[go: up one dir, main page]

JP2020156202A - Vehicle charging system - Google Patents

Vehicle charging system Download PDF

Info

Publication number
JP2020156202A
JP2020156202A JP2019052288A JP2019052288A JP2020156202A JP 2020156202 A JP2020156202 A JP 2020156202A JP 2019052288 A JP2019052288 A JP 2019052288A JP 2019052288 A JP2019052288 A JP 2019052288A JP 2020156202 A JP2020156202 A JP 2020156202A
Authority
JP
Japan
Prior art keywords
charging
chargers
storage device
power storage
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019052288A
Other languages
Japanese (ja)
Other versions
JP7155056B2 (en
Inventor
陽介 窪田
Yosuke Kubota
陽介 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2019052288A priority Critical patent/JP7155056B2/en
Publication of JP2020156202A publication Critical patent/JP2020156202A/en
Application granted granted Critical
Publication of JP7155056B2 publication Critical patent/JP7155056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a vehicle charging system that can subject a vehicle to quick charging using a plurality of chargers, and can increase use efficiency of each of the chargers.SOLUTION: A vehicle charging system 10 comprises: an external power supply device 30 having a plurality of chargers A to C; and connection means 40 that, for a vehicle 20 having a power storage device 22 and a plurality of charging ports 24A to 24C, electrically connects the plurality of charging ports and the plurality of chargers, respectively. The external power supply device 30 includes communication means 38A to 38C provided for the respective chargers and acquiring charging rate information of a vehicle power storage device connected by the connection means, and a charging control unit 32 that, based on the information acquired by the communication means, in a case where the charging rate of the power storage device electrically connected to the plurality of chargers becomes more than or equal to a specified value, performs current drooping control of sequentially reducing a charging current value from each of the chargers connected to the power storage device one by one to zero.SELECTED DRAWING: Figure 1

Description

本発明は、車両の充電システムに関し、特に、複数の充電口を備えた車両に対する充電システムに関する。 The present invention relates to a vehicle charging system, and more particularly to a charging system for a vehicle having a plurality of charging ports.

近年、EV(Electric Vehicle)やPHV(Plug−in Hybrid Electric Vehicle)等、駆動源として蓄電装置を備えた車両(以下、電気車両とも称する)に対する需要が増加している。 In recent years, there has been an increase in demand for vehicles (hereinafter, also referred to as electric vehicles) equipped with a power storage device as a drive source, such as EV (Electric Vehicle) and PHV (Plug-in Hybrid Electric Vehicle).

電気車両では、ガソリン車両の給油時間に比べて、蓄電装置の充電時間に時間がかかることから、充電に必要な時間を短縮する急速充電に関する技術が開発されている。 In electric vehicles, it takes longer to charge the power storage device than the refueling time of gasoline vehicles. Therefore, a technique for quick charging has been developed to shorten the time required for charging.

短時間で蓄電装置を充電するためには、例えば充電器となる外部電源側で高電圧を付加する等により、蓄電装置への充電電流値を大きくする必要がある。充電率の低い蓄電装置では、充電器からの高い電流を流すことにより急速に充電が行われる。また、蓄電装置の充電率が上昇して端末電圧が高くなってくると、蓄電装置に流れる電流値は低くなり、充電末期では、蓄電装置の内部抵抗が急激に増加して端子電圧が上昇することにより、電流値が大幅に減少する。 In order to charge the power storage device in a short time, it is necessary to increase the charging current value to the power storage device, for example, by applying a high voltage on the external power supply side serving as the charger. In a power storage device having a low charging rate, charging is performed rapidly by passing a high current from the charger. In addition, when the charging rate of the power storage device increases and the terminal voltage rises, the current value flowing through the power storage device decreases, and at the end of charging, the internal resistance of the power storage device rapidly increases and the terminal voltage rises. As a result, the current value is significantly reduced.

電気車両の普及にともない、一つ高電圧電源を有する充電器によって、一度に高い電流を流すことが可能な充電設備の開発が進んでいる。しかしながら、このような充電器においては部品コストが高く、充電器自体が高価になることから、充電設備の建設コストが増大するという問題がある。また、充電の急速化が進む度に、車両側においても規格の変更や、対応技術の開発が必要となることから、開発コストや製品コストが増大してしまうという問題がある。 With the spread of electric vehicles, the development of charging equipment capable of passing a high current at a time by a charger having one high voltage power supply is progressing. However, such a charger has a problem that the construction cost of the charging facility increases because the component cost is high and the charger itself becomes expensive. Further, as the speed of charging progresses, it is necessary to change the standard and develop the corresponding technology on the vehicle side as well, so that there is a problem that the development cost and the product cost increase.

このような事情に鑑みて、既存設備を利用して急速充電を行うことが可能な技術が開発されている。 In view of these circumstances, a technology has been developed that enables quick charging using existing equipment.

例えば、特許文献1では、車両に複数の充電口を設け、各充電口から同時に充電を行うことが可能な車両用充電装置が開示されている。この車両用充電装置は、一般家庭で使用される商用電源を用いて急速充電を行うことが可能な装置であり、車両に設けられた複数の充電口のそれぞれに、充電用ケーブルを介して充電器となる外部商用電源を接続することにより複数の充電器を並列接続した状態とし、各充電用ケーブルを流れる電流を蓄電装置へ流すことによって電流値を増加させている。 For example, Patent Document 1 discloses a vehicle charging device in which a vehicle is provided with a plurality of charging ports and can be charged from each charging port at the same time. This vehicle charging device is a device capable of performing quick charging using a commercial power source used in ordinary households, and charges each of a plurality of charging ports provided in the vehicle via a charging cable. By connecting an external commercial power source that serves as a device, a plurality of chargers are connected in parallel, and the current value is increased by passing the current flowing through each charging cable to the power storage device.

特開2014−155420号公報Japanese Unexamined Patent Publication No. 2014-155420

特許文献1に記載された装置のように、車両に設けた複数の充電口のそれぞれに一つの充電器を接続し、並列接続された各充電器から電流を流して充電可能な構造とすることで、一般家庭のみならず、例えば、サービスエリア等の公共施設に設置された充電設備においても、大型専用設備を新たに開発・設置することなく、従来の設備を活用して急速充電を行うことが可能である。 Like the device described in Patent Document 1, one charger is connected to each of a plurality of charging ports provided in the vehicle, and a structure capable of charging by passing an electric current from each of the chargers connected in parallel is provided. Therefore, not only in general households, but also in charging equipment installed in public facilities such as service areas, for example, quick charging can be performed by utilizing conventional equipment without newly developing and installing large-scale dedicated equipment. Is possible.

しかしながら、公共の充電設備においては、車両を急速充電できるだけではなく、混雑時に、多数の車両に対して同時進行で効率よく充電を行うことも求められる。それ故、複数の充電器を用いて急速充電を行えるとともに、各充電器の使用効率を高めて、複数台の車両に対して効率よく充電できる充電設備の開発が求められていた。 However, in public charging facilities, it is required not only to be able to quickly charge vehicles, but also to efficiently charge a large number of vehicles simultaneously and efficiently at the time of congestion. Therefore, it has been required to develop a charging facility capable of efficiently charging a plurality of vehicles by improving the usage efficiency of each charger while performing quick charging using a plurality of chargers.

本発明は、上記課題に鑑みてなされたものであって、1台の車両に対して複数の充電器を用いて急速充電を行うことができるとともに、各充電器の使用効率を高めることができる車両の充電システムを提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to perform quick charging using a plurality of chargers for one vehicle and to improve the usage efficiency of each charger. The purpose is to provide a vehicle charging system.

上記目的を達成するために、請求項1に係る発明は、複数の充電器を有する外部電源装置と、蓄電装置と該蓄電装置に電気エネルギを供給するための複数の充電口とを有する車両に対し、前記複数の充電口と前記複数の充電器とをそれぞれ電気的に接続する接続手段と、を備え、前記複数の充電器から同時に前記蓄電装置に電気エネルギを供給可能な車両の充電システムにおいて、前記外部電源装置は、各充電器に設けられ、前記接続手段により接続された車両の蓄電装置の充電率情報を取得する通信手段と、該通信手段が取得した情報に基づいて、前記複数の充電器と電気的に接続された前記蓄電装置の充電率が所定値以上となった場合に、該蓄電装置に接続された各充電器からの電流値を1つずつ順番に零になるまで低下させる電流垂下制御を行う充電制御部とを備えたことを特徴とする。 In order to achieve the above object, the invention according to claim 1 is for a vehicle having an external power supply device having a plurality of chargers, a power storage device, and a plurality of charging ports for supplying electric energy to the power storage device. On the other hand, in a vehicle charging system that includes connecting means for electrically connecting the plurality of charging ports and the plurality of chargers, respectively, and capable of simultaneously supplying electric energy from the plurality of chargers to the power storage device. The external power supply device is provided in each charger, and the communication means for acquiring the charge rate information of the power storage device of the vehicle connected by the connection means, and the plurality of communication means based on the information acquired by the communication means. When the charging rate of the power storage device electrically connected to the charger exceeds a predetermined value, the current value from each charger connected to the power storage device is sequentially reduced to zero one by one. It is characterized by being provided with a charge control unit that controls the current drooping.

この構成によれば、1台の車両に設けられた複数の充電口と、外部電源装置の複数の充電器とをそれぞれ電気的に接続し、複数の充電器から同時に電気エネルギを供給することで、車両の蓄電装置を急速充電することができる。また、この蓄電装置の充電率が所定値以上となって、各充電器からの電流値が低下してきた場合に、蓄電装置に接続された各充電器の電流値を1つずつ順番に零になるまで低下させる電流垂下制御により、一つの蓄電装置に電気的に接続された複数の充電器のうち、電流値が零になって通電が終了した充電器を他の車両に接続して他の蓄電装置の充電に用いることができる。また、蓄電装置に接続された残りの充電器の充電効率を高く保持すことができる。これにより、外部電源装置の各充電器の使用効率を高めることができる。 According to this configuration, a plurality of charging ports provided in one vehicle and a plurality of chargers of an external power supply device are electrically connected to each other, and electric energy is supplied from the plurality of chargers at the same time. , The power storage device of the vehicle can be charged quickly. Further, when the charging rate of the power storage device exceeds a predetermined value and the current value from each charger decreases, the current value of each charger connected to the power storage device is reduced to zero one by one. Of the multiple chargers that are electrically connected to one power storage device by the current droop control that reduces the current value until it becomes zero, the charger that has reached zero current value and is no longer energized is connected to another vehicle. It can be used to charge a power storage device. In addition, the charging efficiency of the remaining chargers connected to the power storage device can be maintained high. As a result, the usage efficiency of each charger of the external power supply device can be improved.

また、請求項2に係る発明は、請求項1に記載の車両の充電システムにおいて、前記外部電源装置は、各充電器の温度を検出する温度センサを備え、前記電流垂下制御は、複数の充電器と電気的に接続された蓄電装置の充電率が所定値以上となった場合に、前記温度センサの検出結果に基づき、温度の高い充電器から順番に電流値を低下させることを特徴とする。 Further, according to the second aspect of the present invention, in the vehicle charging system according to the first aspect, the external power supply device includes a temperature sensor that detects the temperature of each charger, and the current droop control controls a plurality of charging. When the charging rate of the power storage device electrically connected to the charger exceeds a predetermined value, the current value is reduced in order from the charger having the highest temperature based on the detection result of the temperature sensor. ..

この構成によれば、複数の充電器を同時に使用した場合、各充電器に対する外部環境の相違によって、各充電器間に温度の差異が生じ、温度が高い充電器では、内部抵抗が大きくなって充電効率が低下している可能性がある。このように充電効率が低下している可能性がある充電器の電流を他の充電器よりも先に低下させることで、急速充電を行う場合に充電効率を高く保つことができる。また、温度の高い充電器の電流を先に低下させることで、この充電器を他の充電器よりも先に冷却させることができる。 According to this configuration, when a plurality of chargers are used at the same time, the difference in the external environment for each charger causes a difference in temperature between the chargers, and the internal resistance becomes large in the charger having a high temperature. Charging efficiency may be reduced. By reducing the current of the charger, which may have a reduced charging efficiency, before other chargers, the charging efficiency can be kept high when quick charging is performed. Further, by lowering the current of the high temperature charger first, this charger can be cooled before other chargers.

また、請求項3に係る発明は、請求項1に記載の車両の充電システムにおいて、前記充電制御部は、各充電器から使用累計時間情報を取得し、前記電流垂下制御は、複数の充電器と電気的に接続された蓄電装置の充電率が所定値以上となった場合に、前記通信手段が取得した使用累積時間情報に基づいて、使用累計時間が多い充電器から順番に電流値を低下させることを特徴とする。 Further, in the invention according to claim 3, in the vehicle charging system according to claim 1, the charge control unit acquires cumulative usage time information from each charger, and the current droop control is performed by a plurality of chargers. When the charge rate of the power storage device electrically connected to the battery exceeds a predetermined value, the current value is reduced in order from the charger having the longest cumulative usage time based on the cumulative usage time information acquired by the communication means. It is characterized by letting it.

この構成によれば、外部電源装置が備える複数の充電器の使用累積時間を均一化させることができる。これにより、特定の充電器が経年劣化して充電効率が著しく低下することを防止し、充電システムの全体の充電効率を高く維持することができる。 According to this configuration, it is possible to equalize the cumulative usage time of a plurality of chargers included in the external power supply device. As a result, it is possible to prevent a specific charger from deteriorating over time and significantly reducing the charging efficiency, and to maintain a high overall charging efficiency of the charging system.

また、請求項4に係る発明は、請求項3に記載の車両の充電システムにおいて、前記外部電源装置は、各充電器の温度を検出する温度センサを備え、前記電流垂下制御は、複数の充電器と電気的に接続された蓄電装置の充電率が所定値以上となった場合に、使用累計時間が多い充電器から順番に電流値を低下させるとともに、該使用累積時間の差が所定値未満の場合に、前記温度センサの検出結果に基づき、温度の高い充電器から順番に電流値を低下させることを特徴とする。 Further, according to the fourth aspect of the present invention, in the vehicle charging system according to the third aspect, the external power supply device includes a temperature sensor that detects the temperature of each charger, and the current droop control controls a plurality of charging. When the charging rate of the power storage device electrically connected to the charger exceeds a predetermined value, the current value is reduced in order from the charger with the longest cumulative usage time, and the difference in the cumulative usage time is less than the predetermined value. In the case of, the current value is reduced in order from the charger having the highest temperature based on the detection result of the temperature sensor.

この構成によれば、外部電源装置が備える複数の充電器の使用累積時間を均一化させることができるとともに、同時に使用している充電器同士の使用累積時間の差が少ない場合には、温度が高い充電器の電流を先に低下させることにより、急速充電時の充電効率を高く保つことができる。 According to this configuration, the cumulative usage time of a plurality of chargers provided in the external power supply device can be made uniform, and when the difference in the cumulative usage time between the chargers used at the same time is small, the temperature becomes high. By reducing the current of the high charger first, the charging efficiency at the time of quick charging can be kept high.

本発明に係る車両の充電システムによれば、1台の車両に対して複数の充電器を用いて急速充電を行うことができるとともに、各充電器の使用効率を高めることができる。 According to the vehicle charging system according to the present invention, one vehicle can be quickly charged by using a plurality of chargers, and the usage efficiency of each charger can be improved.

本発明の一実施形態である充電システムの構成を説明するブロック図。The block diagram explaining the structure of the charging system which is one Embodiment of this invention. 充電制御部による各充電器の制御の手順を示すフローチャート図。The flowchart which shows the procedure of control of each charger by a charge control part. 蓄電装置に接続された各充電器の電流の時間変化を示すグラフ。The graph which shows the time change of the current of each charger connected to a power storage device.

以下、本発明に係る充電システムについて説明する。図1は本発明の一実施形態である充電システムの構成を説明するブロック図である。 Hereinafter, the charging system according to the present invention will be described. FIG. 1 is a block diagram illustrating a configuration of a charging system according to an embodiment of the present invention.

充電システム10は、例えば、EV(Electric Vehicle)やPHV(Plug−in Hybrid Electric Vehicle)等の電気車両(以下、単に「車両」とも称する)20に搭載された蓄電装置22に、外部電源装置30から充電を行うシステムであり、車両20と、複数の充電器A〜Cを有する外部電源装置30と、これらを電気的に接続する接続ケーブル(接続手段)40とを備える。なお、図1では、充電器A〜Cと蓄電装置22とを繋ぐ充電用電気回路の正極側の電気ライン21のみを実線で示し、負極側の電気ラインの記載を省略している。 The charging system 10 includes, for example, an external power supply device 30 in a power storage device 22 mounted on an electric vehicle (hereinafter, also simply referred to as “vehicle”) 20 such as an EV (Electric Vehicle) or a PHV (Plug-in Hybrid Electric Vehicle). It is a system for charging from the vehicle, and includes a vehicle 20, an external power supply device 30 having a plurality of chargers A to C, and a connection cable (connection means) 40 for electrically connecting these. In FIG. 1, only the electric line 21 on the positive electrode side of the charging electric circuit connecting the chargers A to C and the power storage device 22 is shown by a solid line, and the description of the electric line on the negative electrode side is omitted.

車両20は、駆動源となる蓄電装置22と、複数の充電用コネクタ24A,24B,24Cと、蓄電装置22の電池状態を制御するためのバッテリ制御部26と、車両側通信部(通信手段)28とを備える。 The vehicle 20 includes a power storage device 22 as a drive source, a plurality of charging connectors 24A, 24B, 24C, a battery control unit 26 for controlling the battery state of the power storage device 22, and a vehicle-side communication unit (communication means). 28 and.

蓄電装置22は、車両20の駆動源となる電気エネルギを蓄える装置であり、例えば、鉛電池、リチウムイオン電池、ニッケル水素電池、リチウムイオン電池などを用いることができる。 The power storage device 22 is a device that stores electrical energy that serves as a drive source for the vehicle 20, and for example, a lead battery, a lithium ion battery, a nickel hydrogen battery, a lithium ion battery, or the like can be used.

充電口24A〜24Cは、外部電源装置30から電気エネルギを取り込むためのコネクタを構成しており、本実施形態において各充電口24A〜24Cは同一の構成を有している。なお、本実施形態では充電口の数を3つに設定しているが、数はこれに限られず2つ以上であればよい。各充電用口24A〜24Cは充電回路の正極側ライン21及び負極側電気ラインにおいて、並列に接続されている。 The charging ports 24A to 24C form a connector for taking in electric energy from the external power supply device 30, and each charging port 24A to 24C has the same structure in the present embodiment. In the present embodiment, the number of charging ports is set to three, but the number is not limited to this and may be two or more. The charging ports 24A to 24C are connected in parallel in the positive electrode side line 21 and the negative electrode side electric line of the charging circuit.

各充電口24A,24B,24Cと蓄電装置22とを繋ぐ正極側電気ライン21には、電流の逆流を防止する逆流防止装置25A,25B,25Cがそれぞれ設けられている。逆流防止装置25A〜25は、例えばダイオードで構成することができる。 The positive electrode side electric line 21 connecting the charging ports 24A, 24B, 24C and the power storage device 22 is provided with backflow prevention devices 25A, 25B, 25C, respectively, to prevent backflow of current. The backflow prevention devices 25A to 25 can be configured by, for example, a diode.

バッテリ制御部26は、蓄電装置22と接続され、蓄電装置22の状態を監視して蓄電装置22の充放電を制御する。バッテリ制御部26は、中央演算処理装置であるCPUや、ROM、RAM及びこれらを接続する内部バスを有するマイコン等で構成することができる。蓄電装置22の状態は、例えば、蓄電装置22に搭載した図示していない電圧センサや電流センサによって蓄電装置22の電圧や蓄電装置22に流れる電流を検出することにより監視することができる。 The battery control unit 26 is connected to the power storage device 22 and monitors the state of the power storage device 22 to control charging / discharging of the power storage device 22. The battery control unit 26 can be composed of a CPU, which is a central processing unit, a ROM, a RAM, and a microcomputer having an internal bus connecting them. The state of the power storage device 22 can be monitored, for example, by detecting the voltage of the power storage device 22 or the current flowing through the power storage device 22 by a voltage sensor or a current sensor (not shown) mounted on the power storage device 22.

さらに、バッテリ制御部26は、図1において破線で示すように、車両側通信部28を介して各充電口24A〜24Cに接続されており、接続ケーブル40を介して、蓄電装置22の情報(例えば蓄電装置22の充電率や、他の蓄電装置との識別情報など)を外部電源装置30の充電側制御部32へ送信することが可能である。 Further, as shown by the broken line in FIG. 1, the battery control unit 26 is connected to each of the charging ports 24A to 24C via the vehicle-side communication unit 28, and the information of the power storage device 22 is provided via the connection cable 40. For example, the charging rate of the power storage device 22 and identification information from other power storage devices) can be transmitted to the charging side control unit 32 of the external power supply device 30.

蓄電装置22は、バッテリ制御部26により充電電圧の最大値が制限されており、充電率が高い充電末期状態では、バッテリ制御部26に設定された電流垂下特性に従って、蓄電装置22に流れる充電電流値が制御される。 In the power storage device 22, the maximum value of the charging voltage is limited by the battery control unit 26, and in the final charging state where the charging rate is high, the charging current flowing through the power storage device 22 according to the current drooping characteristic set in the battery control unit 26. The value is controlled.

外部電源装置30は、蓄電装置22に電気エネルギを供給するための複数の充電器A,B,Cと、各充電器A〜Cによる充電状態を制御するための充電制御部32とを備える。各充電器A〜Cは同一の規格となるように構成しても良いし、また、各々の充電状態が適切に制御可能とした、異なる規格の物で構成しても良い。なお、本実施形態では充電器の数を3つに設定しているが、数はこれに限られず2つ以上であればよい。 The external power supply device 30 includes a plurality of chargers A, B, and C for supplying electric energy to the power storage device 22, and a charge control unit 32 for controlling the charging state of each of the chargers A to C. The chargers A to C may be configured to have the same standard, or may be configured to have different standards so that their respective charging states can be appropriately controlled. In the present embodiment, the number of chargers is set to three, but the number is not limited to this and may be two or more.

充電器A〜Cには、それぞれ、接続ケーブル40が接続されるコネクタ部34A,34B,34Cと、充電器A,B,Cの温度を検出する温度センサ36A,36B,36Cと、充電側通信部(通信手段)38A,38B,38Cとが設けられている。本実施形態では、コネクタ部34A〜34Cに温度センサ36A〜36Cが搭載されている。 The chargers A to C are connected to the connector portions 34A, 34B, 34C to which the connection cable 40 is connected, the temperature sensors 36A, 36B, 36C for detecting the temperature of the chargers A, B, and C, and the charging side communication. Units (communication means) 38A, 38B, 38C are provided. In this embodiment, the temperature sensors 36A to 36C are mounted on the connector portions 34A to 34C.

充電側通信部38A〜38Cは、コネクタ部34A〜34Cに接続ケーブル40を介して接続された車両20の蓄電装置22に関する情報を充電制御部32に送信する。なお、本実施形態では、車両側通信部28、接続ケーブル40及び充電側通信部38A〜38Cを用いて、蓄電装置22に関する情報を有線的に充電制御部32に送信しているが、情報の通信方法は有線に限られず、無線であってもよい。 The charging side communication units 38A to 38C transmit information about the power storage device 22 of the vehicle 20 connected to the connector units 34A to 34C via the connection cable 40 to the charging control unit 32. In this embodiment, the vehicle-side communication unit 28, the connection cable 40, and the charging-side communication units 38A to 38C are used to wire-wirely transmit information about the power storage device 22 to the charging control unit 32. The communication method is not limited to wired, and may be wireless.

充電制御部32は、各充電器A〜Cと接続され、各充電器A〜C22の状態、例えば、電圧、電流、充電器A〜C22の温度、使用累積時間等を監視し、各充電器A〜C22の電圧値や電流値を制御する。充電制御部32は、中央演算処理装置であるCPUや、ROM、RAM及びこれらを接続する内部バスを有するマイコン等で構成することができる。充電器A〜Cの状態は、例えば、各充電器A〜Cに搭載した図示していない電圧センサや電流センサによって電圧や電流を検出することができる。また、温度センサ36A〜36Cによって温度を検出し、充電制御部32に内蔵したタイマによって使用累積時間を算出することができる。することができる。 The charge control unit 32 is connected to each of the chargers A to C, monitors the state of each of the chargers A to C22, for example, voltage, current, temperature of the chargers A to C22, cumulative usage time, etc., and monitors each charger. Controls the voltage and current values of A to C22. The charge control unit 32 can be composed of a CPU, which is a central processing unit, a ROM, a RAM, and a microcomputer having an internal bus connecting them. The state of the chargers A to C can be detected by, for example, a voltage sensor or a current sensor (not shown) mounted on the chargers A to C. Further, the temperature can be detected by the temperature sensors 36A to 36C, and the cumulative usage time can be calculated by the timer built in the charge control unit 32. can do.

接続ケーブル40は、車両20の蓄電装置22と、充電器A〜Cとを電気的に接続可能であって、一方の端部に充電口24A〜24Cに接続可能な車両側コネクタ42を有し、他方の端部にコネクタ部34A〜34Cに接続可能な充電側コネクタ43を有する。 The connection cable 40 has a vehicle-side connector 42 that can electrically connect the power storage device 22 of the vehicle 20 and the chargers A to C, and can be connected to the charging ports 24A to 24C at one end. A charging side connector 43 that can be connected to the connector portions 34A to 34C is provided at the other end.

また、各充電口24A,24B,24C及び各コネクタ部34A,34B,34には、接続ケーブル40のコネクタ42,43が接続されたか否かを検知する接続検知センサ(図示せず)が内蔵されている。バッテリ制御部26や充電制御部32は、この接続検知センサの検知結果により、接続ケーブル40の接続状態や、各充電口24A〜24Cと各充電器A〜Cの接続状態を検知することが可能である。 Further, each charging port 24A, 24B, 24C and each connector portion 34A, 34B, 34 has a built-in connection detection sensor (not shown) for detecting whether or not the connectors 42, 43 of the connection cable 40 are connected. ing. The battery control unit 26 and the charge control unit 32 can detect the connection state of the connection cable 40 and the connection state of the charging ports 24A to 24C and the chargers A to C based on the detection result of the connection detection sensor. Is.

上述した充電システム10では、車両20の充電口24A〜24Cに接続ケーブル40の車両側コネクタ42を接続し、充電器A〜Cのコネクタ部34A〜34Cに接続ケーブル40の充電側コネクタ43を接続して、外部電源装置30における充電器A〜Cの充電状態をON状態とすることで、車両20に搭載した蓄電装置22を充電することができる。また、蓄電装置22に対して、接続する充電器A〜Cの数を変えることにより、急速充電と低速充電の切り替えを行うことができる。 In the charging system 10 described above, the vehicle-side connector 42 of the connection cable 40 is connected to the charging ports 24A to 24C of the vehicle 20, and the charging-side connector 43 of the connection cable 40 is connected to the connector portions 34A to 34C of the chargers A to C. Then, by setting the charging state of the chargers A to C in the external power supply device 30 to the ON state, the power storage device 22 mounted on the vehicle 20 can be charged. Further, by changing the number of chargers A to C connected to the power storage device 22, it is possible to switch between quick charging and low speed charging.

例えば、車両20に設けられた複数の充電口24A〜24Cと、外部電源装置30の各充電器A〜Cとを接続ケーブル40を介して電気的に接続することにより、並列接続された複数の充電器A〜Cから同時に電流を流して蓄電装置22に流れる電流値を大きくすることができる。これにより、充電時間を短縮する急速充電を行うことができる。また、車両の混雑時など、外部電源装置30において使用可能な充電器の数が少ない場合には、蓄電装置22と接続される充電器の数を少なくする、例えば、1つの充電器Aのみを接続して充電を行うことにより、蓄電装置22に流れる電流値を小さくして低速充電を行うことができる。 For example, a plurality of charging ports 24A to 24C provided in the vehicle 20 and a plurality of charging ports A to C of the external power supply device 30 are electrically connected via a connection cable 40 to be connected in parallel. It is possible to increase the value of the current flowing through the power storage device 22 by simultaneously passing a current from the chargers A to C. As a result, quick charging that shortens the charging time can be performed. Further, when the number of chargers that can be used in the external power supply device 30 is small, such as when the vehicle is congested, the number of chargers connected to the power storage device 22 is reduced, for example, only one charger A is used. By connecting and charging, the current value flowing through the power storage device 22 can be reduced to perform low-speed charging.

蓄電装置22を充電する場合、充電率が低い状態においては、外部電源装置30側から大きな電流を流すことができる。一方、充電率が上昇して蓄電装置22の端末電圧が高くなると流れる電流が小さくなる。外部電源装置30は、充電側通信部38A〜38Cによって、充電器A〜Cに接続された蓄電装置22の充電率が所定値S以上となる充電末期状態であることを検知すると、この通信部を介して取得した蓄電装置22の電流垂下特性に従って、充電器A〜Cから蓄電装置22に流れる電流値が低下するように、充電器A〜Cをそれぞれ制御する。 When charging the power storage device 22, a large current can flow from the external power supply device 30 side when the charging rate is low. On the other hand, as the charging rate increases and the terminal voltage of the power storage device 22 increases, the flowing current decreases. When the external power supply device 30 detects that the charging side communication units 38A to 38C are in the final charging state in which the charging rate of the power storage devices 22 connected to the chargers A to C is equal to or higher than a predetermined value S, the communication unit 30 Each of the chargers A to C is controlled so that the current value flowing from the chargers A to C to the power storage device 22 decreases according to the current drooping characteristic of the power storage device 22 acquired via the above.

本実施形態の充電システム10では、1つの蓄電装置22に対して、2つ以上の充電器を同時に使用して充電を行う急速充電を行った場合に、蓄電装置22が充電末期状態になると、充電制御部32は、蓄電装置22に接続された複数の充電器の電流を1つずつ順番に電流値が零になるまで低下させる電流垂下制御を行う。電流値を低下させる充電器A〜Cの順番は、充電制御部32に予め設定された選択基準に従って決定され、本実施形態では、温度センサ36A〜36Cが検出した充電器A〜Cの温度が高いものから順に電流値を低下させる。 In the charging system 10 of the present embodiment, when one power storage device 22 is rapidly charged by using two or more chargers at the same time and the power storage device 22 reaches the end of charging state, The charge control unit 32 performs current droop control in which the currents of the plurality of chargers connected to the power storage device 22 are sequentially reduced one by one until the current value becomes zero. The order of the chargers A to C for lowering the current value is determined according to the selection criteria set in advance in the charge control unit 32, and in the present embodiment, the temperature of the chargers A to C detected by the temperature sensors 36A to 36C is determined. The current value is decreased in descending order.

次に、上述した充電システム10を用いて1台の車両20の蓄電装置22を充電する際の充電制御について説明する。図2は、充電制御部32による各充電器の制御の手順を示すフローチャート図である。なお、このフローチャートでは、一例として、3つの充電器A〜Cを同時に使用して急速充電する際のフローを示している。 Next, charging control when charging the power storage device 22 of one vehicle 20 using the charging system 10 described above will be described. FIG. 2 is a flowchart showing a procedure for controlling each charger by the charge control unit 32. In this flowchart, as an example, a flow when three chargers A to C are used at the same time for quick charging is shown.

車両20の充電口24A〜24Cのうち、少なくとも1つの充電口に、接続ケーブル40を介して、充電器A〜Cのいずれかが電気的に接続されると、充電制御部32は、接続された充電器の充電側通信部38A〜38Cを介して、蓄電装置22に関する情報、すなわち、蓄電装置22の識別情報、充電率、電流垂下特性等を取得する(ステップS11)。 When any of the chargers A to C is electrically connected to at least one of the charging ports 24A to 24C of the vehicle 20 via the connection cable 40, the charging control unit 32 is connected. Information about the power storage device 22, that is, identification information of the power storage device 22, charging rate, current drooping characteristic, and the like are acquired via the charging side communication units 38A to 38C of the charger (step S11).

次に、蓄電装置22に接続された充電器A〜Cの数が、1つである低速充電か、2つ以上である急速充電かを判断する(ステップS12)。 Next, it is determined whether the number of chargers A to C connected to the power storage device 22 is one for low-speed charging or two or more for fast charging (step S12).

充電制御部32は、急速充電であると判断した場合(ステップS12:Yes)、蓄電装置22に対して並列接続された複数の充電器(ここでは3つの充電器A〜C)によって、各充電器A〜Cからの蓄電装置22への電流がほぼ同一の値となるように制御する急速充電制御を行う(ステップS13)。この制御は、蓄電装置22の充電率がバッテリ制御部26に設定された所定値Sとなるまで行われる。 When the charge control unit 32 determines that the charging is quick (step S12: Yes), each charging is performed by a plurality of chargers (here, three chargers A to C) connected in parallel to the power storage device 22. Rapid charging control is performed to control the currents from the chargers A to C to the power storage device 22 to have substantially the same value (step S13). This control is performed until the charge rate of the power storage device 22 reaches a predetermined value S set in the battery control unit 26.

急速充電制御により蓄電装置22の充電率が所定値S以上となると(ステップS14:Yes)、充電制御部32は、温度センサ36A〜36Cの検出結果に基づき、充電器A〜Cのうち、検出された温度が最も高い充電器(以下、第1の充電器という)の電流値を蓄電装置22の電流垂下特性に合わせて低下させる(ステップS15)。第1の充電器の電流値が零になると、第1の充電器をOFF状態にして蓄電装置22に対する電気的接続を切断する(ステップS16)。 When the charge rate of the power storage device 22 becomes equal to or higher than the predetermined value S by the quick charge control (step S14: Yes), the charge control unit 32 detects the chargers A to C based on the detection results of the temperature sensors 36A to 36C. The current value of the charger having the highest temperature (hereinafter referred to as the first charger) is lowered according to the current drooping characteristic of the power storage device 22 (step S15). When the current value of the first charger becomes zero, the first charger is turned off and the electrical connection to the power storage device 22 is cut off (step S16).

第1の充電器の電流値が零になると、充電制御部32は、残りの充電器のうち、温度センサによる検出温度が最も高い充電器(以下、第2の充電器という)の電流値を蓄電装置22の電流垂下特性に合わせて低下させる(ステップS17)。第2の充電器の電流値が零になると、第2の充電器をOFF状態にして蓄電装置22に対する電気的接続を切断する(ステップS18)。 When the current value of the first charger becomes zero, the charge control unit 32 sets the current value of the charger having the highest temperature detected by the temperature sensor (hereinafter referred to as the second charger) among the remaining chargers. It is reduced according to the current drooping characteristic of the power storage device 22 (step S17). When the current value of the second charger becomes zero, the second charger is turned off and the electrical connection to the power storage device 22 is cut off (step S18).

第2の充電器の電流値が零になると、充電制御部32は、残り1つの充電器(以下、第3の充電器という)の電流値を蓄電装置22の電流垂下特性に合わせて低下させる(ステップS19)。第3の充電器の電流値が零になると、第3の充電器をOFF状態にして蓄電装置22に対する電気的接続を切断し(ステップS20)、充電制御を終了する。 When the current value of the second charger becomes zero, the charge control unit 32 lowers the current value of the remaining one charger (hereinafter referred to as the third charger) according to the current drooping characteristic of the power storage device 22. (Step S19). When the current value of the third charger becomes zero, the third charger is turned off, the electrical connection to the power storage device 22 is cut off (step S20), and the charging control is terminated.

ステップS12において、低速充電であると判断された場合には(ステップS12:No)、接続された1つの充電器により蓄電装置22を充電する低速充電制御を行う(ステップS22)。低速充電制御では、充電率が所定値以上となった場合に電流垂下特性に合わせて接続された充電器の電流値を低下させた後、該充電器をOFF状態にする。 If it is determined in step S12 that the charging is low speed (step S12: No), the low speed charging control is performed to charge the power storage device 22 by one connected charger (step S22). In the low-speed charging control, when the charging rate becomes equal to or higher than a predetermined value, the current value of the connected charger is lowered according to the current drooping characteristic, and then the charger is turned off.

図3は、3つの充電器A〜Cを同時に使用して蓄電装置22を急速充電した場合の各充電器A〜Cの電流値の時間変化を示すグラフである。図3では、一例として、充電器Aを第1の充電器、充電器Bを第2の充電器、充電器Cを第3の充電器とした例を示している。 FIG. 3 is a graph showing the time change of the current value of each of the chargers A to C when the power storage device 22 is rapidly charged by using the three chargers A to C at the same time. FIG. 3 shows an example in which the charger A is the first charger, the charger B is the second charger, and the charger C is the third charger.

急速充電開始時には、各充電器A〜Cにほぼ同一の電流Iが流れており、蓄電装置22には、3つの充電器A〜Cの電流値を加算した3Iが流れている。充電時間が経過し、時間tに蓄電装置22の充電率が所定値Sになると、充電制御部32は第1の充電器Aの電流値を低下させる。その後、時間tに第1の充電器Aの電流値が零になると、充電制御部32は第2の充電器Bの電流値を低下させる。その後、時間tに第2の充電器Bの電流値が零になると、充電制御部32は第3の充電器Cの電流値を低下させる。なお、グラフにおける時間tの関係は、t<t≦t<t≦t<tである。 At the start of rapid charging, substantially the same current I 1 flows through each of the chargers A to C, and 3I 1 by adding the current values of the three chargers A to C flows through the power storage device 22. Elapsed charging time, the charging rate of the storage device 22 becomes a predetermined value S in time t 1, the charge control unit 32 reduces the current value of the first charger A. Thereafter, when the current value of the first charger A becomes zero in time t 2, the charge control unit 32 reduces the current value of the second charger B. Thereafter, when the current value of the second charger B becomes zero in time t 4, the charge control unit 32 reduces the current value of the third charging device C. The relationship of time t in the graph is t 1 <t 2 ≤ t 3 <t 4 ≤ t 5 <t 6 .

上述したように、本実施形態の充電システム10では、車両20に設けられた複数の充電口24A〜24Bと、外部電源装置30の複数の充電器A〜Cとを接続ケーブル40を用いてそれぞれ電気的に接続し、複数の充電器A〜Cから同時に電気エネルギを供給することで、蓄電装置22を急速充電することができる。 As described above, in the charging system 10 of the present embodiment, the plurality of charging ports 24A to 24B provided in the vehicle 20 and the plurality of chargers A to C of the external power supply device 30 are connected to each other by using the connection cable 40. By electrically connecting and supplying electric energy from a plurality of chargers A to C at the same time, the power storage device 22 can be quickly charged.

また、蓄電装置22の充電率が所定値S以上となって、蓄電装置22に対する電流垂下制御を行う際に、接続された各充電器A〜Cの電流値を1つずつ順番に零になるまで低下させるようにしているので、一つの蓄電装置22に電気的に接続された複数の充電器A〜Cのうち、電流値が零になって通電が終了した第1の充電器Aを他の車両の充電口に接続して、この車両の蓄電装置の充電に用いることができる。このように、車両20を充電している間に、電流値が零になって通電が終了した第1の充電器Aや第2の充電器Bを他の車両の充電に使用することができるので、混雑時に、多数の車両に対して同時進行で効率よく充電を行うことができる。さらに、車両20に接続された残りの充電器Cの充電効率を充電末期において高く保持すことができる。これにより、外部電源装置30の各充電器A〜Cの使用効率を高めることができる。特に、本実施形態のように、複数の充電器A〜Cのうち、いずれか1つの充電器の電流値を低下させ、この電流値が零になった後に、次の充電器の電流値を低下させるようにすることで、先の充電器を早くOFF状態にして他の車両の充電に用いることができるので、使用効率を高めることができる。 Further, when the charging rate of the power storage device 22 becomes a predetermined value S or more and the current droop control for the power storage device 22 is performed, the current values of the connected chargers A to C are sequentially reduced to zero one by one. Of the plurality of chargers A to C electrically connected to one power storage device 22, the first charger A whose current value becomes zero and the energization is completed is the other. It can be connected to the charging port of the vehicle and used to charge the power storage device of this vehicle. In this way, while charging the vehicle 20, the first charger A and the second charger B whose current value becomes zero and the energization is completed can be used for charging another vehicle. Therefore, it is possible to efficiently charge a large number of vehicles at the same time at the time of congestion. Further, the charging efficiency of the remaining charger C connected to the vehicle 20 can be kept high at the end of charging. Thereby, the usage efficiency of each of the chargers A to C of the external power supply device 30 can be improved. In particular, as in the present embodiment, the current value of any one of the plurality of chargers A to C is lowered, and after this current value becomes zero, the current value of the next charger is set. By lowering the value, the previous charger can be quickly turned off and used for charging another vehicle, so that the usage efficiency can be improved.

また、電流値を低下させる順番を各充電器A〜Cの温度によって決定することにより、充電効率を高く保持することができる。具体的には、急速充電において複数の充電器A〜Cを同時に使用した場合、各充電器A〜Cに対する外部環境の相違(例えば、太陽光の当たり方や、車両20の発熱部が近辺にあるか等)によって、各充電器A〜C間には温度の差異が生じる。温度が高い充電器(例えば、第1の充電器A)では、内部抵抗が大きくなって充電効率が低下している可能性があり、このような充電器の電流を他の充電器B,Cよりも先に低下させることで、充電効率を高く保つことができる。また、温度の高い充電器Aの電流値を先に低下させることで、この充電器Aの過熱を抑制して他の充電器B,Cよりも先に冷却させることができる。 Further, the charging efficiency can be kept high by determining the order in which the current values are lowered according to the temperatures of the chargers A to C. Specifically, when a plurality of chargers A to C are used at the same time in quick charging, the difference in the external environment for each of the chargers A to C (for example, how the sunlight hits and the heat generating part of the vehicle 20 are in the vicinity. There is a temperature difference between the chargers A to C, etc.). In a charger having a high temperature (for example, the first charger A), the internal resistance may increase and the charging efficiency may decrease, and the current of such a charger may be applied to other chargers B and C. By lowering it before, the charging efficiency can be kept high. Further, by lowering the current value of the charger A having a high temperature first, it is possible to suppress the overheating of the charger A and cool the charger A before the other chargers B and C.

なお、充電制御部32によって選択される電流を低下させる充電器の順番は、上述したものに限られず、適宜、設定を変更することが可能である。 The order of the chargers for reducing the current selected by the charge control unit 32 is not limited to those described above, and the settings can be changed as appropriate.

例えば、初期設定において、電流値を低下させる充電器A〜Cの順番を予め決定しておいてもよい。 For example, in the initial setting, the order of the chargers A to C for lowering the current value may be determined in advance.

また、各充電器の使用累積時間に応じて、使用累積時間が多いものから先に電流値を低下させるようにしてもよい。一例として、充電器Bの使用累積時間が最も多く、充電器Aの使用累積時間が最も少ない場合には、第1の充電器B、第2の充電器C、第3の充電器Aの順に電流値を低下させる電流垂下制御を行う。充電システム10において急速充電により、複数の充電器A〜Cを1つずつ順番に低下させる電流垂下制御を行うと、各充電器A〜Cの使用時間が不均一になるが、その後の急速充電において、電流値を低下させる充電器A〜Cの順番を使用累積時間が多いものから順に行うことで、使用累積時間が均一化される。これにより、特定の充電器が経年劣化して充電効率が著しく低下することを防止し、充電システム10の全体の充電効率を高く維持することができる。 Further, depending on the cumulative usage time of each charger, the current value may be reduced first from the one with the longest cumulative usage time. As an example, when the cumulative usage time of the charger B is the longest and the cumulative usage time of the charger A is the shortest, the first charger B, the second charger C, and the third charger A are in that order. Performs current droop control to reduce the current value. If the charging system 10 performs current droop control in which the plurality of chargers A to C are sequentially lowered one by one by quick charging, the usage time of each of the chargers A to C becomes uneven, but the subsequent quick charging In the above, by performing the order of the chargers A to C for lowering the current value in order from the one having the longest cumulative usage time, the cumulative usage time is made uniform. As a result, it is possible to prevent a specific charger from deteriorating over time and significantly lowering the charging efficiency, and to maintain a high overall charging efficiency of the charging system 10.

さらに、各充電器A〜Cの使用累積時間と温度とに基づいて、電流値を低下させる順番を決定してもよい。例えば、各充電器A〜Cの使用累積時間を算出し、それぞれの使用累積時間の差が大きい、具体的には使用累積時間の差が所定値以上となる場合には、使用累積時間が多いものから順に電流値を低下させる。一方、使用累積時間の差が少ない、具体的には、2つ(又は3つ)の充電器の使用累積時間の差が所定値未満となっている場合には、温度センサ36A〜36Cが検出した温度に基づき、温度の高い充電器から順に電流値を低下させる制御を行う。このような制御を行うことで、外部電源装置30が備える複数の充電器A〜Cの使用累積時間を均一化させることができるとともに、同時に使用している充電器A〜C同士の使用累積時間の差が少ない場合には、温度が高い充電器の電流値を先に低下させることにより、充電効率を高く保つことができる。 Further, the order in which the current values are reduced may be determined based on the cumulative usage time and temperature of each of the chargers A to C. For example, when the cumulative usage time of each charger A to C is calculated and the difference between the cumulative usage time is large, specifically, when the difference between the cumulative usage time is greater than or equal to a predetermined value, the cumulative usage time is large. The current value is reduced in order from the one. On the other hand, when the difference in cumulative usage time is small, specifically, when the difference in cumulative usage time between the two (or three) chargers is less than a predetermined value, the temperature sensors 36A to 36C detect it. Based on the temperature, the current value is controlled to decrease in order from the charger with the highest temperature. By performing such control, the cumulative usage time of the plurality of chargers A to C included in the external power supply device 30 can be made uniform, and the cumulative usage time of the chargers A to C used at the same time can be made uniform. When the difference between the two is small, the charging efficiency can be kept high by first lowering the current value of the charger having a high temperature.

なお、本発明は上述した各実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

例えば、急速充電における電流垂下制御は、1つの蓄電装置に接続された複数の充電器のうち、まず、第1の充電器の電流値を低下させ、その後、第1の充電器の電流値が零になる前に第2の充電器の電流を低下させてもよい。かかる場合には、第1の充電器の電流値が第2の充電器よりも先に零になるように制御を行う。このような電流垂下制御においても、電流値が零になった第1の充電器を他の車両の充電に使用することができる。 For example, in the current droop control in quick charging, among a plurality of chargers connected to one power storage device, the current value of the first charger is first lowered, and then the current value of the first charger is changed. The current of the second charger may be reduced before it reaches zero. In such a case, control is performed so that the current value of the first charger becomes zero before the second charger. Even in such current droop control, the first charger whose current value becomes zero can be used for charging another vehicle.

10 充電システム
20 車両
22 蓄電装置
24A,24B,24C 充電口
25A,25B,25C 逆流防止装置
26 バッテリ制御部
28 車両側通信部
30 外部電源装置
32 充電制御部
34A,34B,34C コネクタ部
36A,36B,36C 温度センサ
38A,38B,38C 充電器側通信部
40 接続ケーブル
A,B,C 充電器
10 Charging system 20 Vehicle 22 Charging device 24A, 24B, 24C Charging port 25A, 25B, 25C Backflow prevention device 26 Battery control unit 28 Vehicle side communication unit 30 External power supply device 32 Charging control unit 34A, 34B, 34C Connector unit 36A, 36B , 36C Temperature sensor 38A, 38B, 38C Charger side communication unit 40 Connection cable A, B, C Charger

Claims (4)

複数の充電器を有する外部電源装置と、
蓄電装置と該蓄電装置に電気エネルギを供給するための複数の充電口とを有する車両に対し、前記複数の充電口と前記複数の充電器とをそれぞれ電気的に接続する接続手段と、を備え、前記複数の充電器から同時に前記蓄電装置に電気エネルギを供給可能な車両の充電システムにおいて、
前記外部電源装置は、
各充電器に設けられ、前記接続手段により接続された車両の蓄電装置の充電率情報を取得する通信手段と、
該通信手段が取得した情報に基づいて、前記複数の充電器と電気的に接続された前記蓄電装置の充電率が所定値以上となった場合に、該蓄電装置に接続された各充電器からの電流値を1つずつ順番に零になるまで低下させる電流垂下制御を行う充電制御部とを備えたことを特徴とする車両の充電システム。
An external power supply with multiple chargers and
A vehicle having a power storage device and a plurality of charging ports for supplying electric energy to the power storage device is provided with a connection means for electrically connecting the plurality of charging ports and the plurality of chargers, respectively. In a vehicle charging system capable of simultaneously supplying electrical energy to the power storage device from the plurality of chargers.
The external power supply device
A communication means provided in each charger to acquire charge rate information of the power storage device of the vehicle connected by the connection means, and
Based on the information acquired by the communication means, when the charge rate of the power storage device electrically connected to the plurality of chargers becomes a predetermined value or more, from each charger connected to the power storage device. A vehicle charging system characterized by being provided with a charging control unit that controls current drooping to reduce the current values of the above one by one until it becomes zero.
前記外部電源装置は、各充電器の温度を検出する温度センサを備え、
前記電流垂下制御は、複数の充電器と電気的に接続された蓄電装置の充電率が所定値以上となった場合に、前記温度センサの検出結果に基づき、温度の高い充電器から順番に電流値を低下させることを特徴とする請求項1に記載の車両の充電システム。
The external power supply device includes a temperature sensor that detects the temperature of each charger.
In the current droop control, when the charging rate of the power storage device electrically connected to the plurality of chargers exceeds a predetermined value, the current is sequentially applied from the charger having the highest temperature based on the detection result of the temperature sensor. The vehicle charging system according to claim 1, wherein the value is reduced.
前記充電制御部は、各充電器から使用累計時間情報を取得し、
前記電流垂下制御は、複数の充電器と電気的に接続された蓄電装置の充電率が所定値以上となった場合に、前記通信手段が取得した使用累積時間情報に基づいて、使用累計時間が多い充電器から順番に電流値を低下させることを特徴とする請求項1に記載の車両の充電システム。
The charge control unit acquires cumulative usage time information from each charger and obtains information on the cumulative usage time.
In the current droop control, when the charge rate of the power storage device electrically connected to the plurality of chargers exceeds a predetermined value, the cumulative usage time is based on the cumulative usage time information acquired by the communication means. The vehicle charging system according to claim 1, wherein the current value is reduced in order from the most chargers.
前記外部電源装置は、各充電器の温度を検出する温度センサを備え、
前記電流垂下制御は、複数の充電器と電気的に接続された蓄電装置の充電率が所定値以上となった場合に、使用累計時間が多い充電器から順番に電流値を低下させるとともに、該使用累積時間の差が所定値未満の場合に、前記温度センサの検出結果に基づき、温度の高い充電器から順番に電流値を低下させることを特徴とする請求項3に記載の車両の充電システム。
The external power supply device includes a temperature sensor that detects the temperature of each charger.
In the current droop control, when the charging rate of the power storage device electrically connected to the plurality of chargers exceeds a predetermined value, the current value is reduced in order from the charger having the longest cumulative usage time, and the current value is reduced. The vehicle charging system according to claim 3, wherein when the difference in cumulative usage time is less than a predetermined value, the current value is reduced in order from the charger having the highest temperature based on the detection result of the temperature sensor. ..
JP2019052288A 2019-03-20 2019-03-20 vehicle charging system Active JP7155056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019052288A JP7155056B2 (en) 2019-03-20 2019-03-20 vehicle charging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019052288A JP7155056B2 (en) 2019-03-20 2019-03-20 vehicle charging system

Publications (2)

Publication Number Publication Date
JP2020156202A true JP2020156202A (en) 2020-09-24
JP7155056B2 JP7155056B2 (en) 2022-10-18

Family

ID=72560093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019052288A Active JP7155056B2 (en) 2019-03-20 2019-03-20 vehicle charging system

Country Status (1)

Country Link
JP (1) JP7155056B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023543782A (en) * 2020-09-28 2023-10-18 マイン モビリティー リサーチ シーオー.,エルティーディー. System and method for vehicle-side control of multi-pile charging sessions
JP7662358B2 (en) 2021-03-05 2025-04-15 新電元工業株式会社 Quick charging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252810A (en) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd Onboard charging apparatus of battery vehicle
JP2008199752A (en) * 2007-02-09 2008-08-28 Kyushu Electric Power Co Inc Charger
WO2012070432A1 (en) * 2010-11-25 2012-05-31 本田技研工業株式会社 Charge control device for electric vehicle
JP2013062978A (en) * 2011-09-14 2013-04-04 Jfe Engineering Corp Electric vehicle allowing super rapid charging and support structure for super rapid charging cable therefor
JP2013090416A (en) * 2011-10-17 2013-05-13 Sinfonia Technology Co Ltd Charging facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252810A (en) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd Onboard charging apparatus of battery vehicle
JP2008199752A (en) * 2007-02-09 2008-08-28 Kyushu Electric Power Co Inc Charger
WO2012070432A1 (en) * 2010-11-25 2012-05-31 本田技研工業株式会社 Charge control device for electric vehicle
JP2013062978A (en) * 2011-09-14 2013-04-04 Jfe Engineering Corp Electric vehicle allowing super rapid charging and support structure for super rapid charging cable therefor
JP2013090416A (en) * 2011-10-17 2013-05-13 Sinfonia Technology Co Ltd Charging facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023543782A (en) * 2020-09-28 2023-10-18 マイン モビリティー リサーチ シーオー.,エルティーディー. System and method for vehicle-side control of multi-pile charging sessions
JP7543555B2 (en) 2020-09-28 2024-09-02 マイン モビリティー リサーチ シーオー.,エルティーディー. SYSTEM AND METHOD FOR VEHICLE SIDE CONTROL OF MULTI-PILE CHARGING SESSIONS - Patent application
JP7662358B2 (en) 2021-03-05 2025-04-15 新電元工業株式会社 Quick charging device

Also Published As

Publication number Publication date
JP7155056B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN107221970B (en) System and method for charging a battery pack
EP3573212B1 (en) Battery pack system, control method thereof and management device
WO2019155751A1 (en) Vehicle-mounted charging device and vehicle-mounted charging device control method
JP5547342B2 (en) Advanced storage battery system
US7126312B2 (en) Method and apparatus for balancing multi-cell lithium battery systems
KR101696160B1 (en) Apparatus, system and method for preventing damage of battery rack using voltage measurement
KR102052241B1 (en) System and method for battery management using Balancing battery
JP2008278635A (en) Battery charger and method for electric vehicle
JP2013055719A (en) Charge controller for battery pack and method of charge control
JP2017508436A (en) Precharge and voltage supply system for DC-AC inverter
JP6693350B2 (en) Voltage equalization method for multiple battery stacks
JP2001314046A (en) Battery charger, charging method, and electric vehicle
CN107521369B (en) A method of charging an electric vehicle
JP2020156202A (en) Vehicle charging system
JP2014171323A (en) Cell balance device
JP6827355B2 (en) Battery control device
CN113991773B (en) Charging method and related equipment
US11050267B2 (en) Power supply system
CN113206526A (en) Charging control method and device, electric manned aircraft and storage medium
JP6048300B2 (en) Battery monitoring device and battery unit
CN107492696B (en) Control method and system of high-voltage battery and electric automobile
CN108352719B (en) Power supply device
CN113581011B (en) Battery charge and discharge control system, method and device
JP2016082642A (en) Overcurrent abnormality detection device and overcurrent abnormality detection method
KR20240095698A (en) Method for balancing parallel battery pack using pre-charging circuit and apparatus and system therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7155056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150