[go: up one dir, main page]

JP6497451B2 - Friction stir welding method and apparatus - Google Patents

Friction stir welding method and apparatus Download PDF

Info

Publication number
JP6497451B2
JP6497451B2 JP2017559718A JP2017559718A JP6497451B2 JP 6497451 B2 JP6497451 B2 JP 6497451B2 JP 2017559718 A JP2017559718 A JP 2017559718A JP 2017559718 A JP2017559718 A JP 2017559718A JP 6497451 B2 JP6497451 B2 JP 6497451B2
Authority
JP
Japan
Prior art keywords
stir welding
surface side
heating
friction stir
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017559718A
Other languages
Japanese (ja)
Other versions
JPWO2018070317A1 (en
Inventor
松下 宗生
宗生 松下
池田 倫正
倫正 池田
公一 谷口
公一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2018070317A1 publication Critical patent/JPWO2018070317A1/en
Application granted granted Critical
Publication of JP6497451B2 publication Critical patent/JP6497451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • B23K20/1235Controlling or monitoring the welding process with temperature control during joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/125Rotary tool drive mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、回転ツールを被加工材間の未接合部に挿入し回転させながら移動させ、この回転ツールとの摩擦熱による被加工材の軟化と、その軟化部を回転ツールが撹拌することにより生じる塑性流動と、を利用して、溶加材を添加することなく接合を行う摩擦撹拌接合方法および当該摩擦撹拌接合方法を実現する装置に関する。   According to the present invention, the rotary tool is inserted into an unjoined portion between the workpieces and moved while rotating, and the workpiece is softened by frictional heat with the rotary tool, and the softened portion is stirred by the rotary tool. The present invention relates to a friction stir welding method in which joining is performed without adding a filler material by using the generated plastic flow, and an apparatus for realizing the friction stir welding method.

摩擦溶接法として、特許文献1には、一対の金属材料の両方または片方を回転することにより、金属材料に摩擦熱を生じさせて軟化させながら、その軟化した部位を撹拌して塑性流動を起こすことによって、金属材料を接合する技術が開示されている。   As a friction welding method, in Patent Document 1, by rotating both or one of a pair of metal materials, the metal material generates frictional heat and softens, while the softened portion is stirred to cause plastic flow. Thus, a technique for joining metal materials is disclosed.

しかしながら、この技術は、接合対象とする金属材料を回転させるものであるから、接合する金属材料の形状や寸法に限界がある。   However, since this technique rotates the metal material to be joined, there is a limit to the shape and size of the metal material to be joined.

特許文献2には、被加工材よりも実質的に硬い材質からなるツールを被加工材の未接合部に挿入し、このツールを回転させながら移動させることにより、ツールと被加工材との間に生じる熱と塑性流動によって、被加工材を長手方向に連続的に接合する方法が開示されている。   In Patent Document 2, a tool made of a material that is substantially harder than a workpiece is inserted into an unjoined portion of the workpiece, and the tool is moved while being rotated. A method is disclosed in which workpieces are continuously joined in the longitudinal direction by heat and plastic flow.

特許文献1に記載された摩擦溶接法は、被加工材同士を回転させ、被加工材同士の摩擦熱によって溶接する方法である。特許文献2に開示された摩擦撹拌接合法は、接合部材を固定した状態で、ツールを回転させながら移動することにより接合する方法である。このように、摩擦撹拌接合法ではツールを移動させて接合するので溶接方向に対して実質的に無限に長い部材であっても、その長手方向に連続的に固相接合できる利点がある。また、ツールと接合部材との摩擦熱による金属の塑性流動を利用した固相接合であるので、接合部を溶融することなく接合できる。さらに、加熱温度が低いので接合後の変形が少なく、接合部は溶融されないので欠陥が少なく、加えて溶加材を必要としないなど多くの利点がある。   The friction welding method described in Patent Document 1 is a method in which workpieces are rotated and welded by frictional heat between workpieces. The friction stir welding method disclosed in Patent Document 2 is a method of joining by moving a tool while rotating a joining member in a fixed state. Thus, in the friction stir welding method, since the tool is moved and joined, even a member that is substantially infinitely long with respect to the welding direction has an advantage that it can be continuously solid-phase joined in the longitudinal direction. Moreover, since it is a solid-phase joining using the plastic flow of the metal by the frictional heat of a tool and a joining member, it can join, without melt | dissolving a junction part. Furthermore, since the heating temperature is low, deformation after joining is small, the joint is not melted, so there are few defects, and in addition, there are many advantages such as not requiring a filler material.

摩擦撹拌接合法は、アルミニウム合金やマグネシウム合金に代表される低融点金属材料の接合法として、航空機、船舶、鉄道車輌および自動車等の分野で利用が広がってきている。この理由としては、これらの低融点金属材料は、従来のアーク溶接法では接合部の満足な特性を得ることが難しく、摩擦撹拌接合法を適用することにより生産性が向上すると共に、品質の高い接合部を得ることができるからである。   The friction stir welding method is widely used in the fields of aircraft, ships, railway vehicles, automobiles and the like as a method of joining low melting point metal materials typified by aluminum alloys and magnesium alloys. The reason for this is that these low melting point metal materials are difficult to obtain satisfactory characteristics of the joints by conventional arc welding methods, and the productivity is improved and the quality is high by applying the friction stir welding method. It is because a junction can be obtained.

一方、建築物や船舶、重機、パイプライン、自動車といった構造物の素材として主に適用されている構造用鋼に対する摩擦撹拌接合法の適用は、従来の溶融溶接で課題となる凝固割れや水素割れを回避できるとともに鋼材の組織変化をも抑制できるので、継手性能に優れることが期待できる。また、摩擦撹拌接合法では、回転ツールにより接合界面を撹拌することで清浄面を創出して清浄面同士を接触させるので、拡散接合のような前準備工程は不要であるという利点も期待できる。このように、構造用鋼に対する摩擦撹拌接合法の適用は、多くの利点が期待される。しかし、接合時における欠陥発生の抑制や接合速度の高速度化といった接合施工性に問題があることから、低融点金属材料と比較して構造用鋼では摩擦撹拌接合法の普及が進んでいない。   On the other hand, the application of friction stir welding to structural steel, which is mainly applied as a structural material such as buildings, ships, heavy machinery, pipelines, and automobiles, is subject to solidification cracking and hydrogen cracking, which are problems in conventional fusion welding. Can be avoided, and the structural change of the steel material can be suppressed, so that it can be expected that the joint performance is excellent. Further, in the friction stir welding method, a clean interface is created by stirring the bonding interface with a rotating tool and the clean surfaces are brought into contact with each other. Therefore, an advantage that a preparatory step such as diffusion bonding is unnecessary can be expected. Thus, the application of the friction stir welding method to structural steel is expected to have many advantages. However, since there is a problem in joining workability such as suppression of defect generation during joining and an increase in joining speed, the friction stir welding method has not been widely used in structural steel compared to low melting point metal materials.

構造用鋼の摩擦撹拌接合においては、特許文献3および特許文献4に記載されているように、回転ツールとして多結晶硼素窒化物(PCBN)や窒化珪素(Si)などの高耐磨耗性材料を用いている。これらのセラミックスは脆いので、回転ツールの破損を防止するために、接合する鋼板の板厚やその施工条件が著しく制限される。In friction stir welding of structural steel, as described in Patent Document 3 and Patent Document 4, high wear resistance such as polycrystalline boron nitride (PCBN) and silicon nitride (Si 3 N 4 ) is used as a rotating tool. Wearable material is used. Since these ceramics are brittle, the thickness of the steel plates to be joined and the construction conditions thereof are significantly limited in order to prevent damage to the rotary tool.

特許文献5および特許文献6には、接合施工性の向上を目的として、加熱手段を付加した接合方法が開示されている。   Patent Document 5 and Patent Document 6 disclose a joining method in which a heating means is added for the purpose of improving joining workability.

例えば、特許文献5には、誘導加熱装置を用いた加熱手段を有し、接合前後に被加工材の加熱を行うことで、接合速度の高速度化や接合部の割れの解消を図った摩擦撹拌接合法が開示されている。   For example, Patent Document 5 includes a heating unit using an induction heating device, and by heating the workpieces before and after joining, friction that increases the joining speed and eliminates cracks in the joined part. A stir welding method is disclosed.

特許文献6には、レーザ装置を用いた加熱手段を有し、接合直前に被加工材を部分的に加熱することで、予熱による加熱領域周辺のミクロ組織変化を抑制しつつ接合速度の高速度化を図った摩擦撹拌接合装置が開示されている。   Patent Document 6 has a heating means using a laser device, and the workpiece is partially heated immediately before joining, thereby suppressing the microstructure change around the heating region due to preheating and increasing the joining speed. A friction stir welding apparatus which is designed to be simplified is disclosed.

特許文献7には、レーザ装置を用いた加熱手段を有し、接合直前に被加工材を部分的に加熱するに際し、被加工材の加熱領域の表面温度や深さ等について厳密に制御することで、被加工材の加熱不足による塑性流動不良を解消して、十分な強度と共に、接合施工性の向上を図った摩擦撹拌接合装置が開示されている。   Patent Document 7 has heating means using a laser device, and when the workpieces are partially heated immediately before joining, the surface temperature and depth of the heating region of the workpieces are strictly controlled. Thus, a friction stir welding apparatus is disclosed in which the plastic flow failure due to insufficient heating of the workpieces is eliminated, and the joining workability is improved with sufficient strength.

特許文献8および特許文献9には、上下に回転ツールを1本ずつ備え、2枚の金属板の重ね合わせ部の表面側と裏面側に、それぞれ上下に相対向するように配置した回転ツールを用いて、上下より回転ツールを回転させながら押圧し、接合方向へ移動し接合することで接合不良を抑制し、接合強度を高め、接合強度の信頼性を向上し、更にツール寿命を向上し、かつ回転ツールの経済性を向上させる両面摩擦撹拌接合方法および装置が開示されている。   In Patent Document 8 and Patent Document 9, one rotating tool is provided at the top and bottom, and a rotating tool is disposed on the front side and the back side of the overlapping portion of the two metal plates so as to face each other vertically. Use, press while rotating the rotating tool from the top and bottom, move in the joining direction and join to suppress joint failure, increase the joint strength, improve the reliability of the joint strength, further improve the tool life, A double-sided friction stir welding method and apparatus that improve the economics of the rotary tool is disclosed.

摩擦撹拌接合においては、摩擦熱により被加工材を軟化させつつ回転ツールで撹拌することにより塑性流動を生じさせるが、被加工材が構造用鋼である場合、回転ツールで被加工材を撹拌する際には回転ツールのピンには大きな負荷が掛かる。この事象は回転ツールの耐久性、寿命に大きな影響を及ぼし、接合施工性を制限する主要な要素になっている。特許文献5〜7に記載の摩擦熱以外の加熱手段を付加する方法は、上記課題を克服するために有効であると考えられるが、被加工材の表面側(例えば、一方面側)、裏面側(例えば、他方面側)において、加熱手段を備える側と回転ツールを備える側が同一であるとすると、発熱源はいずれか一方の面側にのみ存在する。加熱手段や回転ツールを備えていない面側では、発熱源を備えた面側と比較してより低温となり、表面側から裏面側では被加工材の厚さ方向に対して温度差が生じる。被加工材である金属板は、より高温となるほど強度が下がるので、摩擦撹拌接合における回転ツールの負荷は高温になるほど下がるものと考えられる。被加工材の厚さ方向に対して形成される温度差を解消することで、回転ツールのピン先端に掛かる負荷を低減できると考えられるが、特許文献5〜7では厚さ方向の温度差の解消については全く考慮されていない。   In friction stir welding, plastic flow is generated by stirring with a rotating tool while softening the workpiece with frictional heat. When the workpiece is structural steel, the workpiece is stirred with the rotating tool. In some cases, a large load is applied to the pins of the rotating tool. This phenomenon has a major impact on the durability and life of rotating tools, and is a major factor limiting the workability of joints. Although it is thought that the method of adding heating means other than the frictional heat described in Patent Documents 5 to 7 is effective for overcoming the above problem, the surface side (for example, one surface side) of the workpiece, the back surface On the side (for example, the other side), if the side provided with the heating means and the side provided with the rotary tool are the same, the heat source is present only on one side. On the surface side not provided with the heating means and the rotating tool, the temperature becomes lower than that on the surface side provided with the heat generation source, and a temperature difference occurs in the thickness direction of the workpiece from the front surface side to the back surface side. Since the strength of the metal plate, which is a workpiece, decreases as the temperature increases, the load on the rotary tool in the friction stir welding is considered to decrease as the temperature increases. It is considered that the load applied to the tip of the rotating tool pin can be reduced by eliminating the temperature difference formed in the thickness direction of the workpiece, but in Patent Documents 5 to 7, the temperature difference in the thickness direction There is no consideration for resolution.

摩擦撹拌接合において、被加工材の厚さ方向に対して形成される温度差を解消する方法としては、特許文献8および特許文献9に開示された両面摩擦撹拌接合方法が有効と考えられる。しかしながら、これらの接合方法では、回転ツールの前方に設けた加熱手段により被加工材となる鋼板を加熱する予熱処理プロセスを用いたツール負荷低減による接合施工性およびツール寿命の向上については、全く考慮されていない。   In friction stir welding, the double-side friction stir welding method disclosed in Patent Document 8 and Patent Document 9 is considered effective as a method of eliminating the temperature difference formed in the thickness direction of the workpiece. However, in these joining methods, the improvement of joining workability and tool life by reducing the tool load using the pre-heat treatment process that heats the steel sheet as the workpiece by the heating means provided in front of the rotary tool is completely considered. It has not been.

特開昭62−183979号公報JP 62-183979 A 特表平7−505090号公報JP 7-505090 Gazette 特表2003−532542号公報Special table 2003-532542 gazette 特表2003−532543号公報Japanese translation of PCT publication No. 2003-532543 特開2003−94175号公報JP 2003-94175 A 特開2005−288474号公報JP 2005-288474 A 国際公開第2015/045299号International Publication No. 2015/045299 特許3261433号公報Japanese Patent No. 3261433 特許4838385号公報Japanese Patent No. 4838385

本発明は、上記現状を鑑みてなされたもので、摩擦撹拌接合に際し、被加工材の加熱不足による塑性流動不良を解消して、十分な強度とともに、接合施工性の向上を図ることを目的とする。特に、被加工材の部分的な加熱の位置と、回転ツールの素材もしくは回転ツールの表面に被覆した素材と被接合材の間の動摩擦係数による摩擦発熱との関係が接合施工性に及ぼす影響を考慮し、予熱処理プロセス条件を厳密に精査した摩擦撹拌接合方法と当該摩擦撹拌接合方法を実現する装置を提供することを課題とする。   The present invention has been made in view of the above-mentioned present situation, and at the time of friction stir welding, an object of the present invention is to solve the plastic flow failure due to insufficient heating of work materials and to improve the joining workability with sufficient strength. To do. In particular, the relationship between the position of partial heating of the workpiece and the frictional heat generation due to the dynamic friction coefficient between the rotating tool material or the material coated on the surface of the rotating tool and the workpiece affects the workability. In view of this, it is an object of the present invention to provide a friction stir welding method in which the pre-heat treatment process conditions are closely scrutinized and an apparatus for realizing the friction stir welding method.

発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下記知見を得た。
a)通常の摩擦撹拌接合では、接合のために必要な熱源が、回転ツールと被加工材との間で発生する摩擦熱のみである。そのため、構造用鋼を摩擦撹拌接合法により接合する場合には、被加工材である構造用鋼を軟化させるために必要な熱量を十分に確保できない。その結果、接合部において十分な塑性流動が得られず、接合速度の低下や接合欠陥の発生などの接合施工性の劣化が懸念される。
The inventors obtained the following knowledge as a result of intensive studies to solve the above problems.
a) In ordinary friction stir welding, the only heat source required for welding is frictional heat generated between the rotary tool and the workpiece. Therefore, when the structural steel is joined by the friction stir welding method, the amount of heat necessary to soften the structural steel that is the workpiece cannot be secured. As a result, a sufficient plastic flow cannot be obtained at the joint, and there is a concern about the deterioration of joining workability such as a reduction in joining speed and the occurrence of joining defects.

上記技術を工業化する上で非常に重要となる接合施工性の劣化を回避するには、摩擦撹拌接合前の予熱処理プロセスが有効であると考えられる。
b)しかしながら、被加工材において、予熱処理プロセスを行う加熱手段と回転ツールとを同一面側(例えば表面側)に配置すると、発熱源が被加工材の同一面側のみに存在する。この場合、加熱手段や回転ツールを備えない側、すなわち、裏面側では表面側より低温となり、表面側から裏面側では、被加工材の厚さ方向に対して温度差が生じる。被加工材である金属板は、より高温になるほど強度が下がるので、摩擦撹拌接合における回転ツールの負荷は、高温になるほど下がると考えられる。よって、被加工材の厚さ方向に対して形成される温度差を解消することで、回転ツールのピン先端に掛かる負荷をより効果的に低減できると考えられる。
そこで、発明者らは、摩擦撹拌接合前の予熱処理プロセス条件について種々検討した。
In order to avoid the deterioration of joining workability, which is very important in industrializing the above technology, it is considered that a pre-heat treatment process before friction stir welding is effective.
b) However, in the workpiece, when the heating means for performing the pre-heat treatment process and the rotary tool are arranged on the same surface side (for example, the surface side), the heat source is present only on the same surface side of the workpiece. In this case, on the side not provided with the heating means and the rotating tool, that is, on the back side, the temperature is lower than that on the front side, and on the back side from the front side, a temperature difference occurs in the thickness direction of the workpiece. Since the strength of the metal plate, which is a workpiece, decreases as the temperature increases, the load on the rotary tool in the friction stir welding is considered to decrease as the temperature increases. Therefore, it is considered that the load applied to the tip of the rotating tool pin can be more effectively reduced by eliminating the temperature difference formed in the thickness direction of the workpiece.
Therefore, the inventors examined various preheat treatment process conditions before friction stir welding.

その結果、
c)被加工材の表面側から裏面側における厚さ方向に対する温度差を解消するには、摩擦撹拌接合前の一方面側から予熱処理を行うことに加えて、回転ツールを被加工材の一方面側だけでなく他方面側にも対向して配置し、被加工材に対し一方面側、他方面側の両方から被加工材を摩擦熱により加熱する摩擦撹拌接合を実現する機構とすることが有効であることを見出した。
d)しかしながら、摩擦撹拌接合前に予熱処理を行う際、予熱熱量が過剰になると、加熱領域周辺のミクロ組織が変化する問題が生じる。特に、マルテンサイト組織により強化された高張力鋼板の場合は、加熱領域周辺が、フェライト−オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化が生じ、接合継手強度を著しく低下させる。
as a result,
c) In order to eliminate the temperature difference with respect to the thickness direction from the front surface side to the back surface side of the work material, in addition to performing the pre-heat treatment from one surface side before the friction stir welding, the rotary tool is attached to A mechanism that realizes friction stir welding that heats the workpiece by frictional heat from both the one side and the other side of the workpiece. Was found to be effective.
d) However, when preheating is performed before friction stir welding, if the amount of preheating heat is excessive, there is a problem that the microstructure around the heating region changes. In particular, in the case of a high-tensile steel sheet strengthened with a martensite structure, even when the periphery of the heating region is heated below the ferrite-austenite transformation temperature, softening occurs due to tempering of the martensite, and the joint joint strength Is significantly reduced.

そこで、発明者らは、摩擦撹拌接合前の予熱処理プロセス条件について種々検討した。   Therefore, the inventors examined various preheat treatment process conditions before friction stir welding.

その結果、
e)レーザなどのエネルギー密度の高い熱源を用いることで、予熱処理プロセスでの加熱領域の表面温度、面積、位置を厳密に制御し、また必要に応じて加熱領域の厚さ方向における温度についても適正に制御する。それにより、接合継手強度等の接合継手特性の劣化を招くことなく、接合施工性を向上できるとの知見を得た。
f)特に、上記の被加工材の部分的な加熱の位置に関しては、回転ツールの素材もしくは回転ツールの表面に被覆した素材と被接合材の間の動摩擦係数に支配される摩擦発熱との関係により、接合施工性を向上する効果が生じる領域が変化するとの知見を得た。
g)通常の摩擦撹拌接合では、接合完了後、接合部が自然放冷状態となるので、鋼材製造時の圧延プロセスで行われているような熱履歴管理によるミクロ組織制御を適用できないという問題があった。しかし、接合完了直後に、接合部に対し、加熱処理や冷却処理を組み合わせたプロセスを実施することで、接合継手特性をさらに向上できるとの知見を得た。
as a result,
e) By using a heat source with a high energy density such as a laser, the surface temperature, area, and position of the heating region in the pre-heat treatment process are strictly controlled, and the temperature in the thickness direction of the heating region is also adjusted as necessary. Control appropriately. As a result, it has been found that the joining workability can be improved without causing deterioration of the jointed joint properties such as the jointed joint strength.
f) In particular, with respect to the position of partial heating of the workpiece, the relationship between the heat generated by the rotary tool or the material coated on the surface of the rotary tool and the frictional heating governed by the dynamic friction coefficient between the workpieces. Thus, the knowledge that the region where the effect of improving the bonding workability is generated is obtained.
g) In normal friction stir welding, since the joined portion is naturally cooled after the joining is completed, there is a problem that it is not possible to apply the microstructure control by the thermal history management performed in the rolling process at the time of manufacturing the steel material. there were. However, immediately after the completion of the joining, it was found that the joint joint characteristics can be further improved by performing a process that combines heat treatment and cooling treatment on the joint.

本発明は、上記知見に立脚するものであり、特に、摩擦撹拌接合方法を構造用鋼の接合に適用した場合に懸念される、被加工材の板厚方向に生じる温度差による加熱不足から生じる塑性流動不良を解消して、十分な強度と共に、接合施工性の向上を図るものである。   The present invention is based on the above knowledge, and particularly arises from insufficient heating due to a temperature difference occurring in the plate thickness direction of the workpiece, which is a concern when the friction stir welding method is applied to the joining of structural steel. It is intended to eliminate the plastic flow failure and improve the joining workability with sufficient strength.

すなわち、本発明の要旨構成は次のとおりである。
[1]一対の回転ツールを被加工材である鋼板の一方面側と他方面側に対向してそれぞれ配置し、鋼板間の未接合部において前記一対の回転ツールを回転させながら接合方向に移動させ、前記一対の回転ツールと前記鋼板との摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を前記一対の回転ツールで撹拌することにより塑性流動を生じさせて鋼板同士を接合する摩擦撹拌接合方法であって、前記一対の回転ツールの素材もしくは前記一対の回転ツールの表面に被覆された素材と前記鋼板との動摩擦係数は0.6以下であり、少なくとも一方面側に配置された回転ツールは、肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、前記肩部および前記ピン部は、前記鋼板よりも硬い材質により形成され、前記鋼板を固定しつつ、前記一対の回転ツールを前記鋼板の一方面側と他方面側とに押圧させ、前記一対の回転ツールを回転させながら接合方向に移動させるとともに、前記一方面側に配置された回転ツールの接合方向前方に設けられた加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記一方面側に配置された回転ツールとの最小距離は、前記一方面側の回転ツールの肩部の直径以下であり、前記加熱領域の面積は、前記一方面側に配置された回転ツールのピン部の最大径部の面積以下であり、前記加熱領域の面積の65%以上は、前記鋼板の表面における前記一方面側に配置された回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記一方面側に配置された回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する摩擦撹拌接合方法。
≧0.8×TA1・・・(1)
A1は、下記式(2)で示される温度である。
A1(℃)=723−10.7[%Mn]−16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
[2]前記一対の回転ツールの両方は、前記肩部と前記ピン部とを含み、前記一対の回転ツールのピン長は同じ長さである[1]に記載の摩擦撹拌接合方法。
[3]前記一対の回転ツールの両方は、肩部と前記ピン部とを含み、前記一方面側に配置された回転ツールのピン長は、前記他方面側に配置された回転ツールのピン長より短い[1]に記載の摩擦撹拌接合方法。
[4]前記一対の回転ツールの少なくとも一方の回転ツールの軸芯は、該回転ツールの接合方向に対してピン部が先行する方向に傾けられている[1]から[3]のいずれか1つに記載の摩擦撹拌接合方法。
[5]前記一方面側に配置された回転ツールの回転方向は、前記他方面側に配置された回転ツールの回転方向の逆方向である[1]から[4]のいずれか1つに記載の摩擦撹拌接合方法。
[6]前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、該加熱領域の深さDは、前記鋼板の厚さの100%である[1]から[5]のいずれか1つに記載の摩擦撹拌接合方法。
≧0.8×TA1・・・(3)
[7]前記加熱手段は、レーザ加熱装置である[1]から[6]のいずれか1つに記載の摩擦撹拌接合方法。
[8]前記一方面側に配置された回転ツールの接合方向後方には後方加熱手段が設けられ、該後方加熱手段は、前記鋼板の接合部を加熱する[1]から[7]のいずれか1つに記載の摩擦撹拌接合方法。
[9]前記後方加熱手段の接合方向後方には冷却手段が設けられ、該冷却手段は、前記後方加熱手段により加熱された前記接合部を冷却する[8]に記載の摩擦撹拌接合方法。
[10]前記回転ツールの接合方向後方には冷却手段が設けられ、該冷却手段は、前記鋼板の接合部を冷却する[1]から[7]のいずれか1つに記載の摩擦撹拌接合方法。
[11]前記冷却手段の接合方向後方には後方加熱手段が設けられ、該後方加熱手段は、前記冷却手段により冷却された前記接合部を加熱する[10]に記載の摩擦撹拌接合方法。
[12]被加工材である鋼板間の未接合部を接合する摩擦撹拌接合装置であって、前記鋼板を固定する把持装置と、前記鋼板の一方面側と他方面側とに対向して配置され、鋼板間の未接合部において回転しながら接合方向へ移動可能な一対の回転ツールと、前記一方面側に配置された回転ツールの接合方向前方に設けられ、前記鋼板を加熱する加熱手段と、下記状態1を実現するように前記回転ツールおよび前記加熱手段を制御する制御手段と、を有し、少なくとも一方面側に配置された回転ツールは、肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、前記肩部および前記ピン部は、前記鋼板よりも硬い材質により形成され、前記一対の回転ツールの素材、もしくは前記一対の回転ツールの表面に被覆された素材と前記鋼板との動摩擦係数は0.6以下である摩擦撹拌接合装置。
(状態1)
前記加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記一方面側に配置された回転ツールとの最小距離は、前記一方面側に配置された回転ツールの肩部の直径以下であり、前記鋼板の表面における前記加熱領域の面積は、前記一方面側に配置された回転ツールのピン部の最大径部の面積以下であり、前記加熱領域の面積の65%以上は、前記鋼板の表面における前記一方面側に配置された回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記一方面側に配置された回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する。
≧0.8×TA1・・・(1)
A1は、下記式(2)で示される温度である。
A1(℃)=723−10.7[%Mn]−16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
[13]前記一対の回転ツールの両方は、前記肩部と前記ピン部と、を含み、前記一対の回転ツールのピン長は同じ長さである[12]に記載の摩擦撹拌接合装置。
[14]前記一対の回転ツールの両方は、前記肩部と前記ピン部とを含み、前記一方面側に配置された回転ツールのピン長は、前記他方面側に配置された回転ツールのピン長より短い[12]に記載の摩擦撹拌接合装置。
[15]前記一対の回転ツールにおける少なくとも一方の回転ツールの軸芯は、接合方向に対してピン部が先行する方向に傾けられる[12]から[14]のいずれか1つに記載の摩擦撹拌接合装置。
[16]前記一方面側に配置された回転ツールの回転方向は、前記他方面側に配置された回転ツールの回転方向の逆方向である[12]から[15]のいずれか1つに記載の摩擦撹拌接合装置。
[17]前記制御手段は、以下の状態2を実現するように前記回転ツール及び前記加熱手段を制御する[12]から[16]のいずれか1つに記載の摩擦撹拌接合装置。
(状態2)
前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、該加熱領域の深さDは、前記鋼板の厚さtの100%である。
≧0.8×TA1・・・(3)
[18]前記加熱手段は、レーザ加熱装置である[12]から[17]のいずれか1つに記載の摩擦撹拌接合装置。
[19]前記鋼板の接合部を加熱する後方加熱手段をさらに有し、該後方加熱手段は、前記回転ツールの接合方向後方に設けられる[12]から[18]のいずれか1つに記載の摩擦撹拌接合装置。
[20]前記接合部を冷却する冷却手段をさらに有し、該冷却手段は、前記後方加熱手段の接合方向後方に設けられる[19]に記載の摩擦撹拌接合装置。
[21]前記鋼板の接合部を冷却する冷却手段をさらに有し、該冷却手段は、前記回転ツールの接合方向後方に設けられる[12]から[18]のいずれか1つに記載の摩擦撹拌接合装置。
[22]前記接合部を加熱する後方加熱手段をさらに有し、該後方加熱手段は、前記冷却手段の接合方向後方に設けられる[21]に記載の摩擦撹拌接合装置。
That is, the gist configuration of the present invention is as follows.
[1] A pair of rotary tools are arranged opposite to one side and the other side of a steel plate as a workpiece, respectively, and moved in the joining direction while rotating the pair of rotary tools at an unjoined portion between the steel plates. Friction stir to join steel plates by causing plastic flow by agitating the softened part with the pair of rotating tools while softening the steel plate by frictional heat between the pair of rotating tools and the steel plate In the joining method, the dynamic friction coefficient between the steel plate and the material of the pair of rotating tools or the material coated on the surface of the pair of rotating tools is 0.6 or less, and the rotation disposed on at least one surface side The tool includes a shoulder portion and a pin portion arranged on the shoulder portion and sharing the rotation axis with the shoulder portion, and the shoulder portion and the pin portion are formed of a material harder than the steel plate, Steel plate While rotating, the pair of rotating tools are pressed against the one surface side and the other surface side of the steel plate and moved in the joining direction while rotating the pair of rotating tools, and the rotation disposed on the one surface side When the area where the surface temperature T S (° C.) of the steel sheet heated by the heating means provided in the front of the tool joining direction satisfies the following formula (1) is defined as the heating area, the heating area and the one surface The minimum distance from the rotary tool arranged on the side is equal to or less than the diameter of the shoulder of the rotary tool on the one surface side, and the area of the heating area is that of the pin portion of the rotary tool arranged on the one surface side. The area of the maximum diameter portion is less than or equal to 65% or more of the area of the heating area is a straight line parallel to the welding direction through the rotation axis of the rotary tool arranged on the one surface side of the surface of the steel plate Line and the junction center line And a straight line separated by the same distance as the maximum radius of the pin portion of the rotary tool arranged on the one surface side to the retreating side.
T S ≧ 0.8 × T A1 (1)
T A1 is a temperature represented by the following formula (2).
T A1 (° C.) = 723-10.7 [% Mn] −16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] · (2)
Said [% M] is content (mass%) of M element in the steel plate which is a workpiece, and is set to 0 when not containing.
[2] The friction stir welding method according to [1], wherein both of the pair of rotating tools include the shoulder portion and the pin portion, and the pair of rotating tools have the same pin length.
[3] Both of the pair of rotary tools include a shoulder portion and the pin portion, and the pin length of the rotary tool arranged on the one surface side is the pin length of the rotary tool arranged on the other surface side. The friction stir welding method according to [1], which is shorter.
[4] Any one of [1] to [3], wherein an axis of at least one rotary tool of the pair of rotary tools is inclined in a direction in which a pin portion precedes a joining direction of the rotary tools. The friction stir welding method described in 1.
[5] The rotation direction of the rotary tool arranged on the one surface side is the opposite direction to the rotation direction of the rotary tool arranged on the other surface side, according to any one of [1] to [4]. Friction stir welding method.
[6] When the depth from the surface of the steel sheet in the region where the temperature T D (° C.) in the thickness direction of the heating region satisfies the following formula (3) is the depth D of the heating region, the heating region The depth D of the friction stir welding method according to any one of [1] to [5], which is 100% of the thickness of the steel plate.
T D ≧ 0.8 × T A1 (3)
[7] The friction stir welding method according to any one of [1] to [6], wherein the heating unit is a laser heating device.
[8] A rear heating means is provided behind the rotating tool disposed on the one surface side in the joining direction, and the rear heating means heats the joining portion of the steel sheet. The friction stir welding method according to one.
[9] The friction stir welding method according to [8], wherein a cooling means is provided behind the rear heating means in the joining direction, and the cooling means cools the joint heated by the rear heating means.
[10] A friction stir welding method according to any one of [1] to [7], wherein a cooling means is provided behind the rotating tool in the joining direction, and the cooling means cools the joining portion of the steel sheet. .
[11] A friction stir welding method according to [10], wherein a rear heating unit is provided behind the cooling unit in the bonding direction, and the rear heating unit heats the bonding portion cooled by the cooling unit.
[12] A friction stir welding apparatus that joins unjoined portions between steel plates that are workpieces, and is disposed so as to face a gripping device that fixes the steel plates, and one side and the other side of the steel plates A pair of rotary tools that can move in the joining direction while rotating at the unjoined portion between the steel plates, and a heating means that is provided in front of the joining direction of the rotary tool disposed on the one surface side and that heats the steel plates. The rotating tool and the control means for controlling the heating means so as to realize the following state 1, the rotating tool arranged on at least one side is disposed on the shoulder, The shoulder portion and the pin portion sharing the rotation axis, and the shoulder portion and the pin portion are formed of a material harder than the steel plate, and the material of the pair of rotating tools or the pair of rotating tools Surface coated material and front Friction stir welding apparatus dynamic friction coefficient between the steel sheet is 0.6 or less.
(State 1)
When the region where the temperature T S (° C.) of the surface of the steel sheet heated by the heating unit satisfies the following formula (1) is defined as the heating region, the heating region and the rotating tool disposed on the one surface side; The minimum distance is equal to or less than the diameter of the shoulder portion of the rotary tool arranged on the one surface side, and the area of the heating region on the surface of the steel plate is the pin portion of the rotary tool arranged on the one surface side. The area of the maximum diameter portion is less than or equal to 65% or more of the area of the heating area is a straight line parallel to the welding direction through the rotation axis of the rotary tool arranged on the one surface side of the surface of the steel plate It is located between the line and a straight line that is parallel to the joining center line and that is separated from the retreating side by the same distance as the maximum radius of the pin portion of the rotary tool disposed on the one surface side.
T S ≧ 0.8 × T A1 (1)
T A1 is a temperature represented by the following formula (2).
T A1 (° C.) = 723-10.7 [% Mn] −16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] · (2)
Said [% M] is content (mass%) of M element in the steel plate which is a workpiece, and is set to 0 when not containing.
[13] The friction stir welding apparatus according to [12], wherein both of the pair of rotating tools include the shoulder portion and the pin portion, and the pair of rotating tools have the same pin length.
[14] Both of the pair of rotary tools include the shoulder portion and the pin portion, and the pin length of the rotary tool arranged on the one surface side is the pin of the rotary tool arranged on the other surface side. The friction stir welding apparatus according to [12], which is shorter than the length.
[15] The friction stirrer according to any one of [12] to [14], wherein an axis of at least one rotary tool in the pair of rotary tools is inclined in a direction in which the pin portion precedes the joining direction. Joining device.
[16] The rotation direction of the rotary tool arranged on the one surface side is the reverse direction of the rotation direction of the rotary tool arranged on the other surface side, according to any one of [12] to [15]. Friction stir welding equipment.
[17] The friction stir welding apparatus according to any one of [12] to [16], wherein the control unit controls the rotating tool and the heating unit so as to realize the following state 2.
(State 2)
When the depth from the surface of the steel sheet in the region where the temperature T D (° C.) in the thickness direction of the heating region satisfies the following formula (3) is defined as the depth D of the heating region, the depth of the heating region D is 100% of the thickness t of the steel sheet.
T D ≧ 0.8 × T A1 (3)
[18] The friction stir welding apparatus according to any one of [12] to [17], wherein the heating means is a laser heating apparatus.
[19] The apparatus according to any one of [12] to [18], further including a rear heating unit that heats the joint portion of the steel plates, the rear heating unit being provided rearward in the joining direction of the rotary tool. Friction stir welding device.
[20] The friction stir welding apparatus according to [19], further including a cooling unit that cools the bonding portion, and the cooling unit is provided behind the rear heating unit in the bonding direction.
[21] The friction stirrer according to any one of [12] to [18], further including a cooling unit that cools a bonded portion of the steel plates, the cooling unit provided at a rear side in the bonding direction of the rotary tool. Joining device.
[22] The friction stir welding apparatus according to [21], further including a rear heating unit that heats the joint, and the rear heating unit is provided behind the cooling unit in the joining direction.

本発明によれば、被加工材の板厚方向に生じる温度差による加熱不足から生じる塑性流動不良を解消して、摩擦撹拌接合の接合施工性の向上を図ることができる。さらには、加熱領域周辺のミクロ組織の変化も抑制して、接合部において高い継手強度を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the plastic flow defect resulting from the heating shortage by the temperature difference produced in the plate | board thickness direction of a workpiece can be eliminated, and the joining workability of friction stir welding can be improved. Furthermore, a change in the microstructure around the heating region is also suppressed, and a high joint strength can be obtained at the joint.

図1は、本実施形態に係る摩擦撹拌接合方法を説明する概略図である。FIG. 1 is a schematic diagram illustrating a friction stir welding method according to the present embodiment. 図2は、把持装置を説明する概略図である。FIG. 2 is a schematic diagram illustrating the gripping device. 図3は、表面側、裏面側の両方から被加工材を回転ツールにより摩擦撹拌する領域、予熱プロセスにおける加熱領域、接合後における冷却領域および再加熱領域の一例を示す図(上面図およびA−A断面図)である。FIG. 3 is a diagram showing an example of a region in which a workpiece is frictionally stirred by a rotary tool from both the front side and the back side, a heating region in a preheating process, a cooling region after joining, and a reheating region (top view and A- (A sectional view). 図4は、本実施形態に係る摩擦撹拌接合方法で接合する鋼板の温度と引張強さの関係を示す図である。FIG. 4 is a diagram showing the relationship between the temperature and tensile strength of the steel plates to be joined by the friction stir welding method according to this embodiment. 図5は、回転ツールの断面寸法を示す図である。FIG. 5 is a diagram illustrating a cross-sectional dimension of the rotary tool.

以下、本発明を本発明の実施形態を通じて具体的に説明する。図1は、本実施形態に係る摩擦撹拌接合方法を説明する概略図であり、図2は、把持装置を説明する概略図である。図1では、把持装置21の記載を省略しており、図2では、鋼板3と把持装置21のみ記載している。本実施形態に係る摩擦撹拌接合方法では、図1に示すように、接合方向前方に設けた加熱手段により鋼板を加熱する予熱処理プロセスを有し、一方面側と他方面側に対向してそれぞれ配置し、該被加工材である鋼板に対し一方面側、他方面側の両方から回転ツールを、鋼板間の未接合部に挿入して回転させながら接合方向に移動させ、相対向する回転ツールと鋼板との摩擦熱により該鋼板を軟化させつつ、その軟化した部位を相対向する回転ツールで撹拌することにより塑性流動を生じさせて、鋼板同士を接合する。   Hereinafter, the present invention will be specifically described through embodiments of the present invention. FIG. 1 is a schematic diagram illustrating a friction stir welding method according to the present embodiment, and FIG. 2 is a schematic diagram illustrating a gripping device. In FIG. 1, the description of the gripping device 21 is omitted, and in FIG. 2, only the steel plate 3 and the gripping device 21 are illustrated. In the friction stir welding method according to the present embodiment, as shown in FIG. 1, there is a pre-heat treatment process in which the steel plate is heated by a heating means provided in the front in the joining direction, and facing one side and the other side, respectively. Rotating tools that are arranged and moved in the joining direction while rotating by inserting the rotating tool into the unjoined part between the steel plates from both the one side and the other side with respect to the steel plate that is the work material. While the steel plates are softened by frictional heat between the steel plates and the steel plates, the softened portions are agitated with opposing rotating tools to cause plastic flow, thereby joining the steel plates together.

図1中、符号1は表面側回転ツールであり、2は表面側回転ツールの回転軸であり、3は鋼板であり、4は接合部であり、5は加熱手段であり、6は冷却手段であり、7は後方加熱手段であり、8は表面側回転ツールの肩部であり、9は表面側回転ツールのピン部であり、15は裏面側回転ツールであり、16は裏面側回転ツールの肩部であり、17は裏面側回転ツールのピン部であり、19は裏面側回転ツールの回転軸であり、20は制御手段である。αは表面側回転ツール傾斜角度を示し、βは裏面側回転ツール傾斜角度を示す。「AS」は、アドバンシングサイドを示し、「RS」は、リトリーティングサイドを示す。本実施形態では、一方面側を表面側と記載し、他方面側を裏面側と記載する。表面側回転ツール1と裏面側回転ツール15とをまとめて一対の回転ツールと記載する場合がある。   In FIG. 1, reference numeral 1 is a surface-side rotating tool, 2 is a rotating shaft of the surface-side rotating tool, 3 is a steel plate, 4 is a joint, 5 is a heating means, and 6 is a cooling means. 7 is a rear heating means, 8 is a shoulder portion of the front surface side rotating tool, 9 is a pin portion of the front surface side rotating tool, 15 is a back surface side rotating tool, and 16 is a back surface side rotating tool. , 17 is a pin portion of the back surface side rotation tool, 19 is a rotation axis of the back surface side rotation tool, and 20 is a control means. α indicates the front surface side rotation tool inclination angle, and β indicates the rear surface side rotation tool inclination angle. “AS” indicates an advancing side, and “RS” indicates a retreating side. In the present embodiment, one side is described as the front side, and the other side is described as the back side. The front surface side rotation tool 1 and the back surface side rotation tool 15 may be collectively described as a pair of rotation tools.

アドバンシングサイドとは、ツール回転方向と接合方向が一致する側であり、リトリーティングサイドとは、ツール回転方向と接合方向が反対となる側であるとそれぞれ定義する。   The advancing side is defined as the side where the tool rotation direction and the joining direction coincide with each other, and the retreating side is defined as the side where the tool rotation direction and the joining direction are opposite to each other.

本実施形態では、鋼板3を突き合わせただけで未だ接合されていない状態にある突き合わせ部分を「未接合部」と記載し、塑性流動により接合されて一体化された部分を「接合部」と記載する。   In the present embodiment, the butted portion that is not yet joined just by butting the steel plates 3 is described as “unjoined portion”, and the portion joined and integrated by plastic flow is described as “joined portion”. To do.

本実施形態では、図2に示すように、把持装置21を用いて鋼板3を表裏面から固定している。把持装置21は、鋼板3の裏面を固定する下治具22と、鋼板3の表面を固定する上治具23と、上治具23を下方に押し付けるクランプ24とを有する。   In the present embodiment, as shown in FIG. 2, the steel plate 3 is fixed from the front and back surfaces using a gripping device 21. The gripping device 21 includes a lower jig 22 that fixes the back surface of the steel plate 3, an upper jig 23 that fixes the surface of the steel plate 3, and a clamp 24 that presses the upper jig 23 downward.

把持装置21によって固定された鋼板3の表面側と裏面側から、対向する表面側回転ツールのピン部9と、裏面側回転ツールのピン部17と、を未接合部に挿入し、対向する表面側回転ツールの肩部8と、裏面側回転ツールの肩部16と、を鋼板3の表面側と裏面側に押圧し接合する。肩部による摩擦とピン部による撹拌とが適切に行われ、健全な接合が可能となるように、対向する表面側回転ツールのピン部9の先端と、裏面側回転ツールのピン部17の先端との間に隙間δを設けてよい。隙間δは0.1mm以上であることが好ましい。これにより、撹拌時の材料の変形抵抗による表面側回転ツール1および裏面側回転ツール15の負荷を低減できる。一方、隙間δが大きすぎると、ピン部により適切に撹拌されない部位が欠陥となる。このため、隙間δは、0.3mm以下であることが好ましい。   From the front surface side and the back surface side of the steel plate 3 fixed by the gripping device 21, the pin portion 9 of the front surface side rotating tool and the pin portion 17 of the back surface side rotating tool are inserted into the unjoined portion, and the front surface The shoulder portion 8 of the side rotating tool and the shoulder portion 16 of the back surface side rotating tool are pressed and joined to the front surface side and the back surface side of the steel plate 3. The front end of the pin portion 9 of the front surface side rotary tool and the front end of the pin portion 17 of the back surface side rotary tool so that the friction by the shoulder portion and the stirring by the pin portion are appropriately performed and sound joining is possible. A gap δ may be provided between the two. The gap δ is preferably 0.1 mm or more. Thereby, the load of the surface side rotation tool 1 and the back surface side rotation tool 15 by the deformation resistance of the material at the time of stirring can be reduced. On the other hand, when the gap δ is too large, a portion that is not properly stirred by the pin portion becomes a defect. For this reason, the gap δ is preferably 0.3 mm or less.

一対の回転ツールのうち、少なくとも表面側回転ツール1は、肩部と、この肩部に配され、この肩部と回転軸を共有するピン部とを含み、少なくとも肩部およびピン部は、被加工材である鋼板3よりも硬い材質により形成される。   Of the pair of rotary tools, at least the surface-side rotary tool 1 includes a shoulder portion and a pin portion disposed on the shoulder portion and sharing the rotation axis with the shoulder portion, and at least the shoulder portion and the pin portion are covered. It is formed of a material harder than the steel plate 3 that is a processed material.

回転ツールのピン部により塑性流動される撹拌領域を必要最低限に抑えることで回転ツールにかかる負荷を低減できることから、回転ツールの肩部は、回転方向の外側に向かって上向きとなるテーパー形状を備えることが好ましい。   Since the load applied to the rotating tool can be reduced by minimizing the stirring area plastically flowed by the pin part of the rotating tool, the shoulder of the rotating tool has a tapered shape that faces upward in the rotational direction. It is preferable to provide.

従来の摩擦撹拌接合では、回転ツールを表面側から挿入し接合を行う。よって、ピンの長さ(ピン長)は、被加工材の厚さと同等である必要があった。しかし、ピンの長さが長い程、ピン先端に掛かる負荷は大きくなるので、接合施工性およびツール寿命を向上させるには、ピン長は短いほうが好ましい。本実施形態においてピン長とは、図5の(1)〜(4)の符号cで示すように、ピン部の先端部と肩部の最も高い位置との間の高さの差で算出される長さである。   In the conventional friction stir welding, a rotating tool is inserted from the surface side to perform bonding. Therefore, the pin length (pin length) needs to be equal to the thickness of the workpiece. However, the longer the pin length, the larger the load applied to the tip of the pin. Therefore, it is preferable that the pin length is shorter in order to improve the joining workability and tool life. In the present embodiment, the pin length is calculated by the difference in height between the tip of the pin portion and the highest position of the shoulder portion, as indicated by reference numeral c in (1) to (4) of FIG. Length.

本実施形態において、一対の回転ツールのピン長が同じ長さである場合、ピン長は鋼板3の厚さの半分程度となるので、それぞれの回転ツールに掛かる負荷は、一方面側からのみ回転ツールを挿入し接合する場合よりも低くなる。   In this embodiment, when the pin length of a pair of rotary tools is the same length, the pin length is about half of the thickness of the steel plate 3, so the load applied to each rotary tool rotates only from one side. Lower than when tools are inserted and joined.

また、一対の回転ツールのピン長のうち、表面側回転ツール1のピン長を裏面側回転ツール15のピン長より短くすると、表面側回転ツール1の負荷を軽減できる。裏面側回転ツールのピン部17の先端付近の接合部には、加熱手段5により十分な熱が付与されるので、裏面側回転ツール15の負荷も低減される。   Moreover, when the pin length of the front surface side rotary tool 1 is made shorter than the pin length of the back surface side rotary tool 15 among the pin lengths of the pair of rotary tools, the load on the front surface side rotary tool 1 can be reduced. Sufficient heat is applied by the heating means 5 to the joint near the tip of the pin portion 17 of the back surface side rotary tool, so that the load on the back surface side rotary tool 15 is also reduced.

さらに、一対の回転ツールの軸芯を、接合方向に対してピン部が先行する方向に傾けてもよい。一対の回転ツールは、鋼板3よりも硬い材質により形成されるので、セラミックなどの靭性に乏しい材料が使用される。このため、一対の回転ツールのピン部に対して曲げ方向の力が負荷されると、局部に応力が集中して一対の回転ツールが破壊する。これに対し、一対の回転ツールの軸芯を傾けることで回転ツールにかかる負荷を軸方向に圧縮される分力とし、曲げ方向の力を低減できる。これにより、回転ツール1の破損を回避できる。回転ツール1、15の軸芯の傾斜角度は、例えば、1°以上5°以下である。   Furthermore, you may incline the axial center of a pair of rotary tool to the direction which a pin part precedes with respect to a joining direction. Since the pair of rotary tools is formed of a material harder than the steel plate 3, a material having poor toughness such as ceramic is used. For this reason, when a force in the bending direction is applied to the pin portions of the pair of rotating tools, the stress concentrates on the local portion and the pair of rotating tools is destroyed. On the other hand, by inclining the axis of the pair of rotating tools, the load applied to the rotating tools is set as a component force compressed in the axial direction, and the force in the bending direction can be reduced. Thereby, damage to the rotary tool 1 can be avoided. The inclination angle of the axis of the rotary tools 1 and 15 is, for example, not less than 1 ° and not more than 5 °.

一対の回転ツールについて、一方の回転ツールの軸芯のみを傾けてもよく、両方の回転ツールの軸芯を傾けてもよい。一対の回転ツールの軸芯の傾斜角度をそれぞれ違えてもよい。   For the pair of rotary tools, only the axis of one rotary tool may be tilted, or the axes of both rotary tools may be tilted. The angle of inclination of the axis of the pair of rotary tools may be different.

一対の回転ツールの回転方向を、表面側と裏面側とで逆方向とすることで、一対の回転ツールから被接合材に加わる回転トルクを打ち消すことができ、一方面側のみから回転ツールを押圧して接合する摩擦撹拌接合法よりも鋼板3を固定する把持装置21の構造を簡略化できる。   By rotating the pair of rotary tools in the opposite direction between the front and back sides, the rotational torque applied to the material to be joined from the pair of rotary tools can be canceled, and the rotary tool is pressed only from one side. Thus, the structure of the gripping device 21 for fixing the steel plate 3 can be simplified as compared with the friction stir welding method for joining.

本実施形態の摩擦撹拌接合方法では、接合方向へ移動する表面側回転ツール1の前方に設けた加熱手段5により鋼板3を加熱する予熱処理プロセスが重要である。以下、この予熱処理プロセス条件を図3を参照しながら説明する。   In the friction stir welding method of the present embodiment, a pre-heat treatment process in which the steel plate 3 is heated by the heating means 5 provided in front of the surface side rotary tool 1 moving in the joining direction is important. Hereinafter, the preheat treatment process conditions will be described with reference to FIG.

図3は、表面側、裏面側の両方から被加工材を回転ツールにより摩擦撹拌する領域、予熱プロセスにおける加熱領域、接合後における冷却領域および再加熱領域の一例を示す図(上面図およびA−A断面図)である。図3中、接合中央線10は、鋼板3の表面における表面側回転ツール1の回転軸2を通り接合方向に平行な直線を示す。RS線11は、接合中央線10に平行で、かつリトリーティングサイドへ回転ツールのピン部9の最大半径と同じ距離だけ隔てた直線であり、12は加熱領域であり、13は冷却領域であり、14は再加熱領域である。aは表面側回転ツールの肩部8の直径を示し、bは表面側回転ツールのピン部9の最大径を示し、Xは加熱領域12と表面側回転ツール1との最小距離を示し、Dは加熱領域12の深さを示し、tは鋼板3の厚さを示す。   FIG. 3 is a diagram showing an example of a region in which a workpiece is frictionally stirred by a rotary tool from both the front side and the back side, a heating region in a preheating process, a cooling region after joining, and a reheating region (top view and A- (A sectional view). In FIG. 3, the joining center line 10 indicates a straight line passing through the rotation axis 2 of the surface-side rotating tool 1 on the surface of the steel plate 3 and parallel to the joining direction. The RS line 11 is a straight line parallel to the joining center line 10 and separated to the retreating side by the same distance as the maximum radius of the pin portion 9 of the rotary tool, 12 is a heating area, and 13 is a cooling area. , 14 is a reheating region. a indicates the diameter of the shoulder portion 8 of the surface-side rotating tool, b indicates the maximum diameter of the pin portion 9 of the surface-side rotating tool, X indicates the minimum distance between the heating region 12 and the surface-side rotating tool 1, and D Indicates the depth of the heating region 12, and t indicates the thickness of the steel plate 3.

加熱領域における鋼板の表面温度T:T≧0.8×TA1
図4は、本実施形態に係る摩擦撹拌接合方法で接合する鋼板の温度と引張強さの関係を示す図である。本実施形態の摩擦撹拌接合方法で接合する鋼板3は、図4に示すように、通常、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、銅板3の強度はさらに低下する。よって、鋼板3の表面温度Tが0.8×TA1℃以上を満足するように鋼板3を予め軟化させ、当該鋼板3を撹拌し、塑性流動を促進する。これにより、一対の回転ツールにかかる負荷が低減され、接合速度を高速度化できる。このため、本実施形態における摩擦撹拌接合方法では、鋼板3の表面温度Tが下記式(1)を満足する領域を加熱領域12とする。
Surface temperature T S of steel plate in heating region: T S ≧ 0.8 × T A1
FIG. 4 is a diagram showing the relationship between the temperature and tensile strength of the steel plates to be joined by the friction stir welding method according to this embodiment. As shown in FIG. 4, the steel plate 3 to be joined by the friction stir welding method of the present embodiment is usually about 30% strength at room temperature at a temperature of about 80% of TA1 , which is the transformation temperature of steel. It becomes. Moreover, when it becomes higher than this temperature, the intensity | strength of the copper plate 3 will fall further. Therefore, the steel plate 3 is previously softened so that the surface temperature T S of the steel plate 3 satisfy the above 0.8 × T A1 ° C., and stirred the steel plate 3, to promote plastic flow. Thereby, the load concerning a pair of rotary tool is reduced and a joining speed can be made high-speed. Therefore, in the friction stir welding method in this embodiment, the surface temperature T S of the steel plate 3 is the heating region 12 a region which satisfies the following formula (1).

≧0.8×TA1・・・(1)
鋼の変態温度TA1(℃)は、下記式(2)により求めることができる。
T S ≧ 0.8 × T A1 (1)
The transformation temperature T A1 (° C.) of steel can be obtained by the following formula (2).

A1(℃)=723−10.7[%Mn]−16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
上記[%M]は、被加工材である鋼板3におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
T A1 (° C.) = 723-10.7 [% Mn] −16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] · (2)
Said [% M] is content (mass%) of M element in the steel plate 3 which is a workpiece, and is set to 0 when not containing.

0.8×TA1℃超では温度の上昇と共に鋼板3の強度は低下する傾向があるので、加熱領域12における鋼板3の表面温度Tが上昇し過ぎないように調節することが好ましい。具体的に、厚さ方向へ加熱領域12を確保するには加熱領域12の表面に温度勾配(表面における温度のばらつき)が存在しても良いが、その場合、加熱領域12において鋼板3の最も高い表面温度は1.5×T℃以下であることが好ましい。さらに、加熱領域12における鋼板3の表面温度を、加熱領域12を通過する表面側回転ツール1と接触するまでにT℃未満にすることが好ましい。これにより、接合部4の温度が過度に上昇することによる一対の回転ツールの損傷や、加熱領域12の周辺のミクロ組織の変質を避けることができる。T(℃)は被加工材である鋼板3の融点である。If the temperature exceeds 0.8 × T A1 ° C., the strength of the steel plate 3 tends to decrease as the temperature increases. Therefore, it is preferable to adjust so that the surface temperature T S of the steel plate 3 in the heating region 12 does not increase excessively. Specifically, in order to secure the heating region 12 in the thickness direction, a temperature gradient (temperature variation on the surface) may exist on the surface of the heating region 12. The high surface temperature is preferably 1.5 × T M ° C. or less. Furthermore, it is preferable that the surface temperature of the steel plate 3 in the heating region 12 is less than T M ° C. until the surface temperature of the steel plate 3 contacts the surface-side rotating tool 1 passing through the heating region 12. Thereby, damage to a pair of rotating tools due to excessive increase in the temperature of the joint portion 4 and alteration of the microstructure around the heating region 12 can be avoided. T M (° C.) is the melting point of the steel plate 3 that is the workpiece.

鋼板の表面における加熱領域と加熱装置を備える側の回転ツールとの最小距離X:回転ツールの肩部の直径以下
鋼板3の表面における加熱領域12と表面側回転ツール1との最小距離Xが大きくなり過ぎると、接合前に加熱領域12における温度が低下し、予熱による効果が十分に得られない。このため、本実施形態に係る摩擦撹拌接合方法において、鋼板3の表面における加熱領域12と接合方向へ移動する表面側回転ツール1との最小距離Xは、該回転ツールの肩部8の直径以下である。
Minimum distance X between the heating region on the surface of the steel plate and the rotating tool on the side provided with the heating device: not more than the diameter of the shoulder of the rotating tool The minimum distance X between the heating region 12 on the surface of the steel plate 3 and the surface side rotating tool 1 is large. If it becomes too much, the temperature in the heating region 12 is lowered before joining, and the effect of preheating cannot be sufficiently obtained. For this reason, in the friction stir welding method according to the present embodiment, the minimum distance X between the heating region 12 on the surface of the steel plate 3 and the surface-side rotating tool 1 moving in the joining direction is equal to or less than the diameter of the shoulder 8 of the rotating tool. It is.

ただし、加熱領域12と回転ツール1の最小距離Xが小さくなり過ぎると、表面側回転ツール1が加熱手段12による熱で損傷する恐れがあるので、鋼板3の表面における加熱領域12と接合方向へ移動する表面側回転ツール1との最小距離Xは、表面側回転ツールの肩部8の直径の0.1倍以上であることが好ましい。本実施形態における表面側回転ツールの肩部8の直径は、例えば、8〜60mm程度である。予熱による効果を十分に得るために、表面側回転ツール1の移動速度は、200mm/min以上3000mm/min以下であることが好ましい。   However, if the minimum distance X between the heating region 12 and the rotating tool 1 becomes too small, the surface-side rotating tool 1 may be damaged by the heat of the heating means 12, so that the heating region 12 on the surface of the steel plate 3 is joined in the joining direction. It is preferable that the minimum distance X with the moving surface-side rotating tool 1 is not less than 0.1 times the diameter of the shoulder portion 8 of the surface-side rotating tool. The diameter of the shoulder portion 8 of the surface-side rotating tool in the present embodiment is, for example, about 8 to 60 mm. In order to sufficiently obtain the effect of preheating, the moving speed of the surface-side rotating tool 1 is preferably 200 mm / min or more and 3000 mm / min or less.

鋼板の表面における加熱領域の面積:加熱装置を備える側の回転ツールのピン部の最大径部の面積以下
加熱領域12が大きくなり過ぎると加熱領域12およびその周辺領域のミクロ組織が変化する。特に、マルテンサイト組織により強化された高張力鋼板の場合は、フェライト−オーステナイト変態温度以下での加熱であっても、マルテンサイトが焼き戻されることで軟化を生じ、接合継手強度を大幅に低下させる。このため、本実施形態に係る摩擦撹拌接合方法において、鋼板3の表面における加熱領域12の面積は、回転ツールのピン部9の最大径部の面積以下である。
Area of the heating region on the surface of the steel plate: not more than the area of the maximum diameter portion of the pin portion of the rotary tool on the side provided with the heating device When the heating region 12 becomes too large, the microstructure of the heating region 12 and its peripheral region changes. In particular, in the case of a high-tensile steel sheet strengthened by a martensite structure, even when heating at a temperature below the ferrite-austenite transformation temperature, the martensite is tempered to cause softening and greatly reduce the joint strength. . For this reason, in the friction stir welding method according to the present embodiment, the area of the heating region 12 on the surface of the steel plate 3 is equal to or less than the area of the maximum diameter portion of the pin portion 9 of the rotary tool.

一方、加熱領域12の面積が小さくなりすぎると、予熱による効果が十分に得られなくなる。よって、鋼板3の表面における加熱領域12の面積は、表面側回転ツールのピン部9における最大径部の面積の0.1倍以上であることが好ましい。   On the other hand, if the area of the heating region 12 becomes too small, the effect of preheating cannot be sufficiently obtained. Therefore, it is preferable that the area of the heating region 12 on the surface of the steel plate 3 is 0.1 times or more the area of the maximum diameter portion in the pin portion 9 of the surface-side rotating tool.

本実施形態における表面側回転ツールのピン部9の最大径は、例えば、2〜50mm程度である。表面側回転ツールのピン部9の最大径は、1つのピン部を軸線方向と垂直な断面で切断した際の切断面で得られる直径のうち最大のものである。   The maximum diameter of the pin portion 9 of the surface-side rotating tool in the present embodiment is, for example, about 2 to 50 mm. The maximum diameter of the pin portion 9 of the surface-side rotating tool is the maximum diameter among the diameters obtained at the cut surface when one pin portion is cut in a cross section perpendicular to the axial direction.

図5は、回転ツールの断面寸法を示す図である。図5(1)〜(4)に示すように、表面側回転ツールのピン部9の直径が軸線方向に沿って変わらない場合には、ピン部の上面の直径(図では4mm)をピン部の最大径としてよい。回転ツールのピン部9がテーパ形状等を有し、軸線方向の位置によってピン径が異なる場合には、最も大きい直径をピン部の最大径としてよい。加熱領域12の形状は、円形、楕円形、矩形など任意の形状であってよい。   FIG. 5 is a diagram illustrating a cross-sectional dimension of the rotary tool. As shown in FIGS. 5 (1) to (4), when the diameter of the pin portion 9 of the surface-side rotating tool does not change along the axial direction, the diameter of the upper surface of the pin portion (4 mm in the figure) is changed to the pin portion. The maximum diameter may be used. When the pin portion 9 of the rotary tool has a tapered shape or the like and the pin diameter varies depending on the position in the axial direction, the largest diameter may be set as the maximum diameter of the pin portion. The shape of the heating region 12 may be any shape such as a circle, an ellipse, or a rectangle.

鋼板の表面において、接合中央線とRS線との間に位置する加熱領域の面積:鋼板の表面における加熱領域の面積の65%以上
鋼板3の摩擦撹拌接合において、塑性流動はアドバンシングサイドを始点として、表面側回転ツール1の回転方向に沿って、接合方向前方、リトリーティングサイド、接合方向後方を通り、アドバンシングサイドが終点となる。アドバンシングサイドは、塑性流動の始点となるので、被加工材である鋼板3の加熱不足が生じ易い。このため、塑性流動が不十分で欠陥が発生する場合には、その殆どがアドバンシングサイドで発生する。従って、鋼板3の表面において、アドバンシングサイドを優先的に加熱し、鋼板を軟化させることで塑性流動を促進し、欠陥の発生を抑え、接合速度の高速度化を図ることができる。
On the surface of the steel plate, the area of the heating region located between the joining center line and the RS wire: 65% or more of the area of the heating region on the surface of the steel plate. As described above, along the rotation direction of the surface-side rotating tool 1, the front side of the joining direction, the retreating side, and the rear side of the joining direction pass, and the advanced side is the end point. Since the advanced side is the starting point of plastic flow, insufficient heating of the steel plate 3 as the workpiece is likely to occur. For this reason, when plastic flow is insufficient and defects occur, most of them occur on the advanced side. Therefore, on the surface of the steel plate 3, the advancing side is preferentially heated and the steel plate is softened to promote plastic flow, suppress the occurrence of defects, and increase the joining speed.

しかしながら、表面側回転ツール1の素材もしくは表面側回転ツール1の表面に被覆した素材と被接合材である鋼板3との動摩擦係数が0.6以下である場合は、表面側回転ツール1と鋼板3との間に生じる摩擦熱、塑性流動が小さくなる。表面側回転ツール1の前方に位置するアドバンシングサイドは塑性流動の始点となる部位であり、表面側回転ツール1と鋼板3との間の摩擦熱が大きく発生する領域である。しかしながら、高温状態では動摩擦係数は減少する傾向があるので、この部位を予熱により高温とすると、表面側回転ツール1と鋼板3との動摩擦係数が小さい場合には十分な摩擦発熱が得られない。一方、リトリーティングサイドは、塑性流動の中間に位置するので、この位置での塑性流動が不十分となると、塑性流動の終点となるアドバンシングサイドでの欠陥の発生に大きな影響を及ぼす。特に表面側回転ツール1と鋼板3との間の動摩擦係数が小さい場合には、十分な塑性流動が得られない。   However, when the dynamic friction coefficient between the material of the surface-side rotating tool 1 or the material coated on the surface of the surface-side rotating tool 1 and the steel plate 3 to be joined is 0.6 or less, the surface-side rotating tool 1 and the steel plate Friction heat and plastic flow generated between the two are reduced. The advanced side located in front of the surface-side rotating tool 1 is a portion that becomes a starting point of plastic flow, and is a region where frictional heat between the surface-side rotating tool 1 and the steel plate 3 is greatly generated. However, since the dynamic friction coefficient tends to decrease in a high temperature state, if this part is heated to a high temperature by preheating, sufficient frictional heat generation cannot be obtained when the dynamic friction coefficient between the surface-side rotating tool 1 and the steel plate 3 is small. On the other hand, since the retreating side is located in the middle of the plastic flow, if the plastic flow at this position becomes insufficient, the occurrence of defects on the advanced side that is the end point of the plastic flow is greatly affected. In particular, when the dynamic friction coefficient between the surface-side rotating tool 1 and the steel plate 3 is small, sufficient plastic flow cannot be obtained.

従って、表面側回転ツール1の素材、もしくは表面側回転ツール1の表面に被覆した素材と鋼板3との動摩擦係数が0.6以下である場合には、鋼板3の表面において、加熱領域12の面積の65%以上を、接合中央線10と、接合中央線10に平行なRS線11との間に位置させ、リトリーティングサイドを優先的に加熱する。これにより、塑性流動の始点となるアドバンシングサイドでの摩擦発熱を確保しながら、塑性流動の中間となるリトリーティングサイドでの塑性流動を促進し、欠陥の発生を抑え、接合速度の高速化を図ることができる。接合中央線10とRS線11との間に位置する加熱領域12の面積の範囲は、80%以上であることがより好ましく、100%であってもよい。   Therefore, when the dynamic friction coefficient between the material of the surface-side rotating tool 1 or the material coated on the surface of the surface-side rotating tool 1 and the steel plate 3 is 0.6 or less, 65% or more of the area is positioned between the joint center line 10 and the RS wire 11 parallel to the joint center line 10, and the retreating side is preferentially heated. This promotes plastic flow on the retreating side, which is the middle of plastic flow, while ensuring frictional heat generation on the advanced side, which is the starting point of plastic flow, suppresses the occurrence of defects, and increases the joining speed. You can plan. The area range of the heating region 12 located between the bonding center line 10 and the RS wire 11 is more preferably 80% or more, and may be 100%.

また、リトリーティングサイドを優先的に加熱するという観点からは、加熱領域12の中心を、接合中央線10とRS線11の中間点を通る直線と、RS線11との間に位置させる。換言すれば、加熱領域12の中心を接合中央線10よりもリトリーティングサイドに位置させ、さらに加熱領域12の中心から接合中央線10までの距離を、回転ツールのピン部9における最大半径の0.5倍以上1倍以下とすることが好ましい。   Further, from the viewpoint of preferentially heating the retreating side, the center of the heating region 12 is positioned between the RS line 11 and a straight line passing through an intermediate point between the junction center line 10 and the RS line 11. In other words, the center of the heating region 12 is positioned on the retreating side with respect to the bonding center line 10, and the distance from the center of the heating region 12 to the bonding center line 10 is set to 0 of the maximum radius in the pin portion 9 of the rotary tool. It is preferable to be 5 times or more and 1 time or less.

加熱領域の厚さ方向の領域における温度T:T≧0.8×TA1
前述したように、本実施形態の摩擦撹拌接合方法で接合する鋼板3は、通常、鋼の変態温度であるTA1の80%程度の温度では、常温時の強度の30%程度の強度となる。また、この温度より高くなると、鋼板3の強度は、さらに低下する。よって、加熱領域12の厚さ方向の領域においても、温度を0.8×TA1℃以上として鋼板3を予め軟化させることが好ましい。これにより、表面側回転ツール1にかかる負荷がさらに低減され、接合速度をさらに高速度化できる。従って、加熱領域12の厚さ方向の領域における温度Tが下記式(3)を満足する領域における鋼板3の表面からの深さを加熱領域12の深さDとした。
Temperature T D in the thickness direction region of the heating region: T D ≧ 0.8 × T A1
As described above, the steel plate 3 to be joined by the friction stir welding method of the present embodiment usually has a strength of about 30% of the strength at normal temperature at a temperature of about 80% of TA1 , which is the transformation temperature of the steel. . Moreover, when it becomes higher than this temperature, the intensity | strength of the steel plate 3 will fall further. Therefore, it is preferable to soften the steel plate 3 in advance in the thickness direction region of the heating region 12 at a temperature of 0.8 × T A1 ° C. or higher. Thereby, the load concerning the surface side rotation tool 1 is further reduced, and the joining speed can be further increased. Accordingly, the temperature T D in the thickness direction of the region of the heating region 12 has the depth D of the following formula (3) heating region 12 a depth from the surface of the steel plate 3 in satisfying region.

≧0.8×TA1・・・(3)
A1(℃)は下記式(2)により求めることができる。
T D ≧ 0.8 × T A1 (3)
T A1 (° C.) can be obtained by the following formula (2).

A1(℃)=723−10.7[%Mn]−16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
上記[%M]は、被加工材である鋼板3におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
T A1 (° C.) = 723-10.7 [% Mn] −16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] · (2)
Said [% M] is content (mass%) of M element in the steel plate 3 which is a workpiece, and is set to 0 when not containing.

ただし、0.8×TA1℃超では温度の上昇と共に鋼板3の強度は低下する傾向があるので、加熱領域12における鋼板3の温度が上昇し過ぎないように調節することが好ましい。具体的に、厚さ方向へ加熱領域12を確保するには加熱領域12の厚さ方向に温度勾配(厚さ方向に沿った温度のばらつき)が存在してもよいが、その場合、加熱領域12における鋼板3の厚さ方向の最も高い温度は1.5×T℃以下であることが好ましい。さらに、接合部4の温度が過度に上昇することによる表面側回転ツール1の損傷や、加熱領域12の周辺のミクロ組織の変質を避けるために、加熱領域12における鋼板3の厚さ方向の温度を、加熱領域12を通過する表面側回転ツール1と接触するまでにT℃未満とすることが好ましい。T(℃)は、被加工材である鋼板3の融点である。However, since the strength of the steel plate 3 tends to decrease as the temperature rises if it exceeds 0.8 × T A1 ° C, it is preferable to adjust so that the temperature of the steel plate 3 in the heating region 12 does not rise too much. Specifically, in order to secure the heating region 12 in the thickness direction, there may be a temperature gradient (temperature variation along the thickness direction) in the thickness direction of the heating region 12, but in that case, the heating region 12 12, the highest temperature in the thickness direction of the steel plate 3 is preferably 1.5 × T M ° C. or less. Furthermore, in order to avoid damage to the surface-side rotary tool 1 due to excessive increase in the temperature of the joint 4 and alteration of the microstructure around the heating region 12, the temperature in the thickness direction of the steel plate 3 in the heating region 12 is avoided. Is preferably less than T M ° C. before contacting the surface-side rotating tool 1 passing through the heating region 12. T M (° C.) is the melting point of the steel sheet 3 as the workpiece.

加熱領域の深さD:鋼板の厚さtの100%
加熱領域12の深さDは、加温熱領域12の厚さ方向の温度Tが0.8×TA1℃以上となる領域の鋼板3の表面からの最大深さで規定される。この加熱領域12の深さDは、鋼板3の厚さtの50%以上であることが好ましく、理想的には100%である。加熱領域12の深さDを鋼板3の厚さtの50%以上とすることで、塑性流動が最大限に促進され、回転ツール1にかかる負荷低減および接合速度の高速度化に有利となる。予熱処理を行う加熱手段5が設けられた一方面側のみから回転ツールを押圧して接合する摩擦撹拌接合法では、他方面側において被接合材と同等もしくはそれ以上の硬さを有する支持体により被接合材を支持する必要があり、加熱領域12の深さDが鋼板3の厚さtの90%を超えると被接合材と支持体が固着する恐れがあった。しかし、本実施形態では、加熱領域12の反対側(他方面側)は中空の状態になるので、加熱領域12の深さDが鋼板3の合計厚さの50〜100%としても固着の恐れは無い。
Heating zone depth D: 100% of steel sheet thickness t
The depth D of the heating zone 12, the temperature T D in the thickness direction of the pressurized heat region 12 is defined by the maximum depth from 0.8 × T A1 ° C. or higher and a region surface of the steel plate 3 of the. The depth D of the heating region 12 is preferably 50% or more of the thickness t of the steel plate 3, and ideally 100%. By setting the depth D of the heating region 12 to 50% or more of the thickness t of the steel plate 3, the plastic flow is promoted to the maximum, which is advantageous for reducing the load on the rotary tool 1 and increasing the joining speed. . In the friction stir welding method in which the rotary tool is pressed and joined only from one side where the heating means 5 for performing the pre-heat treatment is provided, a support having a hardness equal to or higher than the material to be joined on the other side is used. It is necessary to support the material to be bonded, and if the depth D of the heating region 12 exceeds 90% of the thickness t of the steel plate 3, the material to be bonded and the support may be fixed. However, in this embodiment, since the opposite side (the other surface side) of the heating region 12 is in a hollow state, there is a risk of sticking even when the depth D of the heating region 12 is 50 to 100% of the total thickness of the steel plate 3. There is no.

上述した条件を実現するために、本実施形態に係る摩擦撹拌接合装置は、制御手段20を備える。制御手段20は、回転ツール及び加熱手段の動作を制御する。制御手段20は、後方加熱手段7や冷却手段6等の動作を制御してもよい。   In order to realize the above-described conditions, the friction stir welding apparatus according to this embodiment includes a control unit 20. The control means 20 controls the operation of the rotary tool and the heating means. The control unit 20 may control operations of the rear heating unit 7 and the cooling unit 6.

また、予熱処理プロセスで使用する加熱手段5は、特に限定されるものではないが、レーザ加熱装置であることが好ましい。エネルギー密度の高いレーザを熱源に用いることで、予熱処理プロセス条件の制御をより正確に行うことができ、接合継手特性を損なうことなく接合施工性の向上を図ることができる。   Further, the heating means 5 used in the preheat treatment process is not particularly limited, but is preferably a laser heating apparatus. By using a laser having a high energy density as a heat source, it is possible to more accurately control the preheat treatment process conditions, and it is possible to improve the joining workability without impairing the joint characteristics.

上記以外の接合条件については特に限定されず、例えば、予熱処理プロセスで使用する加熱手段5の移動速度は、接合速度と同程度としてよい。また、この加熱手段5にレーザ加熱装置を用いる場合、そのレーザ出力やビーム径は、接合条件に応じて適宜設定してよい。   The joining conditions other than those described above are not particularly limited. For example, the moving speed of the heating means 5 used in the preheat treatment process may be approximately the same as the joining speed. Moreover, when using a laser heating apparatus for this heating means 5, the laser output and beam diameter may be suitably set according to joining conditions.

以上、本実施形態の摩擦撹拌接合方法および装置における予熱処理プロセスについて説明したが、本実施形態の摩擦撹拌接合方法および装置では、接合方向へ移動する表面側回転ツール1の後方に冷却手段6を設け、冷却手段6により接合継手強度を改善させてもよい。   The preheat treatment process in the friction stir welding method and apparatus of the present embodiment has been described above. However, in the friction stir welding method and apparatus of the present embodiment, the cooling means 6 is disposed behind the surface-side rotary tool 1 that moves in the joining direction. The joint joint strength may be improved by providing the cooling means 6.

通常、接合完了後、接合部4は自然放冷状態となるので、被加工材である鋼板3の焼入れ性が低い場合は、接合継手の強度が十分に得られない。これに対して、接合方向へ移動する表面側回転ツール1の接合方向後方に冷却手段6を設け、冷却手段6で鋼板3の接合部4を冷却し、冷却速度を適切に制御することで、焼入れによる強度向上を図ることができる。具体的な冷却手段6としては、例えば、不活性ガスを噴出する冷却装置を用いること好ましい。この場合の冷却速度は、例えば、800℃から500℃の範囲において30〜300℃/sであることが好ましい不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス等を用いることができる。   Usually, after joining is completed, the joint 4 is naturally cooled, so that the strength of the joint joint cannot be sufficiently obtained when the hardenability of the steel plate 3 as the workpiece is low. On the other hand, the cooling means 6 is provided at the rear side in the joining direction of the surface-side rotating tool 1 moving in the joining direction, the joint 4 of the steel plate 3 is cooled by the cooling means 6, and the cooling rate is appropriately controlled. The strength can be improved by quenching. As the specific cooling means 6, for example, it is preferable to use a cooling device that ejects an inert gas. In this case, for example, argon gas, helium gas, or the like can be used as the inert gas that is preferably 30 to 300 ° C./s in the range of 800 ° C. to 500 ° C., for example.

一方、被加工材である鋼板3の焼入れ性が高い場合は、過度に硬化する可能性があり接合継手の靭性を低下させる。これに対して、表面側回転ツール1に近接する後方部分を加熱する後方加熱手段7を表面側回転ツール1の接合方向後方に設け、冷却速度を適切に制御して徐冷することで、過度な硬化を抑制できる。具体的な後方加熱手段7としては、例えば、高周波誘導加熱、レーザを熱源とした加熱装置を用いることが好ましい。この場合の徐冷速度は、例えば、800℃から500℃の範囲において10〜30℃/sであることが好ましい。   On the other hand, when the hardenability of the steel plate 3 which is a workpiece is high, there is a possibility that the steel plate 3 is excessively hardened, thereby reducing the toughness of the joint joint. On the other hand, the rear heating means 7 for heating the rear portion adjacent to the surface-side rotating tool 1 is provided behind the surface-side rotating tool 1 in the joining direction, and the cooling rate is appropriately controlled to gradually cool. Can be suppressed. As the specific rear heating means 7, it is preferable to use, for example, a high-frequency induction heating or a heating device using a laser as a heat source. The slow cooling rate in this case is preferably 10 to 30 ° C./s in the range of 800 ° C. to 500 ° C., for example.

接合方向へ移動する回転ツールの接合方向後方でかつ冷却手段6の接合方向後方に後方加熱手段7を設け、後方加熱手段7により鋼板3の接合部4を再加熱してもよい。これにより、接合部4が冷却手段6による冷却で焼入れされて過度に硬化した場合に、後方加熱手段7で焼き戻しすることにより硬度を抑え、強度と靭性を併せ持つ継手特性が得られる。この場合の冷却速度としては、例えば、800℃から500℃の範囲において30〜300℃/sであることが好ましく、再加熱温度としては、例えば、550〜650℃であることが好ましい。   A rear heating means 7 may be provided behind the rotating tool moving in the joining direction and behind the cooling means 6 in the joining direction, and the joining portion 4 of the steel sheet 3 may be reheated by the rear heating means 7. Thereby, when the joining part 4 is quenched by cooling by the cooling means 6 and excessively cured, the hardness is suppressed by tempering by the rear heating means 7 and joint characteristics having both strength and toughness can be obtained. The cooling rate in this case is preferably 30 to 300 ° C./s in the range of 800 ° C. to 500 ° C., for example, and the reheating temperature is preferably 550 to 650 ° C., for example.

さらに、接合方向へ移動する表面側回転ツール1の接合方向後方で、かつ後方加熱手段7の接合方向後方に、冷却手段6を設け、冷却手段6により鋼板3の接合部4を冷却してもよい。   Further, a cooling means 6 is provided behind the front side rotating tool 1 moving in the joining direction and behind the rear heating means 7, and the joining portion 4 of the steel plate 3 is cooled by the cooling means 6. Good.

この場合には、接合直後において、後方加熱手段7で徐冷を行い、その後、冷却手段6で急冷を行うことで、組織を複合化でき、強度と延性を併せ持つ継手特性が得られる。この場合の冷却速度は、例えば、800℃から600℃の範囲(徐冷の範囲)において0〜30℃/s程度であり、その後、600℃から400℃の範囲(急冷の範囲)において30〜300℃/s程度であることが好ましい。   In this case, immediately after joining, slow cooling is performed by the rear heating means 7 and then rapid cooling is performed by the cooling means 6 so that the structure can be combined, and joint characteristics having both strength and ductility can be obtained. The cooling rate in this case is, for example, about 0 to 30 ° C./s in the range of 800 ° C. to 600 ° C. (gradual cooling range), and then 30 to 30 in the range of 600 ° C. to 400 ° C. (rapid cooling range). It is preferably about 300 ° C./s.

上記以外の接合条件については、常法に従えばよいが、一対の回転ツールのトルクが大きいほど鋼板3の塑性流動性は低くなるので、欠陥などが生じ易くなる。   The joining conditions other than those described above may be in accordance with ordinary methods. However, the greater the torque of the pair of rotating tools, the lower the plastic fluidity of the steel plate 3, and thus defects and the like are likely to occur.

従って、本実施形態の摩擦撹拌接合方法および装置では、一対の回転ツールの回転数を100〜1000rpmの範囲とし、一対の回転ツールのトルクを抑え、接合速度を1000mm/min以上に高速化することを目標とする。接合速度を500mm/min超1000mm/min以上に高速化する場合には、一対の回転ツールのトルクを90N・m以下に抑えることが好ましい。これにより、一対の回転ツールが接合中に破損する、もしくは未接合部分が残る状態を回避できる。接合速度を500mm/min以下にする場合には、一対の回転ツールのトルクを75N・m以下に抑えることが好ましい。これにより、塑性流動性を確保しつつ一対の回転ツールの負荷を緩和できる。   Therefore, in the friction stir welding method and apparatus of the present embodiment, the rotational speed of the pair of rotary tools is set in the range of 100 to 1000 rpm, the torque of the pair of rotary tools is suppressed, and the joining speed is increased to 1000 mm / min or more. To the goal. When the joining speed is increased from 500 mm / min to 1000 mm / min or more, it is preferable to suppress the torque of the pair of rotary tools to 90 N · m or less. As a result, it is possible to avoid a state in which the pair of rotary tools are damaged during bonding or an unbonded portion remains. When the joining speed is 500 mm / min or less, it is preferable to suppress the torque of the pair of rotary tools to 75 N · m or less. Thereby, the load of a pair of rotary tools can be eased, ensuring plastic fluidity.

また、本実施形態の摩擦撹拌接合方法の対象鋼種としては、一般的な構造用鋼や炭素鋼、例えばJIS(日本工業規格) G 3106の溶接構造用圧延鋼材、JIS G 4051の機械構造用炭素鋼などを用いることができる。引張強度が800MPa以上の高強度構造用鋼にも適用でき、接合部4において、鋼板(母材)の引張強度の85%以上の強度、さらには90%以上の強度が得られる。   In addition, as a target steel type of the friction stir welding method of the present embodiment, general structural steel and carbon steel, for example, rolled steel for welded structure of JIS (Japanese Industrial Standard) G 3106, carbon for mechanical structure of JIS G 4051 Steel or the like can be used. It can also be applied to high-strength structural steel having a tensile strength of 800 MPa or more, and a strength of 85% or more of the tensile strength of the steel plate (base material), and further a strength of 90% or more can be obtained at the joint 4.

(実施例1)
板厚が1.6mmであって、下記表1に示す化学組成、引張強さの鋼板を用いて、摩擦撹拌接合を実施した。継手突合せ面は、角度をつけない、いわゆるI型開先でフライス加工程度の表面状態により、鋼板の一方面側、他方面側の両方から回転ツールを押圧して接合を行った。摩擦撹拌接合の接合条件を表2に示す。実施例1では、図5(1)〜(4)に示した断面寸法形状の回転ツールを用いた。実施例1で用いた回転ツールは、炭化タングステン(WC)を素材とし、物理蒸着(PVD)により窒化チタン(TiN)の被覆処理が表面に施された回転ツールである。接合時にはアルゴンガスにより接合部をシールドし、表面の酸化を防止した。TiNの被覆処理を表面に施したWCの回転ツールの表面と鋼板との動摩擦係数は、0.6以下であった。
Example 1
Friction stir welding was performed using a steel plate having a plate thickness of 1.6 mm and having a chemical composition and tensile strength shown in Table 1 below. The joint butting surfaces were joined by pressing a rotating tool from both the one side and the other side of the steel sheet according to the surface state of a so-called I-shaped groove and milling with no angle. Table 2 shows the welding conditions of the friction stir welding. In Example 1, the rotary tool having the cross-sectional dimensions shown in FIGS. 5 (1) to (4) was used. The rotary tool used in Example 1 is a rotary tool whose surface is coated with titanium nitride (TiN) by physical vapor deposition (PVD) using tungsten carbide (WC) as a raw material. At the time of bonding, the bonded portion was shielded with argon gas to prevent surface oxidation. The coefficient of dynamic friction between the surface of the rotating tool of WC having a TiN coating treatment on the surface and the steel sheet was 0.6 or less.

ツール素材表面と鋼板との動摩擦係数は、以下の測定方法で測定した。ボールオンディスク摩擦摩耗試験機を用いて、対象素材からなるディスクを回転させながら固定された直径6mmの鋼球に荷重5Nで押し付け、回転速度100mm/sで滑り距離300mで試験を行った。試験は室温、無潤滑で行った。試験に用いた鋼球は、JIS G 4805で規定されるSUJ2の化学成分を有する素材から成り、軸受け用鋼球として加工処理された鋼球である。   The dynamic friction coefficient between the tool material surface and the steel sheet was measured by the following measuring method. Using a ball-on-disk friction and wear tester, a disk made of the target material was pressed against a steel ball having a diameter of 6 mm while rotating with a load of 5 N, and the test was performed at a rotational speed of 100 mm / s and a sliding distance of 300 m. The test was performed at room temperature and without lubrication. The steel ball used for the test is a steel ball made of a material having a chemical component of SUJ2 defined by JIS G 4805 and processed as a steel ball for bearings.

Figure 0006497451
Figure 0006497451

Figure 0006497451
Figure 0006497451

また、接合に先立ち、レーザを熱源に用いた予熱による加熱領域を確認するため、表1の鋼板Iに対して、表3に示す各照射条件(レーザ移動速度、レーザ出力およびビーム径)でレーザ光を照射して、表面温度をサーモグラフィにより測定した。さらに、レーザ照射部の断面を観察し、ナイタール腐食液によるミクロ組織観察を行った。   Prior to the bonding, in order to confirm the heating region by preheating using a laser as a heat source, the steel plate I in Table 1 was subjected to laser irradiation under the irradiation conditions (laser moving speed, laser output, and beam diameter) shown in Table 3. Light was irradiated and the surface temperature was measured by thermography. Furthermore, the cross section of the laser irradiation part was observed, and the microstructure was observed with a nital etchant.

Figure 0006497451
Figure 0006497451

ここで、変態点(TA1℃)以上となった領域は最も濃く、その外側に存在する変態点(TA1℃)未満であるが母材中のマルテンサイトなどの高硬度組織が焼き戻される領域は比較的薄くエッチングされるので、変態点(TA1℃)以上となった領域と、変態点(TA1℃)未満での焼き戻し領域と、母材の領域とは、それぞれ識別可能である。さらに、鉄鋼の熱処理の知見より、変態点(TA1℃)未満での焼き戻し領域は、0.8×TA1℃以上かつTA1℃未満の領域と一致することが知られている。このようなナイタール腐食液によるミクロ組織観察より、変態点(TA1℃)以上となった領域の深さD、および0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)を測定した。Here, the region having the transformation point (T A1 ° C) or higher is darkest, and is less than the transformation point (T A1 ° C) existing outside, but a high hardness structure such as martensite in the base material is tempered. Since the region is etched relatively thin, the region where the transformation point (T A1 ° C) or higher, the tempering region below the transformation point (T A1 ° C), and the base material region can be distinguished. is there. Furthermore, from the knowledge of heat treatment of steel, it is known that the tempering region below the transformation point (T A1 ° C) coincides with the region of 0.8 x T A1 ° C or more and less than T A1 ° C. Based on the microstructure observation with such a nital corrosion solution, the depth D 0 of the region where the transformation point (T A1 ° C) or higher and the depth of the region where the temperature becomes 0.8 × T A1 ° C or higher (of the heating region) Depth D) was measured.

これらの測定結果を表4に示す。   These measurement results are shown in Table 4.

Figure 0006497451
Figure 0006497451

表4に示すように、サーモグラフィによる表面温度測定結果から、照射条件Aにおいて、0.8×TA1℃以上となる領域は、径2.4mmの円形状であった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Aにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。As shown in Table 4, from the surface temperature measurement result by thermography, in the irradiation condition A, the region of 0.8 × T A1 ° C or more was a circular shape with a diameter of 2.4 mm. Since the maximum diameter of the pin portion of the rotating tool used here is 4.0 mm, the area of the heating region in the irradiation condition A is equal to or less than the area of the maximum diameter portion of the pin portion of the rotating tool.

照射条件Bにおいて、0.8×TA1℃以上となる領域は、直径2.0mmの円形状であった。従って、上記と同様に、照射条件Bにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。In the irradiation condition B, the region of 0.8 × T A1 ° C. or higher was a circular shape having a diameter of 2.0 mm. Therefore, similarly to the above, the area of the heating region in the irradiation condition B is equal to or smaller than the area of the maximum diameter portion of the pin portion of the rotary tool.

照射条件Cにおいて、0.8×TA1℃以上となる領域は、直径5.4mmの円形状であった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Cにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積を超えることとなる。In the irradiation condition C, the region of 0.8 × T A1 ° C or higher was a circular shape having a diameter of 5.4 mm. Since the maximum diameter of the pin part of the rotary tool used here is 4.0 mm, the area of the heating region in the irradiation condition C exceeds the area of the maximum diameter part of the pin part of the rotary tool.

照射条件Dにおいて、0.8×TA1℃以上となる領域は、レーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円径となり、長径は1.8mm、短径は1.2mmであった。ここで用いた回転ツールのピン部の最大直径は4.0mmであるので、照射条件Dにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。In the irradiation condition D, the region where the temperature is 0.8 × T A1 ° C or more has an elliptical diameter in which the laser moving direction is the major axis and the direction perpendicular to the laser moving direction is the minor axis, the major axis is 1.8 mm, and the minor axis is 1. It was 2 mm. Since the maximum diameter of the pin portion of the rotating tool used here is 4.0 mm, the area of the heating region in the irradiation condition D is equal to or less than the area of the maximum diameter portion of the pin portion of the rotating tool.

照射条件Eにおいて、0.8×TA1℃以上となる領域は、レーザ移動方向が長径、レーザ移動方向と直角方向が短径となる楕円径となり、長径は2.3mm、短径は1.9mmであった。従って、上記と同様に、照射条件Eにおける加熱領域の面積は、回転ツールのピン部の最大径部の面積以下となる。In the irradiation condition E, the region where the temperature is 0.8 × T A1 ° C. or more has an elliptical diameter in which the laser moving direction is the major axis and the direction perpendicular to the laser moving direction is the minor axis, the major axis is 2.3 mm and the minor axis is 1. It was 9 mm. Therefore, similarly to the above, the area of the heating region under the irradiation condition E is equal to or smaller than the area of the maximum diameter portion of the pin portion of the rotary tool.

また、表4に示すように、レーザ照射部の断面観察から、照射条件Aにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ1.60mm、1.60mmであり、TA1℃以上となった領域が鋼板の厚さ全域に形成された。よって、0.8×TA1℃以上となった領域の深さである加熱領域の深さDは、鋼板の厚さtの100%となる。Further, as shown in Table 4, the cross-section observation of the laser irradiation unit, the irradiation condition A, the depth of the region becomes T A1 ° C. or higher and the depth of the turned region D 0 and 0.8 × T A1 ° C. or higher The depth (depth D of the heating region) was 1.60 mm and 1.60 mm, respectively, and regions having a temperature equal to or higher than T A1 ° C. were formed over the entire thickness of the steel sheet. Therefore, the depth D of the heating region, which is the depth of the region of 0.8 × T A1 ° C or higher, is 100% of the thickness t of the steel plate.

照射条件Bにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.47mm、0.50mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約31.3%となる。Under irradiation condition B, the depth D 0 of the region where T A1 ° C or higher and the depth of the region where 0.8 × T A1 ° C or higher (depth D of the heating region) are 0.47 mm and 0, respectively. .50 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 31.3% of the thickness t of the steel plate.

照射条件Cにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.28mm、0.30mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約18.8%となる。Under irradiation condition C, the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 × T A1 ° C or higher (depth D of the heating region) are 0.28 mm and 0, respectively. .30 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 18.8% of the thickness t of the steel plate.

照射条件Dにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ1.60mm、1.60mmであり、TA1℃以上となった領域が鋼板の厚さ全域に形成された。よって、0.8×TA1℃以上となった領域の深さである加熱領域の深さDは、鋼板の厚さtの100%となる。Under irradiation condition D, the depth D 0 of the region where T A1 ° C. or higher and the depth of the region where 0.8 × T A1 ° C. or higher (depth D of the heating region) are 1.60 mm, 1 A region of .60 mm and T A1 ° C or higher was formed in the entire thickness of the steel sheet. Therefore, the depth D of the heating region, which is the depth of the region of 0.8 × T A1 ° C or higher, is 100% of the thickness t of the steel plate.

照射条件Eにおいて、TA1℃以上となった領域の深さDおよび0.8×TA1℃以上となった領域の深さ(加熱領域の深さD)は、それぞれ0.58mm、0.63mmであった。被加工材である鋼板の厚さtは1.6mmであるので、加熱領域の深さDは、鋼板の厚さtの約39.4%となる。Under irradiation condition E, the depth D 0 of the region where T A1 ° C or higher and the depth of 0.8 × T A1 ° C or higher (depth D of the heating region) are 0.58 mm and 0, respectively. .63 mm. Since the thickness t of the steel plate as the workpiece is 1.6 mm, the depth D of the heating region is about 39.4% of the thickness t of the steel plate.

被加工材の接合前に行ったレーザ照射による予熱プロセス条件を表5に示し、接合後に行ったプロセス条件を表6に示す。ここで、接合後に行ったプロセスにおける冷却ではガス噴出による冷却を、加熱(および再加熱)では誘導加熱をそれぞれ行った。   Table 5 shows preheating process conditions by laser irradiation performed before joining the workpieces, and Table 6 shows process conditions performed after joining. Here, in the process performed after joining, cooling by gas ejection was performed, and in the heating (and reheating), induction heating was performed.

表5、表6中、予熱プロセス条件および接合後に行ったプロセス条件における「−」は、それぞれ予熱プロセスおよび冷却や加熱といった接合後のプロセスを行わなかった場合を示す。また、接合中央線から加熱領域中心までの距離における「(AS)」、「(RS)」との記載は、加熱領域の中心が、接合中央線からそれぞれアドバンシングサイド、リトリーティングサイドにあることを示す。   In Tables 5 and 6, “-” in the preheating process condition and the process condition performed after bonding indicates a case where the preheating process and the process after bonding such as cooling and heating are not performed, respectively. In addition, in the description of “(AS)” and “(RS)” in the distance from the junction center line to the center of the heating area, the center of the heating area is located on the advancing side and the retreating side from the junction center line, respectively. Indicates.

Figure 0006497451
Figure 0006497451

Figure 0006497451
Figure 0006497451

また、表7に、接合を実施した際の回転ツールのトルクの測定値と、得られた接合継手の引張強さの測定値を示す。接合継手の引張強さは、JIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った結果である。回転ツールのトルクが大きいほど塑性流動性が低く、欠陥などが生じ易くなる。   Table 7 shows the measured value of the torque of the rotating tool when the joining is performed and the measured value of the tensile strength of the obtained joint. The tensile strength of the joint joint is the result of taking a tensile test piece having the size of No. 1 test piece defined in JIS Z 3121 and conducting a tensile test. The greater the torque of the rotating tool, the lower the plastic fluidity and the more likely to cause defects.

Figure 0006497451
Figure 0006497451

表7より、発明例1〜11では、接合速度を400mm/minとした場合であっても、母材となる鋼板の引張強さの90%以上の接合継手強度が得られた。発明例1〜11の表面側、裏面側のそれぞれの回転ツールのトルクは、いずれも72N・m以下であり、塑性流動性も良好であった。特に、接合後に冷却・再加熱、冷却または再加熱のみを行った発明例7〜10では、母材の引張強さと同等の強度が得られた。接合後に再加熱・冷却を行った発明例11では、母材の引張強さの96%以上の強度が得られた。   From Table 7, in invention examples 1-11, even if it was a case where a joining speed was 400 mm / min, the joint joint intensity | strength 90% or more of the tensile strength of the steel plate used as a base material was obtained. The torques of the rotary tools on the front and back sides of Invention Examples 1 to 11 were both 72 N · m or less, and the plastic fluidity was also good. In particular, in Invention Examples 7 to 10 in which only cooling / reheating, cooling or reheating was performed after joining, a strength equivalent to the tensile strength of the base material was obtained. In Invention Example 11 in which reheating and cooling were performed after joining, a strength of 96% or more of the tensile strength of the base material was obtained.

比較例1〜4の摩擦撹拌接合条件は、本発明の範囲を満足する鋼板の一方面側、他方面側の両方から回転ツールを押圧して接合を行う条件で、かつ予熱プロセス条件は本発明の範囲を満足しない条件である。比較例1〜4では、表面側、裏面側の両方の回転ツールのトルクが75N・mより大きくなり、塑性流動性に劣っていた。   The friction stir welding conditions of Comparative Examples 1 to 4 are conditions for joining by pressing the rotary tool from both one side and the other side of the steel sheet that satisfies the scope of the present invention, and the preheating process conditions are the present invention. This is a condition that does not satisfy the range. In Comparative Examples 1 to 4, the torques of both the front and back rotary tools were greater than 75 N · m, and the plastic fluidity was poor.

比較例5の摩擦撹拌接合条件は、本発明の範囲を満足しない鋼板の一方面側から回転ツールを押圧して接合を行う条件で、かつ予熱プロセス条件は本発明の範囲を満足する条件である。比較例5では、表面側の回転ツールのトルクが75N・mより大きくなり、塑性流動性に劣っていた。   The friction stir welding condition of Comparative Example 5 is a condition for joining by pressing a rotating tool from one side of a steel sheet that does not satisfy the scope of the present invention, and the preheating process condition is a condition for satisfying the scope of the present invention. . In Comparative Example 5, the torque of the rotary tool on the surface side was greater than 75 N · m, and the plastic fluidity was poor.

発明例12〜21では、接合速度を1000mm/minに高速度化した場合であっても、母材の引張強さの90%以上の接合継手強度が得られ、表面側、裏面側のそれぞれの回転ツールのトルクも90N・m以下であった。特に、接合後に冷却・再加熱、冷却または再加熱のみを行った発明例17〜20では、母材の引張強さと同等の接合継手強度が得られた。接合後に再加熱・冷却を行った発明例21では、母材の引張強さの99%以上の接合継手強度が得られた。   In Invention Examples 12 to 21, even when the joining speed is increased to 1000 mm / min, a joint joint strength of 90% or more of the tensile strength of the base material is obtained, and each of the front side and the back side is obtained. The torque of the rotary tool was 90 N · m or less. In particular, in Inventive Examples 17 to 20 in which only cooling / reheating, cooling or reheating was performed after joining, joint joint strength equivalent to the tensile strength of the base material was obtained. In Invention Example 21, in which reheating and cooling were performed after joining, a joint joint strength of 99% or more of the tensile strength of the base material was obtained.

比較例6、比較例7の摩擦撹拌接合条件は、本発明の範囲を満足する鋼板の一方面側、他方面側の両方から回転ツールを押圧して接合を行う条件で、かつ予熱プロセス条件は本発明の範囲を満足しない条件である。比較例6、比較例7では、未接合部分が残る状態となり接合できなかった。このため、比較例6、比較例7では、回転ツールトルク等の測定は行っていない。   The friction stir welding conditions of Comparative Example 6 and Comparative Example 7 are conditions in which the rotary tool is pressed from both the one side and the other side of the steel sheet that satisfies the scope of the present invention, and the preheating process conditions are This is a condition that does not satisfy the scope of the present invention. In Comparative Example 6 and Comparative Example 7, unjoined portions remained and could not be joined. For this reason, in the comparative example 6 and the comparative example 7, measurement of rotating tool torque etc. is not performed.

比較例8の摩擦撹拌接合条件は、本発明の範囲を満足しない鋼板の一方面側から回転ツールを押圧して接合を行う条件で、かつ予熱プロセス条件も本発明の範囲を満足しない条件である。比較例8では、母材の引張強さの90%以上の接合継手強度が得られたが、表面側の回転ツールのトルクが100N・mより大きくなり、塑性流動性に劣っていた。
(実施例2)
板厚が1.6mmであって、上記表1に示す化学組成、引張強さの鋼板を用いて、摩擦撹拌接合を実施した。継手突合せ面は、角度をつけない、いわゆるI型開先でフライス加工程度の表面状態により、鋼板の一方面側、他方面側の両方から回転ツールを押圧して接合を行った。摩擦撹拌接合の接合条件を上記表2に示す。実施例2では、図5に示した断面寸法形状(肩部直径a:12mm、ピン部の最大径b:4mm、プローブ長さc:1.4mm)の回転ツールを用いた。実施例2で用いた回転ツールは、炭化タングステン(WC)を素材として被覆処理を施していないもの、炭化タングステン(WC)を素材として物理蒸着(PVD)により窒化チタン(TiN)の被覆処理を表面に施したもの、炭化タングステン(WC)を素材として窒化アルミクロム(AlCrN)の被覆処理を表面に施したもの、または、立方晶窒化ホウ素(CBN)を素材としたものである。
The friction stir welding conditions of Comparative Example 8 are conditions in which the rotating tool is pressed from one side of the steel sheet that does not satisfy the scope of the present invention and the preheating process conditions do not satisfy the scope of the present invention. . In Comparative Example 8, a joint strength of 90% or more of the tensile strength of the base material was obtained, but the torque of the rotary tool on the surface side was greater than 100 N · m, and the plastic fluidity was poor.
(Example 2)
Friction stir welding was performed using a steel plate having a plate thickness of 1.6 mm and a chemical composition and tensile strength shown in Table 1 above. The joint butting surfaces were joined by pressing a rotating tool from both the one side and the other side of the steel sheet according to the surface state of a so-called I-shaped groove and milling with no angle. The welding conditions for friction stir welding are shown in Table 2 above. In Example 2, the rotary tool having the cross-sectional dimensions (shoulder diameter a: 12 mm, pin portion maximum diameter b: 4 mm, probe length c: 1.4 mm) shown in FIG. 5 was used. The rotary tool used in Example 2 has a surface that is coated with titanium nitride (TiN) by physical vapor deposition (PVD) using tungsten carbide (WC) as a raw material without being coated with tungsten carbide (WC). , Coated with aluminum nitride nitride (AlCrN) using tungsten carbide (WC) as a material, or made of cubic boron nitride (CBN) as a material.

接合時にはアルゴンガスにより接合部をシールドし、表面の酸化を防止した。回転ツールの表面と鋼板との動摩擦係数は炭化タングステン(WC)を素材として被覆処理を施していないものの場合は0.7、炭化タングステン(WC)を素材として物理蒸着(PVD)により窒化チタン(TiN)の被覆処理を施したものの場合は0.5、炭化タングステン(WC)を素材として窒化アルミクロム(AlCrN)の被覆処理を施したものの場合は0.4、立方晶窒化ホウ素(CBN)を素材としたものの場合は0.3であった。   At the time of bonding, the bonded portion was shielded with argon gas to prevent surface oxidation. The coefficient of dynamic friction between the surface of the rotating tool and the steel sheet is 0.7 when tungsten carbide (WC) is not used as a raw material, and titanium nitride (TiN) is formed by physical vapor deposition (PVD) using tungsten carbide (WC) as a raw material. ) Is 0.5, and tungsten carbide (WC) is made of aluminum nitride nitride (AlCrN), and 0.4 is made of cubic boron nitride (CBN). In the case of the above, it was 0.3.

ツール素材表面と鋼板との動摩擦係数は、実施例1と同じ測定方法で測定した。   The dynamic friction coefficient between the tool material surface and the steel plate was measured by the same measurement method as in Example 1.

被加工材の接合前に行ったレーザ照射による予熱プロセス条件を表8に示す。   Table 8 shows preheating process conditions by laser irradiation performed before joining the workpieces.

Figure 0006497451
Figure 0006497451

表8中、炭化タングステン(WC)を素材として皮膜処理を施していない回転ツールを「WC」、炭化タングステン(WC)を素材として物理蒸着(PVD)により窒化チタン(TiN)の被覆処理を施した回転ツールを「WC+TiN」、炭化タングステン(WC)を素材として窒化アルミクロム(AlCrN)の被覆処理を施した回転ツールを「WC+AlCrN」、立方晶窒化ホウ素(CBN)を素材とした回転ツールを「CBN」と示す。予熱プロセス条件におけるレーザ照射条件は上記表3に示す通りであり、また、各レーザ照射条件により形成される加熱領域の表面形状、深さは上記表4に示す通りである。   In Table 8, “WC” is a rotating tool that is not coated with tungsten carbide (WC) as a material, and titanium nitride (TiN) is coated by physical vapor deposition (PVD) with tungsten carbide (WC) as a material. “WC + TiN” as the rotary tool, “WC + AlCrN” as the rotary tool coated with aluminum chromium nitride (AlCrN) using tungsten carbide (WC) as the raw material, and “CBN” as the rotary tool using cubic boron nitride (CBN) as the raw material. ". The laser irradiation conditions in the preheating process conditions are as shown in Table 3 above, and the surface shape and depth of the heating region formed by each laser irradiation condition are as shown in Table 4 above.

実施例2では、接合後のプロセスを行わなかった。接合中央線から加熱領域中心までの距離における「(AS)」、「(RS)」は、加熱領域の中心が、接合中央線からそれぞれアドバンシングサイド、リトリーティングサイドにあることを示す。   In Example 2, the process after joining was not performed. “(AS)” and “(RS)” in the distance from the junction center line to the center of the heating region indicate that the center of the heating region is located on the advansing side and the retreating side from the junction center line, respectively.

表9に、接合を実施した際の回転ツールのトルクの測定値と、得られた接合継手の引張強さの測定値を示す。接合継手の引張強さは、JIS Z 3121で規定する1号試験片の寸法の引張試験片を採取し、引張試験を行った結果である。回転ツールのトルクが大きいほど塑性流動性が低く、欠陥などが生じ易くなる。   Table 9 shows the measured values of the torque of the rotating tool and the measured values of the tensile strength of the obtained joints when the joining is performed. The tensile strength of the joint joint is the result of taking a tensile test piece having the size of No. 1 test piece defined in JIS Z 3121 and conducting a tensile test. The greater the torque of the rotating tool, the lower the plastic fluidity and the more likely to cause defects.

Figure 0006497451
Figure 0006497451

表9より、発明例22〜27では、接合速度を400mm/minとした場合であっても、母材となる鋼板の引張強さの90%以上の接合継手強度が得られた。発明例22〜27の表面側、裏面側のそれぞれの回転ツールのトルクは、いずれも65N・m以下であり、塑性流動性も良好であった。   From Table 9, in the invention examples 22-27, even if it was a case where a joining speed was 400 mm / min, the joint joint intensity | strength 90% or more of the tensile strength of the steel plate used as a base material was obtained. The torques of the rotating tools on the front side and the back side of Invention Examples 22 to 27 were all 65 N · m or less, and the plastic fluidity was also good.

一方、比較例9、10では、表面側、裏面側の両方の回転ツールのトルク回転ツールのトルクが75N・mより大きくなり、塑性流動性に劣っていた。   On the other hand, in Comparative Examples 9 and 10, the torque of the rotary tool on both the front and back rotary tools was greater than 75 N · m, and the plastic fluidity was poor.

発明例28〜33では、接合速度を1000mm/minに高速度化した場合であっても、母材となる鋼板の引張強さの93%以上の接合継手強度が得られ、表面側、裏面側のそれぞれの回転ツールのトルクも86N・m以下であった。一方、比較例11、12では、表面側、裏面側の両方の回転ツールのトルク回転ツールのトルクが90N・mより大きくなり、塑性流動性に劣っていた。   In Invention Examples 28 to 33, even when the joining speed is increased to 1000 mm / min, a joint joint strength of 93% or more of the tensile strength of the steel sheet as the base material can be obtained. The torque of each of the rotary tools was 86 N · m or less. On the other hand, in Comparative Examples 11 and 12, the torque of the rotary tool on both the front and back rotary tools was greater than 90 N · m, and the plastic fluidity was poor.

1 表面側回転ツール
2 表面側回転ツールの回転軸
3 鋼板
4 接合部
5 加熱手段
6 冷却手段
7 後方加熱手段
8 表面側回転ツールの肩部
9 表面側回転ツールのピン部
10 接合中央線
11 RS線
12 加熱領域
13 冷却領域
14 再加熱領域
15 裏面側回転ツール
16 裏面側回転ツールの肩部
17 裏面側回転ツールのピン部
19 裏面側回転ツールの回転軸
20 制御手段
21 把持装置
22 下治具
23 上治具
24 クランプ
a 表面側回転ツールの肩部の直径
b 表面側回転ツールのピン部の最大径
c 表面側回転ツールのピン長
X 加熱領域と回転ツールとの距離
D 加熱領域の深さ
t 鋼板の厚さ
α 表面側回転ツール傾斜角度
β 裏面側回転ツール傾斜角度
DESCRIPTION OF SYMBOLS 1 Surface side rotary tool 2 Rotating shaft of surface side rotary tool 3 Steel plate 4 Joint part 5 Heating means 6 Cooling means 7 Backward heating means 8 Shoulder part of surface side rotary tool 9 Pin part of surface side rotary tool 10 Joining center line 11 RS Line 12 Heating area 13 Cooling area 14 Reheating area 15 Back surface side rotating tool 16 Shoulder portion of back surface side rotating tool 17 Pin portion of back surface side rotating tool 19 Rotating shaft of back surface side rotating tool 20 Control means 21 Gripping device 22 Lower jig 23 Upper jig 24 Clamp a Diameter of shoulder part of surface side rotating tool b Maximum diameter of pin part of surface side rotating tool c Length of pin of surface side rotating tool X Distance between heating area and rotating tool D Depth of heating area t Steel plate thickness α Front side rotation tool inclination angle β Back side rotation tool inclination angle

Claims (22)

一対の回転ツールを被加工材である鋼板の一方面側と他方面側に対向してそれぞれ配置し、鋼板間の未接合部において前記一対の回転ツールを回転させながら接合方向に移動させ、前記一対の回転ツールと前記鋼板との摩擦熱により前記鋼板を軟化させつつ、その軟化した部位を前記一対の回転ツールで撹拌することにより塑性流動を生じさせて鋼板同士を接合する摩擦撹拌接合方法であって、
前記一対の回転ツールの素材もしくは前記一対の回転ツールの表面に被覆された素材と前記鋼板との動摩擦係数は0.6以下であり、
少なくとも一方面側に配置された回転ツールは、肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、
前記肩部および前記ピン部は、前記鋼板よりも硬い材質により形成され、
前記鋼板を固定しつつ、前記一対の回転ツールを前記鋼板の一方面側と他方面側とに押圧させ、前記一対の回転ツールを回転させながら接合方向に移動させるとともに、
前記一方面側に配置された回転ツールの接合方向前方に設けられた加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記一方面側に配置された回転ツールとの最小距離は、前記一方面側の回転ツールの肩部の直径以下であり、
前記加熱領域の面積は、前記一方面側に配置された回転ツールのピン部の最大径部の面積以下であり、
前記加熱領域の面積の65%以上は、前記鋼板の表面における前記一方面側に配置された回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記一方面側に配置された回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する摩擦撹拌接合方法。
≧0.8×TA1・・・(1)
A1は、下記式(2)で示される温度である。
A1(℃)=723−10.7[%Mn]−16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
A pair of rotary tools are respectively arranged facing the one side and the other side of the steel plate as a workpiece, and moved in the joining direction while rotating the pair of rotary tools at the unjoined portion between the steel plates, A friction stir welding method in which the steel plates are softened by frictional heat between a pair of rotating tools and the steel plate, and the softened portions are stirred by the pair of rotating tools to cause plastic flow and join the steel plates together. There,
The dynamic friction coefficient between the steel plate and the material of the pair of rotary tools or the material coated on the surface of the pair of rotary tools is 0.6 or less,
The rotating tool disposed on at least one surface side includes a shoulder portion and a pin portion arranged on the shoulder portion and sharing the rotation axis with the shoulder portion,
The shoulder portion and the pin portion are formed of a material harder than the steel plate,
While fixing the steel plate, pressing the pair of rotary tools against one side and the other side of the steel plate, moving the pair of rotary tools in the joining direction while rotating,
A region in which the temperature T S (° C.) of the surface of the steel sheet heated by the heating means provided in front of the rotating tool arranged on the one surface side satisfies the following formula (1) is defined as a heating region. When the minimum distance between the heating area and the rotating tool disposed on the one surface side is equal to or less than the diameter of the shoulder of the rotating tool on the one surface side,
The area of the heating region is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool disposed on the one surface side,
65% or more of the area of the heating region is parallel to the joining center line, which is a straight line passing through the rotation axis of the rotary tool arranged on the one surface side of the steel plate and parallel to the joining direction. And a straight line separated by the same distance as the maximum radius of the pin portion of the rotary tool arranged on the one surface side to the retreating side.
T S ≧ 0.8 × T A1 (1)
T A1 is a temperature represented by the following formula (2).
T A1 (° C.) = 723-10.7 [% Mn] −16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] · (2)
Said [% M] is content (mass%) of M element in the steel plate which is a workpiece, and is set to 0 when not containing.
前記一対の回転ツールの両方は、前記肩部と前記ピン部とを含み、前記一対の回転ツールのピン長は同じ長さである請求項1に記載の摩擦撹拌接合方法。   The friction stir welding method according to claim 1, wherein both of the pair of rotating tools include the shoulder portion and the pin portion, and the pair of rotating tools have the same pin length. 前記一対の回転ツールの両方は、肩部と前記ピン部と、を含み、前記一方面側に配置された回転ツールのピン長は、前記他方面側に配置された回転ツールのピン長より短い請求項1に記載の摩擦撹拌接合方法。   Both of the pair of rotary tools include a shoulder portion and the pin portion, and the pin length of the rotary tool arranged on the one surface side is shorter than the pin length of the rotary tool arranged on the other surface side. The friction stir welding method according to claim 1. 前記一対の回転ツールの少なくとも一方の回転ツールの軸芯は、該回転ツールの接合方向に対してピン部が先行する方向に傾けられている請求項1から請求項3のいずれか一項に記載の摩擦撹拌接合方法。   4. The axial center of at least one rotary tool of the pair of rotary tools is tilted in a direction in which the pin portion precedes the joining direction of the rotary tool. Friction stir welding method. 前記一方面側に配置された回転ツールの回転方向は、前記他方面側に配置された回転ツールの回転方向の逆方向である請求項1から請求項4のいずれか一項に記載の摩擦撹拌接合方法。   The friction stirrer according to any one of claims 1 to 4, wherein a rotation direction of the rotary tool arranged on the one surface side is a direction opposite to a rotation direction of the rotary tool arranged on the other surface side. Joining method. 前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、該加熱領域の深さDは、前記鋼板の厚さの100%である請求項1から請求項5のいずれか一項に記載の摩擦撹拌接合方法。
≧0.8×TA1・・・(3)
When the depth from the surface of the steel sheet in the region where the temperature T D (° C.) in the thickness direction of the heating region satisfies the following formula (3) is defined as the depth D of the heating region, the depth of the heating region The friction stir welding method according to any one of claims 1 to 5, wherein D is 100% of the thickness of the steel plate.
T D ≧ 0.8 × T A1 (3)
前記加熱手段は、レーザ加熱装置である請求項1から請求項6のいずれか一項に記載の摩擦撹拌接合方法。   The friction stir welding method according to any one of claims 1 to 6, wherein the heating means is a laser heating device. 前記一方面側に配置された回転ツールの接合方向後方には後方加熱手段が設けられ、該後方加熱手段は、前記鋼板の接合部を加熱する請求項1から請求項7のいずれか一項に記載の摩擦撹拌接合方法。   The back heating means is provided in the joining direction rear side of the rotary tool arranged on the one surface side, and the back heating means heats the joining portion of the steel sheet. The friction stir welding method described. 前記後方加熱手段の接合方向後方には冷却手段が設けられ、該冷却手段は、前記後方加熱手段により加熱された前記接合部を冷却する請求項8に記載の摩擦撹拌接合方法。   The friction stir welding method according to claim 8, wherein a cooling means is provided behind the rear heating means in the joining direction, and the cooling means cools the joint heated by the rear heating means. 前記回転ツールの接合方向後方には冷却手段が設けられ、該冷却手段は、前記鋼板の接合部を冷却する請求項1から請求項7のいずれか一項に記載の摩擦撹拌接合方法。   The friction stir welding method according to any one of claims 1 to 7, wherein a cooling means is provided behind the rotating tool in the joining direction, and the cooling means cools the joining portion of the steel sheet. 前記冷却手段の接合方向後方には後方加熱手段が設けられ、該後方加熱手段は、前記冷却手段により冷却された前記接合部を加熱する請求項10に記載の摩擦撹拌接合方法。   The friction stir welding method according to claim 10, wherein a rear heating means is provided at the rear of the cooling means in the joining direction, and the rear heating means heats the joining portion cooled by the cooling means. 被加工材である鋼板間の未接合部を接合する摩擦撹拌接合装置であって、
前記鋼板を固定する把持装置と、
前記鋼板の一方面側と他方面側とに対向して配置され、鋼板間の未接合部において回転しながら接合方向へ移動可能な一対の回転ツールと、
前記一方面側に配置された回転ツールの接合方向前方に設けられ、前記鋼板を加熱する加熱手段と、
下記状態1を実現するように前記回転ツールおよび前記加熱手段を制御する制御手段と、を有し、
少なくとも一方面側に配置された回転ツールは、肩部と、該肩部に配され、該肩部と回転軸を共有するピン部と、を含み、
前記肩部および前記ピン部は、前記鋼板よりも硬い材質により形成され、
前記一対の回転ツールの素材、もしくは前記一対の回転ツールの表面に被覆された素材と前記鋼板との動摩擦係数は0.6以下である摩擦撹拌接合装置。
(状態1)
前記加熱手段により加熱された前記鋼板の表面の温度T(℃)が下記式(1)を満足する領域を加熱領域としたとき、前記加熱領域と前記一方面側に配置された回転ツールとの最小距離は、前記一方面側に配置された回転ツールの肩部の直径以下であり、
前記鋼板の表面における前記加熱領域の面積は、前記一方面側に配置された回転ツールのピン部の最大径部の面積以下であり、
前記加熱領域の面積の65%以上は、前記鋼板の表面における前記一方面側に配置された回転ツールの回転軸を通り接合方向に平行な直線である接合中央線と、該接合中央線に平行で、かつリトリーティングサイドへ前記一方面側に配置された回転ツールのピン部の最大半径と同じ距離だけ隔てた直線と、の間に位置する。
≧0.8×TA1・・・(1)
A1は、下記式(2)で示される温度である。
A1(℃)=723−10.7[%Mn]−16.9[%Ni]+29.1[%Si]+16.9[%Cr]+290[%As]+6.38[%W]・・・(2)
上記[%M]は、被加工材である鋼板におけるM元素の含有量(質量%)であり、含有しない場合は0とする。
A friction stir welding apparatus that joins unjoined portions between steel plates that are workpieces,
A gripping device for fixing the steel plate;
A pair of rotating tools that are arranged opposite to the one surface side and the other surface side of the steel plate and are movable in the joining direction while rotating in the unjoined portion between the steel plates,
A heating means for heating the steel plate, provided in front of the rotating direction of the rotary tool disposed on the one surface side;
Control means for controlling the rotating tool and the heating means so as to realize the following state 1;
The rotating tool disposed on at least one surface side includes a shoulder portion and a pin portion arranged on the shoulder portion and sharing the rotation axis with the shoulder portion,
The shoulder portion and the pin portion are formed of a material harder than the steel plate,
The friction stir welding apparatus, wherein a dynamic friction coefficient between the steel plate and the material of the pair of rotary tools or the material coated on the surface of the pair of rotary tools is 0.6 or less.
(State 1)
When the region where the temperature T S (° C.) of the surface of the steel sheet heated by the heating unit satisfies the following formula (1) is defined as the heating region, the heating region and the rotating tool disposed on the one surface side; The minimum distance is less than or equal to the diameter of the shoulder of the rotating tool disposed on the one surface side,
The area of the heating region on the surface of the steel sheet is equal to or less than the area of the maximum diameter portion of the pin portion of the rotary tool disposed on the one surface side,
65% or more of the area of the heating region is parallel to the joining center line, which is a straight line passing through the rotation axis of the rotary tool arranged on the one surface side of the steel plate and parallel to the joining direction. And a straight line separated from the retreating side by the same distance as the maximum radius of the pin portion of the rotary tool arranged on the one surface side.
T S ≧ 0.8 × T A1 (1)
T A1 is a temperature represented by the following formula (2).
T A1 (° C.) = 723-10.7 [% Mn] −16.9 [% Ni] +29.1 [% Si] +16.9 [% Cr] +290 [% As] +6.38 [% W] · (2)
Said [% M] is content (mass%) of M element in the steel plate which is a workpiece, and is set to 0 when not containing.
前記一対の回転ツールの両方は、前記肩部と前記ピン部とを含み、前記一対の回転ツールのピン長は同じ長さである請求項12に記載の摩擦撹拌接合装置。   The friction stir welding apparatus according to claim 12, wherein both of the pair of rotating tools include the shoulder portion and the pin portion, and the pair of rotating tools have the same pin length. 前記一対の回転ツールの両方は、前記肩部と前記ピン部と、を含み、前記一方面側に配置された回転ツールのピン長は、前記他方面側に配置された回転ツールのピン長より短い請求項12に記載の摩擦撹拌接合装置。   Both of the pair of rotary tools include the shoulder portion and the pin portion, and the pin length of the rotary tool arranged on the one surface side is larger than the pin length of the rotary tool arranged on the other surface side. The friction stir welding apparatus according to claim 12, which is short. 前記一対の回転ツールにおける少なくとも一方の回転ツールの軸芯は、接合方向に対してピン部が先行する方向に傾けられる請求項12から請求項14のいずれか一項に記載の摩擦撹拌接合装置。   The friction stir welding apparatus according to any one of claims 12 to 14, wherein an axis of at least one rotary tool in the pair of rotary tools is inclined in a direction in which the pin portion precedes the joining direction. 前記一方面側に配置された回転ツールの回転方向は、前記他方面側に配置された回転ツールの回転方向の逆方向である請求項12から請求項15のいずれか一項に記載の摩擦撹拌接合装置。   The friction stirrer according to any one of claims 12 to 15, wherein a rotation direction of the rotary tool arranged on the one surface side is a direction opposite to a rotation direction of the rotary tool arranged on the other surface side. Joining device. 前記制御手段は、以下の状態2を実現するように前記回転ツール及び前記加熱手段を制御する請求項12から請求項16のいずれか一項に記載の摩擦撹拌接合装置。
(状態2)
前記加熱領域の厚さ方向の温度T(℃)が下記式(3)を満足する領域における前記鋼板の表面からの深さを加熱領域の深さDとしたとき、該加熱領域の深さDは、前記鋼板の厚さtの100%である。
≧0.8×TA1・・・(3)
The friction stir welding apparatus according to any one of claims 12 to 16, wherein the control means controls the rotating tool and the heating means so as to realize the following state 2.
(State 2)
When the depth from the surface of the steel sheet in the region where the temperature T D (° C.) in the thickness direction of the heating region satisfies the following formula (3) is defined as the depth D of the heating region, the depth of the heating region D is 100% of the thickness t of the steel sheet.
T D ≧ 0.8 × T A1 (3)
前記加熱手段は、レーザ加熱装置である請求項12から請求項17のいずれか一項に記載の摩擦撹拌接合装置。   The friction stir welding apparatus according to any one of claims 12 to 17, wherein the heating means is a laser heating apparatus. 前記鋼板の接合部を加熱する後方加熱手段をさらに有し、
該後方加熱手段は、前記回転ツールの接合方向後方に設けられる請求項12から請求項18のいずれか一項に記載の摩擦撹拌接合装置。
It further has a rear heating means for heating the joined portion of the steel sheet,
The friction stir welding apparatus according to any one of claims 12 to 18, wherein the rear heating means is provided rearward in the joining direction of the rotary tool.
前記接合部を冷却する冷却手段をさらに有し、
該冷却手段は、前記後方加熱手段の接合方向後方に設けられる請求項19に記載の摩擦撹拌接合装置。
A cooling means for cooling the joint;
The friction stir welding apparatus according to claim 19, wherein the cooling means is provided behind the rear heating means in the joining direction.
前記鋼板の接合部を冷却する冷却手段をさらに有し、
該冷却手段は、前記回転ツールの接合方向後方に設けられる請求項12から請求項18のいずれか一項に記載の摩擦撹拌接合装置。
A cooling means for cooling the joint of the steel plates;
The friction stir welding apparatus according to any one of claims 12 to 18, wherein the cooling means is provided behind the rotating tool in the joining direction.
前記接合部を加熱する後方加熱手段をさらに有し、
該後方加熱手段は、前記冷却手段の接合方向後方に設けられる請求項21に記載の摩擦撹拌接合装置。
A rear heating means for heating the joint;
The friction stir welding apparatus according to claim 21, wherein the rear heating means is provided rearward in the joining direction of the cooling means.
JP2017559718A 2016-10-11 2017-10-04 Friction stir welding method and apparatus Active JP6497451B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016199831 2016-10-11
JP2016199831 2016-10-11
PCT/JP2017/036093 WO2018070317A1 (en) 2016-10-11 2017-10-04 Friction stir welding method and device

Publications (2)

Publication Number Publication Date
JPWO2018070317A1 JPWO2018070317A1 (en) 2018-10-11
JP6497451B2 true JP6497451B2 (en) 2019-04-10

Family

ID=61905662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559718A Active JP6497451B2 (en) 2016-10-11 2017-10-04 Friction stir welding method and apparatus

Country Status (4)

Country Link
JP (1) JP6497451B2 (en)
KR (1) KR102181820B1 (en)
CN (1) CN109803784B (en)
WO (1) WO2018070317A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071223B1 (en) * 2018-06-28 2020-03-02 선문대학교 산학협력단 Welding method and apparatus for dissimilar metals
CN111283318B (en) * 2020-03-24 2021-09-10 南京工业大学 Double-sided micro-channel radiator for inhibiting delta phase of FSW joint and use method
EP4378617A1 (en) * 2021-09-13 2024-06-05 JFE Steel Corporation Friction stir welding method for electromagnetic steel strip, and method for manufacturing electromagnetic steel strip
MX2024003124A (en) * 2021-09-13 2024-04-09 Jfe Steel Corp ELECTRICAL STEEL STRIP WITH WELDED JOINT AND FRICTION STIR WELDING METHOD, AND ELECTRICAL STEEL STRIP PRODUCTION METHOD.
WO2023100420A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Friction stir welding method for electromagnetic steel strip and method for manufacturing electromagnetic steel strip
WO2023100419A1 (en) * 2021-11-30 2023-06-08 Jfeスチール株式会社 Method for friction-stir-welding electromagnetic steel strip, method for manufacturing electromagnetic steel strip, friction stir welding device, and device for manufacturing electromagnetic steel strip
KR20250020626A (en) * 2022-08-23 2025-02-11 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip
WO2024042774A1 (en) * 2022-08-23 2024-02-29 Jfeスチール株式会社 Friction stir joining method for electromagnetic steel strip, method for manufacturing electromagnetic steel strip, friction stir joining device, and device for manufacturing electromagnetic steel strip
WO2024042773A1 (en) * 2022-08-23 2024-02-29 Jfeスチール株式会社 Electromagnetic steel strip friction stir welding method, electromagnetic steel strip manufacturing method, friction stir welding device, and electromagnetic steel strip manufacturing device
KR20250020625A (en) * 2022-08-23 2025-02-11 제이에프이 스틸 가부시키가이샤 Friction stir welding method of electronic steel strip, manufacturing method of electronic steel strip, friction stir welding device and manufacturing device of electronic steel strip

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838385B1 (en) 1969-02-25 1973-11-16
GB8601083D0 (en) 1986-01-17 1986-02-19 Welding Inst Friction welding
GB9125978D0 (en) 1991-12-06 1992-02-05 Welding Inst Hot shear butt welding
JP3261433B2 (en) 1999-05-25 2002-03-04 川崎重工業株式会社 Joining apparatus and joining method
CN1329158C (en) 2000-05-08 2007-08-01 布莱阿姆青年大学 Friction stir welding using super abrasive tools
JP4235874B2 (en) 2001-09-20 2009-03-11 株式会社安川電機 Friction stir welding method heating device
JP4313714B2 (en) 2004-03-31 2009-08-12 日本車輌製造株式会社 Friction stir welding apparatus and friction stir welding method
JP4838385B2 (en) * 2009-08-31 2011-12-14 三菱日立製鉄機械株式会社 Double-side friction stir welding method, joining apparatus, metal plate joining method for cold rolling equipment, and cold rolling equipment
US20110127311A1 (en) * 2009-11-02 2011-06-02 Jeremy Peterson Out of position friction stir welding of casing and small diameter tubing or pipe
JP2015045299A (en) 2013-08-29 2015-03-12 トヨタ自動車株式会社 Cooling system for automobile
WO2015045299A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Friction stir welding method for structural steel and manufacturing method for bonded joint for structural steel
MX2018011876A (en) * 2016-03-31 2018-12-17 Jfe Steel Corp Method and device for friction stir bonding of structural steel.

Also Published As

Publication number Publication date
JPWO2018070317A1 (en) 2018-10-11
CN109803784B (en) 2021-09-28
KR102181820B1 (en) 2020-11-24
CN109803784A (en) 2019-05-24
WO2018070317A1 (en) 2018-04-19
KR20190039985A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6497451B2 (en) Friction stir welding method and apparatus
JP5943142B2 (en) Friction stir welding method for structural steel and method for manufacturing a joint for structural steel
JP6004147B1 (en) Friction stir welding equipment for structural steel
JP6332561B2 (en) Friction stir welding method and apparatus for structural steel
JP6992773B2 (en) Double-sided friction stir welding method and double-sided friction stir welding device
JP6332562B2 (en) Friction stir welding method and apparatus for structural steel
JP6493564B2 (en) Friction stir welding method and apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R150 Certificate of patent or registration of utility model

Ref document number: 6497451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250