JP2020122674A - Method for calculating diffusion flow rate or leakage hole size, reference leakage element selection method, and threshold value setting method for leakage test device - Google Patents
Method for calculating diffusion flow rate or leakage hole size, reference leakage element selection method, and threshold value setting method for leakage test device Download PDFInfo
- Publication number
- JP2020122674A JP2020122674A JP2019013395A JP2019013395A JP2020122674A JP 2020122674 A JP2020122674 A JP 2020122674A JP 2019013395 A JP2019013395 A JP 2019013395A JP 2019013395 A JP2019013395 A JP 2019013395A JP 2020122674 A JP2020122674 A JP 2020122674A
- Authority
- JP
- Japan
- Prior art keywords
- leak
- space
- diffusion
- flow rate
- leakage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 126
- 238000012360 testing method Methods 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000010187 selection method Methods 0.000 title claims 2
- 230000008569 process Effects 0.000 claims abstract description 19
- 230000014509 gene expression Effects 0.000 claims abstract description 18
- 238000005192 partition Methods 0.000 claims abstract description 10
- 239000002775 capsule Substances 0.000 claims description 42
- 238000001514 detection method Methods 0.000 claims description 22
- 238000007689 inspection Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
本発明は、漏れ孔を有する隔壁で隔離された2つの空間での特定分子の拡散流量と漏れ孔寸法との関係を確立し、この関係から拡散流量又は漏れ孔寸法を演算する方法、および拡散流量の許容限界値に基づき演算された漏れ孔の径に基づき基準漏れ素子を選定する方法、および選定された基準漏れ素子を用いて密閉空間を有する検査対象のためのリークテスト装置における閾値を設定する方法に関する。 The present invention establishes a relationship between the diffusion flow rate of a specific molecule and the leakage hole size in two spaces separated by a partition having a leakage hole, and a method of calculating the diffusion flow rate or the leakage hole size from this relationship, and the diffusion method. A method for selecting a reference leak element based on the diameter of the leak hole calculated based on the allowable limit value of the flow rate, and a threshold value in the leak test apparatus for the inspection target having a closed space using the selected reference leak element On how to do.
医薬品等は、品質保証期間内での品質の劣化を防ぐために、密封容器に収容されており大気から遮断されている。しかし、密封容器にピンホールがあると、上記医薬品等の内容物を劣化させる特定分子例えば水蒸気や酸素等が密閉空間内に侵入する可能性がある。そのため、リークテスト装置を用いてピンホールがある密封容器を不良品として判別して排除する必要がある。 Pharmaceutical products are contained in a sealed container and shielded from the atmosphere in order to prevent deterioration of quality within the quality assurance period. However, if the sealed container has a pinhole, there is a possibility that specific molecules such as water vapor and oxygen that deteriorate the contents such as the above-mentioned medicine may enter the sealed space. Therefore, it is necessary to use a leak test device to identify and exclude a sealed container having a pinhole as a defective product.
後記の特許文献1のリークテスト装置は、基本構成として、テスト圧源と、ワークカプセルと、ワークカプセル内の圧力変動を検出する圧力センサとを備えている。ワークカプセルに検査対象としての密封容器を収容して封鎖し、テスト圧源からテスト圧のエアをワークカプセルに供給し、その後でテスト圧源とワークカプセルを遮断し、圧力センサによりワークカプセル内の圧力を監視する。密封容器にピンホールが存在する場合には、ワークカプセル内の空気がピンホールを通って密封容器内に入り込む(漏れる)ため、ワークカプセル内の圧力が低下する。リークテスト装置の判定部では、この圧力変動に対応する圧力センサの検出出力を閾値と比較し、検出出力が閾値未満であれば密封容器を良品と判断し、閾値を超えている場合にはピンホールがある不良品と判断する。
The leak test apparatus of
上記リークテスト装置での閾値は、上記密封容器における特定分子の侵入量の許容限界値と対応して設定する必要がある。
特許文献1では、特定分子の侵入量の許容限界値と対応する閾値を設定するために、基準漏れ素子選定工程と閾値設定工程を実行している。以下、詳述する。
The threshold value in the leak test device needs to be set in correspondence with the allowable limit value of the amount of the specific molecule invading the sealed container.
In
基準漏れ素子選定工程では、2つの密閉室を隔壁で仕切った試験容器を用意する。一方の密閉室は大気環境を擬している。他方の密閉室は検査対象となる密封容器の内部を擬したものであり、例えば窒素等の不活性ガスが充填されている。
上記隔壁には、漏れ孔を有する漏れ素子が設置されている。この漏れ孔は、密封容器においてピンホールが発生する可能性がある箇所での厚さ(ピンホールの長さ)と等しい経路長を有している。
In the reference leakage element selection step, a test container in which two sealed chambers are partitioned by a partition is prepared. One closed chamber mimics the atmospheric environment. The other closed chamber imitates the inside of a sealed container to be inspected, and is filled with an inert gas such as nitrogen.
A leak element having a leak hole is installed on the partition wall. The leak hole has a path length equal to the thickness (the length of the pinhole) at a position where a pinhole may occur in the sealed container.
上記試験容器の2つの密閉室を一定期間(例えば数日又は数週間)維持した後に、一方の密閉室の空気中の特定分子(酸素や水蒸気等)が他方の室に入り込んだ侵入量を測定する。この特定分子の測定侵入量を、品質保証期間において品質を維持するための侵入量の許容限界値と比較する。
上記試験を、異なる漏れ孔径を有する複数の漏れ素子を用いて行い、上記許容限界値に相当する量の侵入量が生じた漏れ素子を基準漏れ素子として選定する。
After maintaining the two closed chambers of the test container for a certain period (for example, several days or several weeks), measure the amount of invasion of specific molecules (oxygen, water vapor, etc.) in the air in one closed chamber into the other chamber. To do. The measured penetration amount of this specific molecule is compared with the permissible limit value of the penetration amount for maintaining the quality during the quality assurance period.
The above test is performed using a plurality of leak elements having different leak hole diameters, and the leak element in which the amount of intrusion corresponding to the allowable limit value has occurred is selected as the reference leak element.
次の閾値設定工程では、上記選定された基準漏れ素子を、検査対象と等しい構成をなす密封容器に装着して、基準漏れワークを作製する。この基準漏れワークについて検査対象と同様のリークテストを実行する。このリークテストでの圧力センサの検出出力は、選定された基準漏れ素子により生じる基準漏れ量に対応している。この検出出力に基づき上記閾値を設定する。 In the next threshold value setting step, the selected reference leak element is mounted in a sealed container having the same structure as the inspection target to produce a reference leak work. A leak test similar to the inspection target is executed for this reference leak work. The detection output of the pressure sensor in this leak test corresponds to the reference leak amount generated by the selected reference leak element. The threshold value is set based on this detection output.
特許文献1に示す基準漏れ素子選定では、漏れ孔の径が異なる複数の漏れ素子について長期にわたって試験する必要があり、閾値設定のためのコストが嵩む欠点がある。
In the reference leak element selection shown in
前記課題を解決するために、本発明者は、特定分子の拡散流量と漏れ孔寸法との関係を理論的に究明し、その関係を確立した。より具体的には下記の通りである。
本発明は、特定分子を含む第1空間と、上記第1空間と同圧で上記特定分子のモル濃度が第1空間より低い第2空間とを、漏れ孔を有する隔壁で隔離した拡散モデルにおいて、
上記特定分子が上記第1空間から上記漏れ孔を通って上記第2空間へと拡散する際の全拡散抵抗を、それぞれが漏れ孔寸法の関数である、
(a)上記漏れ孔を通る過程での漏れ孔内拡散抵抗と、
(b)上記特定分子が上記第1空間から上記漏れ孔に向かう過程での第1空間拡散抵抗と、
(c)上記特定分子が上記漏れ孔から上記第2空間に広がる過程での第2空間拡散抵抗、
の和として定め、
上記全拡散抵抗に基づき、漏れ孔寸法と、上記特定分子が上記第1空間から上記漏れ孔を通って上記第2空間へと拡散する拡散流量との関係を定め、この関係に基づき、上記漏れ孔寸法から上記拡散流量を演算するか、または上記拡散流量から上記漏れ孔寸法を演算することを特徴とする。
In order to solve the above-mentioned problem, the present inventor theoretically investigated the relationship between the diffusion flow rate of a specific molecule and the leak hole size, and established the relationship. More specifically, it is as follows.
The present invention provides a diffusion model in which a first space containing a specific molecule and a second space having the same pressure as the first space and a molar concentration of the specific molecule lower than the first space are isolated by a partition wall having a leak hole. ,
The total diffusion resistance of the particular molecule from the first space through the leak to the second space, each being a function of leak size,
(A) Diffusion resistance in the leak hole in the process of passing through the leak hole,
(B) a first space diffusion resistance in the process in which the specific molecule moves from the first space to the leak hole,
(C) A second space diffusion resistance in the process in which the specific molecule spreads from the leak hole to the second space,
Defined as the sum of
Based on the total diffusion resistance, the relationship between the leak hole size and the diffusion flow rate at which the specific molecule diffuses from the first space through the leak hole to the second space is determined, and based on this relationship, the leak The diffusion flow rate is calculated from the hole size, or the leak hole size is calculated from the diffusion flow rate.
上記方法によれば、漏れ孔を介して隔離された2つの空間での特定分子の拡散流量と漏れ孔寸法との関係を、漏れ孔内拡散抵抗のみならず、第1空間拡散抵抗と第2空間拡散抵抗をも加えて設定したので、拡散流量または漏れ孔寸法を正確に求めることができる。その結果、これら拡散流量または漏れ孔寸法を求めるための試験を省略できるか、試験の負担を軽減できる。
上記のようにして確立した関係は、後述のリークテストのみならず幅広く利用することができる。例えば、既知の漏れ孔(ピンホール等)がある場合の特定分子の拡散流量を予測したり、特定分子の所定の拡散流量が生じるための漏れ孔の寸法を特定することができる。
According to the above method, the relationship between the diffusion flow rate of the specific molecule and the leak hole size in the two spaces isolated via the leak hole is determined not only in the leak hole diffusion resistance but also in the first space diffusion resistance and the second space diffusion resistance. Since the space diffusion resistance is also set, the diffusion flow rate or the leak hole size can be accurately obtained. As a result, the test for determining the diffusion flow rate or the leak hole size can be omitted or the test load can be reduced.
The relationship established as described above can be widely used not only in the leak test described below. For example, it is possible to predict the diffusion flow rate of a specific molecule when there is a known leakage hole (pinhole, etc.), or to specify the size of the leakage hole for causing a predetermined diffusion flow rate of the specific molecule.
好ましくは、さらに上記漏れ孔寸法のうち経路長を既知として、上記漏れ孔の径から上記特定分子の拡散流量を演算するか、または上記拡散流量から上記漏れ孔の径を演算する。
上記方法によれば、拡散流量又は漏れ孔の径を正確に演算することができる。
Preferably, the path length among the leak hole dimensions is known, and the diffusion flow rate of the specific molecule is calculated from the leak hole diameter, or the leak hole diameter is calculated from the diffusion flow rate.
According to the above method, the diffusion flow rate or the diameter of the leak hole can be accurately calculated.
好ましくは、上記第1空間を大気に擬して、上記特定分子の上記拡散流量の許容限界値に対応する上記漏れ孔の径を演算する。
上記方法によれば、大気中に置かれた密封容器において、大気中の特定分子がピンホールを介して密封容器内に拡散する許容限界値から、ピンホールの径を特定することができる。
Preferably, the diameter of the leak hole corresponding to the permissible limit value of the diffusion flow rate of the specific molecule is calculated by simulating the first space as the atmosphere.
According to the above method, in a sealed container placed in the atmosphere, the diameter of the pinhole can be specified from the allowable limit value for the specific molecule in the atmosphere to diffuse into the sealed container through the pinhole.
好ましくは、上記拡散流量Qと、上記第1空間と上記第2空間での上記特定分子のモル濃度差ΔMと、上記漏れ孔内拡散抵抗Z0と、上記第1空間拡散抵抗Z1と、上記第2空間拡散抵抗Z2との第1の関係を下記式(1)で定め、
Q=ΔM/(Z0+Z1+Z2)・・・(1)
上記漏れ孔内拡散抵抗Z0と上記第1空間拡散抵抗Z1と上記第2空間拡散抵抗Z2のそれぞれと、相互拡散係数Dmおよび上記漏れ孔寸法としての上記漏れ孔の経路長Lと上記漏れ孔の径dの間の第2の関係を下記式(2)〜(4)で定め、
Z0=1/(2Dm・d) ・・・(2)
Z1=L/(Dm・(πd2/4)) ・・・(3)
Z2=1/(2Dm・d) ・・・(4)
上記第1の関係と上記第2の関係に基づき、上記モル濃度差ΔMおよび上記相互拡散係数Dmを既知として、上記拡散流量Qと上記経路長Lおよび径dとの間の第3の関係を定め、
上記第3の関係に基づき、上記漏れ孔寸法から上記拡散流量Qを演算するか、または上記拡散流量Qから上記漏れ孔寸法を演算する。
Preferably, the diffusion flow rate Q, the molar concentration difference ΔM of the specific molecule in the first space and the second space, the diffusion resistance in the leak hole Z 0 , the first space diffusion resistance Z 1 , The first relationship with the second space diffusion resistance Z 2 is defined by the following equation (1),
Q=ΔM/(Z 0 +Z 1 +Z 2 )... (1)
Each of the diffusion resistance in the leak hole Z 0 , the first space diffusion resistance Z 1 , the second space diffusion resistance Z 2 , the mutual diffusion coefficient Dm, and the path length L of the leak hole as the leak hole dimension and the above. A second relationship between the diameters d of the leak holes is defined by the following equations (2) to (4),
Z 0 =1/(2D m ·d) (2)
Z 1 =L/(D m ·(πd 2 /4)) (3)
Z 2 =1/(2D m ·d) (4)
Based on the first relationship and the second relationship, the third relationship between the diffusion flow rate Q and the path length L and the diameter d is defined with the molar concentration difference ΔM and the mutual diffusion coefficient Dm being known. Stipulated,
Based on the third relationship, the diffusion flow rate Q is calculated from the leakage hole size, or the leakage hole size is calculated from the diffusion flow rate Q.
上記式(1)と式(2)、(3)、(4)に基づき、上記第3の関係を下記式で求める。
好ましくは、上記式(5)またはこれと均等の関係式を格納したコンピュータを用意し、上記コンピュータに上記モル濃度差ΔM、上記相互拡散係数Dm、上記漏れ孔の経路長L、拡散流量Qの許容限界値を入力して、上記漏れ孔の径dを導く。 Preferably, a computer storing the equation (5) or a relational expression equivalent thereto is prepared, and the computer stores the molar concentration difference ΔM, the mutual diffusion coefficient Dm, the path length L of the leak hole, and the diffusion flow rate Q. By inputting an allowable limit value, the diameter d of the leak hole is derived.
本発明の他の態様によれば、上記の演算された上記漏れ孔の径またはこの径に安全係数を乗じた径の基準漏れ孔を有する基準漏れ素子を選定する。
上記方法によれば、基準漏れ素子の選定に際して、試験を省略できるか試験の負担を軽減することができる。
According to another aspect of the present invention, a reference leak element having a reference leak hole having the calculated diameter of the leak hole or a diameter obtained by multiplying the leak hole by a safety factor is selected.
According to the above method, when selecting the reference leakage element, the test can be omitted or the test load can be reduced.
本発明のさらに他の態様によれば、テスト圧源と、ワークカプセルと、上記ワークカプセル内の圧力変動を検出する圧力センサとを備え、上記ワークカプセルに密閉空間を有する検査対象を収容して封鎖し、上記テスト圧源からテスト圧のエアを上記ワークカプセルに供給した後、上記テスト圧源と上記ワークカプセルを遮断し、上記圧力センサにより上記ワークカプセル内の圧力変動を検出し、この圧力センサの検出出力を閾値と比較することにより上記検査対象のリークテストを実行するリークテスト装置を用意し、
上記検査対象と等しい構成を有する基準漏れ用検査対象に上記の選定された基準漏れ素子を装着することにより、基準漏れワークを得、
上記基準漏れワークを上記検査対象の代わりに上記リークテスト装置の上記ワークカプセルに収容し、上記検査対象のリークテストと同じ工程を実行して、上記検出出力を得、この検出出力に基づき上記閾値を決定する。
上記方法によれば、閾値設定作業の負担を軽減できる。
According to still another aspect of the present invention, a test pressure source, a work capsule, and a pressure sensor for detecting a pressure fluctuation in the work capsule are provided, and the work capsule contains an inspection target having a closed space. After blocking and supplying test pressure air from the test pressure source to the work capsule, the test pressure source and the work capsule are shut off, and the pressure fluctuation in the work capsule is detected by the pressure sensor, and this pressure is detected. Prepare a leak test device that executes the leak test of the above inspection target by comparing the detection output of the sensor with a threshold,
By attaching the selected reference leakage element to the inspection object for reference leakage having the same configuration as the inspection object, a reference leakage work is obtained,
The reference leaked work is stored in the work capsule of the leak test device instead of the inspection target, the same process as the leak test of the inspection target is performed, and the detection output is obtained, and the threshold value is based on the detection output. To decide.
According to the above method, the burden of the threshold setting work can be reduced.
本発明によれば、漏れ孔を介して隔離された2つの空間での特定分子の拡散流量と漏れ孔寸法との関係を正確に求めることができ、これら拡散流量または漏れ孔寸法を求めるための試験を省略できるか試験の負担を軽減できる。 According to the present invention, the relationship between the diffusion flow rate of a specific molecule and the leak hole size in two spaces isolated via the leak hole can be accurately obtained, and the relationship between the diffusion flow rate or the leak hole size can be obtained. Can the test be omitted or the test burden can be reduced?
以下、本発明の実施形態を図面にしたがって説明する。図1は、本発明を説明するための拡散モデルを示す。この拡散モデルにおいて、断面円形の漏れ孔1aが形成された隔壁1により、第1、第2の2つの空間S1,S2が隔離されている。隔壁1の厚さ(漏れ孔1aの経路長)を符号L、漏れ孔1aの径を符号dで示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a diffusion model for explaining the present invention. In this diffusion model, the first and second spaces S1 and S2 are isolated by the
第1空間S1と第2空間S2は同圧である。第1空間S1での特定分子のモル濃度M1が第2空間S2でのモル濃度M2より高い。この特定分子が第1空間S1から漏れ孔1aを通って第2空間S2へと拡散する単位時間当たりのモル量Q(mol/sec:以下、拡散流量と言う)は、下記式で表すことができる。
Q=C・ΔM ・・・(6)
ただし、Cはコンダクタンス(m3/sec)、ΔMは空間S1,S2間のモル濃度差M1−M2(mol/m3)である。
The first space S1 and the second space S2 have the same pressure. The molar concentration M 1 of the specific molecule in the first space S1 is higher than the molar concentration M 2 in the second space S2. A molar amount Q (mol/sec: hereinafter, referred to as a diffusion flow rate) per unit time that the specific molecule diffuses from the first space S1 to the second space S2 through the
Q=C·ΔM (6)
Here, C is conductance (m 3 /sec), and ΔM is a molar concentration difference M 1 -M 2 (mol/m 3 ) between the spaces S1 and S2.
本発明者は、当初、漏れ孔1a内の拡散現象だけに着目し、漏れ孔1a内でのコンダクタンスC0に基づき拡散流量Qを求めてみた。以下、詳述する。
漏れ孔1a内でのコンダクタンスC0は、下記式で表すことができる。
C0=Dm・S/L ・・・(7)
ただし、Sは漏れ孔1aの断面積であり、(πd2/4)で表される。
Dmは相互拡散係数である。例えば第1空間S1が水蒸気を含んだ空気であり、第2空間S2が乾燥空気である場合、相互拡散係数Dmは空気と水蒸気との相互拡散に関する係数となる。また、第1空間S1が窒素と酸素を含む空気であり、第2空間S2が窒素である場合、相互拡散係数Dmは窒素と酸素との相互拡散に関する係数である。
The present inventor initially focused only on the diffusion phenomenon in the
The conductance C 0 in the
C 0 =Dm·S/L (7)
However, S is a cross-sectional area of the
Dm is a mutual diffusion coefficient. For example, when the first space S1 is air containing water vapor and the second space S2 is dry air, the mutual diffusion coefficient D m is a coefficient relating to mutual diffusion between air and water vapor. When the first space S1 is air containing nitrogen and oxygen and the second space S2 is nitrogen, the mutual diffusion coefficient Dm is a coefficient relating to mutual diffusion of nitrogen and oxygen.
式(7)を式(6)に代入することにより下記式が得られる。
Q=ΔM・Dm・(πd2/4)/L・・・(8)
式(8)で求めた拡散流量を、略同一条件での実際の試験(後述する)で測定された拡散流量と比較したところ、経路長Lが十分に長い場合には略一致するものの、漏れ孔1aが一般的なピンホールに近い寸法の場合、すなわち漏れ孔1aの径dが100μm以下であり、経路長Lが比較的短い(数mm以下、特に1mm以下)場合には、式(8)で求めた拡散流量と試験結果との間に著しい乖離が見られた。
By substituting the equation (7) into the equation (6), the following equation is obtained.
Q=ΔM·Dm·(πd 2 /4)/L...(8)
When the diffusion flow rate obtained by the equation (8) is compared with the diffusion flow rate measured in an actual test (described later) under substantially the same conditions, when the path length L is sufficiently long, it is almost the same, but the leakage When the size of the
そこで、本発明者は、漏れ孔1a内の拡散現象に、第1空間S1から漏れ孔1aに向かう拡散現象と、漏れ孔1aから第2空間S2に広がる拡散現象を加えて、理論式を再構築することを試みた。以下、詳述する。
Therefore, the present inventor adds the diffusion phenomenon in which the first space S1 goes to the
第1空間S1から漏れ孔1aに向かう特定分子の拡散流量Qは、下記式で表すことができる。
Q=C1(M1−Ma)・・・(9)
ただし、C1は第1空間S1でのコンダクタンス、M1は第1空間S1でのモル濃度(理論的には漏れ孔1aから無限遠でのモル濃度)、Maは漏れ孔1aの第1空間S1側の開口端でのモル濃度である。
The diffusion flow rate Q of the specific molecule from the first space S1 toward the
Q=C 1 (M 1 −Ma) (9)
Where C 1 is the conductance in the first space S 1 , M 1 is the molar concentration in the first space S 1 (theoretically, the molar concentration at infinity from the
漏れ孔1a内での特定分子の拡散流量Qは、下記式で表すことができる。
Q=C0(Ma−Mb)・・・(10)
ただし、C0は漏れ孔1a内でのコンダクタンス、Maは漏れ孔1aの第1空間S1側の開口端でのモル濃度、Mbは漏れ孔1aの第2空間S2側の開口端でのモル濃度である。
The diffusion flow rate Q of the specific molecule in the
Q=C 0 (Ma−Mb) (10)
Where C 0 is the conductance in the
漏れ孔1aから第2空間S2に広がる特定分子の拡散流量Qは、下記式で表すことができる。
Q=C2(Mb−M2)・・・(11)
ただし、C2は第2空間S2でのコンダクタンス、Mbは漏れ孔1aの第2空間2側の開口端でのモル濃度、M2は第2空間S2でのモル濃度(理論的には漏れ孔1aから無限遠でのモル濃度)である。
The diffusion flow rate Q of the specific molecule spreading from the
Q = C 2 (Mb-M 2) ··· (11)
Where C 2 is the conductance in the second space S 2, Mb is the molar concentration at the open end of the
上記式(9)〜(11)における拡散流量Qは互いに等しい。式(6)のモル濃度差ΔMは、下記のように書き換えることができる。
ΔM=(M1−Ma)+(Ma−Mb)+(Mb−M2)・・・(12)
上記式(12)と式(9)〜(11)から、下記式が導かれる。
ΔM=Q/C1+Q/C0+Q/C2 ・・・(13)
式(6)と式(13)から下記式が導かれる。
1/C=1/C1+1/C0+1/C2・・・(14)
The diffusion flow rates Q in the above equations (9) to (11) are equal to each other. The molar concentration difference ΔM in the equation (6) can be rewritten as follows.
ΔM=(M 1 −Ma)+(Ma−Mb)+(Mb−M 2 )... (12)
The following equation is derived from the above equation (12) and equations (9) to (11).
ΔM=Q/C 1 +Q/C 0 +Q/C 2 (13)
The following equation is derived from the equations (6) and (13).
1/C=1/C 1 +1/C 0 +1/C 2 (14)
式(14)は、下記式のように書き換えることができる。
Ztotal=Z1+Z0+Z2 ・・・(15)
ただし、Ztotalは、第1空間S1から第2空間S2にわたるコンダクタンスCの逆数(以下、拡散抵抗と言う)であり、Z1=1/C1は第1空間S1での拡散抵抗、Z0=1/C0は漏れ孔1a内での拡散抵抗、Z2=1/C2は第2空間S2での拡散抵抗である。
式(15)から明らかなように、第1空間S1から第2空間S2にわたる全体の拡散抵抗Ztotalが各領域での流通抵抗Z1、Z0、Z2の和で表すことができる。
Expression (14) can be rewritten as the following expression.
Z total =Z 1 +Z 0 +Z 2 (15)
However, Z total is the reciprocal of the conductance C from the first space S1 to the second space S2 (hereinafter referred to as diffusion resistance), and Z 1 =1/C 1 is the diffusion resistance in the first space S1, Z 0 =1/C 0 is the diffusion resistance in the
As is clear from the equation (15), the total diffusion resistance Z total from the first space S1 to the second space S2 can be represented by the sum of the flow resistances Z 1 , Z 0 , and Z 2 in each region.
式(14)から下記式が導かれる。
C=1/(Z1+Z0+Z2)・・・(16)
上記式(6)に式(16)を代入することにより下記式(第1の関係を表す式)が得られる。
Q=ΔM/(Z0+Z1+Z2)・・・(1)
The following equation is derived from the equation (14).
C=1/(Z 1 +Z 0 +Z 2 )...(16)
By substituting the equation (16) into the equation (6), the following equation (an equation representing the first relationship) is obtained.
Q=ΔM/(Z 0 +Z 1 +Z 2 )... (1)
上記拡散抵抗Z1〜Z3は、理論上、下記式(第2の関係を表す式)で求めることができる。
Z1=1/(2Dm・d) ・・・(2)
Z0=L/(Dm・(πd2/4)) ・・・(3)
Z2=1/(2Dm・d) ・・・(4)
式(3)は式(8)に対応するものであり、式(3)における(πd2/4)は漏れ孔1aの断面積である。
The diffusion resistances Z 1 to Z 3 can theoretically be obtained by the following formula (formula expressing the second relationship).
Z 1 =1/(2Dm·d) (2)
Z 0 =L/(Dm·(πd 2 /4)) (3)
Z 2 =1/(2Dm·d) (4)
Expression (3) corresponds to expression (8), and (πd 2 /4) in expression (3) is the cross-sectional area of the
式(2)、式(4)は、拡散方程式により求めたが、その演算過程は複雑であるので省略する。なお、特定分子が第1空間S1から漏れ孔1aに向かう拡散現象および漏れ孔1aから第2空間S2に広がる拡散現象は、抵抗率が0でない径dの電線が無限の広がりを持つ導体と連なっているモデルにおける電流の拡散現象と似ている。
The equations (2) and (4) are obtained by the diffusion equation, but the calculation process is complicated and will be omitted. In addition, the diffusion phenomenon in which a specific molecule goes from the first space S1 to the
さらに式(1)に式(2)〜(4)を代入することにより、下記式(第3の関係を表す式)が得られる。
式(5)で求めた拡散流量を、略同一条件での実際の試験(後述する)で測定された拡散流量と比較したところ、漏れ孔1aが一般のピンホールに近い寸法であっても、式(5)で求めた拡散流量と試験結果が略一致した。
When the diffusion flow rate obtained by the equation (5) is compared with the diffusion flow rate measured in an actual test (described later) under substantially the same conditions, even if the
なお、コンダクタンスC0、C1,C2は拡散抵抗Z0、Z1,Z2の逆数であるから、式(1)〜(4)をコンダクタンスC0、C1,C2で表し、式(5)を求めてもよい。この演算方式は、上述の拡散抵抗Z0、Z1,Z2から式(5)を求める演算方式と均等である。 Since the conductances C 0 , C 1 , C 2 are reciprocal numbers of the diffusion resistances Z 0 , Z 1 , Z 2 , the formulas (1) to (4) are represented by conductances C 0 , C 1 , C 2 , (5) may be obtained. This calculation method is equivalent to the above-described calculation method for obtaining the equation (5) from the diffused resistors Z 0 , Z 1 and Z 2 .
図2に示すように、上記式(5)またはその均等式(例えば左辺を径dとして式(5)を書き直した式)をコンピュータ5のメモリ5aに格納しておき,演算部5bで、漏れ孔1aの径dを演算することができる。
例えば、後述する医薬用の錠剤容器20が大気に置かれ、そのベースシート21にピンホール等の欠陥があることを想定し、錠剤容器20に窒素だけが大気圧で封入されている場合について説明する。この場合、上記第1空間S1を大気に擬し、錠剤容器20の密閉空間23を第2空間S2に擬し、コンピュータに下記情報を入力する。
(1)漏れ孔1aの経路長L・・この経路長Lはベースシート21の厚さと等しい。
(2)モル濃度差ΔM・・錠剤を劣化させる特定分子が酸素であり、錠剤容器20に窒素だけが大気圧で封入されている場合、大気中の酸素のモル濃度をモル濃度差とする。
(3)相互拡散係数Dm・・窒素と酸素との間の相互拡散係数である。
(4)拡散流量Q・・上記錠剤が所定期間品質を維持できる酸素拡散流量の許容限界値である。
コンピュータは、これら入力情報と格納されている式(5)の情報から、漏れ孔1aの径dを求めることができる。
As shown in FIG. 2, the above expression (5) or its equivalent expression (for example, the expression in which the expression (5) is rewritten with the left side as the diameter d) is stored in the
For example, assuming that the below-described
(1) Path length L of the
(2) Molarity difference ΔM ··· When the specific molecule that deteriorates the tablet is oxygen and only nitrogen is sealed in the
(3) Mutual diffusion coefficient Dm... Mutual diffusion coefficient between nitrogen and oxygen.
(4) Diffusion flow rate Q... It is an allowable limit value of the oxygen diffusion flow rate at which the tablet can maintain the quality for a predetermined period.
The computer can obtain the diameter d of the
なお、錠剤を劣化させる特定分子が水蒸気であり、錠剤容器20には乾燥空気が大気圧で封入されている場合には、コンピュータに上記経路長Lを入力し、大気中の水蒸気のモル濃度をモル濃度差ΔMとして入力し、水蒸気と空気との間の相互拡散係数Dmを入力し、上記錠剤が所定期間品質を維持できる単位時間当たりの水蒸気拡散流量の限界値を、拡散流量Qとして入力する。
When the specific molecule that deteriorates the tablet is water vapor and the
次に、演算された漏れ孔1aの径dに基づき、例えば図3に示すような基準漏れ素子10を選定する。この基準漏れ素子10は、国際特許公開WO2017/208543号に開示されているように、中央に基準漏れ孔11aを有する円形の基材11と、基材11の両面に貼り付けられた円形のフィルター12、12と、基材11の周縁部に貼り付けられたシート状の環状接着部材13により構成されており、薄く柔軟性を有している。
Next, based on the calculated diameter d of the
基材11は、薄く柔軟なステンレス等のシートからなり、後述する検査対象の錠剤容器20(密閉容器)のベースシート21の厚さと等しい厚さ(例えば15μm)を有している。
フィルター12は約0.1mmの厚さを有し、その周縁部が接着層15により基材11の両面に貼り付けられている。
環状接着部材13は厚さ約0.2mmの薄く柔軟な樹脂シートからなり、一方の面の全域に接着層16が塗布されている。上記基材11の周縁部は、この接着層16により環状接着部材13の径方向内側の環状領域に接着されている。接着層16の外側の領域は、後述する錠剤容器20’への貼り付けのために提供される。
The
The
The
基材11の基準漏れ孔11aは、上述の式(5)に基づいて演算された漏れ孔径dと等しい径を有していてもよいし、これより小さくてもよい。すなわち、上記コンピュータにおいて、式(5)に基づいて求められた漏れ孔径に1より小さい係数を乗じて、上記基準漏れ孔11aの径を求めてもよい。また、コンピュータにより式(5)に基づいて漏れ孔径を求め、この漏れ孔径に1より小さい係数を乗じた径の基準漏れ孔11aを有する基準漏れ素子10を選定してもよい。
The
次に、検査対象となる錠剤容器20について図5(A)を参照しながら説明する。この錠剤容器20は、樹脂製のベースシート21と、複数の膨出部22aを有する透明な樹脂製のカバーシート22とを接合し溶着することにより構成されている。複数の膨出部22aとベースシート21により、互いに独立した複数の密閉空間23が形成されており、各密閉空間23に錠剤25が収容されている。なお、ベースシート21はカバーシート22より薄く、例えば15μmの厚さであり、指で破壊して錠剤25を取り出すことができる。製造過程において、このベースシート21にピンホールが生じる可能性がある。
Next, the
図5(B)に示すように、検査対象の錠剤容器20と同じ構造の錠剤容器20’(基準漏れ用中空部材)に、上記基準漏れ素子10を装着することにより、基準漏れ用ワークWを作製する。錠剤容器20’のベースシート21において選択された1つの密封空間23に対応する部分に、上記基準漏れ孔11aよりはるかに大きな数mm程度の穴29が形成されている。この錠剤容器20’には、上記穴29以外にいかなる欠陥も形成されていないことが予め確認されている。
基準漏れ素子10の基準漏れ孔11aを錠剤容器20’のベースシート21の穴29に略一致させた状態で、環状接着部材14をベースシート21に貼り付けることにより、基準漏れ素子10が錠剤容器20’に取り付けられている。環状接着部材14のシール作用により、密閉空間23はベースシート21の穴29および基準漏れ孔11aを介してのみ外部に連なっている。
As shown in FIG. 5(B), the
By attaching the annular adhesive member 14 to the
錠剤容器20をテストする公知のリークテスト装置の一例を、図4を参照しながら説明する。このリークテスト装置は、共通通路51と、この共通通路51の下流端にそれぞれ接続された分岐通路52aおよび分岐通路52bとを備えている。共通通路51の上流端には、圧縮空気源50aとレギュレータ50bとからなるテスト圧源50が接続されている。本実施形態のテスト圧は正圧である。共通通路1には三方弁53が設けられている。
An example of a known leak test device for testing the
分岐通路52a,52bには、弁54a,54bがそれぞれ設けられている。
上記分岐通路52a,52bにおいて弁54a,54bの下流側には差圧センサ55(圧力センサ)の2つのポートがそれぞれ接続されており、これにより分岐通路52a,52b間の差圧を検出することができる。
In the
分岐通路52aの下流端にはワークカプセル56が接続され、分岐通路52bの下流端にはマスタカプセル57が接続されている。ワークカプセル56は、開閉可能な2つのカプセル半体からなり、後述するワークを収容した状態で密封できるようになっている。マスタカプセル57は、図では模式的に示すが、例えば、ワークカプセル56と同一容積を有する密閉容器により構成してもよいし、ワークカプセル56と同一構造を有していてもよい。マスタカプセル57には漏れのないことが確認された検査対象と同じワークが収容されている。
A
上記弁53,54a,54bは図示しないコントローラでシーケンス制御される。コントローラは、ワークカプセル56の開閉、差圧センサ55での検出差圧に基づくワークの良否判定(漏れの有無の判定)も行う。
The
上記リークテスト装置による通常の漏れ検出工程について説明する。検査対象となる錠剤容器20は、図4に示すようにワークカプセル56内に収容され、密閉される。
三方弁53をオンすることにより、テスト圧源50からのテスト圧が、分岐通路52a,52bを介してワークカプセル56とマスタカプセル57に供給される。次に、弁54a,54bが閉じられ、その下流側の分岐通路52a,52bが互いに隔離される。
A normal leak detection process by the leak test apparatus will be described. The
By turning on the three-
次に、弁54a,54bが閉じてから所定時間経過後の差圧センサ10の検出差圧を閾値と比較する。錠剤容器20のベースシート21にピンホールがあると、ワークカプセル56内の加圧空気が錠剤容器20の密閉空間23に入り込み、ワークカプセル56内の圧力がテスト圧から徐々に低下する。他方、マスタカプセル57ではテスト圧が維持されている。その結果、ワークカプセル56内の圧力とマスタカプセル57内の圧力との間に差が生じる。この差圧(ワークカプセル56の圧力変動)が差圧センサ55で検出される。検出差圧(検出出力)が閾値より大きい場合には、漏れ有りと判断され、検出差圧が閾値より小さい場合には、錠剤容器20は漏れ無しの良品と判断される。なお、検出差圧に対応した大気圧換算漏れ量を差圧センサ55の検出出力とし、この大気圧換算漏れ量を閾値と比較することにより良否判定を行ってもよい。
Next, the differential pressure detected by the
次に、リークテスト装置の納入時に実行される、閾値設定のための基準漏れ工程について説明する。
上述の錠剤容器20’に基準漏れ器30を装着することにより構成された基準漏れ用ワークWが、リークテスト装置のワークカプセル56に密封され、上述した通常の漏れ検出工程と同様の漏れ検出工程が実行される。
Next, the reference leak process for setting the threshold value, which is executed when the leak test device is delivered, will be described.
The reference leak work W configured by mounting the reference leak device 30 on the above-mentioned
上記漏れ検出工程で、差圧センサ55により検出された差圧(検出出力)は、基準漏れ孔11aによる基準漏れ量に対応している。この基準漏れに伴う差圧センサ55の検出出力またはこの検出出力に1より小さい係数を乗じた値を、通常の漏れテストでの閾値として用いる。
上記閾値は、錠剤25を劣化させる特定分子の拡散流量の許容限界値に対応しており、この閾値を用いて錠剤容器20の漏れテストを行なうことにより、一定期間錠剤25の品質を保証できる錠剤容器20と、保証できない錠剤容器20を正確に判別することができる。
In the leak detection process, the differential pressure (detection output) detected by the
The threshold value corresponds to the permissible limit value of the diffusion flow rate of the specific molecule that deteriorates the
なお、上記基準漏れ素子20を用いた基準漏れを伴う漏れ検出工程により、通常の漏れ検出工程でのエアリークテスト装置の性能を評価したり、検出出力の較正を行うための基準データを得ることもできる。
It should be noted that the leak detection process involving the reference leak using the
本発明は、前記実施形態に限られず、その趣旨を逸脱しない範囲内で種々の改変をなすことができる。
式(5)は補正項を含んでいても良い。
検査対象は、実施形態のものに限られず、密閉空間を有する種々の中空部材に適用できる。
特定分子は、水蒸気、酸素に限定されない。
エアリークテスト装置は、負圧のテスト圧源をもちいてもよい。
本発明は、エアリークテストに限られず、ヘリウムリークテスト、水素リークテスト、その他種々のリークテストを実行する装置に適用可能である。
The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the spirit of the invention.
Equation (5) may include a correction term.
The inspection target is not limited to that of the embodiment, and can be applied to various hollow members having a closed space.
The specific molecule is not limited to water vapor and oxygen.
The air leak test device may use a negative test pressure source.
INDUSTRIAL APPLICABILITY The present invention is not limited to the air leak test, and can be applied to an apparatus that executes various leak tests such as a helium leak test, a hydrogen leak test and the like.
本発明は、例えば医薬品、食品、電子部品、センサ等のための密封容器の品質評価等に適用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to, for example, quality evaluation of sealed containers for medicines, foods, electronic parts, sensors and the like.
1 隔壁
1a 漏れ孔
10 基準漏れ素子
11a 基準漏れ孔
20 錠剤容器(検査対象)
20’ 錠剤容器(基準漏れ用中空部材)
23 密閉空間
50 テスト圧源
55 差圧センサ(圧力センサ)
56 ワークカプセル
S1 第1空間
S2 第2空間
W 基準漏れワーク
1
20' tablet container (hollow member for standard leakage)
23 Sealed
56 Work Capsule S1 First Space S2 Second Space W Reference Leak Work
Claims (8)
上記特定分子が上記第1空間から上記漏れ孔を通って上記第2空間へと拡散する際の全拡散抵抗を、それぞれが漏れ孔寸法の関数である、
(a)上記漏れ孔を通る過程での漏れ孔内拡散抵抗と、
(b)上記特定分子が上記第1空間から上記漏れ孔に向かう過程での第1空間拡散抵抗と、
(c)上記特定分子が上記漏れ孔から上記第2空間に広がる過程での第2空間拡散抵抗、
の和として定め、
上記全拡散抵抗に基づき、漏れ孔寸法と、上記特定分子が上記第1空間から上記漏れ孔を通って上記第2空間へと拡散する拡散流量との関係を定め、この関係に基づき、上記漏れ孔寸法から上記拡散流量を演算するか、または上記拡散流量から上記漏れ孔寸法を演算することを特徴とする拡散流量又は漏れ孔寸法の演算方法。 In a diffusion model in which a first space containing a specific molecule and a second space in which the molar concentration of the specific molecule is lower than the first space at the same pressure as the first space are isolated by partition walls having leak holes,
The total diffusion resistance of the particular molecule from the first space through the leak to the second space, each being a function of leak size,
(A) Diffusion resistance in the leak hole in the process of passing through the leak hole,
(B) a first space diffusion resistance in the process in which the specific molecule moves from the first space to the leak hole,
(C) A second space diffusion resistance in the process in which the specific molecule spreads from the leak hole to the second space,
Defined as the sum of
Based on the total diffusion resistance, the relationship between the leak hole size and the diffusion flow rate at which the specific molecule diffuses from the first space through the leak hole to the second space is determined, and based on this relationship, the leak A method for calculating a diffusion flow rate or a leakage hole size, characterized in that the diffusion flow rate is calculated from the hole size or the leakage hole size is calculated from the diffusion flow rate.
Q=ΔM/(Z0+Z1+Z2)・・・(1)
上記漏れ孔内拡散抵抗Z0と上記第1空間拡散抵抗Z1と上記第2空間拡散抵抗Z2のそれぞれと、相互拡散係数Dmおよび上記漏れ孔寸法としての上記漏れ孔の経路長Lと上記漏れ孔の径dの間の第2の関係を下記式(2)〜(4)で定め、
Z0=1/(2Dm・d) ・・・(2)
Z1=L/(Dm・(πd2/4)) ・・・(3)
Z2=1/(2Dm・d) ・・・(4)
上記第1の関係と上記第2の関係に基づき、上記モル濃度差ΔMおよび上記相互拡散係数Dmを既知として、上記拡散流量Qと上記経路長Lおよび径dとの間の第3の関係を定め、
上記第3の関係に基づき、上記漏れ孔寸法から上記拡散流量Qを演算するか、または上記拡散流量Qから上記漏れ孔寸法を演算することを特徴とする請求項1〜3のいずれかに記載の拡散流量又は漏れ孔寸法の演算方法。 The diffusion flow rate Q, the molar concentration difference ΔM of the specific molecule in the first space and the second space, the diffusion resistance in the leak hole Z 0 , the first space diffusion resistance Z 1, and the second space. The first relationship with the space diffusion resistance Z 2 is defined by the following equation (1),
Q=ΔM/(Z 0 +Z 1 +Z 2 )... (1)
The in-leakage diffusion resistance Z 0 , the first spatial diffusion resistance Z 1 and the second spatial diffusion resistance Z 2 , respectively, the mutual diffusion coefficient Dm, and the leakage path length L as the leakage hole size and the above. A second relationship between the diameters d of the leak holes is defined by the following equations (2) to (4),
Z 0 =1/(2D m ·d) (2)
Z 1 =L/(D m ·(πd 2 /4)) (3)
Z 2 =1/(2D m ·d) (4)
Based on the first relationship and the second relationship, the third relationship between the diffusion flow rate Q and the path length L and the diameter d is set with the molar concentration difference ΔM and the mutual diffusion coefficient Dm known. Stipulated,
The diffusion flow rate Q is calculated from the leakage hole size or the leakage hole size is calculated from the diffusion flow rate Q based on the third relationship. Calculation method of diffusion flow rate or leak hole size.
上記コンピュータに上記モル濃度差ΔM、上記相互拡散係数Dm、上記漏れ孔の経路長L、拡散流量Qの許容限界値を入力して、上記漏れ孔の径dを導くことを特徴とする請求項5に記載の拡散流量又は漏れ孔寸法の演算方法。 Prepare a computer that stores the above equation (5) or a relational expression equivalent thereto,
The diameter d of the leak hole is derived by inputting the molar concentration difference ΔM, the mutual diffusion coefficient Dm, the path length L of the leak hole, and an allowable limit value of the diffusion flow rate Q to the computer. 5. The method for calculating the diffusion flow rate or the leak hole size according to 5.
上記検査対象と等しい構成を有する基準漏れ用中空部材に請求項7で選定された基準漏れ素子を装着することにより、基準漏れワークを得、
上記基準漏れワークを上記検査対象の代わりに上記リークテスト装置の上記ワークカプセルに収容し、上記検査対象のリークテストと同じ工程を実行して、上記検出出力を得、この検出出力に基づき上記閾値を決定することを特徴とするリークテスト装置における閾値決定方法。
A test pressure source, a work capsule, and a pressure sensor for detecting a pressure fluctuation in the work capsule, and a test object having a sealed space is housed in the work capsule to be sealed. After supplying air to the work capsule, by disconnecting the test pressure source and the work capsule, by detecting the pressure fluctuation in the work capsule by the pressure sensor, by comparing the detection output of this pressure sensor with a threshold value Prepare a leak test device that executes the leak test of the above inspection target,
A reference leak work is obtained by mounting the reference leak element selected in claim 7 on the reference leak hollow member having the same structure as the inspection target,
The reference leaked work is stored in the work capsule of the leak test device instead of the inspection target, the same process as the leak test of the inspection target is performed, and the detection output is obtained, and the threshold value is based on the detection output. A method for determining a threshold in a leak test apparatus, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019013395A JP7426780B2 (en) | 2019-01-29 | 2019-01-29 | Calculation method for diffusion flow rate or leakage hole size, reference leakage element selection method, threshold value setting method for leak test equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019013395A JP7426780B2 (en) | 2019-01-29 | 2019-01-29 | Calculation method for diffusion flow rate or leakage hole size, reference leakage element selection method, threshold value setting method for leak test equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020122674A true JP2020122674A (en) | 2020-08-13 |
JP7426780B2 JP7426780B2 (en) | 2024-02-02 |
Family
ID=71992522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019013395A Active JP7426780B2 (en) | 2019-01-29 | 2019-01-29 | Calculation method for diffusion flow rate or leakage hole size, reference leakage element selection method, threshold value setting method for leak test equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7426780B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113405729A (en) * | 2021-07-09 | 2021-09-17 | 安徽中科智能高技术有限责任公司 | Leakage-amount-adjustable leak hole based on laminar flow principle |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017211223A (en) * | 2016-05-24 | 2017-11-30 | 株式会社フクダ | Method and device for evaluating sealed inspection target |
JP2017215310A (en) * | 2016-05-31 | 2017-12-07 | 株式会社フクダ | Sealability evaluation method, and conductance test method and test device |
-
2019
- 2019-01-29 JP JP2019013395A patent/JP7426780B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017211223A (en) * | 2016-05-24 | 2017-11-30 | 株式会社フクダ | Method and device for evaluating sealed inspection target |
JP2017215310A (en) * | 2016-05-31 | 2017-12-07 | 株式会社フクダ | Sealability evaluation method, and conductance test method and test device |
Non-Patent Citations (1)
Title |
---|
若尾 法昭: "細孔内のガス拡散", 化学工学, vol. 第28巻第6号, JPN6022034143, 5 June 1964 (1964-06-05), JP, pages 561 - 566, ISSN: 0004850564 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113405729A (en) * | 2021-07-09 | 2021-09-17 | 安徽中科智能高技术有限责任公司 | Leakage-amount-adjustable leak hole based on laminar flow principle |
Also Published As
Publication number | Publication date |
---|---|
JP7426780B2 (en) | 2024-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5226316A (en) | Package leak detection | |
JPH0835906A (en) | Method and equipment for testing hollow container | |
US7665346B1 (en) | Method and apparatus for detecting leaks in blister packs using vacuum and vision testing | |
US11860065B2 (en) | Method for leak testing and reference leak device for leak testing | |
KR20090003195A (en) | Leak test method and leak test device for pipeline | |
CN107076636A (en) | Membrane well with the measurement volume for thick leak-testing | |
US20040134259A1 (en) | Method for leak testing of electrochemical elements | |
EP3690419A1 (en) | System and method for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product | |
JPH1194687A (en) | Method and device for inspecting gas leak, and recording medium | |
US20140311223A1 (en) | Inspection apparatus, inspection method, and battery-inspecting chamber | |
JP7165303B2 (en) | Battery pack leak inspection method and leak inspection device | |
JP2017528725A (en) | Apparatus and method for calibrating a leak detection film chamber | |
JP2020122674A (en) | Method for calculating diffusion flow rate or leakage hole size, reference leakage element selection method, and threshold value setting method for leakage test device | |
JP7309058B2 (en) | Leak test condition design method, leak test condition design device, leak test method, and leak test device | |
JP5049199B2 (en) | External pressure detection type leak inspection device and leak inspection method using the same | |
JP5734109B2 (en) | Measuring apparatus and measuring method | |
JP2015537209A (en) | How to inspect a leak detection system | |
JP3983479B2 (en) | Battery leakage inspection device | |
JP4091367B2 (en) | Leak inspection method | |
JPH07280687A (en) | Pinhole inspection device | |
JP3715543B2 (en) | Airtight performance test method | |
JPH09115555A (en) | Inspection method and inspection device for air tightness of battery | |
CN118518298B (en) | A method and system for detecting gas tightness of gas hose | |
JP7629166B2 (en) | Pressure sensor and pressure sensor inspection method | |
WO2025041859A1 (en) | Leakage inspection method and leakage inspection device for resin sheet sealed product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221006 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230117 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20230403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7426780 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |