digester
JPS6024400U (en) * 1983-07-28 1985-02-19 株式会社明電舎 Methane fermentation equipment
JPH0326400U (en) * 1989-07-20 1991-03-18
JPH09299994A (en) * 1996-05-13 1997-11-25 Oohiro:Kk Methane fermentation treatment method of chicken manure
JP2009034569A (en) * 2007-07-31 2009-02-19 Chugoku Electric Power Co Inc:The Food waste, and system for recovering energy from sludge

Also Published As

Publication number Publication date
JP7388853B2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
Petrollese et al. Techno-economic assessment of hybrid CSP-biogas power plants
Al-Sulaiman et al. Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part II–Applications
US8080344B2 (en) Fuel cell hybrid power generation system
Su et al. Using photovoltaic thermal technology to enhance biomethane generation via biogas upgrading in anaerobic digestion
US10753600B2 (en) Turbine system and method
Oner et al. A unique solar and biomass-based system for integrated production of electricity, heat, freshwater, hydrogen and ethanol
CA3032788A1 (en) Method and power plant comprising a solid oxide fuel cell (sofc) for production of electrical energy and h2 gas
CN107075396A (en) Systems and methods for processing biomass
Demir et al. A low-carbon multigeneration system based on a solar collector unit, a bio waste gasification process and a water harvesting unit
Henke et al. Construction of a 30kw SOFC gas turbine hybrid power plant
KR101397621B1 (en) System for increasing energy efficiency of gas power plant
CN102456897A (en) Combined electricity-heat-cold supply system based on fuel cell
Hai et al. Machine learning-assisted tri-objective optimization inspired by grey wolf behavior of an enhanced SOFC-based system for power and freshwater production
Yanto et al. Development and investigation of a pollutants emission reduction process from a coal-gasification power plant integrated with fuel cell and solar energy
Ganesh et al. Comprehensive review on cogeneration systems for low and medium temperature heat recoveries
KR101493731B1 (en) Apparatus for removing rapidly moisture from biogas
CN115467747B (en) Hybrid power plant with CO2 capture
US20200313205A1 (en) Fuel cell system including heat exchanger using anode gas or anode off-gas
KR101397622B1 (en) Waste heat recovery system for cooling tower of power plant by using feul cell
JP7388853B2 (en) Biogas power generation system
JP6570111B2 (en) Hydrogen production method and system
Gandiglio et al. Design, energy modeling and performance of an integrated industrial size biogas sofc system in a wastewater treatment plant
Baldi et al. Integration of solid oxide fuel cells in cruise ship energy systems
CN214898516U (en) Power generation system
KR20160085989A (en) A thermophilic anaerobic digestion method of organic waste by using energy recycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7388853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150