JP2020056509A - Refrigerant leakage determination device, freezing device with refrigerant leakage determination device, and refrigerant leakage determination method - Google Patents
Refrigerant leakage determination device, freezing device with refrigerant leakage determination device, and refrigerant leakage determination method Download PDFInfo
- Publication number
- JP2020056509A JP2020056509A JP2018185173A JP2018185173A JP2020056509A JP 2020056509 A JP2020056509 A JP 2020056509A JP 2018185173 A JP2018185173 A JP 2018185173A JP 2018185173 A JP2018185173 A JP 2018185173A JP 2020056509 A JP2020056509 A JP 2020056509A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- data
- compressor
- refrigerant leakage
- index value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/19—Calculation of parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/22—Preventing, detecting or repairing leaks of refrigeration fluids
- F25B2500/222—Detecting refrigerant leaks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
【課題】冷媒漏洩の有無を判定するための冷凍装置の特別な運転を不要とする冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法を提供する。【解決手段】冷凍装置の冷媒漏洩判定装置60は、冷凍装置の運転に関するデータに基づいて冷媒回路の正常状態からの乖離度合を算出する算出部66と、算出部66の算出結果に基づいて冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する判定部67とを有する。算出部66は、冷凍装置の運転に関するデータのうち、第1期間の冷凍装置の運転に関するデータから算出される第1指標値と、第2期間の冷凍装置の運転に関するデータから算出される第2指標値とに基づいて、冷媒回路の正常状態からの乖離度合を算出する。判定部67は、冷媒回路の正常状態からの乖離度合に基づいて冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する。【選択図】図3PROBLEM TO BE SOLVED: To provide a refrigerant leakage determination device which does not require a special operation of a refrigerating device for determining the presence or absence of refrigerant leakage, a refrigerating device provided with the refrigerant leakage determination device, and a refrigerant leakage determination method. SOLUTION: A refrigerant leakage determination device 60 of a refrigerating device has a calculation unit 66 that calculates a degree of deviation from a normal state of a refrigerant circuit based on data related to the operation of the refrigerating device, and a refrigerant based on the calculation results of the calculation unit 66. It has a determination unit 67 that determines the presence or absence of leakage or predicts the timing of refrigerant leakage occurrence. The calculation unit 66 includes the first index value calculated from the data related to the operation of the refrigerating apparatus in the first period and the second index value calculated from the data related to the operation of the refrigerating apparatus in the second period among the data related to the operation of the refrigerating apparatus. The degree of deviation from the normal state of the refrigerant circuit is calculated based on the index value. The determination unit 67 determines the presence or absence of refrigerant leakage based on the degree of deviation from the normal state of the refrigerant circuit, or predicts the time when the refrigerant leakage occurs. [Selection diagram] Fig. 3
Description
本開示は、冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法に関する。 The present disclosure relates to a refrigerant leakage determination device, a refrigeration device including the refrigerant leakage determination device, and a refrigerant leakage determination method.
従来、圧縮機を有する室外機と室内機とを冷媒配管で接続して冷凍サイクルを構成している空気調和機において、冷媒漏れの有無を判定する構成が知られている(例えば特許文献1参照)。このような空気調和機では、空気調和機の設置後の初期段階の圧縮機起動時における外気温度と、空気調和機を所定条件で運転したときの圧縮機の吐出側温度と、その後の圧縮機起動時における外気温度と、空気調和機を同じ所定条件で運転したときの圧縮機の吐出側温度とを比較して冷媒漏れの有無が判定される。 2. Description of the Related Art Conventionally, in an air conditioner in which an outdoor unit having a compressor and an indoor unit are connected by a refrigerant pipe to form a refrigeration cycle, a configuration for determining the presence or absence of refrigerant leakage is known (for example, see Patent Document 1). ). In such an air conditioner, the outside air temperature at the time of starting the compressor in the initial stage after the installation of the air conditioner, the discharge side temperature of the compressor when the air conditioner is operated under predetermined conditions, and the subsequent compressor The presence or absence of refrigerant leakage is determined by comparing the outside air temperature at the time of startup with the discharge-side temperature of the compressor when the air conditioner is operated under the same predetermined conditions.
従来の空気調和機では、冷媒漏れの有無を判定するために空気調和機の設置後の初期段階の空気調和機の運転条件とその後の空気調和機の運転条件とを揃える必要があり、冷媒漏洩の有無を判定するために特別な運転を行う必要がある。このため、冷媒漏洩の有無を判定する期間にわたり空気調和機が通常運転できない。なお、上記問題は、空気調和機に限られず、冷媒回路を備える冷凍装置であれば同様に発生する。 In the conventional air conditioner, it is necessary to match the operating conditions of the air conditioner in the initial stage after the installation of the air conditioner and the operating conditions of the air conditioner thereafter in order to determine the presence or absence of the refrigerant leakage. It is necessary to perform a special operation in order to determine the presence or absence of the vehicle. For this reason, the air conditioner cannot normally operate over the period for determining whether there is refrigerant leakage. Note that the above problem is not limited to the air conditioner, but similarly occurs in a refrigeration apparatus including a refrigerant circuit.
本開示の目的は、冷媒漏洩の有無を判定するための冷凍装置の特別な運転を不要とする冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法を提供することにある。 An object of the present disclosure is to provide a refrigerant leakage determination device that does not require a special operation of a refrigeration device for determining the presence or absence of refrigerant leakage, a refrigeration device including the refrigerant leakage determination device, and a refrigerant leakage determination method. is there.
この課題を解決する冷媒漏洩判定装置は、圧縮機、凝縮器、減圧装置、及び蒸発器を有し、冷媒が循環するように構成された冷媒回路を備える冷凍装置の冷媒漏洩を判定する冷媒漏洩判定装置であって、前記冷凍装置の運転に関するデータに基づいて前記冷媒回路の正常状態からの乖離度合を算出する算出部と、前記算出部の算出結果に基づいて冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する判定部と、を有し、前記算出部は、前記冷凍装置の運転に関するデータのうち、第1期間の前記冷凍装置の運転に関するデータから算出される第1指標値と、前記第1期間とは長さが異なる第2期間の前記冷凍装置の運転に関するデータから算出される第2指標値とに基づいて、前記冷媒回路の正常状態からの乖離度合を算出し、前記判定部は、前記冷媒回路の正常状態からの乖離度合に基づいて前記冷媒漏洩の有無を判定し、又は、前記冷媒漏洩発生時期を予測する。 A refrigerant leakage determination device that solves this problem has a compressor, a condenser, a decompression device, and an evaporator, and determines refrigerant leakage in a refrigeration device that includes a refrigerant circuit configured to circulate refrigerant. A determination device, a calculation unit that calculates the degree of deviation from the normal state of the refrigerant circuit based on data related to the operation of the refrigeration device, and determines the presence or absence of refrigerant leakage based on the calculation result of the calculation unit, Or a determining unit for predicting a refrigerant leak occurrence time, wherein the calculating unit is configured to calculate, from among the data relating to the operation of the refrigeration apparatus, a first index calculated from data relating to the operation of the refrigeration apparatus during a first period. Calculating a degree of deviation from the normal state of the refrigerant circuit based on the value and a second index value calculated from data on the operation of the refrigeration apparatus in a second period having a different length from the first period. And said Tough, based on the degree of divergence from the normal state of the refrigerant circuit determines the presence of the refrigerant leakage, or to predict the refrigerant leakage occurrence time.
この構成によれば、冷凍装置の通常運転及び冷凍装置の使用前点検の運転を含む冷凍装置の運転に関するデータを用いて算出された第1指標値と第2指標値との乖離度合に基づいて冷媒回路の正常状態からの乖離度合を算出できる。これにより、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。冷凍装置の運転に関するデータは、例えば、冷凍装置の通常運転及び冷凍装置の使用前点検の運転を含む運転により得られる。したがって、冷媒漏洩を判定するための特別な運転を実行せずに、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。 According to this configuration, based on the degree of divergence between the first index value and the second index value calculated using the data related to the operation of the refrigeration apparatus including the normal operation of the refrigeration apparatus and the operation of the pre-use inspection of the refrigeration apparatus. The degree of deviation from the normal state of the refrigerant circuit can be calculated. Thereby, it is possible to determine whether or not there is a refrigerant leak, or to predict a refrigerant leak occurrence time. Data relating to the operation of the refrigeration apparatus is obtained, for example, by an operation including a normal operation of the refrigeration apparatus and an operation of a pre-use check of the refrigeration apparatus. Therefore, it is possible to determine the presence / absence of refrigerant leakage or predict the refrigerant leakage occurrence time without performing a special operation for determining refrigerant leakage.
この課題を解決する冷媒漏洩判定方法は、圧縮機、凝縮器、減圧装置、及び蒸発器を有し、冷媒が循環するように構成された冷媒回路を備える冷凍装置の冷媒漏洩判定方法であって、前記冷凍装置の運転に関するデータを保存するデータ保存ステップと、第1期間の前記冷凍装置の運転に関するデータから第1指標値を算出し、前記第1期間とは長さが異なる第2期間の前記冷凍装置の運転に関するデータから第2指標値を算出する第1算出ステップと、前記第1算出ステップにおいて算出された前記第1指標値及び前記第2指標値に基づいて、前記冷媒回路の正常状態からの乖離度合を算出する第2算出ステップと、前記冷媒回路の正常状態からの乖離度合に基づいて、冷媒漏洩の有無を判定し、又は、前記冷媒漏洩発生時期を予測する判定ステップと、を有する。 A refrigerant leakage determination method that solves this problem is a refrigerant leakage determination method for a refrigeration apparatus that includes a compressor, a condenser, a decompression device, and an evaporator, and includes a refrigerant circuit configured to circulate refrigerant. A data storing step of storing data relating to the operation of the refrigeration apparatus, and calculating a first index value from data relating to the operation of the refrigeration apparatus during a first period, wherein the first index value is different from the first period. A first calculation step of calculating a second index value from data relating to the operation of the refrigeration apparatus, and a normal operation of the refrigerant circuit based on the first index value and the second index value calculated in the first calculation step. A second calculating step of calculating the degree of deviation from the state, and determining whether there is refrigerant leakage based on the degree of deviation from the normal state of the refrigerant circuit, or estimating the refrigerant leakage occurrence time. Has a step, a.
この構成によれば、冷凍装置の通常運転及び冷凍装置の使用前点検の運転を含む冷凍装置の運転に関するデータを用いて算出された第1指標値と第2指標値との乖離度合に基づいて冷媒回路の正常状態からの乖離度合を算出できる。これにより、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。冷凍装置の運転に関するデータは、例えば、冷凍装置の通常運転及び冷凍装置の使用前点検の運転を含む運転により得られる。したがって、冷媒漏洩を判定するための特別な運転を実行せずに、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。 According to this configuration, based on the degree of divergence between the first index value and the second index value calculated using the data related to the operation of the refrigeration apparatus including the normal operation of the refrigeration apparatus and the operation of the pre-use inspection of the refrigeration apparatus. The degree of deviation from the normal state of the refrigerant circuit can be calculated. Thereby, it is possible to determine whether or not there is a refrigerant leak, or to predict a refrigerant leak occurrence time. Data relating to the operation of the refrigeration apparatus is obtained, for example, by an operation including a normal operation of the refrigeration apparatus and an operation of a pre-use check of the refrigeration apparatus. Therefore, it is possible to determine the presence / absence of refrigerant leakage or predict the refrigerant leakage occurrence time without performing a special operation for determining refrigerant leakage.
以下、図面を参照して、冷凍装置の一例である輸送用冷凍装置(以下単に「冷凍装置1」と称する)について説明する。冷凍装置1は、例えば海上コンテナ、陸上輸送トレーラ用コンテナ等の庫内を冷却するものである。冷凍装置1のケーシング内は、庫内空気を循環させる庫内収容空間と庫外空気を循環させる庫外収容空間とに分離されている。 Hereinafter, a refrigerating apparatus for transportation (hereinafter, simply referred to as “refrigerating apparatus 1”), which is an example of the refrigerating apparatus, will be described with reference to the drawings. The refrigeration apparatus 1 cools the inside of a warehouse such as a marine container, a container for a land transportation trailer, and the like. The inside of the casing of the refrigeration apparatus 1 is separated into an internal storage space for circulating the internal air and an external storage space for circulating the external air.
図1に示すように、冷凍装置1は、圧縮機11、凝縮器12、蒸発器13等が冷媒配管によって接続される冷媒回路20を備える。冷媒回路20は、主回路21、ホットガスバイパス回路22、及び液冷媒バイパス回路31を備える。 As shown in FIG. 1, the refrigeration apparatus 1 includes a refrigerant circuit 20 in which a compressor 11, a condenser 12, an evaporator 13, and the like are connected by refrigerant pipes. The refrigerant circuit 20 includes a main circuit 21, a hot gas bypass circuit 22, and a liquid refrigerant bypass circuit 31.
主回路21は、モータ駆動の圧縮機11、凝縮器12、減圧装置の一例である第1膨張弁14A、及び蒸発器13が冷媒配管によって順に直列に接続されて構成されている。
図1に示すように、圧縮機11、凝縮器12、第1膨張弁14A、及び、凝縮器12に庫外空気を循環させる庫外送風機15等は、庫外収容空間に収納されている。また、蒸発器13、及び、蒸発器13に庫内空気を循環させる庫内送風機16等は、庫内収容空間に収納されている。
The main circuit 21 includes a motor-driven compressor 11, a condenser 12, a first expansion valve 14A, which is an example of a pressure reducing device, and an evaporator 13, which are connected in series by a refrigerant pipe.
As shown in FIG. 1, the compressor 11, the condenser 12, the first expansion valve 14 </ b> A, the outside blower 15 that circulates outside air to the condenser 12, and the like are stored in the outside storage space. Further, the evaporator 13, the in-compartment blower 16 for circulating the in-compartment air to the evaporator 13, and the like are accommodated in the in-compartment accommodation space.
圧縮機11は、例えばロータリ式圧縮機やスクロール式圧縮機を用いることができる。圧縮機11は、インバータによって運転周波数が制御されることにより、回転速度が制御され、これにより運転容量が可変となるように構成されている。 As the compressor 11, for example, a rotary compressor or a scroll compressor can be used. The rotation speed of the compressor 11 is controlled by controlling the operation frequency by the inverter, so that the operation capacity is variable.
凝縮器12及び蒸発器13は、フィンアンドチューブ熱交換器を用いることができる。凝縮器12は、庫外送風機15により供給される庫外空気と凝縮器12内を循環する冷媒とを熱交換する。蒸発器13は、庫内送風機16により供給される庫内空気と蒸発器13内を循環する冷媒とを熱交換する。庫外送風機15及び庫内送風機16の一例は、プロペラファンである。蒸発器13の下方には、ドレンパン28が設けられている。ドレンパン28には、蒸発器13から剥がれ落ちた霜や氷塊、空気中から凝縮した結露水等が回収される。 As the condenser 12 and the evaporator 13, a fin-and-tube heat exchanger can be used. The condenser 12 exchanges heat between the outside air supplied by the outside blower 15 and the refrigerant circulating in the condenser 12. The evaporator 13 exchanges heat between the internal air supplied by the internal blower 16 and the refrigerant circulating in the evaporator 13. An example of the outside fan 15 and the inside fan 16 is a propeller fan. Below the evaporator 13, a drain pan 28 is provided. In the drain pan 28, frost and ice blocks peeled off from the evaporator 13 and dew condensation water condensed from the air are collected.
第1膨張弁14Aは、例えばパルスモータによって開度可変に構成された電動膨張弁を用いることができる。
圧縮機11と凝縮器12とを接続する高圧ガス管23には、冷媒流れ方向に第1開閉弁17Aと逆止弁18とが順に設けられている。第1開閉弁17Aは、例えばパルスモータによって開度可変に構成された電動膨張弁を用いることができる。逆止弁18は、図1に示す矢印の方向への冷媒の流れを許容する。
As the first expansion valve 14A, for example, an electric expansion valve configured to be variable in opening degree by a pulse motor can be used.
The high-pressure gas pipe 23 connecting the compressor 11 and the condenser 12 is provided with a first on-off valve 17A and a check valve 18 in order in the flow direction of the refrigerant. As the first opening / closing valve 17A, for example, an electric expansion valve configured to be variable in opening degree by a pulse motor can be used. The check valve 18 allows the flow of the refrigerant in the direction of the arrow shown in FIG.
凝縮器12と第1膨張弁14Aとを接続する高圧液管24には、冷媒流れ方向にレシーバ29、第2開閉弁17B、ドライヤ30、及び過冷却熱交換器27が順に設けられている。第2開閉弁17Bは、例えば開閉自在な電磁弁を用いることができる。 In the high-pressure liquid pipe 24 connecting the condenser 12 and the first expansion valve 14A, a receiver 29, a second opening / closing valve 17B, a dryer 30, and a supercooling heat exchanger 27 are sequentially provided in the refrigerant flow direction. As the second opening / closing valve 17B, for example, an openable / closable solenoid valve can be used.
過冷却熱交換器27は、互いに熱交換関係に構成される1次側通路27aと2次側通路27bとを有する。1次側通路27aは、主回路21においてドライヤ30と第1膨張弁14Aとの間に設けられている。2次側通路27bは、液冷媒バイパス回路31中に設けられている。液冷媒バイパス回路31は、高圧液管24と圧縮機11内の圧縮機構部における中間圧力部(図示略)とを接続するバイパス回路である。液冷媒バイパス回路31における高圧液管24と2次側通路27bとの間には、高圧液冷媒の流れ方向に第3開閉弁17Cと、絞り装置の一例である第2膨張弁14Bとが順次接続されている。このように構成されることにより、高圧液管24から液冷媒バイパス回路31に流入した液冷媒は、第2膨張弁14Bにより中間圧力まで膨張され、高圧液管24を流通する液冷媒よりも低温の冷媒となって2次側通路27bに流れる。したがって、1次側通路27aを流通する高圧液冷媒は、2次側通路27bを流通する冷媒により冷却され、過冷却される。第3開閉弁17Cは、例えば開閉自在な電磁弁を用いることができる。第2膨張弁14Bは、例えばパルスモータによって開度可変に構成された電動膨張弁を用いることができる。 The subcooling heat exchanger 27 has a primary side passage 27a and a secondary side passage 27b which are configured to exchange heat with each other. The primary side passage 27a is provided between the dryer 30 and the first expansion valve 14A in the main circuit 21. The secondary side passage 27b is provided in the liquid refrigerant bypass circuit 31. The liquid refrigerant bypass circuit 31 is a bypass circuit that connects the high-pressure liquid pipe 24 and an intermediate pressure section (not shown) in the compression mechanism section in the compressor 11. Between the high-pressure liquid pipe 24 and the secondary passage 27b in the liquid refrigerant bypass circuit 31, a third on-off valve 17C and a second expansion valve 14B, which is an example of a throttle device, are sequentially arranged in the flow direction of the high-pressure liquid refrigerant. It is connected. With this configuration, the liquid refrigerant flowing into the liquid refrigerant bypass circuit 31 from the high-pressure liquid pipe 24 is expanded to an intermediate pressure by the second expansion valve 14B, and has a lower temperature than the liquid refrigerant flowing through the high-pressure liquid pipe 24. And flows into the secondary side passage 27b. Therefore, the high-pressure liquid refrigerant flowing through the primary side passage 27a is cooled by the refrigerant flowing through the secondary side passage 27b and is supercooled. As the third on-off valve 17C, for example, an openable / closable solenoid valve can be used. As the second expansion valve 14B, for example, an electric expansion valve configured to be variable in opening degree by a pulse motor can be used.
ホットガスバイパス回路22は、高圧ガス管23と蒸発器13の入口側を接続するものであって、圧縮機11から吐出された高圧高温のガス冷媒を蒸発器13の入口側にバイパスするものである。ホットガスバイパス回路22は、主通路32と、主通路32から分岐された第1分岐通路33及び第2分岐通路34とを有する。第1分岐通路33及び第2分岐通路34は、双方の一端が主通路32に接続され、双方の他端が蒸発器13の入口側、すなわち第1膨張弁14Aと蒸発器13との間の低圧の連絡配管25に接続された並列回路である。主通路32には、第4開閉弁17Dが設けられている。第4開閉弁17Dは、例えば開閉自在な電磁弁を用いることができる。第1分岐通路33は、配管のみにより構成されている。第2分岐通路34には、ドレンパンヒータ35が設けられている。ドレンパンヒータ35は、ドレンパン28を高温の冷媒によって加熱するようにドレンパン28の底部に設けられたものである。 The hot gas bypass circuit 22 connects the high-pressure gas pipe 23 and the inlet side of the evaporator 13, and bypasses the high-pressure and high-temperature gas refrigerant discharged from the compressor 11 to the inlet side of the evaporator 13. is there. The hot gas bypass circuit 22 has a main passage 32, a first branch passage 33 and a second branch passage 34 branched from the main passage 32. One end of each of the first branch passage 33 and the second branch passage 34 is connected to the main passage 32, and the other end is connected to the inlet side of the evaporator 13, that is, between the first expansion valve 14 </ b> A and the evaporator 13. This is a parallel circuit connected to the low-pressure communication pipe 25. The main passage 32 is provided with a fourth on-off valve 17D. As the fourth on-off valve 17D, for example, an openable / closable solenoid valve can be used. The first branch passage 33 is constituted only by a pipe. A drain pan heater 35 is provided in the second branch passage 34. The drain pan heater 35 is provided at the bottom of the drain pan 28 so as to heat the drain pan 28 with a high-temperature refrigerant.
冷凍装置1には、各種のセンサが設けられている。一例では、図1及び図2に示すとおり、冷凍装置1には、吐出温度センサ41、吐出圧力センサ42、吸入温度センサ43、吸入圧力センサ44、電流センサ45、回転センサ46、凝縮温度センサ47、及び蒸発温度センサ48が設けられている。センサ41〜48は、例えば既知のセンサを用いることができる。 The refrigeration system 1 is provided with various sensors. In one example, as shown in FIGS. 1 and 2, the refrigeration system 1 includes a discharge temperature sensor 41, a discharge pressure sensor 42, a suction temperature sensor 43, a suction pressure sensor 44, a current sensor 45, a rotation sensor 46, and a condensation temperature sensor 47. , And an evaporation temperature sensor 48 are provided. Known sensors can be used as the sensors 41 to 48, for example.
吐出温度センサ41及び吐出圧力センサ42は、例えば高圧ガス管23における圧縮機11の吐出口近傍に設けられている。吐出温度センサ41は、圧縮機11から吐出される吐出ガス冷媒の温度に応じた信号を出力する。吐出圧力センサ42は、圧縮機11から吐出される吐出ガス冷媒の圧力に応じた信号を出力する。吸入温度センサ43及び吸入圧力センサ44は、例えば圧縮機11の吸入配管、すなわち低圧ガス管26における圧縮機11の吸入口近傍に設けられている。吸入温度センサ43は、圧縮機11に吸入される吸入ガス冷媒の温度に応じた信号を出力する。吸入圧力センサ44は、圧縮機11に吸入される吸入ガス冷媒の圧力に応じた信号を出力する。電流センサ45は、例えば圧縮機11のモータを駆動するインバータ回路に設けられている。電流センサ45は、インバータ回路に流れる電流量に応じた信号を出力する。回転センサ46は、例えば圧縮機11のモータに設けられている。回転センサ46は、モータの回転速度に応じた信号を出力する。 The discharge temperature sensor 41 and the discharge pressure sensor 42 are provided, for example, near the discharge port of the compressor 11 in the high-pressure gas pipe 23. The discharge temperature sensor 41 outputs a signal corresponding to the temperature of the discharge gas refrigerant discharged from the compressor 11. The discharge pressure sensor 42 outputs a signal corresponding to the pressure of the discharge gas refrigerant discharged from the compressor 11. The suction temperature sensor 43 and the suction pressure sensor 44 are provided, for example, near the suction pipe of the compressor 11, that is, near the suction port of the compressor 11 in the low-pressure gas pipe 26. The suction temperature sensor 43 outputs a signal corresponding to the temperature of the suction gas refrigerant drawn into the compressor 11. The suction pressure sensor 44 outputs a signal corresponding to the pressure of the suction gas refrigerant drawn into the compressor 11. The current sensor 45 is provided in, for example, an inverter circuit that drives a motor of the compressor 11. The current sensor 45 outputs a signal according to the amount of current flowing through the inverter circuit. The rotation sensor 46 is provided in, for example, a motor of the compressor 11. The rotation sensor 46 outputs a signal corresponding to the rotation speed of the motor.
凝縮温度センサ47は、例えば凝縮器12に設けられ、凝縮器12内を流れる冷媒の凝縮温度に応じた信号を出力する。本実施形態では、凝縮温度センサ47は、例えば凝縮器12の中間部分に取り付けられている。この場合、凝縮温度センサ47は、凝縮器12の中間部分における冷媒温度を凝縮温度として凝縮温度に応じた信号を出力する。なお、凝縮器12に対する凝縮温度センサ47の取り付け位置は、任意に変更可能である。 The condensation temperature sensor 47 is provided, for example, in the condenser 12 and outputs a signal corresponding to the condensation temperature of the refrigerant flowing in the condenser 12. In the present embodiment, the condensation temperature sensor 47 is attached to, for example, an intermediate portion of the condenser 12. In this case, the condensing temperature sensor 47 outputs a signal corresponding to the condensing temperature, using the refrigerant temperature in the middle part of the condenser 12 as the condensing temperature. The attachment position of the condensation temperature sensor 47 to the condenser 12 can be arbitrarily changed.
蒸発温度センサ48は、例えば蒸発器13に設けられ、蒸発器13内を流れる冷媒の蒸発温度に応じた信号を出力する。本実施形態では、蒸発温度センサ48は、例えば蒸発器13の中間部分に取り付けられている。この場合、蒸発温度センサ48は、蒸発器13の中間部分における冷媒温度を蒸発温度として蒸発温度に応じた信号を出力する。なお、蒸発器13に対する蒸発温度センサ48の取り付け位置は、任意に変更可能である。 The evaporation temperature sensor 48 is provided, for example, in the evaporator 13 and outputs a signal corresponding to the evaporation temperature of the refrigerant flowing in the evaporator 13. In the present embodiment, the evaporation temperature sensor 48 is attached to, for example, an intermediate portion of the evaporator 13. In this case, the evaporating temperature sensor 48 outputs a signal corresponding to the evaporating temperature, using the refrigerant temperature at the intermediate portion of the evaporator 13 as the evaporating temperature. In addition, the attachment position of the evaporation temperature sensor 48 with respect to the evaporator 13 can be arbitrarily changed.
図2に示すように、冷凍装置1は、冷凍装置1の運転を制御する制御装置50及び報知部52を備える。制御装置50には、吐出温度センサ41、吐出圧力センサ42、吸入温度センサ43、吸入圧力センサ44、電流センサ45、回転センサ46、凝縮温度センサ47、及び蒸発温度センサ48がそれぞれ電気的に接続されている。また制御装置50には、圧縮機11、第1膨張弁14A、第2膨張弁14B、庫外送風機15、庫内送風機16、第1開閉弁17A、第2開閉弁17B、第3開閉弁17C、第4開閉弁17D、及び報知部52が電気的に接続されている。報知部52は、冷凍装置1に関する情報を冷凍装置1の外部に報知する。報知部52は、例えば冷凍装置1に関する情報を表示する表示器53を有する。なお、報知部52は、表示器53に代えて、又は加えてスピーカを有してもよい。この場合、報知部52は、音声によって冷凍装置1に関する情報を報知してもよい。 As shown in FIG. 2, the refrigeration system 1 includes a control device 50 for controlling the operation of the refrigeration system 1 and a notification unit 52. A discharge temperature sensor 41, a discharge pressure sensor 42, a suction temperature sensor 43, a suction pressure sensor 44, a current sensor 45, a rotation sensor 46, a condensation temperature sensor 47, and an evaporation temperature sensor 48 are electrically connected to the control device 50, respectively. Have been. The control device 50 includes a compressor 11, a first expansion valve 14A, a second expansion valve 14B, an external blower 15, an internal blower 16, a first on-off valve 17A, a second on-off valve 17B, and a third on-off valve 17C. , The fourth on-off valve 17D, and the notification unit 52 are electrically connected. The notification unit 52 notifies information about the refrigeration apparatus 1 to the outside of the refrigeration apparatus 1. The notification unit 52 has a display 53 that displays information on the refrigeration apparatus 1, for example. The notification unit 52 may include a speaker instead of or in addition to the display 53. In this case, the notification unit 52 may notify information about the refrigeration apparatus 1 by voice.
制御装置50は、制御部51を備える。制御部51は、例えば予め定められる制御プログラムを実行する演算装置及び記憶部を含む。演算処理装置は、例えばCPU(Central Processing Unit)又はMPU(Micro Processing Unit)を含む。記憶部には、各種の制御プログラム及び各種の制御処理に用いられる情報が記憶される。記憶部は、例えば不揮発性メモリ及び揮発性メモリを含む。制御部51は、センサ41〜48の検出結果に基づいて、圧縮機11、膨張弁14A,14B、庫外送風機15、庫内送風機16、及び開閉弁17A〜17Dを制御する。冷凍装置1は、制御部51によって冷凍・冷却運転及びデフロスト運転を実行する。 The control device 50 includes a control unit 51. The control unit 51 includes, for example, an arithmetic unit that executes a predetermined control program and a storage unit. The arithmetic processing device includes, for example, a CPU (Central Processing Unit) or an MPU (Micro Processing Unit). The storage unit stores various control programs and information used for various control processes. The storage unit includes, for example, a nonvolatile memory and a volatile memory. The control unit 51 controls the compressor 11, the expansion valves 14A and 14B, the outside blower 15, the inside blower 16, and the on-off valves 17A to 17D based on the detection results of the sensors 41 to 48. The refrigerating device 1 executes a freezing / cooling operation and a defrost operation by the control unit 51.
〔冷凍・冷却運転〕
冷凍・冷却運転では、第1開閉弁17A、第2開閉弁17B、及び第3開閉弁17Cが開放状態となり、第4開閉弁17Dが閉鎖状態となる。第1膨張弁14A及び第2膨張弁14Bの開度は適宜調整される。また、圧縮機11、庫外送風機15、及び庫内送風機16が運転される。
[Refrigeration / cooling operation]
In the freezing / cooling operation, the first on-off valve 17A, the second on-off valve 17B, and the third on-off valve 17C are in an open state, and the fourth on-off valve 17D is in a closed state. The opening degrees of the first expansion valve 14A and the second expansion valve 14B are appropriately adjusted. In addition, the compressor 11, the outside fan 15 and the inside fan 16 are operated.
冷凍・冷却運転時では、冷媒は図1の実線矢印で示すように循環する。すなわち、圧縮機11で圧縮された高圧ガス冷媒は、凝縮器12で凝縮された後、液冷媒となってレシーバ29に貯留される。レシーバ29に貯留された液冷媒は、第2開閉弁17B及びドライヤ30を経由し、過冷却熱交換器27の1次側通路27aで冷却され、過冷却の液冷媒となって第1膨張弁14Aに流れる。なお、レシーバ29から流出した液冷媒の一部は、図1の波線矢印で示すように過冷却源として第3開閉弁17C及び第2膨張弁14Bを介して中間圧力の冷媒となって過冷却熱交換器27の2次側通路27bに流れ、1次側通路27aの液冷媒を冷却する。過冷却熱交換器27で過冷却された液冷媒は、第1膨張弁14Aで減圧された後、蒸発器13に流れる。蒸発器13では、低圧液冷媒が庫内空気から吸熱して蒸発気化される。これにより、庫内空気が冷却される。蒸発器13で蒸発気化した低圧ガス冷媒は、圧縮機11に吸入されて再び圧縮される。 During the refrigeration / cooling operation, the refrigerant circulates as shown by the solid line arrows in FIG. That is, the high-pressure gas refrigerant compressed by the compressor 11 is condensed by the condenser 12, becomes a liquid refrigerant, and is stored in the receiver 29. The liquid refrigerant stored in the receiver 29 passes through the second opening / closing valve 17B and the dryer 30 and is cooled in the primary side passage 27a of the subcooling heat exchanger 27, and becomes a supercooled liquid refrigerant to become the first expansion valve. Flows to 14A. A part of the liquid refrigerant flowing out of the receiver 29 becomes an intermediate pressure refrigerant via the third opening / closing valve 17C and the second expansion valve 14B as a supercooling source as shown by a broken line arrow in FIG. It flows to the secondary passage 27b of the heat exchanger 27 and cools the liquid refrigerant in the primary passage 27a. The liquid refrigerant supercooled by the supercooling heat exchanger 27 flows to the evaporator 13 after being decompressed by the first expansion valve 14A. In the evaporator 13, the low-pressure liquid refrigerant absorbs heat from the air in the refrigerator and is evaporated and vaporized. Thereby, the inside air is cooled. The low-pressure gas refrigerant evaporated and vaporized by the evaporator 13 is sucked into the compressor 11 and compressed again.
〔デフロスト運転〕
冷凍・冷却運転を継続して行うと、蒸発器13の伝熱管等の表面に霜が付着し、この霜が徐々に成長して肥大化する。このため、制御部51は、蒸発器13の除霜を行うための運転であるデフロスト運転を行う。
[Defrost operation]
When the freezing / cooling operation is continuously performed, frost adheres to the surface of the heat transfer tube or the like of the evaporator 13, and the frost gradually grows and enlarges. For this reason, the control unit 51 performs a defrost operation, which is an operation for performing defrosting of the evaporator 13.
デフロスト運転は、図1の破線矢印で示すように、圧縮機11で圧縮した高温高圧のガス冷媒を蒸発器13の入口側にバイパスさせることにより蒸発器13を除霜する動作である。デフロスト運転では、第4開閉弁17Dが開放状態となり、第1開閉弁17A、第2開閉弁17B、第3開閉弁17C、及び第2膨張弁14Bが全閉状態となる。そして、圧縮機11が運転する一方、庫外送風機15及び庫内送風機16は停止される。 The defrost operation is an operation of defrosting the evaporator 13 by bypassing the high-temperature and high-pressure gas refrigerant compressed by the compressor 11 to the inlet side of the evaporator 13, as indicated by a broken arrow in FIG. In the defrost operation, the fourth on-off valve 17D is opened, and the first on-off valve 17A, the second on-off valve 17B, the third on-off valve 17C, and the second expansion valve 14B are fully closed. Then, while the compressor 11 operates, the external fan 15 and the internal fan 16 are stopped.
圧縮機11で圧縮された高圧高温のガス冷媒は、主通路32を流れた後、第4開閉弁17Dを通過して第1分岐通路33及び第2分岐通路34に分流する。第2分岐通路34に分流した冷媒は、ドレンパンヒータ35を通過する。ドレンパンヒータ35から流出した冷媒は、第1分岐通路33を通過した冷媒と合流し、蒸発器13に流れる。蒸発器13では、伝熱管の内部を高圧ガス冷媒(所謂、ホットガス)が流通する。このため、蒸発器13では、伝熱管及びフィンに付着した霜が、高温ガス冷媒によって徐々に加熱される。その結果、蒸発器13に付着した霜が徐々にドレンパン28に回収される。蒸発器13の除霜に利用された冷媒は、圧縮機11に吸入されて再び圧縮される。ここで、ドレンパン28の内部には、霜が融解した水とともに蒸発器13の表面から剥がれ落ちた氷塊等が回収されている。この氷塊等は、ドレンパンヒータ35の内部を流れる冷媒によって加熱されて融解する。融解した水は、所定の流路を通じて庫外に排出される。 After flowing through the main passage 32, the high-pressure and high-temperature gas refrigerant compressed by the compressor 11 passes through the fourth on-off valve 17D and is divided into the first branch passage 33 and the second branch passage. The refrigerant diverted to the second branch passage 34 passes through the drain pan heater 35. The refrigerant flowing out of the drain pan heater 35 merges with the refrigerant that has passed through the first branch passage 33 and flows to the evaporator 13. In the evaporator 13, a high-pressure gas refrigerant (a so-called hot gas) flows inside the heat transfer tube. For this reason, in the evaporator 13, the frost adhering to the heat transfer tubes and the fins is gradually heated by the high-temperature gas refrigerant. As a result, the frost attached to the evaporator 13 is gradually collected in the drain pan 28. The refrigerant used for defrosting the evaporator 13 is sucked into the compressor 11 and is compressed again. Here, inside the drain pan 28, ice blocks and the like that have come off from the surface of the evaporator 13 together with the water in which the frost has melted are collected. The ice blocks and the like are melted by being heated by the refrigerant flowing inside the drain pan heater 35. The molten water is discharged out of the refrigerator through a predetermined flow path.
また、図2に示すように、制御装置50は、冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する冷媒漏洩判定装置60をさらに備える。ここで、冷媒漏洩が発生すると、例えば、冷媒量の不足による圧縮機11の圧縮効率の低下のような冷凍装置1の異常が発生する。冷媒漏洩判定装置60は、圧縮機11から吐出される吐出ガス冷媒の温度(以下「吐出側冷媒温度」と称する)をモニタして冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する。 Further, as shown in FIG. 2, the control device 50 further includes a refrigerant leakage determination device 60 that determines the presence or absence of refrigerant leakage or that predicts when refrigerant leakage will occur. Here, when the refrigerant leaks, an abnormality of the refrigeration apparatus 1 such as a decrease in the compression efficiency of the compressor 11 due to an insufficient amount of the refrigerant occurs. The refrigerant leakage determination device 60 monitors the temperature of the discharge gas refrigerant discharged from the compressor 11 (hereinafter, referred to as “discharge-side refrigerant temperature”) to determine the presence or absence of refrigerant leakage, or predicts refrigerant leakage occurrence time. I do.
図3に示すように、冷媒漏洩判定装置60は、データ取得部61、データ蓄積部62、前処理部63、冷媒漏洩判定部64、及び出力部65を有する。
データ取得部61は、各センサ41〜48と通信可能に接続されている。データ取得部61は、各センサ41〜48の時系列データが入力される。一例では、各センサ41〜48は、所定時間TX毎の検出結果を冷媒漏洩判定装置60に出力する。所定時間TXの一例は、1時間である。一例では、各センサ41〜48は、所定のサンプリング周期によって検出した検出結果を所定時間TXにわたって記憶し、所定時間TXにおいて平均した検出結果を冷媒漏洩判定装置60に出力する。なお、各センサ41〜48は、所定時間TX毎に決められた時刻において検出した検出結果を冷媒漏洩判定装置60に出力してもよい。
As shown in FIG. 3, the refrigerant leakage determination device 60 includes a data acquisition unit 61, a data storage unit 62, a preprocessing unit 63, a refrigerant leakage determination unit 64, and an output unit 65.
The data acquisition unit 61 is communicably connected to each of the sensors 41 to 48. The data acquisition unit 61 receives time-series data of each of the sensors 41 to 48. In one example, each of the sensors 41 to 48 outputs a detection result for each predetermined time TX to the refrigerant leak determination device 60. One example of the predetermined time TX is one hour. In one example, each of the sensors 41 to 48 stores a detection result detected at a predetermined sampling period over a predetermined time TX, and outputs an averaged detection result at the predetermined time TX to the refrigerant leak determination device 60. Note that each of the sensors 41 to 48 may output a detection result detected at a time determined every predetermined time TX to the refrigerant leakage determination device 60.
データ蓄積部62は、データ取得部61と電気的に接続されている。データ蓄積部62は、データ取得部61からのデータが入力される。データ蓄積部62は、データ取得部61からのデータを保存する。一例では、データ蓄積部62は、データ取得部61からのデータを時系列で順次記憶する。本実施形態のデータ蓄積部62は、冷媒漏洩判定装置60に内蔵された記録媒体として構成されている。この場合、データ蓄積部62は、例えば不揮発性メモリ及び揮発性メモリを含んでもよい。なお、データ蓄積部62は、冷媒漏洩判定装置60の外部、又は冷凍装置1の外部に設けられた記録媒体であってもよい。この場合、データ蓄積部62は、USB(Universe Serial Bus)メモリ、SD(Secure Digital)メモリカード、及びHDD(hard disk drive)記録媒体の少なくとも1つを含んでもよい。 The data storage unit 62 is electrically connected to the data acquisition unit 61. The data storage unit 62 receives data from the data acquisition unit 61. The data storage unit 62 stores the data from the data acquisition unit 61. In one example, the data storage unit 62 sequentially stores the data from the data acquisition unit 61 in chronological order. The data storage unit 62 of the present embodiment is configured as a recording medium built in the refrigerant leakage determination device 60. In this case, the data storage unit 62 may include, for example, a nonvolatile memory and a volatile memory. Note that the data storage unit 62 may be a recording medium provided outside the refrigerant leak determination device 60 or outside the refrigeration device 1. In this case, the data storage unit 62 may include at least one of a USB (Universe Serial Bus) memory, an SD (Secure Digital) memory card, and an HDD (hard disk drive) recording medium.
前処理部63は、時系列データにおいて冷媒漏洩の有無の判定、又は冷媒漏洩発生時期の予測に対してノイズとなるデータを除去し、除去されたデータの区間を代替データで補填する。前処理部63は、第1処理部63a及び第2処理部63bを有する。ノイズとなるデータは、例えば、圧縮機11の起動直後のような瞬時的な変動のデータ、経時的に連続していない区間のデータ、等を含む。 The pre-processing unit 63 removes data that becomes noise with respect to the determination of the presence or absence of refrigerant leakage in the time-series data or the prediction of the refrigerant leakage occurrence time, and supplements the section of the removed data with substitute data. The pre-processing unit 63 has a first processing unit 63a and a second processing unit 63b. The data that becomes noise includes, for example, data of instantaneous fluctuations immediately after the compressor 11 is started, data of sections that are not continuous over time, and the like.
第1処理部63aは、データ蓄積部62に電気的に接続され、第2処理部63bは、第1処理部63aと電気的に接続されている。第1処理部63aは、代替データを補填する区間を抽出する。この区間は、例えば、冷凍装置1が停止している区間、圧縮機11の起動直後の区間、圧縮機11の停止直後の区間、及び圧縮機11の運転の切り替り直後の区間の少なくとも1つを含む。本実施形態では、第1処理部63aは、冷凍装置1が停止している区間、圧縮機11の起動直後の区間、圧縮機11の停止直後の区間、及び圧縮機11の運転の切り替り直後の区間を全て抽出する。 The first processing unit 63a is electrically connected to the data storage unit 62, and the second processing unit 63b is electrically connected to the first processing unit 63a. The first processing unit 63a extracts a section for supplementing the substitute data. This section is, for example, at least one of a section in which the refrigeration apparatus 1 is stopped, a section immediately after the compressor 11 is started, a section immediately after the compressor 11 is stopped, and a section immediately after the operation of the compressor 11 is switched. including. In the present embodiment, the first processing unit 63a includes a section in which the refrigeration apparatus 1 is stopped, a section immediately after the start of the compressor 11, a section immediately after the stop of the compressor 11, and immediately after the operation of the compressor 11 is switched. Is extracted.
第2処理部63bは、第1処理部63aによって抽出された区間に代替データを入力する。この代替データは、第1処理部63aによって抽出した区間の前後の値、又は予め決める代表値である。例えば、第1処理部63aが、冷凍装置1が停止している区間を抽出した場合、第2処理部63bは、冷凍装置1が停止している区間の前後の値のいずれか一方を代替データとする。ここで、停止している、つまり経時的に連続していない区間のデータは、例えば「0」とみなされる。第1処理部63aが圧縮機11の起動直後の区間を抽出した場合、第2処理部63bは、圧縮機11の起動直後の区間の後の値を代替データとする。圧縮機11の起動直後の区間の後の値は、圧縮機11の起動直後の区間の後の所定期間にわたるデータの平均値であってもよいし、圧縮機11の起動直後の区間の直後の時刻のデータであってもよい。第1処理部63aが圧縮機11の運転の停止直後の区間を抽出した場合、第2処理部63bは、圧縮機11の運転の停止直後の区間の前の区間の値を代替データとする。圧縮機11の運転の停止直後の区間の前の区間の値は、圧縮機11の停止直後の区間の前の区間として圧縮機11が停止動作に入る直前の区間におけるデータの平均値であってもよいし、圧縮機11が停止動作に入る直前の時刻のデータであってもよい。第1処理部63aが圧縮機11の運転の切り替り直後の区間を抽出した場合、第2処理部63bは、圧縮機11の運転の切り替り直後の区間の前後の区間の値のいずれか一方を代替データとする。圧縮機11の運転の切り替り直後の区間の前後の区間の値のいずれか一方は、圧縮機11の運転の切り替り直後の区間の前後の区間のいずれか一方のデータの平均値であってもよいし、圧縮機11の運転の切り替り直後の区間の前後の区間のいずれか一方における所定の時刻のデータであってもよい。なお、代替データの算出方法として、代替データで補填する区間の前後のデータを補間処理(例えば直線補間)して算出した値を代替データとしてもよい。 The second processing unit 63b inputs the substitute data into the section extracted by the first processing unit 63a. This substitute data is a value before or after the section extracted by the first processing unit 63a, or a predetermined representative value. For example, when the first processing unit 63a extracts a section in which the refrigeration apparatus 1 is stopped, the second processing unit 63b replaces one of the values before and after the section in which the refrigeration apparatus 1 is stopped with substitute data. And Here, the data of the section that is stopped, that is, the section that is not continuous over time is regarded as, for example, “0”. When the first processing unit 63a extracts a section immediately after the start of the compressor 11, the second processing unit 63b sets the value after the section immediately after the start of the compressor 11 as substitute data. The value after the section immediately after the start of the compressor 11 may be an average value of data over a predetermined period after the section immediately after the start of the compressor 11 or may be the average value of the data immediately after the section immediately after the start of the compressor 11. The data may be time data. When the first processing unit 63a extracts the section immediately after the stop of the operation of the compressor 11, the second processing unit 63b sets the value of the section before the section immediately after the stop of the operation of the compressor 11 as substitute data. The value of the section immediately before the section immediately after the stop of the operation of the compressor 11 is the average value of the data in the section immediately before the compressor 11 enters the stop operation as the section before the section immediately after the stop of the compressor 11. Alternatively, the data may be data at a time immediately before the compressor 11 enters the stop operation. When the first processing unit 63a extracts the section immediately after the switching of the operation of the compressor 11, the second processing unit 63b outputs one of the values of the section before and after the section immediately after the switching of the operation of the compressor 11. Is alternative data. One of the values before and after the section immediately after the switching of the operation of the compressor 11 is an average value of the data of any one of the sections before and after the section immediately after the switching of the operation of the compressor 11. Alternatively, the data may be data at a predetermined time in one of the sections before and after the section immediately after the switching of the operation of the compressor 11. As a method of calculating the substitute data, a value calculated by performing interpolation processing (for example, linear interpolation) on the data before and after the section supplemented with the substitute data may be used as the substitute data.
冷媒漏洩判定部64は、前処理部63と電気的に接続されている。冷媒漏洩判定部64は、前処理部63によって処理されたデータを用いて、冷媒漏洩の有無を判定し、又は冷媒漏洩発生時期を予測する。冷媒漏洩判定部64は、算出部66及び判定部67を有する。 The refrigerant leak determination unit 64 is electrically connected to the pre-processing unit 63. The refrigerant leak determination unit 64 determines the presence or absence of refrigerant leakage or predicts the refrigerant leakage occurrence time using the data processed by the preprocessing unit 63. The refrigerant leak determination unit 64 has a calculation unit 66 and a determination unit 67.
算出部66は、冷媒回路20の正常状態からの乖離度合を算出するため、第1指標値及び第2指標値を算出する。冷媒回路20の正常状態とは、例えば冷媒回路20に封入された冷媒量(冷媒充填量)が適正範囲内であることである。算出部66は、冷凍装置1の運転に関するデータのうち、第1期間の冷凍装置1の運転に関するデータから第1指標値を算出する。また算出部66は、冷凍装置1の運転に関するデータのうち、第1期間とは長さが異なる第2期間の冷凍装置1の運転に関するデータから第2指標値を算出する。そして算出部66は、第1指標値と第2指標値とに基づいて冷媒回路20の正常状態からの乖離度合を算出する。本実施形態では、算出部66は、第1指標値と第2指標値との乖離度合に基づいて冷媒回路20の正常状態からの乖離度合を算出する。算出部66は、算出結果を判定部67に出力する。 The calculation unit 66 calculates a first index value and a second index value in order to calculate the degree of deviation of the refrigerant circuit 20 from the normal state. The normal state of the refrigerant circuit 20 means that, for example, the amount of refrigerant (refrigerant charge) sealed in the refrigerant circuit 20 is within an appropriate range. The calculation unit 66 calculates a first index value from data relating to the operation of the refrigeration apparatus 1 during the first period among the data relating to the operation of the refrigeration apparatus 1. In addition, the calculation unit 66 calculates a second index value from data relating to the operation of the refrigeration apparatus 1 in the second period, which is different in length from the first period, from the data relating to the operation of the refrigeration apparatus 1. Then, the calculating unit 66 calculates the degree of deviation of the refrigerant circuit 20 from the normal state based on the first index value and the second index value. In the present embodiment, the calculation unit 66 calculates the degree of deviation of the refrigerant circuit 20 from the normal state based on the degree of deviation between the first index value and the second index value. The calculation unit 66 outputs the calculation result to the determination unit 67.
判定部67は、算出部66によって算出された冷媒回路20の正常状態からの乖離度合に基づいて冷媒漏洩の有無を判定、又は、冷媒漏洩発生時期を予測する。判定部67は、判定結果又は予測結果を出力部65に出力する。 The determination unit 67 determines the presence or absence of refrigerant leakage based on the degree of deviation of the refrigerant circuit 20 from the normal state calculated by the calculation unit 66, or predicts the refrigerant leakage occurrence time. The determination unit 67 outputs the determination result or the prediction result to the output unit 65.
ここで、冷媒漏洩の有無とは、微量の冷媒漏洩ではなく、単位時間当たりの冷媒漏洩量が第1閾値以上になることである。第1閾値の一例は、冷媒漏洩によって冷凍装置1に異常が発生するほどの冷媒漏洩量であり、試験等により予め決められる。冷凍装置1の異常の一例は、冷媒充填量が適正範囲の下限値未満となって圧縮機11が冷却できないことに起因する圧縮機11の温度が過度に高くなることである。また、冷媒漏洩発生時期は、例えば、冷媒充填量が適正範囲の下限値未満となる時期であってもよいし、冷媒充填量が適正範囲の下限値未満となって圧縮機11が冷却できないことに起因する圧縮機11の温度が第2閾値以上となる時期であってもよい。第2閾値の一例は、圧縮機11の圧縮機構部の焼き付き等の異常が発生する可能性が高くなる温度であり、試験等により予め決められる。 Here, the presence / absence of refrigerant leakage means that the amount of refrigerant leakage per unit time is not less than a first threshold value, not a small amount of refrigerant leakage. An example of the first threshold is a refrigerant leakage amount that causes an abnormality in the refrigeration apparatus 1 due to refrigerant leakage, and is determined in advance by a test or the like. One example of an abnormality of the refrigeration apparatus 1 is that the temperature of the compressor 11 becomes excessively high due to the fact that the refrigerant charge is less than the lower limit of the appropriate range and the compressor 11 cannot be cooled. In addition, the refrigerant leakage occurrence time may be, for example, a time when the refrigerant charging amount is less than the lower limit value of the appropriate range, or when the refrigerant charging amount is less than the lower limit value of the appropriate range and the compressor 11 cannot be cooled. May be the time when the temperature of the compressor 11 caused by the above becomes equal to or higher than the second threshold value. An example of the second threshold is a temperature at which the possibility of occurrence of an abnormality such as seizure of the compression mechanism of the compressor 11 increases, and is determined in advance by a test or the like.
出力部65は、データ蓄積部62及び報知部52と電気的に接続されている。出力部65は、冷媒漏洩の有無の判定結果、又は、冷媒漏洩発生時期の予測結果をデータ蓄積部62及び報知部52に出力する。報知部52は、例えば表示器53によって冷媒漏洩の有無の判定結果、又は、冷媒漏洩発生時期の予測結果を表示する。また、出力部65は、アンテナを含む無線通信部を有する。出力部65は、無線通信部を介して管理者の端末(管理者用端末70)と通信可能である。出力部65は、冷媒漏洩の有無の判定結果、又は、冷媒漏洩発生時期の予測結果を管理者用端末70に出力する。管理者用端末70は、スマートフォン、タブレット型コンピュータ等の携帯型通信機器であってもよいし、デスクトップ型のパーソナルコンピュータであってもよい。 The output unit 65 is electrically connected to the data storage unit 62 and the notification unit 52. The output unit 65 outputs the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time to the data storage unit 62 and the notification unit 52. The notification unit 52 displays, for example, a determination result of the presence or absence of refrigerant leakage or a prediction result of the refrigerant leakage occurrence time by the display 53. The output unit 65 has a wireless communication unit including an antenna. The output unit 65 can communicate with an administrator terminal (administrator terminal 70) via a wireless communication unit. The output unit 65 outputs the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time to the manager terminal 70. The administrator terminal 70 may be a portable communication device such as a smartphone or a tablet computer, or a desktop personal computer.
次に、冷媒漏洩判定部64によって行われる冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測の詳細な内容について説明する。
算出部66は、データ蓄積部62に蓄積された冷凍装置1の運転に関するデータを用いて、第1期間における冷凍装置1の運転に関するデータの移動平均によって第1指標値を算出し、第2期間における冷凍装置1の運転に関するデータの移動平均によって第2指標値を算出する。算出部66は、処理を実施する時点よりも以前の第1期間及び第2期間のデータを用いて第1指標値及び第2指標値を算出する。そして算出部66は、第1指標値と第2指標値との乖離度合を算出する。本実施形態では、第1期間のデータは、1日分のデータであり、第2期間のデータは、10日分のデータである。また、本実施形態において、サンプリングサイクルを1時間とし、1時間毎に冷凍装置1の運転に関するデータを取得する。したがって、第1期間のデータ及び第2期間のデータは、期間の長さのみならずデータの個数によっても示すことができ、1日分のデータとは、24個のデータであり、10日分のデータとは、240個のデータである。
Next, the details of the determination of the presence or absence of the refrigerant leakage or the prediction of the refrigerant leakage occurrence time performed by the refrigerant leakage determination unit 64 will be described.
The calculation unit 66 uses the data on the operation of the refrigeration apparatus 1 stored in the data storage unit 62 to calculate a first index value by a moving average of the data on the operation of the refrigeration apparatus 1 in the first period, and The second index value is calculated by the moving average of the data on the operation of the refrigeration apparatus 1 in the above. The calculation unit 66 calculates the first index value and the second index value using the data of the first period and the second period before the time when the processing is performed. Then, the calculation unit 66 calculates the degree of deviation between the first index value and the second index value. In the present embodiment, the data for the first period is data for one day, and the data for the second period is data for 10 days. In the present embodiment, the sampling cycle is one hour, and data on the operation of the refrigeration apparatus 1 is acquired every hour. Therefore, the data of the first period and the data of the second period can be indicated not only by the length of the period but also by the number of data. One day's data is 24 data, and 10 days' worth of data. Are 240 pieces of data.
第1指標値及び第2指標値は、吐出側冷媒温度比である。吐出側冷媒温度比は、吐出側冷媒温度指数の一例であり、圧縮機11の吐出側冷媒温度の予測値と、圧縮機11の吐出側冷媒温度の実測値との比により示される。本実施形態では、圧縮機11の吐出側冷媒温度の予測値に対する圧縮機11の吐出側冷媒温度の実測値を吐出側冷媒温度比と規定する。 The first index value and the second index value are discharge-side refrigerant temperature ratios. The discharge-side refrigerant temperature ratio is an example of a discharge-side refrigerant temperature index, and is indicated by a ratio between a predicted value of the discharge-side refrigerant temperature of the compressor 11 and an actually measured value of the discharge-side refrigerant temperature of the compressor 11. In the present embodiment, the measured value of the discharge-side refrigerant temperature of the compressor 11 with respect to the predicted value of the discharge-side refrigerant temperature of the compressor 11 is defined as the discharge-side refrigerant temperature ratio.
算出部66は、冷凍装置1の運転に関するデータとして吐出側冷媒温度比を算出する。具体的には、算出部66は、圧縮機11の吐出側冷媒温度の予測値、および、圧縮機11の吐出側冷媒温度の実測値を算出し、算出した圧縮機11の吐出側冷媒温度の予測値に対する圧縮機11の吐出側冷媒温度の実測値の比として吐出側冷媒温度比を算出する。 The calculation unit 66 calculates the discharge-side refrigerant temperature ratio as data relating to the operation of the refrigeration apparatus 1. Specifically, the calculation unit 66 calculates a predicted value of the discharge-side refrigerant temperature of the compressor 11 and an actual measurement value of the discharge-side refrigerant temperature of the compressor 11, and calculates the calculated discharge-side refrigerant temperature of the compressor 11. The discharge-side refrigerant temperature ratio is calculated as the ratio of the measured value of the discharge-side refrigerant temperature of the compressor 11 to the predicted value.
算出部66は、圧縮機11の吐出側冷媒温度の予測値を、例えば冷媒回路20への冷媒充填量が適正範囲内である場合の凝縮温度、蒸発温度、第1膨張弁14Aの開度、第2膨張弁14Bの開度、圧縮機11の運転周波数、及び圧縮機11の回転速度の少なくとも1つを変数とした回帰分析によって、冷凍装置1への電力の供給源となる電源の電源周波数と電源電圧ごとに算出する。 The calculation unit 66 calculates the predicted value of the discharge-side refrigerant temperature of the compressor 11 by, for example, the condensation temperature, the evaporation temperature, the opening degree of the first expansion valve 14A when the refrigerant charging amount into the refrigerant circuit 20 is within an appropriate range, The power supply frequency of the power supply as the power supply source to the refrigeration apparatus 1 is obtained by regression analysis using at least one of the opening degree of the second expansion valve 14B, the operating frequency of the compressor 11, and the rotation speed of the compressor 11 as variables. Is calculated for each power supply voltage.
具体的には、海上コンテナのような輸送用冷凍装置では、港等のターミナルにおける電源の電源周波数及び電源電圧と、船の電源の電源周波数及び電源電圧とが異なる場合がある。一例では、ターミナルにおける電源の電源周波数は50Hzであり、電源電圧は定格380V±10%である。船の電源の電源周波数は60Hzであり、電源電圧は定格440V±10%である。電源周波数及び電源電圧の組合せの一例として、第1〜第6組合せを含む。第1組合せは、電源周波数が50Hzであり、電源電圧が342V(電源周波数が50Hzの場合の電源電圧の下限値)である。第2組合せは、電源周波数が50Hzであり、電源電圧が380V(電源周波数が50Hzの場合の電源電圧の中央値)である。第3組合せは、電源周波数50Hzであり、電源電圧が418V(電源周波数が50Hzの場合の電源電圧の上限値)である。第4組合せは、電源周波数が60Hzであり、電源電圧が396V(電源周波数が60Hzの場合の電源電圧の下限値)である。第5組合せは、電源周波数が60Hzであり、電源電圧が440V(電源周波数が60Hzの場合の電源電圧の中央値)である。第6組合せは、電源周波数が60Hzであり、電源電圧が484V(電源周波数が60Hzの場合の電源電圧の上限値)である。算出部66は、第1〜第6組合せのそれぞれについて、圧縮機11の吐出側冷媒温度の予測値を算出する。なお、電源周波数及び電源電圧の組合せ数は任意に変更可能である。 Specifically, in a transportation refrigeration system such as a marine container, the power supply frequency and power supply voltage of a power supply in a terminal such as a port may be different from the power supply frequency and power supply voltage of a ship power supply. In one example, the power supply frequency of the power supply at the terminal is 50 Hz, and the power supply voltage is rated at 380 V ± 10%. The power supply frequency of the ship's power supply is 60 Hz, and the power supply voltage is rated 440 V ± 10%. Examples of combinations of the power supply frequency and the power supply voltage include first to sixth combinations. In the first combination, the power supply frequency is 50 Hz, and the power supply voltage is 342 V (the lower limit of the power supply voltage when the power supply frequency is 50 Hz). In the second combination, the power supply frequency is 50 Hz, and the power supply voltage is 380 V (the center value of the power supply voltage when the power supply frequency is 50 Hz). In the third combination, the power supply frequency is 50 Hz, and the power supply voltage is 418 V (the upper limit of the power supply voltage when the power supply frequency is 50 Hz). In the fourth combination, the power supply frequency is 60 Hz, and the power supply voltage is 396 V (the lower limit of the power supply voltage when the power supply frequency is 60 Hz). In the fifth combination, the power supply frequency is 60 Hz, and the power supply voltage is 440 V (the center value of the power supply voltage when the power supply frequency is 60 Hz). In the sixth combination, the power supply frequency is 60 Hz, and the power supply voltage is 484 V (the upper limit of the power supply voltage when the power supply frequency is 60 Hz). The calculation unit 66 calculates a predicted value of the discharge-side refrigerant temperature of the compressor 11 for each of the first to sixth combinations. The number of combinations of the power supply frequency and the power supply voltage can be arbitrarily changed.
算出部66は、圧縮機11の吐出側冷媒温度の実測値を吐出温度センサ41からの信号から算出する。圧縮機11の吐出側冷媒温度の実測値は、例えば冷媒回路20からの単位時間当たりの冷媒漏洩量が多くなるにつれて、圧縮機11の吐出側冷媒温度の予測値に対して高くなる。このため、圧縮機11に吐出側冷媒温度の予測値に対する圧縮機11の吐出側冷媒温度の実測値の乖離度合と単位時間当たりの冷媒漏洩量とが相関を有する。 The calculation unit 66 calculates an actually measured value of the discharge-side refrigerant temperature of the compressor 11 from a signal from the discharge temperature sensor 41. The measured value of the discharge-side refrigerant temperature of the compressor 11 becomes higher than the predicted value of the discharge-side refrigerant temperature of the compressor 11 as, for example, the amount of refrigerant leakage from the refrigerant circuit 20 per unit time increases. Therefore, the degree of divergence of the measured value of the discharge-side refrigerant temperature of the compressor 11 with respect to the predicted value of the discharge-side refrigerant temperature of the compressor 11 has a correlation with the amount of refrigerant leakage per unit time.
算出部66は、第1指標値として第1期間における吐出側冷媒温度比(以下「第1冷媒温度比」と称する)及び第2指標値として第2期間における吐出側冷媒温度比(以下「第2冷媒温度比」と称する)を算出する。一例として図4(a)のグラフは、第1冷媒温度比及び第2冷媒温度比のそれぞれの推移を示す。図4(a)に示すとおり、7月9日以前では、第1冷媒温度比と第2冷媒温度比との乖離度合が小さいが、7月9日以降において、乖離度合が徐々に大きくなっていることが分かる。 The calculating unit 66 determines the discharge-side refrigerant temperature ratio in the first period (hereinafter, referred to as “first refrigerant temperature ratio”) as the first index value and the discharge-side refrigerant temperature ratio in the second period (hereinafter, “first refrigerant temperature ratio”) as the second index value. 2 refrigerant temperature ratio). As an example, the graph of FIG. 4A shows a transition of each of the first refrigerant temperature ratio and the second refrigerant temperature ratio. As shown in FIG. 4A, before July 9, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio is small, but after July 9, the degree of deviation gradually increases. You can see that there is.
算出部66は、例えば第1冷媒温度比と第2冷媒温度比との乖離度合を算出する。本実施形態では、第1冷媒温度比と第2冷媒温度比との乖離度合は、第2冷媒温度比に対する第1冷媒温度比の比で示す。この比が大きくなるにつれて第1冷媒温度比と第2冷媒温度比との乖離度合が大きくなる。なお、第1冷媒温度比と第2冷媒温度比との乖離度合として、第1冷媒温度比と第2冷媒温度比との差で示してもよい。この差が大きくなるにつれて第1冷媒温度比と第2冷媒温度比との乖離度合が大きくなる。一例として図4(b)のグラフは、第1冷媒温度比と第2冷媒温度比との乖離度合の推移を示す。図4(b)に示すとおり、7月9日以前では、第1冷媒温度比と第2冷媒温度比との乖離度合は略1.00である。7月9日以降において、第1冷媒温度比と第2冷媒温度比との乖離度合が徐々に大きくなることが分かる。 The calculation unit 66 calculates, for example, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio. In the present embodiment, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio is indicated by the ratio of the first refrigerant temperature ratio to the second refrigerant temperature ratio. As this ratio increases, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio increases. The difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio may be indicated by the difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio. As the difference increases, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio increases. As an example, the graph of FIG. 4B shows the transition of the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio. As shown in FIG. 4B, before July 9, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio is approximately 1.00. It can be seen that after July 9, the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio gradually increases.
判定部67は、第1冷媒温度比と第2冷媒温度比との乖離度合が閾値XT以上の場合、冷媒漏洩が発生していると判定する。閾値XTは、冷凍装置1に異常が発生するほどの冷媒漏洩が発生していると判別するための値であり、試験等により予め設定される。 When the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio is equal to or greater than the threshold value XT, the determination unit 67 determines that refrigerant leakage has occurred. The threshold value XT is a value for determining that refrigerant leakage has occurred such that an abnormality occurs in the refrigeration apparatus 1, and is set in advance by a test or the like.
判定部67は、第1冷媒温度比と第2冷媒温度比との乖離度合の変化傾向に基づいて、冷媒漏洩発生時期を予測する。具体的には、算出部66は、例えば1日毎の第1冷媒温度比と第2冷媒温度比との乖離度合を算出して判定部67に出力する。判定部67は、例えば1日毎の第1冷媒温度比と第2冷媒温度比との乖離度合からこの乖離度合の変化傾向を取得する。判定部67は、乖離度合が増加傾向であり、かつ、乖離度合の傾きに基づいて、冷媒漏洩発生時期を予測する。より詳細には、判定部67は、第1冷媒温度比と第2冷媒温度比との乖離度合の傾きに基づいて、この乖離度合が閾値XTに達する時期を予測する。判定部67は、乖離度合の傾きを、例えば回帰分析によって算出してもよいし、所定の2つの時期の乖離度合を結ぶ直線から算出してもよい。一例では、図4(b)に示すとおり、判定部67は、7月16日までの第1冷媒温度比と第2冷媒温度比との乖離度合の推移に基づいて、7月16日以降の乖離度合を予測する(図4(b)の破線部分)。判定部67は、7月16日以降の乖離度合の推移と閾値XTとの比較に基づいて、冷媒漏洩発生時期を予測する。 The determination unit 67 predicts a refrigerant leakage occurrence time based on a change tendency of a degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio. Specifically, the calculation unit 66 calculates the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio, for example, every day, and outputs the calculated degree to the determination unit 67. The determination unit 67 obtains a change tendency of the degree of divergence from the degree of divergence between the first refrigerant temperature ratio and the second refrigerant temperature ratio every day, for example. The determination unit 67 predicts the refrigerant leak occurrence time based on the inclination of the degree of divergence, which is increasing. More specifically, the determination unit 67 predicts when the degree of the difference reaches the threshold XT based on the gradient of the degree of difference between the first refrigerant temperature ratio and the second refrigerant temperature ratio. The determination unit 67 may calculate the gradient of the divergence degree, for example, by regression analysis, or may calculate the divergence degree from a straight line connecting the divergence degrees at two predetermined times. In one example, as illustrated in FIG. 4B, the determination unit 67 determines, based on a change in the degree of divergence between the first refrigerant temperature ratio and the second refrigerant temperature ratio up to July 16, from July 16 onward. The degree of divergence is predicted (broken line portion in FIG. 4B). The determination unit 67 predicts the refrigerant leak occurrence time based on a comparison between the transition of the degree of divergence after July 16 and the threshold value XT.
図5を参照して、冷媒漏洩判定装置60による冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測の具体的な処理手順について説明する。この処理は、例えば、ユーザの要求があったとき、冷凍装置1又は冷媒漏洩判定装置60の電源がオン状態になったとき、冷凍装置1の輸送が完了したとき、及び冷凍装置1の使用前点検が実施されたときの少なくとも1つの場合に実行される。本実施形態では、冷媒漏洩判定装置60は、ユーザの要求があったとき、冷凍装置1又は冷媒漏洩判定装置60の電源がオン状態になったとき、冷凍装置1の輸送が完了したとき、及び冷凍装置1の使用前点検が実施されたときのそれぞれの場合に、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を実行する。 With reference to FIG. 5, a specific processing procedure for judging the presence or absence of refrigerant leakage by the refrigerant leakage determination device 60 or predicting the refrigerant leakage occurrence time will be described. This processing is performed, for example, when there is a user request, when the power of the refrigeration apparatus 1 or the refrigerant leak determination apparatus 60 is turned on, when the transportation of the refrigeration apparatus 1 is completed, and before the refrigeration apparatus 1 is used. Executed in at least one case when the check was performed. In the present embodiment, the refrigerant leak determination device 60 is configured to perform the following operations: at the request of the user, when the power of the refrigeration apparatus 1 or the refrigerant leakage determination apparatus 60 is turned on, when the transportation of the refrigeration apparatus 1 is completed, and In each case when the pre-use inspection of the refrigeration apparatus 1 is performed, the determination of the presence or absence of refrigerant leakage or the prediction of the refrigerant leakage occurrence time is executed.
冷媒漏洩判定装置60は、ステップS11において冷凍装置1の運転に関するデータから第1冷媒温度比及び第2冷媒温度比をそれぞれ算出し、ステップS12に移行する。冷媒漏洩判定装置60は、ステップS12において第1冷媒温度比と第2冷媒温度比との乖離度合を算出し、ステップS13に移行する。 The refrigerant leak determination device 60 calculates the first refrigerant temperature ratio and the second refrigerant temperature ratio from the data relating to the operation of the refrigerating device 1 in step S11, and proceeds to step S12. The refrigerant leak determination device 60 calculates the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio in step S12, and proceeds to step S13.
冷媒漏洩判定装置60は、ステップS13において第1冷媒温度比と第2冷媒温度比との乖離度合が閾値XT以上か否かを判定する。冷媒漏洩判定装置60は、ステップS13において肯定判定する場合、ステップS14において冷媒漏洩が発生していると判定し、ステップS15に移行する。冷媒漏洩判定装置60は、ステップS15において判定結果を表示器53及び管理者用端末70の少なくとも一方に通信し、処理を一旦終了する。なお、表示器53及び管理者用端末70は、ステップS15においてユーザの要求があったとき、冷凍装置1又は冷媒漏洩判定装置60の電源がオン状態になったとき、冷凍装置1の輸送が完了したとき、及び冷凍装置1の使用前点検が実施されたときの少なくとも1つの場合に冷媒漏洩の有無の判定結果、又は冷媒漏洩発生時期の予測結果を報知する。本実施形態では、表示器53及び管理者用端末70は、ユーザの要求があったとき、冷凍装置1又は冷媒漏洩判定装置60の電源がオン状態になったとき、冷凍装置1の輸送が完了したとき、及び冷凍装置1の使用前点検が実施されたときのそれぞれの場合に冷媒漏洩の有無の判定結果、又は冷媒漏洩発生時期の予測結果を報知する。なお、ステップS15において表示器53に代えて報知部52に通信してもよい。報知部52がスピーカを有する場合、報知部52は、スピーカによって冷媒漏洩の有無の判定結果、又は冷媒漏洩発生時期の予測結果を報知してもよい。 The refrigerant leak determination device 60 determines in step S13 whether the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio is equal to or greater than a threshold value XT. When an affirmative determination is made in step S13, the refrigerant leakage determination device 60 determines that refrigerant leakage has occurred in step S14, and proceeds to step S15. The refrigerant leak determination device 60 communicates the determination result to at least one of the display 53 and the manager terminal 70 in step S15, and ends the process once. The display 53 and the manager terminal 70 complete the transportation of the refrigeration apparatus 1 when the user's request is made in step S15 or when the power of the refrigeration apparatus 1 or the refrigerant leak determination apparatus 60 is turned on. In this case, the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time is notified in at least one case when the pre-use inspection of the refrigeration apparatus 1 is performed. In the present embodiment, the display 53 and the administrator terminal 70 complete the transportation of the refrigeration system 1 when the power of the refrigeration system 1 or the refrigerant leakage determination device 60 is turned on when requested by the user. In this case, the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time is reported in each case when the pre-use inspection of the refrigeration apparatus 1 is performed. In step S15, communication may be made with the notification unit 52 instead of the display 53. When the notification unit 52 has a speaker, the notification unit 52 may report the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time by the speaker.
冷媒漏洩判定装置60は、ステップS13において否定判定する場合、ステップS16において第1冷媒温度比と第2冷媒温度比との乖離度合の変化傾向を算出し、ステップS17に移行する。 When a negative determination is made in step S13, the refrigerant leak determination device 60 calculates a change tendency of the degree of divergence between the first refrigerant temperature ratio and the second refrigerant temperature ratio in step S16, and proceeds to step S17.
冷媒漏洩判定装置60は、ステップS17において第1冷媒温度比と第2冷媒温度比との乖離度合の変化の傾きに基づいて冷媒漏洩発生時期を予測し、ステップS18に移行する。冷媒漏洩判定装置60は、ステップS18において予測結果を表示器53及び管理者用端末70の少なくとも一方に通信し、処理を一旦終了する。このように、図5に示すフローチャートでは、冷媒漏洩判定装置60は、冷媒漏洩の有無の判定を行った後、冷媒漏洩発生時期の予測を行う。 The refrigerant leakage determination device 60 predicts the refrigerant leakage occurrence time based on the gradient of the change in the degree of deviation between the first refrigerant temperature ratio and the second refrigerant temperature ratio in step S17, and proceeds to step S18. The refrigerant leak determination device 60 communicates the prediction result to at least one of the display 53 and the manager terminal 70 in step S18, and ends the process once. As described above, in the flowchart illustrated in FIG. 5, the refrigerant leakage determination device 60 determines the presence or absence of refrigerant leakage, and then predicts the refrigerant leakage occurrence time.
以上説明した冷媒漏洩判定装置60における冷媒漏洩判定方法は、データ保存ステップ、第1算出ステップ、第2算出ステップ、及び判定ステップを有する。以下これを説明する。 The refrigerant leakage determination method in the refrigerant leakage determination device 60 described above includes a data storage step, a first calculation step, a second calculation step, and a determination step. This will be described below.
データ保存ステップは、冷凍装置1の運転に関するデータを保存するステップである。一例では、データ保存ステップは、冷凍装置1の運転に関するデータ取得部61からのデータをデータ蓄積部62において時系列データとして保存する。 The data saving step is a step of saving data relating to the operation of the refrigeration apparatus 1. In one example, in the data storage step, the data from the data acquisition unit 61 regarding the operation of the refrigeration apparatus 1 is stored in the data storage unit 62 as time-series data.
第1算出ステップは、第1期間の冷凍装置1の運転に関するデータから第1指標値を算出し、第2期間の冷凍装置1の運転に関するデータから第2指標値を算出するステップである。一例では、第1算出ステップは、算出部66によって実行されるものであって、第1期間の冷凍装置1の運転に関するデータの移動平均によって第1指標値を算出し、第2期間の冷凍装置1の運転に関するデータの移動平均によって第2指標値を算出する。また一例では、第1算出ステップは、冷媒漏洩の有無の判定、又は冷媒漏洩発生時期の予測に対してノイズとなるデータを前処理部63によって削除し、代替データで補填する前処理ステップを含む。第1算出ステップと図5との関係について述べると、図5におけるステップS11が第1算出ステップに相当する。 The first calculation step is a step of calculating a first index value from data relating to the operation of the refrigeration apparatus 1 during the first period and calculating a second index value from data relating to the operation of the refrigeration apparatus 1 during the second period. In one example, the first calculation step is executed by the calculation unit 66, and calculates the first index value by a moving average of data on the operation of the refrigeration apparatus 1 during the first period, and calculates the first index value by using the refrigeration apparatus during the second period. A second index value is calculated by a moving average of the data related to the first driving. In one example, the first calculation step includes a preprocessing step of deleting data that becomes noise with respect to the determination of the presence or absence of refrigerant leakage or predicting the refrigerant leakage occurrence time by the preprocessing unit 63 and supplementing the data with substitute data. . Describing the relationship between the first calculation step and FIG. 5, step S11 in FIG. 5 corresponds to the first calculation step.
第2算出ステップは、第1指標値及び第2指標値から冷媒回路20の正常状態からの乖離度合を算出するステップである。一例では、第2算出ステップは、算出部66によって実行される。第2算出ステップと図5との関係について述べると、図5におけるステップS12が第2算出ステップに相当する。 The second calculation step is a step of calculating the degree of deviation from the normal state of the refrigerant circuit 20 from the first index value and the second index value. In one example, the second calculation step is executed by the calculation unit 66. Describing the relationship between the second calculation step and FIG. 5, step S12 in FIG. 5 corresponds to the second calculation step.
判定ステップは、冷媒回路20の正常状態からの乖離度合に基づいて、冷媒漏洩の有無の判定、又は冷媒漏洩発生時期を予測するステップである。一例では、第2指標値を冷媒回路20の正常状態とし、第2指標値に対する第1指標値の乖離度合がある閾値以上となると、冷媒漏洩が発生したと判定する。判定ステップは、第2指標値に対する第1指標値の乖離度合の変化傾向に基づいて、この乖離度合がいつ閾値に達するかを予測することによって、冷媒漏洩発生時期を予測する。判定ステップと図5との関係について述べると、図5におけるステップS13〜S18が判定ステップに相当する。 The determination step is a step of determining the presence or absence of refrigerant leakage or predicting the refrigerant leakage occurrence time based on the degree of deviation of the refrigerant circuit 20 from the normal state. In one example, the second index value is set to the normal state of the refrigerant circuit 20, and when the degree of deviation of the first index value from the second index value becomes equal to or greater than a certain threshold value, it is determined that refrigerant leakage has occurred. The determining step predicts when the refrigerant leakage will occur by predicting when the degree of divergence reaches a threshold value based on a change tendency of the degree of divergence of the first index value with respect to the second index value. Describing the relationship between the determination step and FIG. 5, steps S13 to S18 in FIG. 5 correspond to the determination step.
次に、本実施形態の作用について説明する。
冷媒漏洩判定装置60は、第2期間の冷凍装置1の運転に関するデータから第2指標値を移動平均によって算出し、この算出された第2指標値を基準とする。本実施形態では、第2期間は、10日〜30日と長期間にわたる冷凍装置1の運転に関するデータであるため、1日等の短い期間における冷凍装置1の運転に関する変動による影響が小さくなる。
Next, the operation of the present embodiment will be described.
The refrigerant leak determination device 60 calculates a second index value from the data on the operation of the refrigeration apparatus 1 in the second period by a moving average, and uses the calculated second index value as a reference. In the present embodiment, the second period is data relating to the operation of the refrigeration apparatus 1 over a long period of 10 to 30 days, so that the influence of fluctuations in the operation of the refrigeration apparatus 1 in a short period such as one day is reduced.
また冷媒漏洩判定装置60は、第1期間の冷凍装置1の運転に関するデータから第1指標値を移動平均によって算出する。本実施形態では、第1期間は、1日と短期間における冷凍装置1の運転に関するデータであるため、冷凍装置1の運転に関する最近の変動による影響が大きい。 In addition, the refrigerant leakage determination device 60 calculates a first index value by a moving average from data on the operation of the refrigeration apparatus 1 during the first period. In the present embodiment, since the first period is data relating to the operation of the refrigeration apparatus 1 in a short period of one day, the influence of recent fluctuations in the operation of the refrigeration apparatus 1 is large.
このように、冷凍装置1の運転に関する最近の変動による影響が小さい第2指標値を基準として、冷凍装置1の運転に関する変動による影響が大きい第1指標値が第2指標値からどの程度乖離するかをモニタすることによって、冷凍装置1の運転に関する変動を抽出し易くなる。これにより、冷媒漏洩が発生した場合、第2指標値に対して第1指標値が顕著に乖離するため、冷媒漏洩判定装置60は、冷媒漏洩が発生したと判定できる。また、第2指標値に対する第1指標値の乖離度合の変化傾向を取得し、この乖離度合の推移を予測することによって、冷媒漏洩判定装置60は、冷媒漏洩発生時期を予測できる。 In this way, the first index value, which is greatly influenced by the fluctuations related to the operation of the refrigeration apparatus 1, is deviated from the second index value based on the second index value, which is small influenced by the recent fluctuations related to the operation of the refrigeration apparatus 1. By monitoring this, it becomes easy to extract fluctuations related to the operation of the refrigeration apparatus 1. Thereby, when the refrigerant leakage occurs, the first index value remarkably deviates from the second index value, so that the refrigerant leakage determination device 60 can determine that the refrigerant leakage has occurred. Further, the refrigerant leakage determination device 60 can predict the refrigerant leakage occurrence time by acquiring the change tendency of the degree of deviation of the first index value from the second index value and predicting the transition of the degree of deviation.
本実施形態によれば、以下の効果が得られる。
(1)算出部66は、冷凍装置1の運転に関するデータのうち、第1期間の冷凍装置1の運転に関するデータから算出される第1指標値と、第1期間とは長さが異なる第2期間の冷凍装置1の運転に関するデータから算出される第2指標値とに基づいて、冷媒回路20の正常状態からの乖離状態を算出する。判定部67は、冷媒回路20の正常状態からの乖離度合に基づいて冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する。この構成によれば、冷凍装置1の冷房運転及び除霜運転等の通常運転及び冷凍装置1の使用前点検の運転を含む冷凍装置1の運転に関するデータを用いて算出された第1指標値と第2指標値との乖離状態に基づいて冷媒回路20の正常状態からの乖離状態を算出できる。これにより、冷媒回路20の正常状態からの乖離状態に基づいて冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。このように、冷媒漏洩の有無を判定するための特別な運転を実行せずに、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。
According to the present embodiment, the following effects can be obtained.
(1) The calculation unit 66 includes, among the data relating to the operation of the refrigeration apparatus 1, a first index value calculated from the data relating to the operation of the refrigeration apparatus 1 during the first period, and a second index value different in length from the first period. A deviation state of the refrigerant circuit 20 from a normal state is calculated based on the second index value calculated from data on the operation of the refrigeration apparatus 1 during the period. The determination unit 67 determines the presence or absence of refrigerant leakage based on the degree of deviation of the refrigerant circuit 20 from the normal state, or predicts the refrigerant leakage occurrence time. According to this configuration, the first index value calculated using the data relating to the normal operation such as the cooling operation and the defrosting operation of the refrigeration apparatus 1 and the operation of the refrigeration apparatus 1 including the operation of the pre-use inspection of the refrigeration apparatus 1 and The deviation state of the refrigerant circuit 20 from the normal state can be calculated based on the deviation state from the second index value. Accordingly, it is possible to determine the presence or absence of refrigerant leakage or to predict the refrigerant leakage occurrence time based on the state of the refrigerant circuit 20 deviating from the normal state. As described above, it is possible to determine the presence or absence of refrigerant leakage or to predict the timing of occurrence of refrigerant leakage without executing a special operation for determining the presence or absence of refrigerant leakage.
(2)期間の長い第2期間から算出される第2指標値は、冷凍装置1の運転の変動に関する影響が小さく、期間の短い第1期間から算出される第1指標値は、冷凍装置1の運転の変動に関する影響が大きくなる。そこで、本実施形態では、算出部66は、第1指標値と第2指標値との乖離度合に基づいて冷媒回路20の正常状態からの乖離度合を算出する。これにより、冷凍装置1の運転の変動を抽出し易くなり、冷凍装置1の運転の変動に基づいて、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。 (2) The second index value calculated from the long second period has little effect on the fluctuation of the operation of the refrigeration apparatus 1, and the first index value calculated from the short first period is the refrigeration apparatus 1 The influence on the fluctuation of the driving of the vehicle increases. Therefore, in the present embodiment, the calculation unit 66 calculates the degree of deviation of the refrigerant circuit 20 from the normal state based on the degree of deviation between the first index value and the second index value. This makes it easy to extract the fluctuations in the operation of the refrigeration apparatus 1, and it is possible to determine the presence or absence of refrigerant leakage or predict the refrigerant leakage occurrence time based on the fluctuations in the operation of the refrigeration apparatus 1.
(3)第1指標値は、第1期間の冷凍装置1の運転に関するデータの移動平均によって算出され、第2指標値は、第2期間の冷凍装置1の運転に関するデータの移動平均によって算出される。この構成によれば、長期間にわたる冷凍装置1の運転の変動と短期間における冷凍装置1の運転の変動との乖離度合に基づいて、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行うことができる。 (3) The first index value is calculated by a moving average of data on the operation of the refrigeration apparatus 1 during the first period, and the second index value is calculated by a moving average of data on the operation of the refrigeration apparatus 1 during the second period. You. According to this configuration, determination of the presence or absence of refrigerant leakage or prediction of refrigerant leakage occurrence time is performed based on the degree of deviation between the long-term fluctuation of the operation of the refrigeration apparatus 1 and the short-term fluctuation of the operation of the refrigeration apparatus 1. It can be performed.
(4)冷媒回路20に封入される冷媒量(冷媒充填量)が適正範囲よりも少ない場合、圧縮機11の吸入圧力が低下することにより、圧縮機11の内部の冷媒による冷却不足が生じ、圧縮機11の温度が過度に高くなるおそれがある。すなわち、冷媒回路20に封入される冷媒量が適正範囲の下限値未満の場合の圧縮機11の吐出側冷媒温度は、冷媒回路20に封入される冷媒量が適正範囲の場合の圧縮機11の吐出側冷媒温度よりも高くなる。そこで、本実施形態では、第1指標値及び第2指標値として、圧縮機11の吐出側冷媒温度の予測値に対する吐出側冷媒温度の実測値である吐出側冷媒温度比を用いる。このため、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を精度よく行うことができる。 (4) When the amount of refrigerant (refrigerant charging amount) sealed in the refrigerant circuit 20 is smaller than an appropriate range, the suction pressure of the compressor 11 decreases, resulting in insufficient cooling by the refrigerant inside the compressor 11, There is a possibility that the temperature of the compressor 11 becomes excessively high. That is, the discharge-side refrigerant temperature of the compressor 11 when the amount of refrigerant sealed in the refrigerant circuit 20 is less than the lower limit value of the appropriate range is the same as that of the compressor 11 when the amount of refrigerant sealed in the refrigerant circuit 20 is within the appropriate range. It becomes higher than the discharge side refrigerant temperature. Therefore, in the present embodiment, a discharge-side refrigerant temperature ratio that is an actually measured value of the discharge-side refrigerant temperature with respect to a predicted value of the discharge-side refrigerant temperature of the compressor 11 is used as the first index value and the second index value. For this reason, it is possible to accurately determine the presence or absence of refrigerant leakage, or to accurately predict the timing of occurrence of refrigerant leakage.
(5)算出部66は、電源周波数及び電源電圧ごとに予測冷媒温度を算出し、電源周波数及び電源電圧ごとに第1冷媒温度比及び第2冷媒温度比を算出する。これにより、第1冷媒温度比及び第2冷媒温度比をより精度よく算出できるため、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を精度よく行うことができる。 (5) The calculating unit 66 calculates a predicted refrigerant temperature for each power supply frequency and power supply voltage, and calculates a first refrigerant temperature ratio and a second refrigerant temperature ratio for each power supply frequency and power supply voltage. Accordingly, the first refrigerant temperature ratio and the second refrigerant temperature ratio can be calculated with higher accuracy, so that it is possible to accurately determine the presence or absence of refrigerant leakage or to accurately predict the refrigerant leakage occurrence time.
(6)前処理部63によって冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を行う際にノイズとなる冷凍装置1の運転に関するデータを省き、代替データで補填することにより、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を精度よく行うことができる。 (6) Reducing refrigerant leakage by omitting data relating to the operation of the refrigeration apparatus 1 which becomes noise when the presence or absence of refrigerant leakage is determined by the pre-processing unit 63 or predicting the refrigerant leakage occurrence time, and supplementing with substitute data. It is possible to accurately determine the presence or absence of refrigerant, or predict the refrigerant leakage occurrence time.
(7)第1処理部63aが圧縮機11の起動直後の区間を抽出した場合、第2処理部63bは、圧縮機11の起動直後の区間の後の値を代替データとする。第1処理部63aが圧縮機11の運転の停止直後の区間を抽出した場合、第2処理部63bは、圧縮機11の運転の停止直後の区間の前の区間の値を代替データとする。第1処理部63aが圧縮機11の運転の切り替り直後の区間を抽出した場合、第2処理部63bは、圧縮機11の運転の切り替り直後の区間の前後の区間の値のいずれか一方を代替データとする。この構成によれば、第1処理部63aによって抽出した区間から時期的に近いデータを代替データとすることによって、実際の冷凍装置1の運転に関するデータと代替データとの乖離度合を小さくできる。したがって、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を精度よく行うことができる。 (7) When the first processing unit 63a extracts the section immediately after the start of the compressor 11, the second processing unit 63b sets the value after the section immediately after the start of the compressor 11 as substitute data. When the first processing unit 63a extracts the section immediately after the stop of the operation of the compressor 11, the second processing unit 63b sets the value of the section before the section immediately after the stop of the operation of the compressor 11 as substitute data. When the first processing unit 63a extracts the section immediately after the switching of the operation of the compressor 11, the second processing unit 63b outputs one of the values of the section before and after the section immediately after the switching of the operation of the compressor 11. Is alternative data. According to this configuration, by using data that is temporally closer to the section extracted by the first processing unit 63a as the substitute data, the degree of discrepancy between the data regarding the actual operation of the refrigeration apparatus 1 and the substitute data can be reduced. Therefore, the determination of the presence or absence of refrigerant leakage or the prediction of refrigerant leakage occurrence time can be accurately performed.
(8)報知部52によって冷凍装置1の表示器53又は管理者用端末70に冷媒漏洩の発生、又は冷媒漏洩発生時期が表示されるため、管理者又は冷凍装置1の作業者が冷媒漏洩の発生又は冷媒漏洩発生時期を把握できる。 (8) Since the occurrence of refrigerant leakage or the timing of refrigerant leakage occurrence is displayed on the display 53 of the refrigeration system 1 or the manager terminal 70 by the notification unit 52, the manager or the worker of the refrigeration system 1 can check for refrigerant leakage. It is possible to grasp the generation time or the refrigerant leakage generation time.
(変更例)
上記実施形態に関する説明は、本開示に従う冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法が取り得る形態の例示であり、その形態を制限することを意図していない。本開示に従う冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法は、例えば以下に示される上記実施形態の変更例、及び相互に矛盾しない少なくとも2つの変更例が組み合わせられた形態を取り得る。以下の変更例において、上記実施形態の形態と共通する部分については、上記実施形態と同一の符号を付してその説明を省略する。
(Example of change)
The description of the above embodiment is an example of a form that a refrigerant leak determination device according to the present disclosure, a refrigeration apparatus including the refrigerant leak determination device, and a refrigerant leak determination method can take, and is not intended to limit the form. . A refrigerant leak determination device according to the present disclosure, a refrigeration device including the refrigerant leakage determination device, and a refrigerant leakage determination method are, for example, a combination of the following modifications of the above-described embodiment, and at least two modifications that do not contradict each other. Can take the form. In the following modified examples, portions common to the above-described embodiment will be denoted by the same reference numerals as those in the above-described embodiment, and description thereof will be omitted.
・上記実施形態では、第1指標値と第2指標値との乖離度合として第2指標値に対する第1指標値の比で示していたが、これに限られない。第1指標値と第2指標値との乖離度合の算出方法は、任意に変更可能である。一例では、算出部66は、第1指標値と第2指標値との乖離度合を、第1指標値及び第2指標値を用いた標準偏差、歪度、尤度、尖度、及び平均値の少なくとも1つに基づいて算出してもよい。 In the above embodiment, the degree of deviation between the first index value and the second index value is indicated by the ratio of the first index value to the second index value, but is not limited to this. The method of calculating the degree of deviation between the first index value and the second index value can be arbitrarily changed. In one example, the calculation unit 66 calculates the degree of deviation between the first index value and the second index value as a standard deviation using the first index value and the second index value, skewness, likelihood, kurtosis, and average value. May be calculated based on at least one of the following.
・上記実施形態では、冷媒漏洩判定装置60は、冷媒漏洩の有無の判定、及び冷媒漏洩発生時期の予測の両方を実行しているが、これに限られない。冷媒漏洩判定装置60は、冷媒漏洩の有無の判定のみを実行してもよい。また冷媒漏洩判定装置60は、第1指標値と第2指標値との乖離度合が閾値XTよりも小さい場合に冷媒漏洩発生時期の予測を実行してもよい。この場合、冷媒漏洩判定装置60は、冷媒漏洩の有無の判定を省略できる。 In the above embodiment, the refrigerant leakage determination device 60 performs both the determination of the presence or absence of the refrigerant leakage and the prediction of the refrigerant leakage occurrence time, but is not limited thereto. The refrigerant leakage determination device 60 may execute only the determination of the presence or absence of the refrigerant leakage. Further, the refrigerant leakage determination device 60 may execute the prediction of the refrigerant leakage occurrence time when the degree of deviation between the first index value and the second index value is smaller than the threshold value XT. In this case, the refrigerant leakage determination device 60 can omit the determination of the presence or absence of the refrigerant leakage.
・上記実施形態では、前処理部63は、時系列データにおいて冷媒漏洩の有無を判定、又は、冷媒漏洩発生時期を予測することに対するノイズとなるデータを除去し、除去されたデータの区間を代替データで補填したが、これに限られない。前処理部63は、時系列データにおいて冷媒漏洩の有無を判定、又は、冷媒漏洩発生時期を予測することに対するノイズとなるデータを除去するのみであってもよい。この構成によれば、冷媒漏洩の有無の判定、又は、冷媒漏洩発生時期の予測を精度よく行うことができる。 In the above-described embodiment, the preprocessing unit 63 determines whether there is a refrigerant leak in the time-series data, or removes data that becomes noise with respect to predicting a refrigerant leak occurrence time, and substitutes a section of the removed data. The data was supplemented, but not limited to this. The pre-processing unit 63 may simply remove data that becomes noise with respect to determining the presence or absence of refrigerant leakage in the time-series data or predicting the refrigerant leakage occurrence time. According to this configuration, it is possible to accurately determine the presence or absence of refrigerant leakage or to accurately predict the refrigerant leakage occurrence time.
・上記実施形態において、吐出側冷媒温度比に代えて、吐出側冷媒温度の予測値又は吐出側冷媒温度の実測値から第1指標値及び第2指標値を算出してもよい。一例では、算出部66は、第1期間における吐出側冷媒温度の予測値の移動平均によって第1指標値を算出し、第2期間における吐出側冷媒温度の予測値の移動平均によって第2指標値を算出する。また一例では、算出部66は、第1期間における吐出側冷媒温度の実測値の移動平均によって第1指標値を算出し、第2期間における吐出側冷媒温度の実測値の移動平均によって第2指標値を算出する。 In the above embodiment, the first index value and the second index value may be calculated from the predicted value of the discharge-side refrigerant temperature or the actually measured value of the discharge-side refrigerant temperature instead of the discharge-side refrigerant temperature ratio. In one example, the calculation unit 66 calculates the first index value by a moving average of the predicted value of the discharge-side refrigerant temperature in the first period, and calculates the second index value by the moving average of the predicted value of the discharge-side refrigerant temperature in the second period. Is calculated. In one example, the calculation unit 66 calculates the first index value by a moving average of the measured values of the discharge-side refrigerant temperature in the first period, and calculates the second index by the moving average of the measured values of the discharge-side refrigerant temperature in the second period. Calculate the value.
・上記実施形態において、第1指標値及び第2指標値として吐出側冷媒温度比に代えて、圧縮機11の吐出側の冷媒圧力の予測値に対する圧縮機11の吐出側の冷媒圧力の実測値の比である吐出側冷媒圧力比を用いてもよい。算出部66は、第1指標値として第1期間における吐出側冷媒圧力比(以下「第1冷媒圧力比」と称する)及び第2指標値として第2期間における吐出側冷媒圧力比(以下「第2冷媒圧力比」と称する)を算出する。そして算出部66は、第1冷媒圧力比と第2冷媒圧力比との乖離度合を算出する。判定部67は、第1冷媒圧力比と第2冷媒圧力比との乖離度合が所定の閾値以上の場合、冷媒漏洩が発生していると判定する。また判定部67は、第1冷媒圧力比と第2冷媒圧力比との乖離度合の変化傾向に基づいて、冷媒漏洩発生時期を予測する。また、吐出側冷却温度比に代えて、圧縮機11に吸入される吸入ガス冷媒の過熱度の予測値に対する吸入ガス冷媒の過熱度の実測値の比を用いてもよいし、凝縮器12の出口の液冷媒の過冷却度の予測値に対する凝縮器12の出口の液冷媒の過冷却度の実測値の比を用いてもよい。 In the above embodiment, instead of the discharge-side refrigerant temperature ratio as the first index value and the second index value, the actual measured value of the refrigerant pressure on the discharge side of the compressor 11 with respect to the predicted value of the refrigerant pressure on the discharge side of the compressor 11 May be used as the discharge side refrigerant pressure ratio. The calculation unit 66 determines the discharge-side refrigerant pressure ratio in the first period (hereinafter, referred to as “first refrigerant pressure ratio”) as the first index value and the discharge-side refrigerant pressure ratio in the second period (hereinafter, “first refrigerant pressure ratio”) as the second index value. 2 refrigerant pressure ratio). Then, the calculation unit 66 calculates the degree of deviation between the first refrigerant pressure ratio and the second refrigerant pressure ratio. When the degree of deviation between the first refrigerant pressure ratio and the second refrigerant pressure ratio is equal to or greater than a predetermined threshold, the determination unit 67 determines that refrigerant leakage has occurred. In addition, the determination unit 67 predicts a refrigerant leakage occurrence time based on a change tendency of a degree of deviation between the first refrigerant pressure ratio and the second refrigerant pressure ratio. Further, instead of the discharge-side cooling temperature ratio, the ratio of the measured value of the superheat degree of the suction gas refrigerant to the predicted value of the superheat degree of the suction gas refrigerant drawn into the compressor 11 may be used. The ratio of the measured value of the degree of supercooling of the liquid refrigerant at the outlet of the condenser 12 to the predicted value of the degree of subcooling of the liquid refrigerant at the outlet may be used.
・上記変形例において、吐出側冷媒圧力比に代えて、圧縮機11の吐出側の冷媒圧力の予測値又は圧縮機11の吐出側の冷媒圧力の実測値から第1指標値及び第2指標値を算出してもよい。一例では、算出部66は、第1期間における圧縮機11の吐出側の冷媒圧力の予測値の移動平均によって第1指標値を算出し、第2期間における圧縮機11の吐出側の冷媒圧力の予測値の移動平均によって第2指標値を算出する。また一例では、算出部66は、第1期間における圧縮機11の吐出側の冷媒圧力の実測値の移動平均によって第1指標値を算出し、第2期間における圧縮機11の吐出側の冷媒圧力の実測値の移動平均によって第2指標値を算出する。 In the above modification, the first index value and the second index value are obtained from the predicted value of the refrigerant pressure on the discharge side of the compressor 11 or the actually measured value of the refrigerant pressure on the discharge side of the compressor 11 instead of the discharge-side refrigerant pressure ratio. May be calculated. In one example, the calculation unit 66 calculates the first index value by a moving average of the predicted value of the refrigerant pressure on the discharge side of the compressor 11 during the first period, and calculates the first index value based on the moving average of the refrigerant pressure on the discharge side of the compressor 11 during the second period. A second index value is calculated by a moving average of the predicted values. Further, in one example, the calculation unit 66 calculates the first index value by a moving average of the actually measured value of the refrigerant pressure on the discharge side of the compressor 11 in the first period, and calculates the refrigerant pressure on the discharge side of the compressor 11 in the second period. The second index value is calculated based on the moving average of the actual measurement values.
・上記実施形態において、データ蓄積部62は、冷凍装置1と通信可能に接続された冷凍装置1の外部のサーバであってもよい。このサーバの一例は、クラウドサーバを含む。すなわち冷媒漏洩判定装置60は、データ取得部61で取得したデータをサーバに送信することにより、サーバ上でデータを保存する。 In the above embodiment, the data storage unit 62 may be a server external to the refrigeration apparatus 1 communicably connected to the refrigeration apparatus 1. One example of this server includes a cloud server. That is, the refrigerant leak determination device 60 stores the data on the server by transmitting the data acquired by the data acquisition unit 61 to the server.
・上記実施形態では、冷媒漏洩判定装置60と報知部52とが個別に設けられているが、これに限られず、冷媒漏洩判定装置60が報知部52を有してもよい。
・上記実施形態では、冷凍装置1として輸送用冷凍装置の構成について説明したが、冷凍装置の構成はこれに限られない。例えば、定置倉庫用の冷凍装置に適用してもよい。冷凍装置1が輸送用冷凍装置以外の冷凍装置に適用される場合、冷媒漏洩判定装置60は、ユーザの要求があったとき、冷凍装置1又は冷媒漏洩判定装置60の電源がオン状態になったとき、及び冷凍装置1の使用前点検が実施されたときの少なくとも1つの場合に冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する。また報知部52は、ユーザの要求があったとき、冷凍装置1又は冷媒漏洩判定装置60の電源がオン状態になったとき、及び冷凍装置1の使用前点検が実施されたときの少なくとも1つの場合に冷媒漏洩の有無の判定結果、又は、冷媒漏洩発生時期の予測結果を報知する。
In the above embodiment, the refrigerant leakage determination device 60 and the notification unit 52 are provided separately, but the invention is not limited thereto, and the refrigerant leakage determination device 60 may include the notification unit 52.
In the above embodiment, the configuration of the transport refrigeration apparatus has been described as the refrigeration apparatus 1, but the configuration of the refrigeration apparatus is not limited to this. For example, the present invention may be applied to a refrigerator for a fixed warehouse. When the refrigerating device 1 is applied to a refrigerating device other than the transport refrigerating device, the power of the refrigerating device 1 or the refrigerant leak determining device 60 is turned on when a user requests it. In at least one case when the pre-use check of the refrigeration apparatus 1 is performed, the presence or absence of refrigerant leakage is determined, or the refrigerant leakage occurrence time is predicted. In addition, the notification unit 52 performs at least one of when the user requests, when the power of the refrigeration apparatus 1 or the refrigerant leakage determination apparatus 60 is turned on, and when the pre-use inspection of the refrigeration apparatus 1 is performed. In this case, the result of the determination of the presence or absence of the refrigerant leakage or the result of the prediction of the refrigerant leakage occurrence time is reported.
・上記実施形態では、コンテナ用の冷凍装置1の構成について説明したが、冷凍装置の構成はこれに限られない。例えば、図6に示すように、冷凍装置を空気調和機80として用いられてもよい。空気調和機80は、屋外に設置される室外機80Aと、屋内の壁面等に取り付けられる壁掛け型の室内機80Bとが冷媒配管91によって接続されることにより形成された冷媒回路90を備える。 -In above-mentioned embodiment, although the structure of the refrigeration apparatus 1 for containers was demonstrated, the structure of the refrigeration apparatus is not limited to this. For example, as shown in FIG. 6, a refrigeration apparatus may be used as the air conditioner 80. The air conditioner 80 includes a refrigerant circuit 90 formed by connecting an outdoor unit 80A installed outdoors and a wall-mounted indoor unit 80B mounted on an indoor wall or the like by a refrigerant pipe 91.
室外機80Aは、運転周波数の変更により容量可変とした圧縮機81、四路切換弁82、室外熱交換器83、膨張弁84、室外ファン85、室外制御装置86等を備える。圧縮機81は、例えば揺動ピストン型の圧縮機であり、圧縮機構、モータ、モータの駆動力を圧縮機構に伝達するクランク軸等を備える。室外熱交換器83は、外気と冷媒とを熱交換するものであり、例えばフィンアンドチューブ熱交換器を用いることができる。膨張弁84は、例えば電子膨張弁である。室外ファン85は、駆動源として回転数を変更可能なモータと、モータの出力軸に接続された羽根車とを有する。羽根車の一例はプロペラファンである。室外ファン85は、モータによって羽根車を回転させることにより室外熱交換器83を通過する室外空気の気流を発生させる。室外制御装置86は、圧縮機81のモータ、四路切換弁82、膨張弁84、及び室外ファン85のモータと電気的に接続され、これらの動作を制御する。 The outdoor unit 80A includes a compressor 81, a four-way switching valve 82, an outdoor heat exchanger 83, an expansion valve 84, an outdoor fan 85, an outdoor control device 86, and the like, whose capacity is changed by changing the operation frequency. The compressor 81 is, for example, a swinging piston type compressor, and includes a compression mechanism, a motor, a crankshaft that transmits a driving force of the motor to the compression mechanism, and the like. The outdoor heat exchanger 83 exchanges heat between the outside air and the refrigerant. For example, a fin-and-tube heat exchanger can be used. The expansion valve 84 is, for example, an electronic expansion valve. The outdoor fan 85 has a motor whose rotation speed can be changed as a drive source, and an impeller connected to an output shaft of the motor. One example of an impeller is a propeller fan. The outdoor fan 85 generates an airflow of outdoor air passing through the outdoor heat exchanger 83 by rotating an impeller by a motor. The outdoor control device 86 is electrically connected to the motor of the compressor 81, the four-way switching valve 82, the expansion valve 84, and the motor of the outdoor fan 85, and controls these operations.
室内機80Bは、室内熱交換器87、室内ファン88、及び室内制御装置89等を備える。室内熱交換器87は、室内空気と冷媒とを熱交換するものであり、例えばフィンアンドチューブ熱交換器を用いることができる。室内ファン88は、駆動源として回転数を変更可能なモータと、モータの出力軸に接続された羽根車とを有する。羽根車の一例は、横流ファンである。室内制御装置89は、室内ファン88と電気的に接続され、室内ファン88の動作を制御する。 The indoor unit 80B includes an indoor heat exchanger 87, an indoor fan 88, an indoor control device 89, and the like. The indoor heat exchanger 87 exchanges heat between the indoor air and the refrigerant, and for example, a fin-and-tube heat exchanger can be used. The indoor fan 88 has a motor whose rotation speed can be changed as a drive source, and an impeller connected to an output shaft of the motor. One example of an impeller is a cross flow fan. The indoor control device 89 is electrically connected to the indoor fan 88 and controls the operation of the indoor fan 88.
冷媒回路90は、圧縮機81、四路切換弁82、室外熱交換器83、及び膨張弁84と、室内熱交換器87、アキュムレータ81aとを冷媒配管91によって環状に接続したものであって、四路切換弁82を切り換えることにより、冷媒を可逆的に循環させるようにした蒸気圧縮式冷凍サイクルを実行することができる。 The refrigerant circuit 90 is configured by connecting the compressor 81, the four-way switching valve 82, the outdoor heat exchanger 83, and the expansion valve 84, the indoor heat exchanger 87, and the accumulator 81a in an annular manner by a refrigerant pipe 91. By switching the four-way switching valve 82, a vapor compression refrigeration cycle in which the refrigerant is reversibly circulated can be executed.
すなわち、四路切換弁82が冷房モード接続状態(図示実線の状態)に切り換えられることにより、冷媒回路90は、圧縮機81、四路切換弁82、室外熱交換器83、膨張弁84、室内熱交換器87、四路切換弁82、アキュムレータ81a、及び圧縮機81の順に冷媒が循環する冷房サイクルが形成される。これにより、空気調和機80では、室外熱交換器83が凝縮器として作用し、室内熱交換器87が蒸発器として作用する冷房運転が行われる。また、四路切換弁82が暖房モード接続状態(図示破線の状態)に切り換えられることにより、冷媒回路90は、アキュムレータ81a、圧縮機81、四路切換弁82、室内熱交換器87、膨張弁84、室外熱交換器83、四路切換弁82、及び圧縮機81の順に冷媒が循環する暖房サイクルが形成される。これにより、空気調和機80では、室内熱交換器87が凝縮器として作用し、室外熱交換器83が蒸発器として作用する暖房運転が行われる。 That is, when the four-way switching valve 82 is switched to the cooling mode connection state (the state shown by the solid line), the refrigerant circuit 90 includes the compressor 81, the four-way switching valve 82, the outdoor heat exchanger 83, the expansion valve 84, and the indoor. A cooling cycle in which the refrigerant circulates in the order of the heat exchanger 87, the four-way switching valve 82, the accumulator 81a, and the compressor 81 is formed. Thus, in the air conditioner 80, a cooling operation in which the outdoor heat exchanger 83 functions as a condenser and the indoor heat exchanger 87 functions as an evaporator is performed. When the four-way switching valve 82 is switched to the heating mode connection state (the state shown by the broken line), the refrigerant circuit 90 includes the accumulator 81a, the compressor 81, the four-way switching valve 82, the indoor heat exchanger 87, and the expansion valve. A heating cycle in which the refrigerant circulates in the order of 84, the outdoor heat exchanger 83, the four-way switching valve 82, and the compressor 81 is formed. Thus, in the air conditioner 80, a heating operation in which the indoor heat exchanger 87 functions as a condenser and the outdoor heat exchanger 83 functions as an evaporator is performed.
空気調和機80では、例えば冷媒漏洩判定装置60(図6では図示略)は、室外制御装置86及び室内制御装置89のいずれか一方に設けられる。報知部52(図6では図示略)は、例えば空気調和機80のリモコンに設けられる。 In the air conditioner 80, for example, the refrigerant leak determination device 60 (not shown in FIG. 6) is provided in one of the outdoor control device 86 and the indoor control device 89. The notification unit 52 (not shown in FIG. 6) is provided, for example, on a remote controller of the air conditioner 80.
・上記実施形態では、冷凍装置1は冷媒漏洩判定装置60を備えていたが冷凍装置1の構成はこれに限られない。例えば、冷凍装置1から冷媒漏洩判定装置60を省略してもよい。冷媒漏洩判定装置60は、冷凍装置1とは別に設けられてもよい。一例では、冷媒漏洩判定装置60は、冷凍装置1に通信可能なサーバに設けられてもよい。この場合、冷凍装置1は、冷媒漏洩判定装置60と通信することによって、冷媒漏洩の有無の判定結果、又は冷媒漏洩発生時期の予測結果を取得する。 In the above embodiment, the refrigeration apparatus 1 includes the refrigerant leakage determination device 60, but the configuration of the refrigeration apparatus 1 is not limited to this. For example, the refrigerant leak determination device 60 may be omitted from the refrigerating device 1. The refrigerant leak determination device 60 may be provided separately from the refrigeration device 1. In one example, the refrigerant leak determination device 60 may be provided in a server that can communicate with the refrigeration device 1. In this case, the refrigeration apparatus 1 obtains a determination result of the presence or absence of the refrigerant leakage or a prediction result of the refrigerant leakage occurrence time by communicating with the refrigerant leakage determination apparatus 60.
以上、本装置の実施の形態を説明したが、特許請求の範囲に記載された本装置の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiment of the present apparatus has been described above, it is understood that various changes in form and details can be made without departing from the spirit and scope of the present apparatus described in the claims. Would.
1…冷凍装置(輸送用冷凍装置)
11…圧縮機
12…凝縮器
13…蒸発器
14A…第1膨張弁(減圧装置)
14B…第2膨張弁(減圧装置)
20…冷媒回路
52…報知部
60…冷媒漏洩判定装置
66…算出部
67…判定部
1. Refrigeration equipment (refrigeration equipment for transportation)
11 compressor 12 condenser 13 evaporator 14A first expansion valve (pressure reducing device)
14B: second expansion valve (pressure reducing device)
20 refrigerant circuit 52 notification unit 60 refrigerant leakage determination device 66 calculation unit 67 determination unit
Claims (15)
前記冷凍装置(1)の運転に関するデータに基づいて前記冷媒回路(20)の正常状態からの乖離度合を算出する算出部(66)と、前記算出部(66)の算出結果に基づいて冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する判定部(67)と、を有し、
前記算出部(66)は、前記冷凍装置(1)の運転に関するデータのうち、第1期間の前記冷凍装置(1)の運転に関するデータから算出される第1指標値と、前記第1期間とは長さが異なる第2期間の前記冷凍装置(1)の運転に関するデータから算出される第2指標値とに基づいて、前記冷媒回路(20)の正常状態からの乖離度合を算出し、
前記判定部(67)は、前記冷媒回路(20)の正常状態からの乖離度合に基づいて前記冷媒漏洩の有無を判定し、又は、前記冷媒漏洩発生時期を予測する
冷媒漏洩判定装置。 A refrigerating apparatus (1) including a compressor (11), a condenser (12), a pressure reducing device (14A, 14B), and an evaporator (13), and including a refrigerant circuit (20) configured to circulate a refrigerant. A) a refrigerant leakage determination device (60) for determining refrigerant leakage,
A calculating unit (66) for calculating a degree of deviation of the refrigerant circuit (20) from a normal state based on data relating to the operation of the refrigeration system (1); and a refrigerant leak based on a calculation result of the calculating unit (66). And a determining unit (67) for determining the presence or absence of the refrigerant, or predicting the refrigerant leakage occurrence time,
The calculation unit (66) includes a first index value calculated from data relating to the operation of the refrigeration apparatus (1) in a first period, among the data relating to the operation of the refrigeration apparatus (1); Calculates a degree of deviation from a normal state of the refrigerant circuit (20) based on a second index value calculated from data on the operation of the refrigeration apparatus (1) in a second period having a different length,
The refrigerant leak judging device judges the presence or absence of the refrigerant leak based on the degree of deviation of the refrigerant circuit (20) from a normal state, or predicts the refrigerant leak occurrence time.
請求項1に記載の冷媒漏洩判定装置。 The refrigerant leak according to claim 1, wherein the calculation unit (66) detects a degree of deviation from a normal state of the refrigerant circuit (20) based on a degree of deviation between the first index value and the second index value. Judgment device.
前記第2期間の前記冷凍装置(1)の運転に関するデータは、10日分以上30日分以下のデータである
請求項1又は2に記載の冷媒漏洩判定装置。 Data relating to the operation of the refrigeration system (1) during the first period is data for one day,
The refrigerant leak determination device according to claim 1 or 2, wherein data relating to the operation of the refrigeration apparatus (1) during the second period is data for 10 days or more and 30 days or less.
前記第2期間の前記冷凍装置(1)の運転に関するデータは、240個以上720個以下のデータである
請求項3に記載の冷媒漏洩判定装置。 Data relating to the operation of the refrigeration apparatus (1) in the first period is 24 data,
4. The refrigerant leakage determination device according to claim 3, wherein data relating to the operation of the refrigeration device (1) during the second period is data of 240 or more and 720 or less. 5.
前記第2指標値は、前記第2期間の前記冷凍装置(1)の運転に関するデータの移動平均によって算出される
請求項1〜4のいずれか一項に記載の冷媒漏洩判定装置。 The first index value is calculated by a moving average of data on the operation of the refrigeration system (1) during the first period,
The refrigerant leak determination device according to any one of claims 1 to 4, wherein the second index value is calculated by a moving average of data regarding operation of the refrigeration device (1) during the second period.
請求項1〜5のいずれか一項に記載の冷媒漏洩判定装置。 The first index value and the second index value are respectively a predicted value of the discharge-side refrigerant temperature of the compressor (11), an actually measured value of the discharge-side refrigerant temperature of the compressor (11), and the compressor (11). 6) any one of the discharge-side refrigerant temperature indices calculated based on the predicted value of the discharge-side refrigerant temperature and the actually measured value of the discharge-side refrigerant temperature of the compressor (11). Item 8. The refrigerant leakage determination device according to Item 1.
請求項5に記載の冷媒漏洩判定装置。 The predicted value of the discharge-side refrigerant temperature of the compressor (11) includes a condensing temperature and an evaporating temperature when the refrigerant charging amount in the refrigerant circuit (20) is within an appropriate range, and an expansion valve (14A) serving as the pressure reducing device. , 14B), power supply to the refrigeration system (1) by regression analysis using at least one of the opening degree of the compressor (11), the operating frequency of the compressor (11), and the rotation speed of the compressor (11) as variables. The refrigerant leakage determination device according to claim 5, wherein the calculation is performed for each of a power supply frequency and a power supply voltage of a power supply serving as a power supply.
請求項1〜7のいずれか一項に記載の冷媒漏洩判定装置。 The calculating unit (66) includes data of a section in which the refrigerating apparatus (1) is stopped, data of a section immediately after the compressor (11) is started, and data of a section immediately after the compressor (11) is stopped. And calculating the first index value and the second index value except for at least one of data in a section immediately after the switching of the operation of the compressor (11). The refrigerant leakage determination device according to claim 1.
請求項1〜7のいずれか一項に記載の冷媒漏洩判定装置。 The calculating unit (66) includes data of a section in which the refrigerating apparatus (1) is stopped, data of a section immediately after the compressor (11) is started, and data of a section immediately after the compressor (11) is stopped. And calculating the first index value and the second index value by using substitute data for at least one of data in a section immediately after the switching of the operation of the compressor (11). The refrigerant leakage determination device according to claim 1.
請求項9に記載の冷媒漏洩判定装置。 The substitute data includes a section in which the refrigerating apparatus (1) is stopped, a section immediately after the start of the compressor (11), a section immediately after the stop of the compressor (11), and a section of the compressor (11). The refrigerant leak determination device according to claim 9, wherein the refrigerant leakage determination device is a value before or after a section using the substitute data in a section immediately after the switching of operation or a representative value determined in advance.
請求項1〜10のいずれか一項に記載の冷媒漏洩判定装置。 The calculation unit (66) calculates a degree of deviation between the first index value and the second index value as a standard deviation, a skewness, a likelihood, a kurtosis using the first index value and the second index value. The refrigerant leakage determination device according to any one of claims 1 to 10, wherein the calculation is performed based on at least one of: an average value;
前記報知部(52)は、ユーザの要求があったとき、前記冷凍装置(1)又は前記冷媒漏洩判定装置(60)の電源がオン状態になったとき、及び前記冷凍装置(1)の使用前点検が実施されたときの少なくとも1つの場合に前記冷媒漏洩の有無の判定結果、又は、前記冷媒漏洩発生時期の予測結果を報知する
請求項1〜11のいずれか一項に記載の冷媒漏洩判定装置。 A notification unit (52) for notifying the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time,
The notification unit (52) is provided when a user's request is made, when the power of the refrigeration apparatus (1) or the refrigerant leak determination apparatus (60) is turned on, and when the refrigeration apparatus (1) is used. The refrigerant leakage according to any one of claims 1 to 11, wherein at least one case when the pre-inspection has been performed, the determination result of the presence or absence of the refrigerant leakage or the prediction result of the refrigerant leakage occurrence time is reported. Judgment device.
前記輸送用冷凍装置(1)は、前記冷媒漏洩の有無の判定結果、又は、前記冷媒漏洩発生時期の予測結果を報知する報知部(52)をさらに有し、
前記報知部(52)は、ユーザの要求があったとき、前記輸送用冷凍装置(1)又は前記冷媒漏洩判定装置(60)の電源がオン状態になったとき、前記輸送用冷凍装置(1)の輸送が完了したとき、及び前記輸送用冷凍装置(1)の使用前点検が実施されたときの少なくとも1つの場合に前記冷媒漏洩の有無の判定結果、又は、前記冷媒漏洩発生時期の予測結果を報知する
請求項13に記載の冷凍装置。 The refrigeration apparatus includes a transportation refrigeration apparatus (1),
The transport refrigeration apparatus (1) further includes a notification unit (52) that notifies a determination result of the presence or absence of the refrigerant leakage or a prediction result of the refrigerant leakage occurrence time,
The notification unit (52) is configured to, when requested by a user, turn on the power of the transport refrigeration system (1) or the refrigerant leakage determination device (60), ) Is completed, and at least one of the cases where a pre-use check of the transport refrigeration apparatus (1) is performed, the determination result of the presence or absence of the refrigerant leakage or the prediction of the refrigerant leakage occurrence time The refrigeration apparatus according to claim 13, which reports a result.
前記冷凍装置(1)の運転に関するデータを保存するデータ保存ステップと、
第1期間の前記冷凍装置(1)の運転に関するデータから第1指標値を算出し、前記第1期間とは長さが異なる第2期間の前記冷凍装置(1)の運転に関するデータから第2指標値を算出する第1算出ステップと、
前記第1算出ステップにおいて算出された前記第1指標値及び前記第2指標値に基づいて、前記冷媒回路(20)の正常状態からの乖離度合を算出する第2算出ステップと、
前記冷媒回路(20)の正常状態からの乖離度合に基づいて、冷媒漏洩の有無を判定し、又は、冷媒漏洩発生時期を予測する判定ステップと、
を有する
冷媒漏洩判定方法。 A refrigerating apparatus (1) including a compressor (11), a condenser (12), a pressure reducing device (14A, 14B), and an evaporator (13), and including a refrigerant circuit (20) configured to circulate a refrigerant. )) A refrigerant leak determination method according to
A data storage step of storing data relating to the operation of the refrigeration system (1);
A first index value is calculated from data on the operation of the refrigeration apparatus (1) in a first period, and a second index value is calculated from data on the operation of the refrigeration apparatus (1) in a second period having a length different from the first period. A first calculation step of calculating an index value;
A second calculation step of calculating a degree of deviation from a normal state of the refrigerant circuit (20) based on the first index value and the second index value calculated in the first calculation step;
A judging step of judging the presence or absence of refrigerant leakage or predicting the refrigerant leakage occurrence time based on the degree of deviation of the refrigerant circuit (20) from a normal state;
A refrigerant leakage determination method comprising:
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018185173A JP6887979B2 (en) | 2018-09-28 | 2018-09-28 | Refrigerant leakage determination device, refrigeration device equipped with this refrigerant leakage determination device, and refrigerant leakage determination method |
PCT/JP2019/037874 WO2020067296A1 (en) | 2018-09-28 | 2019-09-26 | Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method |
DK19865774.4T DK3859249T3 (en) | 2018-09-28 | 2019-09-26 | DEVICE FOR DETERMINING REFRIGERANT LEAKAGE, FREEZING DEVICE INCLUDING THIS DEVICE FOR DETERMINING REFRIGERANT LEAKAGE, AND METHOD FOR DETERMINING REFRIGERANT LEAKAGE |
EP19865774.4A EP3859249B1 (en) | 2018-09-28 | 2019-09-26 | Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method |
CN201980062442.XA CN112752938B (en) | 2018-09-28 | 2019-09-26 | Refrigerant leakage determination device, refrigeration device provided with same, and refrigerant leakage determination method |
US17/278,862 US20220034568A1 (en) | 2018-09-28 | 2019-09-26 | Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018185173A JP6887979B2 (en) | 2018-09-28 | 2018-09-28 | Refrigerant leakage determination device, refrigeration device equipped with this refrigerant leakage determination device, and refrigerant leakage determination method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020056509A true JP2020056509A (en) | 2020-04-09 |
JP6887979B2 JP6887979B2 (en) | 2021-06-16 |
Family
ID=69953139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018185173A Active JP6887979B2 (en) | 2018-09-28 | 2018-09-28 | Refrigerant leakage determination device, refrigeration device equipped with this refrigerant leakage determination device, and refrigerant leakage determination method |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220034568A1 (en) |
EP (1) | EP3859249B1 (en) |
JP (1) | JP6887979B2 (en) |
CN (1) | CN112752938B (en) |
DK (1) | DK3859249T3 (en) |
WO (1) | WO2020067296A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023199425A1 (en) * | 2022-04-13 | 2023-10-19 | 三菱電機株式会社 | Refrigerant leak detection system and leak detection device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11231198B2 (en) | 2019-09-05 | 2022-01-25 | Trane International Inc. | Systems and methods for refrigerant leak detection in a climate control system |
SE544494C2 (en) * | 2020-10-21 | 2022-06-21 | Senseair Ab | Temperature controller for a temperature control mechanism |
DE102020130850B3 (en) * | 2020-11-23 | 2022-04-28 | Viessmann Refrigeration Solutions Gmbh | Method for detecting leaks in a refrigeration circuit of a compression refrigeration machine and leak detection system |
JP7197814B2 (en) | 2021-05-21 | 2022-12-28 | ダイキン工業株式会社 | Refrigerant leak detection system |
CN113687670B (en) * | 2021-08-02 | 2022-09-16 | 北京京仪自动化装备技术股份有限公司 | Temperature control method and temperature control system of heat exchanger |
US12117191B2 (en) | 2022-06-24 | 2024-10-15 | Trane International Inc. | Climate control system with improved leak detector |
DE102023100871A1 (en) * | 2023-01-16 | 2024-07-18 | Diehl Ako Stiftung & Co. Kg | Method for monitoring working fluid loss from a heat pump |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05272849A (en) * | 1991-11-15 | 1993-10-22 | Oki Electric Ind Co Ltd | Method and device for predicting deterioration of heat exchanger |
JPH07217973A (en) * | 1994-01-28 | 1995-08-18 | Sanyo Electric Co Ltd | Air conditioning equipment |
JP2003161495A (en) * | 2001-11-21 | 2003-06-06 | Yamatake Corp | Air conditioner abnormality detection device, abnormality detection method and program |
JP2006064307A (en) * | 2004-08-27 | 2006-03-09 | Hitachi Ltd | Device diagnostic device, operation program thereof, device diagnostic method |
JP2007225158A (en) * | 2006-02-21 | 2007-09-06 | Mitsubishi Electric Corp | Defrosting operation control device and method |
JP2009002650A (en) * | 2008-10-06 | 2009-01-08 | Daikin Ind Ltd | Abnormality diagnosis system |
JP2010127568A (en) * | 2008-11-28 | 2010-06-10 | Mitsubishi Electric Corp | Abnormality detection device and refrigerating cycle device including the same |
JP2015222151A (en) * | 2014-05-23 | 2015-12-10 | 日立アプライアンス株式会社 | Outdoor unit of air conditioner |
JP2016090177A (en) * | 2014-11-07 | 2016-05-23 | 東芝キヤリア株式会社 | Refrigeration cycle equipment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6205798B1 (en) * | 1999-01-19 | 2001-03-27 | Carrier Corporation | Test for the automated detection of leaks between high and low pressure sides of a refrigeration system |
JP4113700B2 (en) * | 2001-11-16 | 2008-07-09 | 三菱電機株式会社 | Liquid level detection device, liquid reservoir, refrigeration cycle device, and refrigerant leakage detection system |
JP4124228B2 (en) * | 2005-12-16 | 2008-07-23 | ダイキン工業株式会社 | Air conditioner |
WO2009091399A1 (en) * | 2008-01-17 | 2009-07-23 | Carrier Corporation | Detection of co2 leakage in a container |
JP5040975B2 (en) * | 2008-09-30 | 2012-10-03 | ダイキン工業株式会社 | Leakage diagnostic device |
US9222711B2 (en) * | 2010-03-12 | 2015-12-29 | Mitsubishi Electric Corporation | Refrigerating and air-conditioning apparatus |
JP2013204871A (en) | 2012-03-28 | 2013-10-07 | Hitachi Appliances Inc | Air conditioner |
CN106233213B (en) * | 2014-04-16 | 2018-12-21 | 三菱电机株式会社 | Instruct value generation device |
GB2546657B (en) * | 2014-11-04 | 2020-09-02 | Mitsubishi Electric Corp | Refrigeration cycle apparatus, and abnormality detection system for refrigeration cycle apparatus |
EP3290816B1 (en) * | 2015-04-28 | 2024-01-31 | Mitsubishi Electric Corporation | Monitoring device and method for air conditioner |
WO2017219230A1 (en) * | 2016-06-21 | 2017-12-28 | 马玉琴 | Air conditioner and refrigerant leakage detecting method therefor |
CA2990498A1 (en) * | 2016-12-28 | 2018-06-28 | Pure Humidifier Company | Modulating makeup fluid control systems and methods for same |
-
2018
- 2018-09-28 JP JP2018185173A patent/JP6887979B2/en active Active
-
2019
- 2019-09-26 US US17/278,862 patent/US20220034568A1/en active Pending
- 2019-09-26 EP EP19865774.4A patent/EP3859249B1/en active Active
- 2019-09-26 DK DK19865774.4T patent/DK3859249T3/en active
- 2019-09-26 WO PCT/JP2019/037874 patent/WO2020067296A1/en unknown
- 2019-09-26 CN CN201980062442.XA patent/CN112752938B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05272849A (en) * | 1991-11-15 | 1993-10-22 | Oki Electric Ind Co Ltd | Method and device for predicting deterioration of heat exchanger |
JPH07217973A (en) * | 1994-01-28 | 1995-08-18 | Sanyo Electric Co Ltd | Air conditioning equipment |
JP2003161495A (en) * | 2001-11-21 | 2003-06-06 | Yamatake Corp | Air conditioner abnormality detection device, abnormality detection method and program |
JP2006064307A (en) * | 2004-08-27 | 2006-03-09 | Hitachi Ltd | Device diagnostic device, operation program thereof, device diagnostic method |
JP2007225158A (en) * | 2006-02-21 | 2007-09-06 | Mitsubishi Electric Corp | Defrosting operation control device and method |
JP2009002650A (en) * | 2008-10-06 | 2009-01-08 | Daikin Ind Ltd | Abnormality diagnosis system |
JP2010127568A (en) * | 2008-11-28 | 2010-06-10 | Mitsubishi Electric Corp | Abnormality detection device and refrigerating cycle device including the same |
JP2015222151A (en) * | 2014-05-23 | 2015-12-10 | 日立アプライアンス株式会社 | Outdoor unit of air conditioner |
JP2016090177A (en) * | 2014-11-07 | 2016-05-23 | 東芝キヤリア株式会社 | Refrigeration cycle equipment |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023199425A1 (en) * | 2022-04-13 | 2023-10-19 | 三菱電機株式会社 | Refrigerant leak detection system and leak detection device |
Also Published As
Publication number | Publication date |
---|---|
EP3859249A1 (en) | 2021-08-04 |
CN112752938B (en) | 2022-08-30 |
EP3859249B1 (en) | 2023-08-30 |
DK3859249T3 (en) | 2023-11-13 |
CN112752938A (en) | 2021-05-04 |
US20220034568A1 (en) | 2022-02-03 |
JP6887979B2 (en) | 2021-06-16 |
WO2020067296A1 (en) | 2020-04-02 |
EP3859249A4 (en) | 2021-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020067296A1 (en) | Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method | |
US9709308B2 (en) | Heat pump device and refrigerant bypass method | |
US10551101B2 (en) | Air conditioner and control method thereof for determining an amount of refrigerant | |
JP4365378B2 (en) | Defrosting operation control device and defrosting operation control method | |
JP6638788B1 (en) | Abnormality determination apparatus for transport refrigeration apparatus, transport refrigeration apparatus provided with this abnormality determination apparatus, and abnormality determination method for transport refrigeration apparatus | |
JP2007225158A (en) | Defrosting operation control device and method | |
JP2013228130A (en) | Freezer | |
WO2020067295A1 (en) | Abnormality determination device, freezing device including this abnormality determination device, and abnormality determination method for compressor | |
JP2509786B2 (en) | Automatic cooling stop control device and control method | |
US20220186987A1 (en) | Heat source-side unit and refrigeration apparatus | |
JP2017138034A (en) | Refrigeration equipment | |
CN107084543A (en) | Water-cooling water chilling unit and control method thereof | |
JP2013170747A (en) | Refrigerant leakage detection device and freezing device | |
US11940192B2 (en) | Air conditioning device | |
JP2004278813A (en) | Air-conditioner and its controlling method | |
CN116209964B (en) | Information processing device, information processing method, and program product | |
JP6590945B2 (en) | Refrigeration equipment | |
JP6449979B2 (en) | Refrigeration equipment | |
CN112344615B (en) | refrigerator control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200303 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200529 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200529 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200605 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200609 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20200703 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20200707 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200811 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20201013 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20210105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210308 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20210413 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210518 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210519 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6887979 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |