JP2020124739A - Both surface friction agitation joint method and both surface friction agitation joint device - Google Patents
Both surface friction agitation joint method and both surface friction agitation joint device Download PDFInfo
- Publication number
- JP2020124739A JP2020124739A JP2019019902A JP2019019902A JP2020124739A JP 2020124739 A JP2020124739 A JP 2020124739A JP 2019019902 A JP2019019902 A JP 2019019902A JP 2019019902 A JP2019019902 A JP 2019019902A JP 2020124739 A JP2020124739 A JP 2020124739A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- joint
- friction stir
- stir welding
- joining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 87
- 238000013019 agitation Methods 0.000 title 2
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 211
- 239000010959 steel Substances 0.000 claims abstract description 211
- 238000010438 heat treatment Methods 0.000 claims abstract description 170
- 238000005304 joining Methods 0.000 claims abstract description 134
- 238000003466 welding Methods 0.000 claims abstract description 128
- 238000003756 stirring Methods 0.000 claims abstract description 106
- 230000014509 gene expression Effects 0.000 claims abstract description 17
- 238000001816 cooling Methods 0.000 claims description 69
- 239000000463 material Substances 0.000 claims description 36
- 230000006698 induction Effects 0.000 claims description 13
- 238000003303 reheating Methods 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 9
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 claims description 5
- 238000010586 diagram Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 description 44
- 239000002184 metal Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 31
- 230000000694 effects Effects 0.000 description 18
- 229910000746 Structural steel Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 9
- 239000007769 metal material Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 210000001503 joint Anatomy 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000001931 thermography Methods 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910000677 High-carbon steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Images
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
【課題】本発明は、少なくとも2枚以上の鋼板を接合する両面摩擦撹拌接合方法および両面摩擦撹拌接合装置を提供する。【解決手段】対向する一対の回転ツールを少なくとも2枚以上の鋼板の未接合部の表面側と裏面側にそれぞれ配置し、未接合部に回転ツールを押圧し、回転ツールを互いに逆方向に回転させながら接合方向に移動することにより、鋼板同士を摩擦撹拌接合する両面摩擦撹拌接合方法であって、回転ツールの肩部およびピン部は、回転軸を共有し、かつ鋼板よりも硬い材質であり、回転ツールの一方の接合方向前方に設けられた加熱装置により加熱された鋼板の表面側の領域を加熱領域としたとき、加熱する際に、加熱領域における、鋼板表面温度TP(℃)および対向する肩部の隙間G(mm)と鋼板の厚さt(mm)が所定の条件式を満たすように制御し、摩擦撹拌接合を行う。【選択図】図1PROBLEM TO BE SOLVED: To provide a double-sided friction stir welding method for joining at least two or more steel plates and a double-sided friction stir welding apparatus. SOLUTION: A pair of facing rotating tools are arranged on the front surface side and the back surface side of an unjoined portion of at least two or more steel sheets, and the rotating tool is pressed against the unjoined portion to rotate the rotating tools in opposite directions. This is a double-sided friction-stirring joining method in which steel plates are friction-stirred and joined by moving in the joining direction while allowing them to move. When the region on the surface side of the steel sheet heated by the heating device provided in front of one of the joining directions of the rotary tool is used as the heating region, the steel plate surface temperature TP (° C.) and the facing region in the heating region are opposed to each other. The gap G (mm) of the shoulder portion and the thickness t (mm) of the steel sheet are controlled so as to satisfy a predetermined conditional expression, and friction stirring joining is performed. [Selection diagram] Fig. 1
Description
本発明は、少なくとも2枚以上の金属板(例えば、鋼板)を接合する両面摩擦撹拌接合方法、およびその両面摩擦撹拌接合を行なうための両面摩擦撹拌接合装置に関する。 The present invention relates to a double-sided friction stir welding method for joining at least two or more metal plates (for example, steel plates), and a double-sided friction stir welding apparatus for performing the double-sided friction stir welding.
摩擦撹拌接合では、互いに対向する一対の回転ツールを少なくとも2枚以上の金属板の接合部となる突合せ部もしくは重ね部の表面側と裏面側に対向してそれぞれ配置し、突合せ部もしくは重ね部において一対の回転ツールを回転させながら接合方向に移動し、回転ツールと金属板との摩擦熱により金属板を軟化させつつ、その軟化した部位を回転ツールで撹拌する。これにより、接合部となる領域で塑性流動を生じさせて金属板同士を接合する。 In friction stir welding, a pair of rotary tools facing each other are arranged facing each other on the front surface side and the back surface side of a butt portion or a lap portion that is a joint portion of at least two or more metal plates, and at the butt portion or the lap portion. The pair of rotary tools are moved in the joining direction while being rotated, and the metal plate is softened by frictional heat between the rotary tool and the metal plate, and the softened portion is stirred by the rotary tool. As a result, plastic flow is generated in the region that will be the joint, and the metal plates are joined together.
なお、以降の説明では、金属板(例えば、鋼板等)を突合せた(もしくは重ねた)だけで未だ接合されていない状態にある突合せ部分(もしくは重ね部分)を「未接合部」と称し、突合せ部分(もしくは重ね部分)において摩擦撹拌による塑性流動により接合されて一体化された部分を「接合部」と称する。 In the following description, the abutted portion (or the overlapped portion) which is in a state where it is not joined just by butting (or overlapping) metal plates (for example, steel plates) is referred to as “unjoined portion”, and A portion that is joined and integrated by plastic flow due to friction stirring in the portion (or the overlapping portion) is referred to as a "joint portion".
従来の摩擦撹拌接合法として、例えば特許文献1〜8が挙げられる。特許文献1には、一対の金属材料の両方または片方を回転することにより、金属材料に摩擦熱を生じさせて軟化させながら、その軟化した部位を撹拌して塑性流動を起こすことによって、金属材料を接合する技術が開示されている。しかしながら、特許文献1の技術は、接合される金属材料を回転させるものであるから、その金属材料の形状や寸法に限界があるという課題がある。
Examples of conventional friction stir welding methods include
特許文献1の課題を解決するものとして、例えば特許文献2が挙げられる。特許文献2には、金属板よりも実質的に硬い材質からなる回転ツールを金属板の未接合部に挿入し、この回転ツールを回転させながら移動させることにより、回転ツールと金属板との間に生じる熱と塑性流動によって、金属板を長手方向に連続的に接合する技術が開示されている。特許文献2の技術は、金属板を固定した状態で、回転ツールを回転させながら接合方向に移動させることによって金属板を接合する。このため、特許文献2の技術によれば、接合方向において実質的には無限に長い部材であっても、その部材の長手方向に連続的に固相接合できる。また、回転ツールと金属板との摩擦熱による金属の塑性流動を利用した固相接合であるため、接合部を溶融することなく接合することができる。さらに、摩擦熱を利用することにより加熱温度は低いため接合後の変形が少ないこと、また接合部は溶融されないため欠陥が少ないこと、加えて溶加材を必要としないこと等が挙げられる。
As a solution to the problem of
そのため、摩擦撹拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属板の接合法として、例えば航空機、船舶、鉄道車輌および自動車等の分野で利用が広がっている。その理由としては、これらの低融点金属板は、従来のアーク溶接法では接合部の満足な特性を得ることが難しいが、摩擦撹拌接合法を適用することにより生産性を向上すると共に、品質の高い接合部を得ることができるためである。 Therefore, the friction stir welding method is widely used as a joining method for low melting point metal plates represented by aluminum alloys and magnesium alloys, for example, in the fields of aircraft, ships, railway vehicles and automobiles. The reason is that it is difficult for these low melting point metal plates to obtain satisfactory properties of the joint by the conventional arc welding method, but by applying the friction stir welding method, productivity is improved and quality is improved. This is because a high joint can be obtained.
摩擦撹拌接合法は、建築物、船舶、重機、パイプラインおよび自動車といった構造物の素材として主に適用されている構造用鋼板に適用しても、従来のアーク溶接法などの溶融溶接で課題となる凝固割れや水素割れを回避できるとともに、鋼板の組織変化も抑制されるので、継手性能の向上が期待できる。また、回転ツールにより接合界面を撹拌することで清浄面を創出して清浄面同士を接触できるので、拡散接合のような事前の準備工程は不要であるというメリットも期待できる。このように、構造用鋼板に対する摩擦撹拌接合法の適用は、多くの利点が期待される。しかし、接合時における欠陥発生の問題、および接合速度(すなわち回転ツールの移動速度)の高速度化といった接合施工性の問題を残していたため、低融点金属板に対する摩擦撹拌接合法の適用と比較して構造用鋼板に対する摩擦撹拌接合法の普及が進んでいない。 Even if the friction stir welding method is applied to structural steel sheets that are mainly applied as a material for structures such as buildings, ships, heavy equipment, pipelines and automobiles, there are problems with conventional fusion welding such as arc welding. It is possible to avoid solidification cracking and hydrogen cracking that occur, and to suppress changes in the structure of the steel sheet, so improvement in joint performance can be expected. In addition, since a clean surface can be created by contacting the bonding interface with a rotating tool and the clean surfaces can be brought into contact with each other, an advantage that a preliminary preparation step such as diffusion bonding is unnecessary can be expected. As described above, the application of the friction stir welding method to the structural steel plate is expected to have many advantages. However, since there were problems of defects during welding and welding workability such as high welding speed (that is, moving speed of rotating tool), comparison with application of friction stir welding method to low melting point metal plate The friction stir welding method for structural steel sheets has not spread.
特許文献2に記載された摩擦撹拌接合法を構造用鋼板に適用することによる欠陥発生の主な要因としては、金属板(構造用鋼板)の厚さ方向に生じる温度および塑性流動の差異が挙げられる。構造用鋼板の接合部の一方の面側に配置された回転ツールを押圧し、回転ツールを回転させながら接合方向に移動して接合する場合、回転ツールの肩部が押圧される面側には、肩部の回転による温度上昇とせん断応力の負荷による高温で大きな変形の力とが加わることで、接合界面に清浄面を創出する。そして清浄面同士を接触させることで冶金的な接合状態を達成するのに十分な塑性流動が得られる。一方、その反対の面側(回転ツールの肩部が押圧されない面側)は、比較的低温で、負荷されるせん断応力が小さくなるため、冶金的な接合状態を達成するのに十分な塑性流動が得られない状態に陥りやすい。
The main causes of defects caused by applying the friction stir welding method described in
上記した接合施工性の問題を解決する技術として、例えば特許文献3、特許文献4および特許文献5の摩擦撹拌接合法が挙げられる。これらの文献には、接合施工性の向上を目的として、加熱手段を付加した接合技術が開示されている。
As a technique for solving the above-mentioned problem of joining workability, for example, the friction stir welding method of
特許文献3には、誘導加熱装置を用いた加熱手段を有し、接合前後に被加工材の加熱を行うことで、接合速度の高速度化や接合部の割れの改善を図った技術が開示されている。
特許文献4には、レーザ装置を用いた加熱手段を有し、接合直前に被加工材を部分的に加熱することで、予熱による加熱領域周辺のミクロ組織変化を抑制しつつ接合速度の高速度化を図った技術が開示されている。
特許文献5には、高周波誘導加熱装置を用いた加熱手段を有し、接合直前に被加工材を部分的に加熱するに際し、被加工材の加熱領域の表面温度や幅等について厳密に制御することで被加工材の加熱不足による塑性流動不良を改善して、十分な強度と共に、接合施工性の向上を図った技術が開示されている。
また例えば、特許文献6、特許文献7および特許文献8には、上下に回転ツールを1本ずつ備え、2枚の金属板の重ね合わせ部の表面側と裏面側に、それぞれ上下に相対向するように配置した回転ツールを用いて、上下より回転ツールを回転させながら押圧し、接合方向へ移動して接合する技術が開示されている。この技術により、接合不良を抑制し、接合強度を高めること、接合強度の信頼性および回転ツール寿命を改善し、回転ツールの経済性を向上させることが開示されている。
Further, for example, in
しかしながら、特許文献2に記載された技術を構造用鋼板に適用する場合、構造用鋼板は高温での強度が高いため、低入熱でかつ接合速度が高いという接合条件下では、上記のように十分な塑性流動を得られない状態となる傾向が強い。そのため、接合時における欠陥発生を抑制しつつ、接合速度の高速度化を実現することは困難である。
However, when the technique described in
摩擦攪拌接合法は、摩擦熱により被加工材を軟化させつつ回転ツールで攪拌することにより塑性流動を生じさせる。被加工材が構造用鋼板である場合には、回転ツールで被加工材を攪拌する際、回転ツールのピンに大きな負荷が掛かる。この事象は回転ツールの耐久性、寿命に大きな影響を及ぼし、接合施工性を制限する主要な課題になっている。特許文献3〜5に記載の技術は摩擦熱以外の加熱手段を用いており、この課題に対しては有効であると考えられる。しかし、被加工材に対して加熱手段と回転ツールを同一の面側に備えるため、発熱源は被加工材の表面側(一方面側)あるいは裏面側(他方面側)のいずれか一方の面側にのみ存在する。加熱手段や回転ツールを備えていない面側では、発熱源を備えた面側と比較して、より低温となり、表面側と裏面側では被加工材の厚さ方向に対して温度差が生じる。被加工材である構造用鋼板は、より高温となるほど鋼板の強度が下がるので、摩擦攪拌接合法における回転ツールの負荷は高温になるほど下がるものと考えられる。被加工材の厚さ方向に対して形成される温度差を解消することで、回転ツールのピン先端に掛かる負荷を低減できると考えられるが、特許文献3〜5ではこのことに着目されておらず、さらに被加工材の厚さ方向の温度差を解消することについても全く考慮されていない。
The friction stir welding method causes plastic flow by stirring with a rotating tool while softening the material to be processed by friction heat. When the work material is a structural steel plate, a large load is applied to the pin of the rotary tool when the work material is agitated by the rotary tool. This phenomenon has a great impact on the durability and life of the rotary tool, and is a major issue that limits the weldability. The techniques described in
摩擦攪拌接合法において、被加工材の厚さ方向の温度差を解消する方法としては、特許文献6〜8に開示された技術が有効と考えられる。しかしながら、特許文献6〜8に開示された技術は、回転ツールの前方に設けた加熱手段により被加工材となる金属板を加熱する予熱処理プロセスを用いて、回転ツールの負荷低減や、材料の塑性流動促進を実現するものではないため、接合施工性、欠陥の抑制、継手強度の改善効果は未だ十分ではない。
In the friction stir welding method, the techniques disclosed in
また、添加元素に炭素を0.1質量%以上0.6質量%以下の範囲で含む高炭素鋼の場合、急冷による硬化および脆化や、残留応力の影響によって接合後に割れが生じるおそれがあり、接合部の組織制御による改善効果が十分でない。 Further, in the case of high carbon steel containing carbon as an additive element in a range of 0.1% by mass or more and 0.6% by mass or less, there is a possibility that cracking may occur after joining due to hardening and embrittlement due to quenching, and residual stress. The effect of improving the structure of the joint is not sufficient.
本発明は、摩擦撹拌接合法を金属板(鋼板)の接合に適用した場合、あるいは摩擦撹拌接合装置を金属板(鋼板)の接合に使用した場合に懸念される上記の問題、すなわち接合部における金属板の厚さ方向に生じる温度および塑性流動の差異に起因する接合部内の局所的な塑性流動不良、高速度での接合における回転ツールと金属板の間で発生する摩擦熱不足による塑性流動不良、および急冷による硬化や脆化、残留応力の影響による割れの発生に関する問題を解消するものである。特に、回転ツールの接合方向前方に設けた加熱装置による予熱処理プロセス条件を精査した両面摩擦攪拌接合方法と、この両面摩擦攪拌接合方法を実現する両面摩擦撹拌接合装置とを提供する。これにより、接合欠陥を有利に解消し、十分な強度(継手強度)を得ると共に、接合施工性の向上、特に接合速度の向上を図ろうとするものである。 INDUSTRIAL APPLICABILITY The present invention is concerned with the above-mentioned problems when the friction stir welding method is applied to the joining of metal plates (steel plates), or when the friction stir welding apparatus is used to join the metal plates (steel plates), that is, at the joining portion. Local plastic flow failure in the joint due to the difference in temperature and plastic flow occurring in the thickness direction of the metal plate, plastic flow failure due to insufficient frictional heat generated between the rotating tool and the metal plate at high speed welding, and It solves the problems of hardening, brittleness, and cracking due to residual stress caused by rapid cooling. In particular, the present invention provides a double-sided friction stir welding method in which the preheat treatment process conditions by a heating device provided in front of the rotating tool in the welding direction are scrutinized, and a double-sided friction stir welding apparatus that realizes this double-sided friction stir welding method. Thereby, it is intended to advantageously eliminate the joint defect, obtain sufficient strength (joint strength), and improve the joint workability, particularly the joint speed.
以上のとおり、本発明は、上記問題を解決するものであって、少なくとも2枚以上の鋼板を接合する両面摩擦撹拌接合方法および両面摩擦撹拌接合装置の提供を目的とする。 As described above, the present invention is intended to solve the above problems, and an object thereof is to provide a double-sided friction stir welding method and a double-sided friction stir welding apparatus for joining at least two steel plates.
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、以下の知見(a)〜(g)を得た。 As a result of intensive studies to solve the above problems, the present inventors have obtained the following findings (a) to (g).
(a)両面摩擦撹拌接合では、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する上で、冶金的に良好な接合状態を得るのに十分な温度上昇とせん断応力を、金属板(鋼板)の厚さ方向に対して均質的に分布させるために、互いに対向する一対の回転ツールの肩部同士の隙間を管理する必要がある。特に、一対の回転ツールに傾斜角度が付与される場合は、鋼板の厚さに加えて、回転ツールの肩部の直径および傾斜角度を調整することが有効である。 (A) In double-sided friction stir welding, in order to achieve a high joining speed while suppressing the occurrence of defects during joining, a sufficient temperature rise and shear stress to obtain a metallurgically good joining state, In order to uniformly distribute the metal plate (steel plate) in the thickness direction, it is necessary to manage the gap between the shoulder portions of the pair of rotary tools facing each other. In particular, when a tilt angle is given to the pair of rotary tools, it is effective to adjust the diameter and tilt angle of the shoulder portion of the rotary tool in addition to the thickness of the steel plate.
(b)互いに対向する一対の回転ツールは、回転方向を表面側と裏面側で同方向とすると、一方の回転ツールに対する他方の回転ツールの相対速度はゼロである。そのため、回転ツールの肩部同士の隙間において、鋼板の塑性流動が均質状態に近づくほど塑性変形が小さくなり、鋼板の塑性変形による発熱も得られないので、良好な接合状態は達成不可能となる。よって、良好な接合状態を達成するのに十分な温度上昇とせん断応力を鋼板の厚さ方向に対して均質的に得るためには、一対の回転ツールの回転方向を表面側と裏面側で逆方向とする必要がある。 (B) When the rotation directions of the pair of rotary tools facing each other are the same on the front surface side and the back surface side, the relative speed of the other rotary tool to one rotary tool is zero. Therefore, in the gap between the shoulders of the rotary tool, the plastic deformation becomes smaller as the plastic flow of the steel plates approaches a homogeneous state, and heat generation due to the plastic deformation of the steel plates cannot be obtained, so a good welded state cannot be achieved. .. Therefore, in order to obtain a sufficient temperature rise and shear stress that are uniform in the thickness direction of the steel sheet to achieve a good joining state, the rotation directions of the pair of rotary tools are reversed on the front and back sides. Need to be directional.
(c)互いに対向する一対の回転ツールは、ピン部の先端間の隙間を管理することによって、鋼板の厚さ方向に対して均質的に温度上昇とせん断応力を得ることが可能となり、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成することができる。さらに、鋼板の厚さおよび回転ツールの肩部の直径を調整することによって、効果が顕著に発揮される。 (C) With the pair of rotary tools facing each other, by controlling the gap between the tips of the pin portions, it becomes possible to uniformly obtain a temperature rise and shear stress in the thickness direction of the steel sheet. It is possible to achieve a high bonding speed while suppressing the occurrence of defects in. Further, the effect is remarkably exhibited by adjusting the thickness of the steel plate and the diameter of the shoulder portion of the rotary tool.
(d)互いに対向する一対の回転ツールは、肩部の直径を管理することによって、鋼板の厚さ方向に対して均質的に温度上昇とせん断応力を得ることが可能となり、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成することができる。特に、鋼板の厚さに加えて肩部の直径を限定することで顕著な効果を得ることができる。 (D) By controlling the diameter of the shoulder portion of the pair of rotating tools facing each other, it becomes possible to uniformly obtain the temperature rise and the shear stress in the thickness direction of the steel sheet, and the occurrence of defects during joining. It is possible to achieve a higher joining speed while suppressing the above. Particularly, by limiting the diameter of the shoulder portion in addition to the thickness of the steel plate, a remarkable effect can be obtained.
(e)接合開始位置における温度を一定の温度まで上げることで、鋼板の軟化により高速な接合が可能となる。一方で、温度を上げ過ぎた場合には両面摩擦攪拌接合の原理である塑性流動が逆に減少するため、欠陥の原因となる。 (E) By increasing the temperature at the joining start position to a certain temperature, softening of the steel sheets enables high-speed joining. On the other hand, when the temperature is raised too high, the plastic flow, which is the principle of double-sided friction stir welding, decreases conversely, which causes defects.
(f)接合開始位置における温度が一定の温度に達しない場合は、回転ツールによる発熱が主体になり、従来の摩擦撹拌接合法と変わらない結果、継手強度は改善されない。一方、温度が高すぎる場合は、回転ツールの摩擦熱が減少して回転ツールによる温度分布の変化が起こらず、さらには焼き入れされてしまうため、脆化の原因となる。 (F) When the temperature at the welding start position does not reach a certain temperature, heat is mainly generated by the rotary tool, which is the same as the conventional friction stir welding method, and as a result, the joint strength is not improved. On the other hand, if the temperature is too high, the frictional heat of the rotary tool decreases, the temperature distribution of the rotary tool does not change, and the temperature is further quenched, which causes embrittlement.
(g)高C鋼の場合、焼き入れ性が高いために、接合後の急冷による脆化や拘束から生じる残留応力によって割れが発生する可能性がある。従って、これらを回避するために、冷却速度の低下や、焼き戻しによる硬化および脆化の抑制ができるようにすることも考えられる。なお、本発明でいう高C鋼とは、添加元素に炭素を0.1質量%以上0.6質量%以下の範囲で含む鋼板を指す。 (G) In the case of high-C steel, since it has high hardenability, cracking may occur due to residual stress generated by embrittlement due to rapid cooling after joining and restraint. Therefore, in order to avoid these problems, it may be possible to reduce the cooling rate and suppress hardening and embrittlement due to tempering. The high C steel referred to in the present invention refers to a steel plate containing carbon as an additive element in the range of 0.1% by mass or more and 0.6% by mass or less.
本発明は、以下を要旨とするものである。
[1] 対向する一対の回転ツールを少なくとも2枚以上の鋼板の未接合部の表面側と裏面側にそれぞれ配置し、前記未接合部に前記回転ツールを押圧し、前記回転ツールを回転駆動装置により互いに逆方向に回転させながら接合方向に移動することにより、鋼板同士を摩擦撹拌接合する両面摩擦撹拌接合方法であって、
前記回転ツールの肩部およびピン部は、回転軸を共有し、かつ前記鋼板よりも硬い材質であり、
前記回転ツールの一方の接合方向前方に設けられた加熱装置により加熱された前記鋼板の表面側の領域を加熱領域としたとき、加熱する際に、
前記加熱領域における、鋼板表面温度TP(℃)が式(1)〜式(3)を満たし、対向する前記肩部の隙間G(mm)と前記鋼板の厚さt(mm)が式(5)を満たすように制御し、摩擦撹拌接合を行うことを特徴とする両面摩擦撹拌接合方法。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
0.4×t≦G≦t ・・・(5)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置、
D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。
[2] 対向する一対の回転ツールを少なくとも2枚以上の鋼板の未接合部の表面側と裏面側にそれぞれ配置し、前記未接合部に前記回転ツールを押圧し、前記回転ツールを回転駆動装置により互いに逆方向に回転させながら接合方向に移動することにより、鋼板同士を摩擦撹拌接合する両面摩擦撹拌接合方法であって、
前記回転ツールの肩部およびピン部は、回転軸を共有し、かつ前記鋼板よりも硬い材質であり、
前記回転軸は、前記鋼板に対して鉛直方向から接合方向に傾斜させた傾斜角度αが0°<α≦3°であり、
前記回転ツールの一方の接合方向前方に設けられた加熱装置により加熱された前記鋼板の表面側の領域を加熱領域としたとき、加熱する際に、
前記加熱領域における、鋼板表面温度TP(℃)が式(1)〜式(3)を満たし、対向する前記肩部の隙間G(mm)、前記鋼板の厚さt(mm)並びに前記肩部の直径D(mm)が、式(6)を満たすように制御し、摩擦撹拌接合を行うことを特徴とする両面摩擦撹拌接合方法。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
(0.4×t)−(0.2×D×sinα)≦G≦t−(0.2×D×sinα) ・・・(6)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置、
D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。
[3] 前記回転ツールの接合方向後方に設けた冷却装置および/または後方加熱装置を用いて、前記摩擦撹拌接合後、さらに、処理1〜処理4のいずれか1つを行うことを特徴とする[1]または[2]に記載の両面摩擦撹拌接合方法。
(処理1)前記接合部を冷却する。
(処理2)前記接合部を再加熱する。
(処理3)前記接合部を冷却した後、前記接合部を再加熱する。
(処理4)前記接合部を再加熱した後、前記接合部を冷却する。
[4] 前記肩部の直径D(mm)が、前記鋼板の厚さt(mm)に対して式(7)を満たすことを特徴とする[1]〜[3]のいずれか一つに記載の両面摩擦撹拌接合方法。
4×t≦D≦20×t ・・・(7)
[5] 対向する前記ピン部の隙間g(mm)が、前記鋼板の厚さt(mm)並びに前記肩部の直径D(mm)に対して式(8)を満たすことを特徴とする[1]〜[4]のいずれか一つに記載の両面摩擦撹拌接合方法。
0<g≦[1−0.9×exp{-0.011×(D/t)2}]×t ・・・(8)
[6] 前記加熱装置が高周波誘導加熱装置であり、該加熱装置の使用周波数を20kHz以上360kHz以下とすることを特徴とする[1]〜[5]のいずれか一つに記載の両面摩擦攪拌接合方法。
[7] 少なくとも2枚以上の鋼板を摩擦撹拌接合する両面摩擦撹拌接合装置であって、
肩部および該肩部と回転軸を共有するピン部を有し、該肩部および該ピン部を前記鋼板よりも硬い材質で形成した一対の回転ツールと、
前記回転ツールを互いに逆方向に回転させる回転駆動装置と、
前記回転ツールの一方の接合方向前方に設け、前記鋼板の表面を加熱する加熱装置と、
前記加熱装置および前記回転ツールを制御する制御部を備え、
前記制御部は、前記加熱装置により加熱された前記鋼板の表面側の領域を加熱領域としたとき、
前記加熱領域における、鋼板表面温度TP(℃)が式(1)〜式(3)を満たし、対向する前記肩部の隙間G(mm)と前記鋼板の厚さt(mm)が式(5)を満たすように制御して、少なくとも2枚以上の鋼板の摩擦撹拌接合を行うことを特徴とする両面摩擦撹拌接合装置。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
0.4×t≦G≦t ・・・(5)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置、
D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。
[8] 前記制御部は、前記回転ツールの回転軸を前記鋼板に対して鉛直方向から接合方向に傾斜させた傾斜角度αが0°<α≦3°を満たすとき、
対向する前記肩部の隙間G(mm)、前記鋼板の厚さt(mm)並びに前記肩部の直径D(mm)が、前記式(5)に変えて、式(6)を満たすように制御することを特徴とする請求項7に記載の両面摩擦撹拌接合装置。
(0.4×t)−(0.2×D×sinα)≦G≦t−(0.2×D×sinα) ・・・(6)
ここで、D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。
[9] さらに、前記回転ツールの接合方向後方に冷却装置および後方加熱装置を備え、冷却装置および/または後方加熱装置を用いて処理1〜処理4のいずれか1つを行うことを特徴とする[7]または[8]に記載の両面摩擦撹拌接合装置。
(処理1)前記接合部を冷却する。
(処理2)前記接合部を再加熱する。
(処理3)前記接合部を冷却した後、前記接合部を再加熱する。
(処理4)前記接合部を再加熱した後、前記接合部を冷却する。
[10] 前記回転ツールは、前記肩部の直径D(mm)が前記鋼板の厚さt(mm)に対して式(7)を満たすことを特徴とする[7]〜[9]のいずれか一つに記載の両面摩擦撹拌接合装置。
4×t≦D≦20×t ・・・(7)
[11] 前記回転ツールは、対向する前記ピン部の隙間g(mm)が、前記鋼板の厚さt(mm)並びに前記肩部の直径D(mm)に対して式(8)を満たすことを特徴とする[7]〜[10]のいずれか一つに記載の両面摩擦撹拌接合装置。
0<g≦[1−0.9×exp{-0.011×(D/t)2}]×t ・・・(8)
[12] 前記加熱装置が高周波誘導加熱装置であり、該加熱装置の使用周波数を20kHz以上360kHz以下とすることを特徴とする[7]〜[11]のいずれか一つに記載の両面摩擦攪拌接合装置。
The gist of the present invention is as follows.
[1] A pair of opposing rotary tools are respectively arranged on the front surface side and the back surface side of the unbonded portion of at least two steel plates, and the rotary tool is pressed against the unbonded portion to rotate the rotary tool. A double-sided friction stir welding method of friction stir welding steel plates by moving in the welding direction while rotating in opposite directions by
The shoulder portion and the pin portion of the rotating tool share a rotating shaft and are made of a material harder than the steel plate,
When the area on the surface side of the steel sheet heated by the heating device provided in the front of one of the joining directions of the rotating tool is a heating area, when heating,
In the heating region, the steel plate surface temperature TP (° C.) satisfies the formulas (1) to (3), and the gap G (mm) between the facing shoulder portions and the thickness t (mm) of the steel plate are represented by the formula (5). The friction stir welding is performed so as to satisfy the above condition, and the friction stir welding is performed.
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
0.4×t≦G≦t (5)
Here, W (mm) is a position separated from the joint center line in the width direction of the joint,
D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
[2] A pair of rotating tools facing each other are respectively arranged on the front surface side and the back surface side of the unbonded portion of at least two steel plates, and the rotary tool is pressed against the unbonded portion to rotate the rotary tool. A double-sided friction stir welding method of friction stir welding steel plates by moving in the welding direction while rotating in opposite directions by
The shoulder portion and the pin portion of the rotating tool share a rotating shaft and are made of a material harder than the steel plate,
The inclination angle α of the rotating shaft inclined from the vertical direction to the joining direction with respect to the steel plate is 0°<α≦3°,
When the area on the surface side of the steel sheet heated by the heating device provided in the front of one of the joining directions of the rotating tool is a heating area, when heating,
In the heating region, the steel plate surface temperature TP (° C.) satisfies the formulas (1) to (3), the gap G (mm) between the facing shoulders, the thickness t (mm) of the steel plate, and the shoulders The double-sided friction stir welding method is characterized in that the diameter D (mm) is controlled so as to satisfy the expression (6), and friction stir welding is performed.
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
(0.4×t)−(0.2×D×sin α)≦G≦t−(0.2×D×sin α) (6)
Here, W (mm) is a position separated from the joint center line in the width direction of the joint,
D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
[3] It is characterized in that any one of
(Process 1) The joint is cooled.
(Processing 2) The joint is reheated.
(Process 3) After cooling the joint, the joint is reheated.
(Process 4) After reheating the joint, the joint is cooled.
[4] The diameter D (mm) of the shoulder portion satisfies the expression (7) with respect to the thickness t (mm) of the steel sheet. [1] to [3] The double-sided friction stir welding method described.
4×t≦D≦20×t (7)
[5] The gap g (mm) between the facing pin portions satisfies the equation (8) with respect to the thickness t (mm) of the steel plate and the diameter D (mm) of the shoulder portion [ The double-sided friction stir welding method according to any one of 1] to [4].
0<g≦[1-0.9×exp{-0.011×(D/t) 2 }]×t (8)
[6] The double-sided friction stirrer according to any one of [1] to [5], wherein the heating device is a high-frequency induction heating device, and the operating frequency of the heating device is 20 kHz or more and 360 kHz or less. Joining method.
[7] A double-sided friction stir welding apparatus for friction stir welding at least two steel plates,
A pair of rotary tools having a shoulder portion and a pin portion that shares a rotation axis with the shoulder portion, the shoulder portion and the pin portion being formed of a material harder than the steel plate;
A rotary drive device for rotating the rotary tool in opposite directions,
A heating device that is provided in front of one of the rotating tools in the joining direction and that heats the surface of the steel plate,
A controller for controlling the heating device and the rotating tool,
The control unit, when the area on the surface side of the steel sheet heated by the heating device is a heating area,
In the heating region, the steel plate surface temperature TP (° C.) satisfies the formulas (1) to (3), and the gap G (mm) between the facing shoulder portions and the thickness t (mm) of the steel plate are represented by the formula (5). (2) Friction stir welding of at least two steel plates is performed by controlling so as to satisfy (1).
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
0.4×t≦G≦t (5)
Here, W (mm) is a position separated from the joint center line in the width direction of the joint,
D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
[8] When the inclination angle α obtained by inclining the rotation axis of the rotary tool with respect to the steel plate from the vertical direction to the joining direction satisfies 0°<α≦3°,
The gap G (mm) between the facing shoulders, the thickness t (mm) of the steel plate, and the diameter D (mm) of the shoulders should be changed to the formula (5) so that the formula (6) is satisfied. The double-sided friction stir welding apparatus according to
(0.4×t)−(0.2×D×sin α)≦G≦t−(0.2×D×sin α) (6)
Where D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
[9] Further, a cooling device and a rear heating device are provided behind the rotating tool in the joining direction, and any one of the
(Process 1) The joint is cooled.
(Processing 2) The joint is reheated.
(Process 3) After cooling the joint, the joint is reheated.
(Process 4) After reheating the joint, the joint is cooled.
[10] Any of [7] to [9], wherein the rotating tool has a diameter D (mm) of the shoulder portion that satisfies Expression (7) with respect to a thickness t (mm) of the steel plate. The double-sided friction stir welding apparatus as described in 1 above.
4×t≦D≦20×t (7)
[11] In the rotating tool, the gap g (mm) between the facing pin portions satisfies Expression (8) with respect to the thickness t (mm) of the steel plate and the diameter D (mm) of the shoulder portion. The double-sided friction stir welding apparatus according to any one of [7] to [10].
0<g≦[1-0.9×exp{-0.011×(D/t) 2 }]×t (8)
[12] The double-sided friction stirrer according to any one of [7] to [11], wherein the heating device is a high-frequency induction heating device, and the operating frequency of the heating device is set to 20 kHz or more and 360 kHz or less. Joining device.
本発明によれば、両面摩擦撹拌接合を行なうに際し、加熱装置が接合直前に被加工材(鋼板)を部分的に加熱することで被加工材の加熱不足による塑性流動不良を解消することができる。また、対向する一対の回転ツールの肩部の回転による十分な温度上昇とせん断応力による高温で大きな変形力とが鋼板の接合部の両面に加わることで、鋼板の厚さ方向に対して均質的に塑性流動を促進できる。これにより、接合時における欠陥発生を抑制しつつ、十分な強度(継手強度)を得るとともに、接合施工性を向上でき、産業上格段の効果を奏する。 According to the present invention, when performing double-sided friction stir welding, the heating device partially heats the work material (steel plate) immediately before the joining, thereby eliminating plastic flow failure due to insufficient heating of the work material. .. In addition, a sufficient temperature rise due to the rotation of the shoulders of a pair of opposing rotary tools and a large deformation force at high temperature due to shear stress are applied to both sides of the joints of the steel plates, so that they are uniform in the thickness direction of the steel plates. It can promote plastic flow. As a result, sufficient strength (joint strength) can be obtained while suppressing the occurrence of defects during joining, and the joining workability can be improved, resulting in a marked industrial advantage.
以下、各図を参照して、本発明の両面摩擦撹拌接合方法および両面摩擦撹拌接合装置について説明する。なお、本発明はこの実施形態に限定されない。 Hereinafter, the double-sided friction stir welding method and the double-sided friction stir welding apparatus of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.
本発明では、2枚の金属板(鋼板)を突き合わせて、もしくは2枚の金属板(鋼板)を重ね合わせて、その突合せ部もしくは重ね部(以下、未接合部と称する)の表面側と裏面側に一対の回転ツールを配置する。その後、回転ツールの接合方向前方に設けた加熱装置により所定の予熱処理プロセス条件で鋼板を予熱し、未接合部に回転ツールを押圧して挿入し、回転ツールを互いに逆方向に回転させながら接合方向に移動することにより、鋼板同士に両面摩擦撹拌接合を行なう。 In the present invention, two metal plates (steel plates) are butted, or two metal plates (steel plates) are superposed, and the front side and the back side of the butted portion or the superposed portion (hereinafter referred to as unbonded portion) Place a pair of rotation tools on the side. After that, the steel plate is preheated by a heating device provided in front of the rotating tool in the joining direction under a predetermined preheat treatment process condition, the rotating tool is pressed into the unjoined portion and inserted, and the rotating tools are joined while rotating in opposite directions. By moving in the direction, double-sided friction stir welding is performed on the steel plates.
なお、本発明は、突合せ部の接合および重ね部の接合のいずれにも適用できる。以降の説明では、突合せ部の両面摩擦撹拌接合を行う場合を一例にして詳細に説明する。 The present invention can be applied to both joining of abutting portions and joining of overlapping portions. In the following description, the case of performing double-sided friction stir welding of the abutting portion will be described in detail as an example.
まず、本発明の両面摩擦攪拌接合装置について説明する。 First, the double-sided friction stir welding apparatus of the present invention will be described.
図1には、本発明の両面摩擦撹拌接合装置20の一例を示す。本発明の両面摩擦撹拌接合装置は、後述する本発明の両面摩擦撹拌接合方法を好ましく適用することできる。なお、図1には、2枚の鋼板の突合せ部に対して接合を行っている状態の両面摩擦撹拌接合装置20を示す。
FIG. 1 shows an example of a double-sided friction
図1に示すように、両面摩擦撹拌接合装置20は、少なくとも、互いに対向する一対の回転ツール1、8と、把持装置(図示せず)と、加熱装置13と、回転駆動装置16と、制御部17を有する。
As shown in FIG. 1, the double-sided friction
回転ツール1、8は、鋼板3を介して、互いに対向する一対の回転ツールで構成される。鋼板3の表面側にある回転ツール1は、肩部5およびこの肩部5に隣接して配置されるピン部6を備える。肩部5とピン部6は、回転軸2を共有する。鋼板3の裏面側にある回転ツール8は、肩部9およびこの肩部9に隣接して配置されるピン部10を備える。肩部9とピン部10は、回転軸11を共有する。ここで、肩部5、9とは、回転ツール1、8と回転ツール1、8の先端に設けたピン部6、10によって生じる段差部分をさす。少なくとも肩部5、9とピン部6、10は、鋼板3よりも硬い材質により形成される。材質としては、例えば、炭化タングステン(WC)等が挙げられる。
The
回転ツール1、8は、必要に応じて、回転軸2、11を鋼板3に対して鉛直方向から所定の角度α(°)(以下、傾斜角度α(°)と称する)だけ傾斜させてもよい。
The
把持装置は、ステージを接合方向(進行方向)Pと反対に移動させる間、鋼板3を固定することにより、回転ツール1、8の進行に伴う鋼板3の位置の変動を防止する装置である。把持装置としてはこの変動を防止できるものを使用すれば良いため、本発明ではその構成を特に限定しない。
The gripping device is a device that fixes the
加熱装置13は、回転ツール1、8のいずれか一方の接合方向前方に設ける。加熱装置13は、鋼板3の表面を加熱する装置である。本発明において、所定の温度まで加熱が可能であれば、加熱装置13としては特に限定されない。例えば、高周波誘導加熱を用いる高周波誘導加熱装置、レーザ光を熱源に用いる加熱装置などが挙げられる。
The
なお、加熱装置13は、回転ツール1、8の移動と別個に動作してもよく、あるいは連動して動作してもよい。例えば、回転ツール側が移動する装置の場合には、この装置に加熱装置13が取り付けられ、この装置と同じ速度で移動する。また例えば、継手側が把持装置によりステージに固定されてステージが動く場合には、このステージ以外の箇所に加熱装置が設置される。
The
回転駆動装置16は、所定の接合条件(例えば、回転ツール1、8の回転方向、肩部などの隙間、および傾斜角度などの回転条件)で、回転ツール1、8を駆動する装置である。回転駆動装置16により、回転ツール1、8は互いに逆方向に回転したり、同じ方向に回転したりできる。例えば、本発明の接合条件として、一方を時計回り、他方を反時計回りの回転方向とし、0〜6m/minの接合速度とし、0〜3000rpmのツール回転速度とすることができる。
The
制御部17は、両面摩擦撹拌接合装置20に入力された接合条件の情報に基づいて、把持装置、加熱装置13および回転駆動装置16をそれぞれ制御する。例えば、加熱装置13は、制御部17により、接合前に入力された出力となるように制御されて鋼板の加熱を行う。この際、サーモグラフィを用いて鋼板表面の温度を測定することができる。制御部17は、鋼板のステージの移動速度、ステージの移動方向、回転ツールの回転速度、回転ツールの回転方向、回転ツールの上下位置、回転ツールの上下移動のタイミングや移動速度等の制御も行うことができる。さらに、加熱装置13による加熱のタイミングや加熱時間、出力等も制御することができる。
The
本発明では、制御部17は、後述する予熱処理プロセス条件に基づいて加熱装置13の制御を行う。なお、制御部17による加熱装置13および回転駆動装置16の各制御の詳細については後述する。
In the present invention, the
本発明の両面摩擦撹拌接合装置20は、接合継手強度をより一層向上させる観点より、上記の構成に加えて、さらに冷却装置14、後方加熱装置15を備えることができる。図2には、冷却装置14および後方加熱装置15も有する両面摩擦撹拌接合装置20の一例を示す。なお、ここでは図1の両面摩擦撹拌接合装置と異なる部分のみ説明する。
The double-sided friction
図2に示すように、冷却装置14は、接合方向Pへ移動する表面側の回転ツール1に対して、後方に設けることができる。冷却装置14は、鋼板3の接合部4を所定の冷却条件(例えば、冷却速度、冷却する温度範囲などの冷却条件)で冷却し、焼入れにより継手強度を向上させる装置である。例えば、冷却条件として、鋼板表面温度で800〜500℃の温度範囲における平均冷却速度を30〜300℃/Sとすることができる。本発明では、冷却装置14として、例えば、不活性ガスを噴出する冷却装置を用いることが好ましい。不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス等を用いることができる。
As shown in FIG. 2, the
後方加熱装置15は、鋼板3の接合部4を所定の加熱条件(例えば、加熱速度、加熱する温度範囲などの加熱条件)で再加熱する装置である。例えば、加熱条件として、再加熱の温度範囲を鋼板表面温度で550〜650℃とすることができる。本発明では、後方加熱装置15として、例えば、高周波誘導加熱装置、レーザを熱源とした加熱装置を用いることが好ましい。
The
本発明では、冷却装置14および/または後方加熱装置15を用いて、次のような処理(後述する処理1〜処理4)を行ってもよい。例えば、冷却装置14のみを用いて、鋼板3の接合部4を冷却する。また例えば、後方加熱装置15のみを用いて、鋼板3の接合部4を再加熱する。
In the present invention, the following processing (
また例えば、図2に示すように、後方加熱装置15は、接合方向Pへ移動する表面側の回転ツール1に対して後方で、かつ冷却装置14の接合方向後方に備える。このように配置することにより、冷却装置14による冷却で焼入れされて過度に硬化した場合に、後方加熱装置15で接合部4を再加熱して焼き戻しすることにより、接合部4の硬度を抑える。その結果、強度と靭性を併せ持つ継手特性を得ることができる。
Further, for example, as shown in FIG. 2, the
また例えば、図示は省略するが、後方加熱装置15は、接合方向Pへ移動する表面側の回転ツール1に対して後方で、かつ冷却装置14の接合方向前方(すなわち、回転ツール1と冷却装置14の間)に備える。このように配置することにより、接合直後に、鋼板3の接合部4に対して後方加熱装置15で加熱することにより冷却速度の制御を行い、その後、冷却装置14により急冷を行うことにより、加熱領域の周辺でのミクロ組織を複合化できる。その結果、強度と延性を併せ持つ継手特性を得ることができる。
Further, for example, although not shown, the
上記と同様、制御部17は、両面摩擦撹拌接合装置20に入力された接合条件の情報に基づいて、冷却装置14および後方加熱装置15に対しても各制御を行う。
Similarly to the above, the
次に、図1〜図3を参照して、本発明の両面摩擦撹拌接合方法について説明する。なお、ここでは上記した構成を有する両面摩擦撹拌接合装置20に本発明の接合方法を適用する場合を説明する。図1および図2には、両面摩擦撹拌接合装置20により、鋼板3の突合せ部の両面摩擦撹拌接合を行っている状態の一例を示す。図3(A)には、図1および図2に示す鋼板3の表面側の回転ツール1の周辺部分を上面視した平面図を示し、図3(B)には、図3(A)のA−A線断面図を示す。
Next, the double-sided friction stir welding method of the present invention will be described with reference to FIGS. Here, a case where the joining method of the present invention is applied to the double-sided friction
本発明の両面摩擦撹拌接合方法では、図1および図2に示すように、まず、突き合わされた2枚の鋼板3の表面側と裏面側に一対の回転ツール1、8を互いに対向して配置し、回転ツールの接合方向Pの前方に加熱装置13を配置する。図1および図2に示す例では、加熱装置13として例えば高周波誘導加熱装置を用いる。
In the double-sided friction stir welding method of the present invention, as shown in FIGS. 1 and 2, first, a pair of
次に、鋼板3の表面側と裏面側の両方から未接合部12に回転ツール1、8を挿入し、さらに回転駆動装置16により所定の回転条件で回転ツール1、8を互いに逆方向に回転させながら、接合方向Pに移動させる。このとき、回転ツール1、8の接合方向前方に配置した加熱装置13により所定の予熱処理プロセス条件で鋼板3を加熱しておく。加熱装置13および回転駆動手段16は、制御部17により、両面摩擦撹拌接合装置20に入力された接合条件の情報に基づいてそれぞれ制御される。予熱処理プロセス条件などの制御内容の詳細は、後述する。
Next, the
なお、図1および図2に示した矢印Pは回転ツール1、8および加熱装置13の進行方向(すなわち接合方向)を示し、矢印Qは鋼板3の表面側に配置される回転ツール1の回転方向を示し、矢印Rは鋼板3の裏面側に配置される回転ツール8の回転方向を示す。
In addition, the arrow P shown in FIG. 1 and FIG. 2 shows the advancing direction (namely, joining direction) of the
加熱装置13により鋼板3を加熱することで鋼板3を軟化させ、さらに対向する一対の回転ツール1、8を互いに逆方向に回転させて摩擦熱を発生させることにより、軟化した部位を一対の回転ツール1、8で撹拌する。これにより、塑性流動を生じさせて、2枚の鋼板3を接合する。こうして得られる接合部4は、回転ツール1、8の進行方向に沿って線状に形成される。ここでは、図1に示した未接合部12および接合部4の幅方向に対して中央の位置に延伸する直線(図1および図2に示した一点鎖線)を接合中央線7と称する。接合中央線7は、矢印Pで示した接合方向に沿って進行する回転ツール1、8の軌跡に一致する(図3(A)を参照)。
By heating the
なお、2枚の鋼板3は、回転ツール1、8が接合中央線7に沿って進行する際、いずれも把持装置(図示せず)により把持されて、所定の位置に固定される。
The two
次に、本発明の両面摩擦撹拌接合方法における回転ツール1、8について説明する。
Next, the
上述のように、本発明では、制御部17は入力された接合条件の回転条件に基づいて回転駆動装置16を制御する。回転駆動装置16により、回転ツール1、8を互いに逆方向に回転させる。図1および図2に示す例では、鋼板3の裏面側にある回転ツール8は、鋼板3の表面側にある回転ツール1の回転方向(矢印Qに示す回転方向)に対して逆方向(矢印Rに示す回転方向)に回転させる。すなわち、図3(A)に示すように、鋼板3の表面側から見た平面図において、回転ツール1を時計方向に回転させる場合には、図示されない鋼板3の裏面側の回転ツール8は反時計方向に回転させる。図示を省略するが、回転ツール1を反時計方向に回転させる場合には、回転ツール8は時計方向に回転させる。
As described above, in the present invention, the
回転ツール1、8は、図3(B)に示すように、鋼板3に対して表面側の回転ツール1のピン部6の先端と、裏面側の回転ツール8のピン部10の先端とを当接させず、ピン部6、10の先端間に隙間g(mm)を設ける。これにより、回転ツール1、8の肩部5、9の間に隙間G(mm)が生じる。ここでは、肩部とは回転ツール1、8の直径D(mm)とピン部6、10の直径a(mm)との差によって生じる段差5、9を指す。
As shown in FIG. 3(B), the
このようにして、回転ツール1のピン部6先端と回転ツール8のピン部10先端に隙間gを設け、回転ツール1の肩部5と回転ツール8の肩部9に隙間Gを設け、かつ回転ツール1と回転ツール8を逆方向に回転させる。これにより、十分な温度上昇とせん断応力が鋼板3の両面側から加えられ、接合部4における鋼板3の厚さ方向に生じる温度および塑性流動の差異を低減し、均質的な接合状態を達成することができる。接合部4内に局所的に発生する塑性流動不良を解消することで接合欠陥を有利に解消できるため、十分な強度を得ることができる。これと共に、接合施工性の向上、特に接合速度の向上を図ることが可能となる。
Thus, a gap g is provided between the tip of the
互いに対向する回転ツール1、8の回転方向Q、Rを、表面側と裏面側で逆方向とすることで、回転ツール1、8の回転によって金属板3に加わる回転トルクを打ち消し合うことができる。その結果、鋼板の一方面側からのみ回転ツールを押圧して接合する従来の摩擦撹拌接合法と比較して、鋼板3を拘束する治具の構造を簡略化することが可能である。
By making the rotating directions Q and R of the
しかし、互いに対向する回転ツール1、8の回転方向を表面側と裏面側で同方向とすると、表面側の回転ツール1に対する裏面側の回転ツール8の相対速度はゼロである。その結果、回転ツール1、8の肩部5、9間では鋼板3の塑性流動が均質状態に近づくほど塑性変形は小さくなり、鋼板3の塑性変形による発熱も得られなくなるため、良好な接合状態は達成不可能となる。
However, when the rotation directions of the
よって、良好な接合状態を達成するのに十分な温度上昇とせん断応力を被加工材の厚さ方向に対して均質的に得るためには、互いに対向する回転ツール1、8の回転方向Q、Rを鋼板3の表面側と裏面側で逆方向とする。
Therefore, in order to uniformly obtain a sufficient temperature rise and shear stress in the thickness direction of the work material to achieve a good joining state, the rotation directions Q of the
本発明では、回転ツール1、8の配置を以下のように調整することが、接合欠陥発生の抑制および接合速度の高速度化を図る上で有効である。また、回転ツールの寿命の向上にも有効である。
In the present invention, it is effective to adjust the arrangement of the
まず、鋼板3の表面側および裏面側の回転ツール1、8の傾斜角度α(°)について説明する。
First, the inclination angle α (°) of the
回転ツール1、8の回転軸2、11は、鋼板3に対して鉛直方向を基準として角度(傾斜角度)α(°)をもって傾斜させ、ピン部6、10の先端を接合方向Pに対して先行させる。これにより、回転ツール1、8に対する負荷を、回転軸2、11方向に圧縮される分力として回転ツール1、8で受けることができる。そのため、一対の回転ツール1、8は、鋼板3よりも硬い材質により形成される必要がある。例えばセラミックなどの靭性に乏しい材料を回転ツールに使用する場合、ピン部6、10に対して曲げ方向の力が負荷されると、局部に応力が集中して破壊に至る。したがって、一対の回転ツール1、8の回転軸2、11を角度αで傾けることで、回転ツール1、8に加わる負荷を回転軸2、11方向に圧縮される分力として受け、ピン部6、10に対する曲げ方向の力を低減する。これにより、回転ツール1、8の破損を回避することができる。
The
傾斜角度αは0°を超えると上述の効果が得られる。しかし、傾斜角度αは3°を超えると接合部の表裏面が凹形となり接合継手強度に悪影響を及ぼすため、3°を上限とする。すなわち、傾斜角度は0°<α≦3°であることが好ましい。より好ましくは0.5°≦α≦2.0°である。 If the inclination angle α exceeds 0°, the above effect is obtained. However, if the inclination angle α exceeds 3°, the front and back surfaces of the joint will be concave, and the joint strength will be adversely affected, so the upper limit is 3°. That is, the inclination angle is preferably 0°<α≦3°. More preferably, 0.5°≦α≦2.0°.
なお、傾斜角度αは0°であっても、本発明の接合状態を達成することは可能である。 Even if the inclination angle α is 0°, the joined state of the present invention can be achieved.
続いて、本発明において重要な、対向する回転ツール1、8の肩部5、9間の隙間G(mm)について説明する。
Subsequently, the gap G (mm) between the
本発明では、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する上で、一対の回転ツール1、8の肩部5、9間の隙間Gを厳密に管理する必要がある。これにより、接合状態を達成するのに十分な温度上昇とせん断応力を鋼板3の厚さ方向に対して均質的に得ることができる。
In the present invention, it is necessary to strictly manage the gap G between the
鋼板3の表面側および裏面側にある回転ツール1、8の回転軸2、11の傾斜角度αが0°の場合には、突合せ接合においては、肩部5、9間の隙間G(mm)が鋼板3の厚さt(mm)に対して式(5)の範囲を満たすように調整する。なお、重ね接合においては、重ね合せた鋼板3の総厚さをt(mm)とし、肩部5、9間の隙間G(mm)が鋼板3の総厚さt(mm)に対して式(5)の範囲を満たすように調整する。
0.4×t≦G≦t ・・・(5)
その結果、互いに対向する回転ツール1、8の肩部5、9が鋼板3の表面側および裏面側に十分な荷重で押圧されるため、回転ツール1、8の肩部5、9による摩擦とせん断方向への塑性変形により、発熱と塑性流動が促進される。これより、鋼板3の厚さ方向に対して均質的に塑性流動が促進され、良好な接合状態を達成することができる。
When the inclination angles α of the
0.4×t≦G≦t (5)
As a result, since the
肩部5、9間の隙間Gは、鋼板3の厚さt(なお、重ね接合の場合は、鋼板3の総厚さtとする)を超えると、回転ツール1、8の肩部5、9が鋼板3の表面側および裏面側に十分な荷重で押圧することができず、上記の効果が得られない。一方、肩部5、9間の隙間Gは、0.4×t未満となると、接合部4の表面と裏面が凹形となり接合継手強度に悪影響を及ぼす。したがって、傾斜角度がα=0°の場合には、肩部間の隙間Gを0.4×t以上t以下とする必要がある。好ましくは、0.5×t≦G≦tとする。
When the gap G between the
回転ツール1、8の回転軸2、11の傾斜角度αが0°<α≦3°の場合には、回転ツール1、8の肩部5、9を鋼板3の表面側と裏面側において広い範囲で接触させることが重要となる。このため、傾斜角度αが0°<α≦3°の場合には、回転ツール1、8の肩部5、9間の隙間Gを小さく設定する必要がある。したがって、回転ツール1、8に傾斜角度αを0°<α≦3°の範囲で付与する場合には、突合せ接合においては、肩部5、9間の隙間G(mm)が鋼板3の厚さt(mm)に加え、回転ツール1、8の肩部5、9の直径D(mm)に対して式(6)の範囲を満たすように調整する。なお、重ね接合においては、重ね合せた鋼板3の総厚さをt(mm)とし、肩部5、9間の隙間G(mm)が、鋼板3の総厚さt(mm)に加えて肩部5、9の直径D(mm)に対して式(6)の範囲を満たすように調整する。
(0.4×t)−(0.2×D×sinα)≦G≦t−(0.2×D×sinα) ・・・(6)
肩部5、9間の隙間Gが、((0.4×t)−(0.2×D×sinα))未満では、接合部4の表面と裏面が凹形となり接合継手強度に悪影響を及ぼす。一方、肩部5、9間の隙間Gが、(t−(0.2×D×sinα))超えでは、回転ツール1、8の肩部5、9が鋼板3の表面側および裏面側に十分な荷重で押圧することができず、上記の効果が得られない。したがって、傾斜角度が0°<α≦3°の場合には、肩部間の隙間Gを((0.4×t)−(0.2×D×sinα))以上(t−(0.2×D×sinα))以下とする必要がある。好ましくは、(0.5×t)−(0.2×D×sinα)≦G≦t−(0.2×D×sinα)とする。
なお、重ね接合の場合も同様の効果は得られる。重ね接合の場合には、式(6)中のtは鋼板3の総厚さt(mm)を示す。
When the inclination angles α of the
(0.4×t)−(0.2×D×sin α)≦G≦t−(0.2×D×sin α) (6)
When the gap G between the
Similar effects can be obtained in the case of lap joining. In the case of lap joining, t in the formula (6) indicates the total thickness t (mm) of the
本発明の回転ツールは、上記した条件に加えて、さらに肩部の直径D、ピン部の隙間gを以下に説明するように調整することができる。 In addition to the above conditions, the rotary tool of the present invention can further adjust the diameter D of the shoulder portion and the gap g of the pin portion as described below.
まず、回転ツール1、8の肩部5、9の直径D(mm)の好ましい条件について説明する。
First, preferable conditions for the diameter D (mm) of the
本発明では、既に説明した隙間G、gの条件に加えて、回転ツール1、8の肩部5、9の直径Dを管理することで、上記した効果、すなわち鋼板3の厚さ方向に対して均質的に温度上昇とせん断応力を得て、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する効果を、より有効に得ることができる。
In the present invention, by controlling the diameters D of the
特に、肩部5、9の直径D(mm)は、金属板3の厚さt(mm)に対して式(7)の範囲を満たすように調整することが好ましい。
4×t≦D≦20×t ・・・(7)
なお、式(7)中の鋼板の厚さtは、突合せ接合においては鋼板3の厚さt(mm)を示し、重ね接合においては重ね合せた鋼板3の総厚さt(mm)を示す。
In particular, the diameter D (mm) of the
4×t≦D≦20×t (7)
The thickness t of the steel plate in the equation (7) indicates the thickness t (mm) of the
肩部5、9の直径D(mm)が4×t未満では、鋼板3の厚さ方向に対して均質的な塑性流動が有効に得られない恐れがある。一方、肩部5、9の直径D(mm)が20×tを超えると、不要に塑性流動を生じる領域を広げるのみとなる恐れがある。そのため、装置に対して過大な負荷がかかるため好ましくない。より好ましくは、肩部5、9の直径Dは、5×t≦D≦18×tとする。
If the diameter D (mm) of the
次に、回転ツール1、8のピン部6、10の先端間の隙間g(mm)の好ましい条件について説明する。
Next, a preferable condition of the gap g (mm) between the tips of the
本発明では、上述の条件に加えて、ピン部6、10の先端間の隙間gを管理することで
上記した効果、すなわち鋼板3の厚さ方向に対して均質的に温度上昇とせん断応力を得て、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成する効果を、より有効に得ることができる。
In the present invention, in addition to the above-mentioned conditions, by controlling the gap g between the tips of the
特に、回転ツール1、8の肩部5、9の直径D(mm)と鋼板3の厚さt(mm)の比(すなわち、D/t)が小さい場合は、鋼板3の厚さ方向に対して均質的に塑性流動が起こり難くなる。このため、ピン部6、10の先端間の隙間gを式(8)の範囲を満たすように調整することが好ましい。
0<g≦[1−0.9×exp{-0.011×(D/t)2}]×t ・・・(8)
なお、式(8)中の鋼板の厚さtは、突合せ接合の場合には鋼板3の厚さを示し、重ね接合の場合には鋼板3の総板厚さを示す。
In particular, when the ratio of the diameter D (mm) of the
0<g≦[1-0.9×exp{-0.011×(D/t) 2 }]×t (8)
The thickness t of the steel plate in the equation (8) indicates the thickness of the
ピン部6、10の先端間の隙間gが、0以下では、互いに対向する回転ツール1、8のピン部6、10の先端が接触し、損傷するので望ましくない。一方、ピン部6、10の先端間の隙間gが[1−0.9×exp{-0.011×(D/t)2}]×tを超えると、鋼板3の厚さ方向に対して均質的な塑性流動が有効に得られない恐れがある。より好ましくは、[0.01−0.009×exp{-0.011×(D/t)2}]×t≦g≦[1−0.9×exp{-0.011×(D/t)2}]×tとする。
When the gap g between the tips of the
なお、回転ツール1、8のピン部6、10の長さbは、傾斜角度α、肩部間の隙間G、ピン部先端の隙間g、肩部の直径D、厚さtに応じて適宜決定すればよい。
The length b of the
次に、本発明の両面摩擦攪拌接合方法における予熱処理プロセスについて説明する。本発明では、回転ツール1、8のいずれか一方の接合方向Pの前方に設けた加熱装置13により鋼板3を加熱する予熱処理プロセスを有することが、重要である。図1および図2に示す例では、鋼板3の表面側にある回転ツール1の前方に加熱装置13を設ける。なお、加熱装置13は鋼板の裏面側にある回転ツール8の前方に設けてもよい。この場合にも同様の効果が得られる。
Next, the preheat treatment process in the double-sided friction stir welding method of the present invention will be described. In the present invention, it is important to have a preheat treatment process of heating the
本発明の予熱処理プロセスにおける加熱条件について、図3を参照しながら説明する。図3(A)は、予熱処理プロセスによる加熱領域の一例を示す図であり、図3(B)は、被加工材(鋼板3)を一対の回転ツール1、8により両面摩擦攪拌する領域の一例を示す図である。なお、図3(A)中、接合中央線7は、鋼板3の表面側の回転ツール1の回転軸2を通り接合方向Pに平行な直線として示す。また、H、I、Jで示す領域は加熱領域であり、加熱領域とは、加熱装置13により加熱された鋼板上の領域をいう。また、図3(A)および図3(B)中、aはピン部6、10の最大直径(mm)を、Dは肩部5、9の直径(mm)を、tは鋼板3の厚さ(mm)を、Gは肩部5、9間の隙間(mm)を、gはピン6、10の先端の隙間(mm)を、bは回転ツール1、8のピン部6、10の長さ(mm)を、それぞれ示す。
The heating conditions in the preheat treatment process of the present invention will be described with reference to FIG. FIG. 3(A) is a diagram showing an example of a heating region by the preheat treatment process, and FIG. 3(B) shows a region in which the workpiece (steel plate 3) is subjected to double-sided friction stirring by the pair of
回転ツール1、8の回転軸2、11の傾斜角度αが0°<α≦3°の場合には、上記した対向する肩部の隙間G(mm)、鋼板の厚さt(mm)並びに肩部の直径D(mm)が式(6)を満たすことに加えて、一方、回転ツール1、8の回転軸2、11の傾斜角度α=0°の場合には、上記した対向する肩部の隙間G(mm)、鋼板の厚さt(mm)並びに肩部の直径D(mm)が式(5)を満たすことに加えて、次の条件を満たすように制御する。すなわち、本発明の予熱処理プロセスでは、加熱領域における鋼板表面温度をTP(℃)とするとき、回転ツール1と接合方向前方で接触する位置の鋼板表面温度TPが式(1)〜式(3)を満たすように制御する。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置を示す。
When the inclination angles α of the
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
Here, W (mm) indicates a position separated from the joining center line in the width direction of the joining portion.
なお、上述の0.5×D≦W<-0.1×Dの範囲は、図3(A)に示す加熱領域Hであり、-0.1×D≦W≦0.1×Dの範囲は、図3(A)に示す加熱領域Iであり、0.1×D<W≦0.5×Dの範囲は、図3(A)に示す加熱領域Jに対応する。すなわち、図3(A)に示す例では、接合中央線7から紙面上上側に離れるほうをマイナス領域とし、接合中央線7から紙面上下側に離れるほうをプラス領域とする。
The above range of 0.5×D≦W<−0.1×D is the heating region H shown in FIG. 3(A), and the range of −0.1×D≦W≦0.1×D is shown in FIG. 3(A). The heating region I shown in FIG. 3 and the range of 0.1×D<W≦0.5×D corresponds to the heating region J shown in FIG. That is, in the example shown in FIG. 3(A), the area separated from the joining
-0.5×D≦W<-0.1×Dの範囲(加熱領域H)における鋼板の表面温度TP:40≦TP≦1200・・・(1)
-0.1×D≦W≦0.1×Dの範囲(加熱領域I)における鋼板の表面温度TP:100≦TP≦1200・・・(2)
0.1×D<W≦0.5×Dの範囲(加熱領域J)における鋼板の表面温度TP:40≦TP≦1200・・・(3)
上述のように、温度の上昇と共に鋼板3の強度は低下する傾向がある。そのため、加熱領域H、I、Jにおける鋼板3の表面温度TPが上昇し過ぎないように調節することが必要である。具体的には、鋼板3の厚さ方向へ加熱領域を確保するには、加熱領域の鋼板表面に温度勾配(表面における温度のばらつき)が存在していても本発明の効果は得られるが、その場合には、加熱領域において鋼板3の最も高い表面温度は1200℃以下とする。これにより、接合部4の温度が過度に上昇することに起因して、一対の回転ツール1、8が損傷することや、加熱領域の周辺でのミクロ組織が変質することを抑えることができる。
一方、加熱領域において鋼板3の最も低い表面温度は40℃以上とする。これにより、塑性流動を良好に確保できる。
Surface temperature TP of the steel sheet in the range of -0.5 x D ≤ W <-0.1 x D (heating region H): 40 ≤ TP ≤ 1200 (1)
-Surface temperature TP of the steel sheet in the range of 0.1×D≦W≦0.1×D (heating region I): 100≦TP≦1200 (2)
Surface temperature TP of steel sheet in the range of 0.1×D<W≦0.5×D (heating region J): 40≦TP≦1200 (3)
As described above, the strength of the
On the other hand, the lowest surface temperature of the
両面摩擦撹拌接合(両面FSW)では、回転ツールのショルダーと被接合材との間で発生する摩擦熱により材料を軟化し、回転ツールのプローブにより発生する材料の塑性流動を得ることが重要である。本発明において、より有利な効果を得るためには、加熱領域H、I、Jの各領域における鋼板表面温度TPが(1)式〜(3)式の全てを満足するように制御する。(1)式の範囲を外れる場合、ショルダー周囲の材料の軟化を十分に補うことができず、予熱による塑性流動促進効果が得られない。(2)式の範囲を外れる場合、最も塑性流動が発生するツール周囲の材料の軟化を十分に補うことができず、予熱による塑性流動促進効果が得られない。(3)式の範囲を外れる場合、ショルダー周囲の材料の軟化を十分に補うことができず、予熱による塑性流動促進効果が得られない。 In double-sided friction stir welding (double-sided FSW), it is important to soften the material by frictional heat generated between the shoulder of the rotating tool and the material to be welded and to obtain plastic flow of the material generated by the probe of the rotating tool. .. In the present invention, in order to obtain a more advantageous effect, the steel plate surface temperature TP in each of the heating regions H, I, and J is controlled so as to satisfy all of the expressions (1) to (3). If the range of the expression (1) is not satisfied, the softening of the material around the shoulder cannot be sufficiently compensated, and the plastic flow promoting effect by preheating cannot be obtained. Outside the range of the formula (2), the softening of the material around the tool where the most plastic flow occurs cannot be sufficiently compensated, and the plastic flow promotion effect by preheating cannot be obtained. If the range of the expression (3) is not satisfied, the softening of the material around the shoulder cannot be sufficiently compensated and the effect of promoting plastic flow due to preheating cannot be obtained.
上述のように、本発明では加熱装置13を特に限定しない。例えば、加熱装置13として高周波誘導加熱を用いる場合には、加熱効率および加熱範囲を考慮すると、使用周波数を20kHz以上360kHz以下とすることが好ましい。この周波数の加熱装置を用いることによって、上記した温度範囲への制御を容易に行うことができる。
As described above, the
本発明では、回転ツール1、8と加熱装置13の位置関係、および接合前における加熱装置13の加熱範囲の温度管理が重要である。そのため、加熱装置が回転ツールの進行方向(溶接方向)に対して前方に配置されていれば、加熱装置と回転ツールの間の距離、加熱装置の加熱範囲は問わない。しかし、加熱装置と回転ツールの距離が小さくなりすぎると、回転ツールが加熱装置による熱で損傷する恐れがある。そのため、図1に示す例では、鋼板3の表面側にある回転ツール1とその進行方向で前方に配置した加熱装置13との位置関係は、加熱効率および鋼板への影響を考慮して決定することが好ましい。例えば、加熱装置13の配置位置は回転ツール1の前方1mm以上100mmの範囲内に配置することが好ましい。なお、この例では加熱装置13として、使用周波数が50〜110kHz以下の高周波誘導加熱装置を用いるものとする。
In the present invention, the positional relationship between the
上記以外の接合条件については、常法に従えばよい。例えば、回転ツール1、8の回転数を100〜5000回/分の範囲とし、接合速度を1000mm/分以上に高速化するように、接合条件を調整することができる。
Regarding the bonding conditions other than the above, a conventional method may be used. For example, the number of rotations of the
なお、本発明の両面摩擦撹拌接合方法は、接合継手強度をより一層向上させる観点より、さらに冷却装置14による冷却処理、後方加熱装置15による再加熱処理を備えることができる。
The double-sided friction stir welding method of the present invention can further include a cooling process by the cooling
通常、接合完了後、接合部4は自然放冷状態となる。このため、被加工材である鋼板3の焼入れ性が低い場合は、接合継手の強度が十分に得られない恐れがある。これを回避するため、本発明では、図2に示すように、接合方向Pへ移動する回転ツール1の接合方向後方に設けた冷却装置14を用いる。冷却装置14で鋼板3の接合部4を冷却する際の冷却速度を適切に制御することにより、焼入れによる強度向上を図ることができる。
Usually, after the joining is completed, the joining
一方、被加工材である鋼板3の焼入れ性が高い場合は、過度に硬化する可能性があり、接合継手の靭性を低下させる恐れがある。これを回避するため、本発明では、図2に示すように、回転ツール1に近接する接合方向Pの後方部分を加熱する後方加熱装置15を用いる。後方加熱装置15で鋼板3の接合部4を再加熱して冷却速度を適切に制御することにより、靱性低下を防止することができる。
On the other hand, when the
本発明では、冷却装置14および/または後方加熱装置15により、次に示す処理1〜処理4のいずれか1つを行うことで、以下の効果を得ることができる。
In the present invention, the following effects can be obtained by performing any one of the following
(処理1)接合部を冷却する
例えば、図2に示す例では、回転ツール1の接合方向Pの後方に設けた冷却装置14により、接合部4を冷却する。この場合には、例えば、800〜500℃の温度範囲における平均冷却速度を30〜300℃/sとすることが好ましい。平均冷却速度が30℃/s未満では、焼き入れによる強度向上が見込めず、接合継手の強度が十分に得られない恐れがある。一方、平均冷却速度が300℃/s超えでは、硬質な組織が形成し靱性が低下してしまう恐れがある。
(Process 1) Cooling the bonded portion For example, in the example shown in FIG. 2, the bonded
(処理2)接合部を再加熱する
例えば、図2に示す例では、回転ツール1の接合方向Pの後方に設けた後方加熱装置15により、接合部4を再加熱する。この場合には、例えば、後方加熱装置15の再加熱を制御することにより、800〜500℃の温度範囲における平均冷却速度を10〜30℃/sとすることが好ましい。800〜500℃を外れた温度範囲では冷却速度の適切な制御による組織の改善が十分に得られない。平均冷却速度が10℃/s未満では、接合継手の強度の向上が得られない恐れがある。一方、平均冷却速度が30℃/s超えでは、硬質な組織が形成し、靱性が低下してしまう恐れがある。
(Processing 2) Reheating the bonded part For example, in the example shown in FIG. 2, the bonded
(処理3)接合部を冷却した後、該接合部を再加熱する
例えば、図2に示す例では、回転ツール1の接合方向Pの後方に設けた冷却装置14により接合部4を冷却した後、該冷却装置14の接合方向Pの後方に設けた後方加熱装置15により接合部4を再加熱する。これにより、接合部4が冷却装置14による冷却で焼入れされて過度に硬化しても、後方加熱装置15で焼き戻しすることにより高度を抑え、強度と靭性を併せ持つ継手特性を得ることができる。この場合には、例えば、冷却装置14は800〜500℃の温度範囲における平均冷却速度を30〜300℃/sとすることが好ましく、後方加熱装置15は再加熱の温度範囲を550〜650℃とすることが好ましい。
(Process 3) After cooling the joint portion, the joint portion is reheated. For example, in the example shown in FIG. 2, after cooling the
(処理4)接合部を再加熱した後、該接合部を冷却する
例えば、図示はしないが、回転ツール1の接合方向Pの後方で、かつ冷却装置14の接合方向Pの前方(すなわち、回転ツール1と冷却装置14の間)に設けた後方加熱装置15により接合部4を再加熱した後、該冷却装置14により接合部4を冷却する。このように、接合直後に、接合部4を後方加熱装置15で再加熱して冷却速度を適切に制御し、その後、冷却装置14で冷却を行うことで、ミクロ組織を複合化でき、強度と延性を併せ持つ継手特性を得ることができる。この場合には、例えば、後方加熱装置15の再加熱により800〜600℃の温度範囲における平均冷却速度を0〜30℃/sとし、その後、冷却装置14は600〜400℃の温度範囲における平均冷却速度を30〜300℃/sとすることが好ましい。
(Processing 4) After reheating the joint, the joint is cooled. For example, although not shown, behind the joint direction P of the
なお、上記以外の接合条件については、常法に従えばよい。例えば、回転ツール1、8の回転数を100〜5000rpmの範囲とし、接合速度を1000mm/min以上に高速化するように、接合条件を調整することができる。
Regarding the joining conditions other than the above, a conventional method may be used. For example, the number of rotations of the
また、本発明が対象とする金属板3は、一般的な構造用鋼や炭素鋼板、例えばJIS G 3106やJIS G 4051に相当する鋼板等に好適に適用することができる。また、引張強さが800MPa以上の高強度構造用鋼板にも有利に適用できる。なお、この場合であっても、接合部において、鋼板の引張強さの85%以上の強度が得られる。
Further, the
次に、図4に回転ツール1の断面の一例を示す。なお、本発明では回転ツールのピン部の形状は特に限定されない。
Next, FIG. 4 shows an example of a cross section of the
鋼板3の表面側の回転ツール1のピン部6の最大径は、例えば2〜50mmである。本発明におけるピン部6の最大径とは、1つのピン部を軸線方向と垂直な断面で切断した際の切断面で得られる直径のうち、最大のものを指す。
The maximum diameter of the
例えば、図4に示す例では、表面側の回転ツール1のピン部6の直径が軸線方向に沿って変わらないため、ピン部の上面の直径a(図4の例では5.5mm)をピン部の最大径としてよい。なお、図示はしないが、回転ツール1のピン部6がテーパ形状等を有し、軸線方向の位置によってピン径が異なる場合には、最も大きい直径をピン部の最大径としてよい。
For example, in the example shown in FIG. 4, since the diameter of the
以上説明したように、本発明によれば、両面摩擦撹拌接合を行なうに際し、加熱装置が接合直前に被加工材(鋼板)を部分的に加熱することで被加工材の加熱不足による塑性流動不良を解消することができる。また、互いに対向する一対の回転ツールの肩部が鋼板の接合部の表面と裏面に押圧され、肩部の回転による十分な温度上昇とせん断応力による高温で大きな変形の力とが鋼板の接合部の両面に加わることで、鋼板の厚さ方向に対して均質的に塑性流動が促進され、良好な接合状態を達成することができる。その結果、接合時における欠陥発生を抑制しつつ接合速度の高速度化を達成するため、十分な強度(継手強度)を得る。また、接合施工性を向上できる。 As described above, according to the present invention, when performing double-sided friction stir welding, the heating device partially heats the work material (steel plate) immediately before joining, so that plastic flow failure due to insufficient heating of the work material. Can be resolved. Further, the shoulders of the pair of rotating tools facing each other are pressed against the front surface and the back surface of the joint portion of the steel plates, and a sufficient temperature rise due to the rotation of the shoulder portions and a large deformation force at high temperature due to shear stress are generated. By adding to both surfaces of the steel sheet, plastic flow is uniformly promoted in the thickness direction of the steel sheet, and a good joined state can be achieved. As a result, sufficient strength (joint strength) is obtained in order to increase the joining speed while suppressing the occurrence of defects during joining. Also, the joining workability can be improved.
表1に示す厚さ、化学組成、および引張強さの鋼板を用いて、突合せ部あるいは重ね部に対して両面摩擦撹拌接合を行ない、継手(接合継手)を得た。本実施例では、図1あるいは図2に示す両面摩擦撹拌接合装置20を用いて、表2−1、表2−2および表3に示す両面摩擦撹拌接合の接合条件で、接合を行なった。表3には、加熱装置として高周波誘導加熱装置を用いて加熱した鋼板表面の最高温度を示す。温度はサーモグラフィで計測した。
Using the steel plates with the thickness, chemical composition and tensile strength shown in Table 1, double-sided friction stir welding was performed on the butt portion or the overlapped portion to obtain a joint (joint joint). In this embodiment, the double-sided friction
継手の形式が「突合せ」の場合には、継手突合せ面は、角度をつけないいわゆるI型開先でフライス加工程度の表面状態とし、鋼板突合せ部の表面側および裏面側の両方から回転ツールを押圧して接合を行なった。一方、継手の形式が「重ね」の場合には、鋼板の表面を重ね合せ面とし、鋼板重ね合せ部の表面側および裏面側の両方から回転ツールを押圧して接合を行なった。 When the joint type is "butt", the joint butting surface is a so-called I-shaped groove with no angle and has a surface condition of about milling, and the rotary tool is used from both the front side and the back side of the steel plate butting part. Bonding was performed by pressing. On the other hand, when the joint type was "overlap", the front surface of the steel plate was used as the superimposing surface, and the rotary tool was pressed from both the front surface side and the rear surface side of the steel plate superposing portion to perform the joining.
回転ツールの回転方向は、鋼板の表面側および裏面側に配置される対向する一対の回転ツールが、鋼板の表面側から見て、表面側の回転ツールを時計回り、裏面側の回転ツールを反時計回りとする回転条件、あるいは表面側および裏面側の回転ツールをともに時計回りとする回転条件とした。なお、ここでは、図4の断面形状を有する1種類の回転ツールを用い、回転ツールの素材には炭化タングステン(WC)を用いた。 The rotation direction of the rotary tool is that the pair of facing rotary tools arranged on the front and back sides of the steel plate rotate the front side rotary tool clockwise and the back side rotary tool counter when viewed from the front side of the steel plate. The rotation condition was set to be clockwise, or the rotation tools for both the front side and the back side were set to be clockwise. Here, one type of rotary tool having the cross-sectional shape of FIG. 4 was used, and tungsten carbide (WC) was used as the material of the rotary tool.
得られた接合継手を用いて、表面欠陥の有無、継手断面観察での内部欠陥の有無、引張試験、施工性の評価を行った。表4には各結果をそれぞれ示す。なお、本発明の実施例では、表面欠陥および内部欠陥の評価、施工性の評価は、以下に示す評価方法で行った。引張試験は、得られた接合継手よりJIS Z 3121で規定する5号試験片の寸法の引張試験片を採取し、引張試験を行った際の引張強さ(MPa)をそれぞれ示す。 Using the obtained bonded joint, presence/absence of surface defects, presence/absence of internal defects in joint cross-section observation, tensile test, and workability were evaluated. Table 4 shows each result. In the examples of the present invention, the evaluation of surface defects and internal defects and the evaluation of workability were performed by the following evaluation methods. The tensile test shows the tensile strength (MPa) when a tensile test piece having a size of No. 5 test piece specified in JIS Z 3121 is sampled from the obtained joint and the tensile test is performed.
<表面欠陥の評価>
表面欠陥の評価は、接合した継手の外観観察により行った。観察には、得られた接合継手の接合速度が表2−1および表2−2の「接合速度」に記載の値となった部位を用いた。表面欠陥の有無は、塑性流動不足により溝状の未接合状態、もしくは過度な塑性流動によるバリの発生が見られるか否かを目視で判定する。評価は、以下に示す基準で行った。なお、ここでは、表面欠陥の有無は得られた継手の外観を目視で観察し、一部でも未接合部があれば有りとしている。
・無し:上記に記載の表面欠陥がいずれも見られない。
・有り:上記に記載の表面欠陥のいずれかが見られた。
<Evaluation of surface defects>
The surface defects were evaluated by observing the appearance of the joined joints. For the observation, a portion was used in which the joining speed of the obtained joined joint was the value described in “Joining speed” in Table 2-1 and Table 2-2. The presence or absence of surface defects is determined by visually observing whether groove-like unbonded state due to insufficient plastic flow or occurrence of burrs due to excessive plastic flow is observed. The evaluation was performed according to the following criteria. In addition, here, the presence or absence of the surface defect is visually observed by visually observing the appearance of the obtained joint, and it is determined that there is any unbonded portion.
-None: None of the surface defects described above are observed.
-Yes: Any of the surface defects described above was found.
<内部欠陥の評価>
内部欠陥の評価は、接合した継手の断面観察により行った。観察には、得られた接合継手の接合速度が表2−1および表2−2の「接合速度」に記載の値となった部位において、断面をそれぞれ切断したものを試験片として用いた。発明例1〜18、比較例10〜14、比較例18、比較例22、比較例24は、接合開始側の端部から接合方向(進行方向)へ220mm離れた位置、および接合終了側の端部から接合方向(進行方向)の反対方向へ60mm離れた位置の断面を切断し、それぞれ試験片とした。また、比較例1〜9、比較例15〜17、比較例19〜21、比較例23は、接合開始側の端部から接合方向(進行方向)へ65mm離れた位置、および接合終了側の端部から接合方向(進行方向)の反対方向へ70mm離れた位置の断面を切断し、それぞれ試験片とした。内部欠陥の有無は、塑性流動不足により接合部内部に形成した未接合状態が見られるか否かを、光学顕微鏡(倍率:5倍)を用い、以下に示す基準に従い評価した。
・無し:上記に記載の2箇所のいずれの位置においても、トンネル状に形成した未接合状態が見られない。
・良好:上記に記載の2箇所の位置において、接合部内部に形成した未接合状態が1箇所見られた。
・有り:上記に記載の2箇所の位置において、接合部内部に形成した未接合状態が2箇所以上見られた。
<Evaluation of internal defects>
The internal defects were evaluated by observing the cross section of the joined joint. For the observation, a test piece was obtained by cutting each of the cross sections at the portions where the joining speed of the obtained joined joint was the value described in “Joining speed” in Table 2-1 and Table 2-2. The invention examples 1 to 18, the comparative examples 10 to 14, the comparative example 18, the comparative example 22, and the comparative example 24 are 220 mm apart from the end on the joining start side in the joining direction (traveling direction) and the end on the joining end side. A cross section at a position 60 mm away from the part in the direction opposite to the joining direction (traveling direction) was cut into test pieces. Further, in Comparative Examples 1 to 9, Comparative Examples 15 to 17, Comparative Examples 19 to 21, and Comparative Example 23, a position 65 mm away from the end on the joining start side in the joining direction (traveling direction) and the end on the joining end side A cross section at a position 70 mm away from the portion in the direction opposite to the joining direction (traveling direction) was cut into test pieces. The presence or absence of internal defects was evaluated by using an optical microscope (magnification: 5 times) according to the following criteria to determine whether or not an unbonded state formed inside the bonded part due to insufficient plastic flow was observed.
-None: The unbonded state formed in a tunnel shape is not seen at any of the two positions described above.
-Good: At the two positions described above, one unbonded state formed inside the bonded part was observed.
-Yes: At two positions described above, two or more unbonded states formed inside the bonded portion were observed.
<施工性の評価>
施工性の評価は、上記に記載の表面欠陥、内部欠陥および引張試験の各結果に基づいて、以下に示す基準で評価し、記号◎、○、×のいずれかを付与した。本実施例では、記号◎、○を合格とし、記号×を不合格とした。なお、以下の基準に示した「接合速度」とは表2−1および表2−2に記載の接合速度を指す。
・◎:接合速度が5m/分以上で表面欠陥および内部欠陥が発生せず、引張強度が母材の85%以上
・○:接合速度が5m/分未満で表面欠陥および内部欠陥が発生せず、引張強度が母材の85%以上
・×:表面欠陥または内部欠陥の発生、もしくは引張強度が母材の85%未満
<Evaluation of workability>
The workability was evaluated on the basis of the results of the surface defects, internal defects and the tensile test described above, and the evaluation was carried out according to the criteria shown below, and any one of the symbols ⊚, ◯ and × was given. In this example, the symbols ⊚ and ∘ were accepted, and the symbol x was rejected. The "bonding speed" shown in the following criteria refers to the bonding speeds shown in Table 2-1 and Table 2-2.
-A: No surface defects and internal defects are generated at a bonding speed of 5 m/min or more, and tensile strength is 85% or more of the base metal.-A: No surface defects or internal defects are generated at a bonding speed of less than 5 m/min. , Tensile strength is 85% or more of the base metal x: Surface defects or internal defects occur, or tensile strength is less than 85% of the base metal
表4に示す通り、発明例1〜18では、継手外観観察で表面欠陥は認められず、継手断面観察でも内部欠陥は認められず、健全な接合状態が得られたことが確認された。さらに、継手強度に関しては、母材となる鋼板の引張強さの85%以上が得られた。施工性の評価は合格であった。 As shown in Table 4, in Invention Examples 1 to 18, no surface defect was observed in the joint appearance observation, and no internal defect was observed in the joint cross section observation, and it was confirmed that a sound joint state was obtained. Further, regarding the joint strength, 85% or more of the tensile strength of the steel sheet as the base material was obtained. The workability was evaluated as acceptable.
なお、「健全な接合状態」とは、表面欠陥および内部欠陥の評価のいずれも「良好」もしくは「無し」の評価結果となったことを意味する。 The "healthy bonding state" means that both the surface defects and the internal defects are evaluated as "good" or "none".
一方、比較例1〜24では、継手外観観察で表面欠陥、継手断面観察で内部欠陥のいずれか1つまたは2つが認められ、健全な接合状態が得られなかった。継手強度に関しては、比較例1〜24において母材となる鋼板の引張強さの85%未満であった。施工性の評価は不合格であった。 On the other hand, in Comparative Examples 1 to 24, any one or two of surface defects were observed in the joint appearance observation and one or two internal defects were observed in the joint cross section observation, and a sound joint state was not obtained. Regarding the joint strength, it was less than 85% of the tensile strength of the steel sheet as the base material in Comparative Examples 1 to 24. The evaluation of workability was unsuccessful.
1 表面側の回転ツール
2 表面側の回転ツールの回転軸
3 金属板
4 接合部
5 表面側の回転ツールの肩部
6 表面側の回転ツールのピン部
7 接合中央線
8 裏面側の回転ツール
9 裏面側の回転ツールの肩部
10 裏面側の回転ツールのピン部
11 裏面側の回転ツールの回転軸
12 未接合部
13 加熱装置
14 冷却装置
15 後方加熱装置
16 回転駆動装置
17 制御部
20 両面摩擦撹拌装置
1 Surface-side
Claims (12)
前記回転ツールの肩部およびピン部は、回転軸を共有し、かつ前記鋼板よりも硬い材質であり、
前記回転ツールの一方の接合方向前方に設けられた加熱装置により加熱された前記鋼板の表面側の領域を加熱領域としたとき、加熱する際に、
前記加熱領域における、鋼板表面温度TP(℃)が式(1)〜式(3)を満たし、対向する前記肩部の隙間G(mm)と前記鋼板の厚さt(mm)が式(5)を満たすように制御し、摩擦撹拌接合を行うことを特徴とする両面摩擦撹拌接合方法。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
0.4×t≦G≦t ・・・(5)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置、
D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。 A pair of opposing rotary tools are respectively arranged on the front surface side and the back surface side of the unbonded portion of at least two steel plates, the rotary tool is pressed against the unbonded portion, and the rotary tools are reversed by a rotary drive device. A double-sided friction stir welding method of friction stir welding steel plates by moving in the welding direction while rotating in the direction,
The shoulder portion and the pin portion of the rotating tool share a rotating shaft and are made of a material harder than the steel plate,
When the area on the surface side of the steel sheet heated by a heating device provided in the front of one of the rotating tools in the joining direction is a heating area, when heating,
In the heating region, the steel plate surface temperature TP (° C.) satisfies the formulas (1) to (3), and the gap G (mm) between the facing shoulder portions and the thickness t (mm) of the steel plate are represented by the formula (5). The friction stir welding is performed so as to satisfy the above condition, and the friction stir welding is performed.
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
0.4×t≦G≦t (5)
Here, W (mm) is a position separated from the joint center line in the width direction of the joint,
D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
前記回転ツールの肩部およびピン部は、回転軸を共有し、かつ前記鋼板よりも硬い材質であり、
前記回転軸は、前記鋼板に対して鉛直方向から接合方向に傾斜させた傾斜角度αが0°<α≦3°であり、
前記回転ツールの一方の接合方向前方に設けられた加熱装置により加熱された前記鋼板の表面側の領域を加熱領域としたとき、加熱する際に、
前記加熱領域における、鋼板表面温度TP(℃)が式(1)〜式(3)を満たし、対向する前記肩部の隙間G(mm)、前記鋼板の厚さt(mm)並びに前記肩部の直径D(mm)が、式(6)を満たすように制御し、摩擦撹拌接合を行うことを特徴とする両面摩擦撹拌接合方法。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
(0.4×t)−(0.2×D×sinα)≦G≦t−(0.2×D×sinα) ・・・(6)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置、
D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。 A pair of opposing rotary tools are respectively arranged on the front surface side and the back surface side of the unbonded portion of at least two steel plates, the rotary tool is pressed against the unbonded portion, and the rotary tools are reversed by a rotary drive device. A double-sided friction stir welding method of friction stir welding steel plates by moving in the welding direction while rotating in the direction,
The shoulder portion and the pin portion of the rotating tool share a rotating shaft and are made of a material harder than the steel plate,
The inclination angle α of the rotating shaft inclined from the vertical direction to the joining direction with respect to the steel plate is 0°<α≦3°,
When the area on the surface side of the steel sheet heated by a heating device provided in the front of one of the rotating tools in the joining direction is a heating area, when heating,
In the heating region, the steel plate surface temperature TP (° C.) satisfies the formulas (1) to (3), the gap G (mm) between the facing shoulders, the thickness t (mm) of the steel plate, and the shoulders The double-sided friction stir welding method is characterized in that the diameter D (mm) is controlled so as to satisfy Expression (6), and friction stir welding is performed.
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
(0.4×t)−(0.2×D×sin α)≦G≦t−(0.2×D×sin α) (6)
Here, W (mm) is a position separated from the joint center line in the width direction of the joint,
D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
(処理1)前記接合部を冷却する。
(処理2)前記接合部を再加熱する。
(処理3)前記接合部を冷却した後、前記接合部を再加熱する。
(処理4)前記接合部を再加熱した後、前記接合部を冷却する。 The cooling device and/or the rear heating device provided on the rear side of the rotating tool in the joining direction are used to further perform any one of the processes 1 to 4 after the friction stir welding. Or the double-sided friction stir welding method described in 2.
(Process 1) The joint is cooled.
(Processing 2) The joint is reheated.
(Process 3) After cooling the joint, the joint is reheated.
(Process 4) After reheating the joint, the joint is cooled.
4×t≦D≦20×t ・・・(7) The double-sided friction stirrer according to any one of claims 1 to 3, wherein a diameter D (mm) of the shoulder portion satisfies Expression (7) with respect to a thickness t (mm) of the steel plate. Joining method.
4×t≦D≦20×t (7)
0<g≦[1−0.9×exp{-0.011×(D/t)2}]×t ・・・(8) The gap g (mm) between the pin portions facing each other satisfies the formula (8) with respect to the thickness t (mm) of the steel plate and the diameter D (mm) of the shoulder portion. The double-sided friction stir welding method according to any one of 4 above.
0<g≦[1-0.9×exp{-0.011×(D/t) 2 }]×t (8)
肩部および該肩部と回転軸を共有するピン部を有し、該肩部および該ピン部を前記鋼板よりも硬い材質で形成した一対の回転ツールと、
前記回転ツールを互いに逆方向に回転させる回転駆動装置と、
前記回転ツールの一方の接合方向前方に設け、前記鋼板の表面を加熱する加熱装置と、
前記加熱装置および前記回転ツールを制御する制御部を備え、
前記制御部は、前記加熱装置により加熱された前記鋼板の表面側の領域を加熱領域としたとき、
前記加熱領域における、鋼板表面温度TP(℃)が式(1)〜式(3)を満たし、対向する前記肩部の隙間G(mm)と前記鋼板の厚さt(mm)が式(5)を満たすように制御して、少なくとも2枚以上の鋼板の摩擦撹拌接合を行うことを特徴とする両面摩擦撹拌接合装置。
-0.5×D≦W<-0.1×Dの範囲において、40≦TP≦1200 ・・・(1)
-0.1×D≦W≦0.1×Dの範囲において、100≦TP≦1200 ・・・(2)
0.1×D<W≦0.5×Dの範囲において、40≦TP≦1200 ・・・(3)
0.4×t≦G≦t ・・・(5)
ここで、W(mm)は、接合中央線から接合部の幅方向に離間する位置、
D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。 A double-sided friction stir welding apparatus for friction stir welding at least two steel plates,
A pair of rotary tools having a shoulder portion and a pin portion that shares a rotation axis with the shoulder portion, the shoulder portion and the pin portion being made of a material harder than the steel plate;
A rotary drive device for rotating the rotary tool in opposite directions,
A heating device that is provided in front of one of the rotating tools in the joining direction and heats the surface of the steel plate,
A controller for controlling the heating device and the rotating tool,
The control unit, when the area on the surface side of the steel sheet heated by the heating device is a heating area,
In the heating region, the steel plate surface temperature TP (° C.) satisfies the formulas (1) to (3), and the gap G (mm) between the facing shoulder portions and the thickness t (mm) of the steel plate are represented by the formula (5). (2) Friction stir welding of at least two steel plates is performed by controlling so as to satisfy (1).
In the range of -0.5×D≦W<-0.1×D, 40≦TP≦1200 (1)
-0.1×D≦W≦0.1×D, 100≦TP≦1200 (2)
In the range of 0.1×D<W≦0.5×D, 40≦TP≦1200 (3)
0.4×t≦G≦t (5)
Here, W (mm) is a position separated from the joint center line in the width direction of the joint,
D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
対向する前記肩部の隙間G(mm)、前記鋼板の厚さt(mm)並びに前記肩部の直径D(mm)が、前記式(5)に変えて、式(6)を満たすように制御することを特徴とする請求項7に記載の両面摩擦撹拌接合装置。
(0.4×t)−(0.2×D×sinα)≦G≦t−(0.2×D×sinα) ・・・(6)
ここで、D(mm)は、回転ツールの肩部の直径、
G(mm)は、肩部の隙間、
t(mm)は、鋼板の厚さ、をそれぞれ示す。 When the inclination angle α obtained by inclining the rotation axis of the rotating tool with respect to the steel plate from the vertical direction to the joining direction satisfies 0°<α≦3°, the control unit may:
The gap G (mm) between the facing shoulders, the thickness t (mm) of the steel plate, and the diameter D (mm) of the shoulders should be changed to the formula (5) so that the formula (6) is satisfied. The double-sided friction stir welding apparatus according to claim 7, which is controlled.
(0.4×t)−(0.2×D×sin α)≦G≦t−(0.2×D×sin α) (6)
Where D (mm) is the diameter of the shoulder of the rotary tool,
G (mm) is the shoulder gap,
t (mm) indicates the thickness of the steel plate, respectively.
(処理1)前記接合部を冷却する。
(処理2)前記接合部を再加熱する。
(処理3)前記接合部を冷却した後、前記接合部を再加熱する。
(処理4)前記接合部を再加熱した後、前記接合部を冷却する。 Further, a cooling device and a rear heating device are provided behind the rotating tool in the joining direction, and any one of the processes 1 to 4 is performed using the cooling device and/or the rear heating device. Alternatively, the double-sided friction stir welding apparatus according to item 8.
(Process 1) The joint is cooled.
(Processing 2) The joint is reheated.
(Process 3) After cooling the joint, the joint is reheated.
(Process 4) After reheating the joint, the joint is cooled.
4×t≦D≦20×t ・・・(7) 10. The rotating tool according to claim 7, wherein a diameter D (mm) of the shoulder portion satisfies a formula (7) with respect to a thickness t (mm) of the steel plate. Double-sided friction stir welding equipment.
4×t≦D≦20×t (7)
0<g≦[1−0.9×exp{-0.011×(D/t)2}]×t ・・・(8) The rotating tool is characterized in that a gap g (mm) between the facing pin portions satisfies Expression (8) with respect to the thickness t (mm) of the steel plate and the diameter D (mm) of the shoulder portion. The double-sided friction stir welding apparatus according to any one of claims 7 to 10.
0<g≦[1-0.9×exp{-0.011×(D/t) 2 }]×t (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019019902A JP6992773B2 (en) | 2019-02-06 | 2019-02-06 | Double-sided friction stir welding method and double-sided friction stir welding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019019902A JP6992773B2 (en) | 2019-02-06 | 2019-02-06 | Double-sided friction stir welding method and double-sided friction stir welding device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020124739A true JP2020124739A (en) | 2020-08-20 |
JP6992773B2 JP6992773B2 (en) | 2022-01-13 |
Family
ID=72084572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019019902A Active JP6992773B2 (en) | 2019-02-06 | 2019-02-06 | Double-sided friction stir welding method and double-sided friction stir welding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6992773B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115041849A (en) * | 2022-06-16 | 2022-09-13 | 浙江东南网架股份有限公司 | A kind of anti-deformation assembly tool for welding test plate butt joint |
JP7231130B1 (en) * | 2021-11-30 | 2023-03-01 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip |
JP7279866B1 (en) * | 2021-11-30 | 2023-05-23 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip |
TWI815601B (en) * | 2021-11-30 | 2023-09-11 | 日商杰富意鋼鐵股份有限公司 | Friction stir welding method of electromagnetic steel strip, and method of manufacturing electromagnetic steel strip |
JP7347723B1 (en) * | 2022-08-23 | 2023-09-20 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip, method for producing electromagnetic steel strip, friction stir welding device, and production device for electromagnetic steel strip |
JP7347722B1 (en) * | 2022-08-23 | 2023-09-20 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip, method for producing electromagnetic steel strip, friction stir welding device, and production device for electromagnetic steel strip |
WO2024042773A1 (en) * | 2022-08-23 | 2024-02-29 | Jfeスチール株式会社 | Electromagnetic steel strip friction stir welding method, electromagnetic steel strip manufacturing method, friction stir welding device, and electromagnetic steel strip manufacturing device |
WO2024042774A1 (en) * | 2022-08-23 | 2024-02-29 | Jfeスチール株式会社 | Friction stir joining method for electromagnetic steel strip, method for manufacturing electromagnetic steel strip, friction stir joining device, and device for manufacturing electromagnetic steel strip |
JPWO2024157513A1 (en) * | 2023-01-25 | 2024-08-02 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045420A1 (en) * | 2013-09-30 | 2015-04-02 | Jfeスチール株式会社 | Steel-plate friction/stirring joining method and method for producing bonded joint |
WO2017169991A1 (en) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | Method and device for friction stir bonding of structural steel |
-
2019
- 2019-02-06 JP JP2019019902A patent/JP6992773B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045420A1 (en) * | 2013-09-30 | 2015-04-02 | Jfeスチール株式会社 | Steel-plate friction/stirring joining method and method for producing bonded joint |
WO2017169991A1 (en) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | Method and device for friction stir bonding of structural steel |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240058192A (en) | 2021-11-30 | 2024-05-03 | 제이에프이 스틸 가부시키가이샤 | Friction stir welding method of electronic steel strip and manufacturing method of electronic steel strip |
JP7231130B1 (en) * | 2021-11-30 | 2023-03-01 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip |
JP7279866B1 (en) * | 2021-11-30 | 2023-05-23 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip |
TWI815601B (en) * | 2021-11-30 | 2023-09-11 | 日商杰富意鋼鐵股份有限公司 | Friction stir welding method of electromagnetic steel strip, and method of manufacturing electromagnetic steel strip |
US12337408B2 (en) | 2021-11-30 | 2025-06-24 | Jfe Steel Corporation | Electrical steel strip friction stir welding method and method of producing electrical steel strip |
KR20240058191A (en) | 2021-11-30 | 2024-05-07 | 제이에프이 스틸 가부시키가이샤 | Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip |
CN115041849A (en) * | 2022-06-16 | 2022-09-13 | 浙江东南网架股份有限公司 | A kind of anti-deformation assembly tool for welding test plate butt joint |
JP7347723B1 (en) * | 2022-08-23 | 2023-09-20 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip, method for producing electromagnetic steel strip, friction stir welding device, and production device for electromagnetic steel strip |
WO2024042774A1 (en) * | 2022-08-23 | 2024-02-29 | Jfeスチール株式会社 | Friction stir joining method for electromagnetic steel strip, method for manufacturing electromagnetic steel strip, friction stir joining device, and device for manufacturing electromagnetic steel strip |
WO2024042773A1 (en) * | 2022-08-23 | 2024-02-29 | Jfeスチール株式会社 | Electromagnetic steel strip friction stir welding method, electromagnetic steel strip manufacturing method, friction stir welding device, and electromagnetic steel strip manufacturing device |
KR20250020625A (en) | 2022-08-23 | 2025-02-11 | 제이에프이 스틸 가부시키가이샤 | Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip |
KR20250020626A (en) | 2022-08-23 | 2025-02-11 | 제이에프이 스틸 가부시키가이샤 | Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip |
JP7347722B1 (en) * | 2022-08-23 | 2023-09-20 | Jfeスチール株式会社 | Friction stir welding method for electromagnetic steel strip, method for producing electromagnetic steel strip, friction stir welding device, and production device for electromagnetic steel strip |
JPWO2024157513A1 (en) * | 2023-01-25 | 2024-08-02 | ||
WO2024157513A1 (en) * | 2023-01-25 | 2024-08-02 | Jfeスチール株式会社 | Tailored blank material, and method and apparatus for producing tailored blank material |
JP7677460B2 (en) | 2023-01-25 | 2025-05-15 | Jfeスチール株式会社 | Tailored blank material, and manufacturing method and manufacturing equipment for tailored blank material |
Also Published As
Publication number | Publication date |
---|---|
JP6992773B2 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6992773B2 (en) | Double-sided friction stir welding method and double-sided friction stir welding device | |
CN111050973B (en) | Double-sided friction stir welding method and double-sided friction stir welding device for metal plates | |
CN105592969B (en) | The manufacture method of the friction stirring connecting method of structural steel and the junction joint of structural steel | |
JP6497451B2 (en) | Friction stir welding method and apparatus | |
KR102706548B1 (en) | Double-sided friction stir welding method, manufacturing method for cold-rolled steel strip and plated steel strip, double-sided friction stir welding device, and manufacturing equipment for cold-rolled steel strip and plated steel strip | |
JP7070642B2 (en) | Double-sided friction stir welding method and double-sided friction stir welding device for metal plates | |
JP6004147B1 (en) | Friction stir welding equipment for structural steel | |
CN109070261B (en) | Friction stir welding method and apparatus for structural steel | |
CN109070262B (en) | Friction stir welding method and apparatus for structural steel | |
CN111867777B (en) | Rotary tool for double-sided friction stir welding, double-sided friction stir welding device, and double-sided friction stir welding method | |
JP6493564B2 (en) | Friction stir welding method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200923 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6992773 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |