[go: up one dir, main page]

JP2013204871A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2013204871A
JP2013204871A JP2012072625A JP2012072625A JP2013204871A JP 2013204871 A JP2013204871 A JP 2013204871A JP 2012072625 A JP2012072625 A JP 2012072625A JP 2012072625 A JP2012072625 A JP 2012072625A JP 2013204871 A JP2013204871 A JP 2013204871A
Authority
JP
Japan
Prior art keywords
compressor
air conditioner
temperature
discharge side
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012072625A
Other languages
Japanese (ja)
Inventor
Atsuhiko Fukazawa
篤彦 深澤
Fukuji Tsukada
福治 塚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012072625A priority Critical patent/JP2013204871A/en
Publication of JP2013204871A publication Critical patent/JP2013204871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】安価で、回転数制御可能な圧縮機を採用している場合であっても、冷媒漏れの判定を可能にする。
【解決手段】空気調和機は、圧縮機9、室外熱交換器11及び室外膨張弁12を有する室外機1と、室内熱交換器6を有する室内機2を備え、室外機と室内機を冷媒配管で接続して冷凍サイクルを構成している。また、外気温度検出器13と、前記圧縮機の吐出側温度検出器14と、前記圧縮機及び前記室外膨張弁を制御する制御装置15と、空気調和機設置後の初期段階の圧縮機起動時における、外気温度と、空気調和機を所定の条件で運転したときの圧縮機の吐出側温度を記憶しておく記憶装置17と、その後の圧縮機起動時における、外気温度と、空気調和機を前記所定の条件で運転したのきの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置16とを備える。
【選択図】図1
Even if a low-cost compressor capable of controlling the rotational speed is employed, it is possible to determine refrigerant leakage.
An air conditioner includes an outdoor unit 1 having a compressor 9, an outdoor heat exchanger 11 and an outdoor expansion valve 12, and an indoor unit 2 having an indoor heat exchanger 6, and the outdoor unit and the indoor unit are refrigerant. The refrigeration cycle is configured by connecting with piping. Also, the outside air temperature detector 13, the discharge side temperature detector 14 of the compressor, the control device 15 for controlling the compressor and the outdoor expansion valve, and the initial stage compressor start-up after the air conditioner is installed The storage device 17 for storing the outside air temperature and the discharge side temperature of the compressor when the air conditioner is operated under predetermined conditions, and the outside air temperature and the air conditioner at the time of starting the compressor thereafter Computation device 16 that determines refrigerant leakage by comparing the discharge side temperature of the compressor that has been operated under the predetermined conditions with the initial outside air temperature and the discharge side temperature of the compressor that are stored in the storage device. With.
[Selection] Figure 1

Description

本発明は空気調和機に関し、特に冷媒漏れの検出機能を有するものに関する。   The present invention relates to an air conditioner, and more particularly to an air conditioner having a refrigerant leak detection function.

冷凍サイクルを構成する空気調和機は、一般に、室内熱交換器などを有する室内機、室外熱交換器及び圧縮機などを有する室外機を備え、据付現場において、前記室内機と室外機を冷媒配管で接続して冷凍サイクルを構成することで空気調和機として機能する。   An air conditioner constituting a refrigeration cycle generally includes an indoor unit having an indoor heat exchanger and the like, an outdoor unit having an outdoor heat exchanger and a compressor, and the indoor unit and the outdoor unit are connected to a refrigerant pipe at an installation site. It functions as an air conditioner by connecting with and configuring a refrigeration cycle.

空気調和機として機能させるためには、前記冷凍サイクル(冷媒回路)に適量の冷媒を封入する必要があり、前記室外機の組立時に該室外機に必要量の冷媒を予め封入しておくか、或いは前記室外機と前記室内機を冷媒配管で接続する配管接続施工時に、前記冷媒回路に冷媒を封入するようにしている。   In order to function as an air conditioner, it is necessary to enclose an appropriate amount of refrigerant in the refrigeration cycle (refrigerant circuit), or pre-enclose the necessary amount of refrigerant in the outdoor unit when the outdoor unit is assembled, Or the refrigerant | coolant is enclosed with the said refrigerant circuit at the time of piping connection construction which connects the said outdoor unit and the said indoor unit with refrigerant | coolant piping.

前記室外機には、凝縮器(熱交換器)、圧縮機、アキュムレータ等の密封を必要とする容器を内蔵しているが、密封が不十分だったり、室内機と室外機を連結する配管接続部の密封が不十分だと、冷媒回路に封入した冷媒が大気中に漏洩する場合がある(この冷媒漏れをガス漏れとも呼ぶ)。   The outdoor unit has a built-in container that needs to be sealed, such as a condenser (heat exchanger), a compressor, and an accumulator. However, the outdoor unit has insufficient sealing, or a pipe connection that connects the indoor unit and the outdoor unit. If the sealing of the part is insufficient, the refrigerant sealed in the refrigerant circuit may leak into the atmosphere (this refrigerant leakage is also called gas leakage).

空気調和機の施工後においては入念な冷媒漏れ検査を行うが、スローリークと呼ばれる冷媒の微少漏れについては、微少漏れであるため発見が難しく、スローリークがあると経年により冷媒不足に至るが、封入されている冷媒量が大幅に少なくなるまで発覚しないことも多い。このようにして大気中に冷媒が放出されると環境などへの影響が懸念されるだけでなく、空気調和機として適正な冷媒量が得られないことから、冷媒循環量低下により、冷却能力や暖房能力が不足したり、圧縮機の吸入圧力低下により圧縮機内部の冷媒による冷却不足が生じ、圧縮機の温度が異常に上昇して、空気調和機の信頼性を損なう場合がある。   After the installation of the air conditioner, a careful refrigerant leak inspection is performed, but the minute leak of the refrigerant called slow leak is difficult to find because it is a minute leak. In many cases, it is not detected until the amount of refrigerant enclosed is significantly reduced. When refrigerant is released into the atmosphere in this way, not only is there a concern about the impact on the environment, etc., but an appropriate amount of refrigerant as an air conditioner cannot be obtained. Insufficient heating capacity or insufficient cooling by the refrigerant inside the compressor due to a decrease in the suction pressure of the compressor may cause the compressor temperature to rise abnormally, impairing the reliability of the air conditioner.

このため、冷媒漏れ(ガス漏れ)に至った場合に、これを検知する機能を備えた空気調和機として、特許文献1(特開平6−185837号公報)に記載されたものが提案されている。   For this reason, what was described in patent document 1 (Unexamined-Japanese-Patent No. 6-185837) is proposed as an air conditioner provided with the function which detects a refrigerant | coolant leak (gas leak). .

この特許文献1に記載された空気調和機は、圧縮機、四方弁、室内熱交換器、電動膨張弁及び室外熱交換器を順次冷媒配管で接続して冷凍サイクルを構成している。また、前記圧縮機の吸込側に、ガス冷媒の圧力を検知する圧力検出器と、吸込ガスの温度を検知する温度検出器を設ける。或いは、前記圧縮機の吐出側に、吐出ガス冷媒の圧力を検知する圧力検出器と、吐出ガスの温度を検知する温度検出器とを設ける。そして、例えば、前記検出器で検出された吐出圧力が前記吐出温度に基づいて定まる基準値よりも低くなった場合に、循環冷媒をガス欠と判断する制御手段を備えている。   In the air conditioner described in Patent Document 1, a compressor, a four-way valve, an indoor heat exchanger, an electric expansion valve, and an outdoor heat exchanger are sequentially connected by a refrigerant pipe to constitute a refrigeration cycle. Further, a pressure detector that detects the pressure of the gas refrigerant and a temperature detector that detects the temperature of the suction gas are provided on the suction side of the compressor. Alternatively, a pressure detector that detects the pressure of the discharge gas refrigerant and a temperature detector that detects the temperature of the discharge gas are provided on the discharge side of the compressor. For example, when the discharge pressure detected by the detector becomes lower than a reference value determined based on the discharge temperature, a control unit is provided that determines that the circulating refrigerant is out of gas.

特開平6−185837号JP-A-6-185837

上記特許文献1の空気調和機では、圧縮機の吐出側か吸込側の何れかに圧力検出器と温度検出器を設ける必要があり、空気調和機として高価なものになるという課題がある。   In the air conditioner of Patent Document 1, it is necessary to provide a pressure detector and a temperature detector on either the discharge side or the suction side of the compressor, and there is a problem that the air conditioner becomes expensive.

また、近年の省エネルギー化の中で、より高効率の圧縮機としてインバータ駆動による圧縮機の採用が進んでいる。このような圧縮機では、インバータによる回転数制御が可能であるため、冷媒漏れ(ガス漏れ)が発生して冷媒量が不足状態になって、圧縮機が異常温度上昇至った場合でも、製品の保護装置が作動して圧縮機回転数が低下するように制御されてしまう。このため、冷媒漏れに至った場合でも、特許文献1に記載されている冷媒漏れ判定では、冷媒漏れの判定が困難になってしまうという課題がある。   In recent years, energy-saving compressors that are driven by inverters have been increasingly adopted as more efficient compressors. In such a compressor, since the rotation speed can be controlled by the inverter, refrigerant leakage (gas leakage) occurs, the refrigerant amount becomes insufficient, and even if the compressor reaches an abnormal temperature rise, It will be controlled so that a protection device operates and a compressor speed falls. For this reason, even when refrigerant leakage occurs, the refrigerant leakage determination described in Patent Document 1 has a problem that it is difficult to determine refrigerant leakage.

即ち、特許文献1に記載の空気調和機は、回転数が一定の圧縮機を使用した場合の吐出側圧力と吐出側温度、或いは吸込側圧力と吸込側温度で冷媒漏れを判定しており、インバータ駆動により回転数制御可能な圧縮機を採用した空気調和機における冷媒漏れ判定についての配慮が為されていない。   That is, the air conditioner described in Patent Document 1 determines refrigerant leakage based on the discharge-side pressure and the discharge-side temperature or the suction-side pressure and the suction-side temperature when a compressor having a constant rotation speed is used. No consideration is given to refrigerant leakage determination in an air conditioner that employs a compressor capable of controlling the rotational speed by driving an inverter.

本発明の目的は、安価で、しかも回転数制御可能な圧縮機を採用している場合であっても、冷媒漏れ(ガス漏れ)の判定が可能な空気調和機を得ることにある。   An object of the present invention is to obtain an air conditioner capable of determining refrigerant leakage (gas leakage) even when a low-cost compressor capable of controlling the rotational speed is employed.

上記目的を達成するため、本発明は、回転数制御可能な圧縮機、室外熱交換器及び室外膨張弁を有する室外機と、室内熱交換器を有する室内機を備え、前記室外機と前記室内機を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、外気温度を検出する外気温度検出器と、前記圧縮機の吐出側温度を検出する吐出側温度検出器と、前記圧縮機及び前記室外膨張弁を制御する制御装置と、前記空気調和機設置後の初期段階の圧縮機起動時における、外気温度と、前記空気調和機を所定の条件で運転したときの圧縮機の吐出側温度を記憶しておく記憶装置と、その後の圧縮機起動時における、外気温度と、前記空気調和機を前記所定の条件で運転したのきの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置とを備えることを特徴とする。   In order to achieve the above object, the present invention includes a compressor capable of controlling the rotation speed, an outdoor heat exchanger and an outdoor unit having an outdoor expansion valve, and an indoor unit having an indoor heat exchanger, and the outdoor unit and the indoor unit In an air conditioner that constitutes a refrigeration cycle by connecting machines with refrigerant piping, an outside air temperature detector that detects an outside air temperature, a discharge side temperature detector that detects a discharge side temperature of the compressor, and the compression And a control device for controlling the outdoor expansion valve, the outside air temperature at the time of starting the compressor in the initial stage after the installation of the air conditioner, and the discharge of the compressor when the air conditioner is operated under predetermined conditions A storage device for storing the side temperature, an outside air temperature at the time of starting the compressor, and a discharge side temperature of the compressor when the air conditioner is operated under the predetermined condition in the storage device. Memorized early air Compared to the discharge side temperature in degrees and the compressor, characterized in that it comprises a determining arithmetic unit refrigerant leakage.

本発明の他の特徴は、圧縮機、室外熱交換器、減圧手段及び室内熱交換器を冷媒配管で接続して冷凍サイクルを構成する空気調和機において、外気温度を検出する外気温度検出器と、前記圧縮機の吐出側温度を検出する吐出側温度検出器と、前記空気調和機設置後の初期段階の圧縮機起動時における、外気温度と、前記空気調和機を所定の条件で運転したときの圧縮機の吐出側温度を記憶しておく記憶装置と、その後の圧縮機起動時における、外気温度と、前記空気調和機を前記所定の条件で運転したのきの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置とを備えることにある。   Another feature of the present invention is an air conditioner for detecting an outside air temperature in an air conditioner that constitutes a refrigeration cycle by connecting a compressor, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger with refrigerant piping; A discharge-side temperature detector for detecting a discharge-side temperature of the compressor, an outside air temperature at the time of starting the compressor at an initial stage after the air-conditioner is installed, and when the air-conditioner is operated under predetermined conditions A storage device for storing the discharge side temperature of the compressor, the outside air temperature at the time of starting the compressor, and the discharge side temperature of the compressor when the air conditioner is operated under the predetermined condition And an arithmetic unit that determines refrigerant leakage in comparison with the initial outside air temperature and the discharge side temperature of the compressor stored in the storage device.

本発明の更に他の特徴は、圧縮機、室外熱交換器及び室外膨張弁を有する室外機と、室内熱交換器を有する室内機を備え、前記室外機と前記室内機を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、外気温度を検出する外気温度検出器と、前記圧縮機の吐出側温度を検出する吐出側温度検出器と、前記圧縮機及び前記室外膨張弁を制御する制御装置と、前記空気調和機設置後の初期段階の圧縮機起動時における、前記室外膨張弁の開度と、前記圧縮機を所定の条件で運転したときの圧縮機の吐出側温度とを記憶しておく記憶装置と、その後の圧縮機起動時における、前記室外膨張弁の開度と、前記圧縮機を前記所定の条件で運転したときの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の室外膨張弁の開度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置とを備え、前記室外膨張弁の開度は、圧縮機の起動時には、外気温度に応じて予め定めた所定の開度に制御されるように構成されていることにある。   Still another feature of the present invention includes an outdoor unit having a compressor, an outdoor heat exchanger and an outdoor expansion valve, and an indoor unit having an indoor heat exchanger, wherein the outdoor unit and the indoor unit are connected by a refrigerant pipe. In the air conditioner constituting the refrigeration cycle, an outside air temperature detector for detecting the outside air temperature, a discharge side temperature detector for detecting the discharge side temperature of the compressor, the compressor and the outdoor expansion valve are provided. A control device to be controlled, an opening degree of the outdoor expansion valve at the time of starting the compressor at an initial stage after the installation of the air conditioner, and a discharge side temperature of the compressor when the compressor is operated under a predetermined condition The storage device, the opening degree of the outdoor expansion valve at the time of starting the compressor, and the discharge side temperature of the compressor when the compressor is operated under the predetermined condition. Stored in the initial stage of the outdoor expansion valve And an arithmetic unit for determining refrigerant leakage in comparison with the discharge side temperature of the compressor, and the degree of opening of the outdoor expansion valve is a predetermined degree of opening determined in advance according to the outside air temperature when the compressor is started. It is that it is configured to be controlled.

本発明の更に他の特徴は、回転数制御可能な圧縮機、室外熱交換器及び室外膨張弁を有する室外機と、室内熱交換器及び室内膨張弁を有する室内機を備え、前記室外機と前記室内機を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、外気温度を検出する外気温度検出器と、前記圧縮機の吐出側温度を検出する吐出側温度検出器と、前記圧縮機及び前記室内膨張弁を制御する制御装置と、前記空気調和機設置後の初期段階の冷房運転での圧縮機起動時における、外気温度と、前記室内膨張弁の開度を外気温度に応じて予め決められた所定の開度にして前記圧縮機を一定時間一定の回転数に固定して運転したときの圧縮機の吐出側温度とを記憶しておく記憶装置と、その後の圧縮機起動時における、外気温度と、前記室内膨張弁の開度を外気温度に応じて予め決められた所定の開度にして前記圧縮機を一定時間一定の回転数に固定して運転したのきの圧縮機の吐出側温度とを、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置とを備えることにある。   Still another feature of the present invention includes a compressor capable of controlling the number of revolutions, an outdoor heat exchanger and an outdoor unit having an outdoor expansion valve, and an indoor unit having an indoor heat exchanger and an indoor expansion valve. In an air conditioner that configures a refrigeration cycle by connecting the indoor units with refrigerant pipes, an outside air temperature detector that detects an outside air temperature, a discharge side temperature detector that detects a discharge side temperature of the compressor, The control device for controlling the compressor and the indoor expansion valve, and the outside air temperature at the time of starting the compressor in the initial cooling operation after the air conditioner is installed, and the opening of the indoor expansion valve are set to the outside air temperature. A storage device for storing the discharge side temperature of the compressor when the compressor is operated with a predetermined opening degree determined in advance and fixed at a constant rotation speed for a certain period of time, and a subsequent compressor The outside air temperature and the indoor inflation at startup The discharge side temperature of the compressor when the valve is opened at a predetermined opening determined in advance according to the outside air temperature and the compressor is operated at a constant rotational speed for a certain period of time is stored in the memory. And an arithmetic unit that determines refrigerant leakage in comparison with an outside air temperature at an initial stage stored in the apparatus and a discharge side temperature of the compressor.

本発明の空気調和機によれば、安価で、しかも回転数制御可能な圧縮機を採用している場合であっても、冷媒漏れ(ガス漏れ)の判定が可能な空気調和機を得ることができる効果が得られる。   According to the air conditioner of the present invention, it is possible to obtain an air conditioner capable of determining refrigerant leakage (gas leakage) even when a low-cost compressor capable of controlling the rotational speed is employed. The effect that can be obtained.

本発明の空気調和機の実施例1を説明する冷凍サイクル構成図。The refrigeration cycle block diagram explaining Example 1 of the air conditioner of this invention. 実施例1における冷媒漏れ判定を説明するフローチャートで、初期段階の圧縮機起動時のフローを説明する図。The flowchart explaining the refrigerant | coolant leak determination in Example 1, The figure explaining the flow at the time of the compressor starting of an initial stage. 実施例1における冷媒漏れ判定を説明するフローチャートで、その後の圧縮機起動時のフローを説明する図。The flowchart explaining the refrigerant | coolant leak determination in Example 1, The figure explaining the flow at the time of subsequent compressor starting.

以下、本発明の空気調和機の具体的実施例を図1〜図3を用いて説明する。   Hereinafter, specific examples of the air conditioner of the present invention will be described with reference to FIGS.

図1は本発明の空気調和機の実施例1を説明する冷凍サイクル構成図である。
空気調和機50は、室外機1、室内機2、前記室外機1と室内機2とを接続するガス接続配管3及び液接続配管4などから構成されている。前記ガス接続配管3は、前記室外機1のガス阻止弁5と前記室内機2の室内熱交換器6との間を連通するように設けられている。前記液接続配管4は、室外機1の液阻止弁7と室内機2の室内膨張弁8との間を連通するように設けられている。従って、前記室内機2は、前記ガス接続配管3及び前記液接続配管4を介して前記室外機1に接続され、冷媒回路を構成している。
FIG. 1 is a refrigeration cycle configuration diagram illustrating Embodiment 1 of an air conditioner of the present invention.
The air conditioner 50 includes an outdoor unit 1, an indoor unit 2, a gas connection pipe 3 and a liquid connection pipe 4 that connect the outdoor unit 1 and the indoor unit 2. The gas connection pipe 3 is provided so as to communicate between the gas blocking valve 5 of the outdoor unit 1 and the indoor heat exchanger 6 of the indoor unit 2. The liquid connection pipe 4 is provided so as to communicate between the liquid blocking valve 7 of the outdoor unit 1 and the indoor expansion valve 8 of the indoor unit 2. Therefore, the indoor unit 2 is connected to the outdoor unit 1 via the gas connection pipe 3 and the liquid connection pipe 4 to constitute a refrigerant circuit.

なお、前記室外機1には予め冷媒が充填されており、前記ガス阻止弁5及び前記液阻止弁7は、空気調和機50の据え付け前に、前記室外機1に充填されている冷媒を封止するためのものである。これらガス阻止弁5及び前記液阻止弁7は、空気調和機50を据付けてガス接続配管3及び液接続配管4を接続した後は、常時開いた状態とされる。   The outdoor unit 1 is filled with a refrigerant in advance, and the gas blocking valve 5 and the liquid blocking valve 7 seal the refrigerant filled in the outdoor unit 1 before the air conditioner 50 is installed. It is for stopping. The gas blocking valve 5 and the liquid blocking valve 7 are always opened after the air conditioner 50 is installed and the gas connection pipe 3 and the liquid connection pipe 4 are connected.

前記室外機1は、図1に示すように、圧縮機9、切換え弁10、室外熱交換器11、室外膨張弁12、室外ファン(図示せず)、外気温度を検出する外気温度検出器13、前記圧縮機9の吐出側温度を検出する吐出側温度検出器14、及び室外機1に設けられた制御装置(制御基板)15等を具備している。   As shown in FIG. 1, the outdoor unit 1 includes a compressor 9, a switching valve 10, an outdoor heat exchanger 11, an outdoor expansion valve 12, an outdoor fan (not shown), and an outdoor temperature detector 13 that detects the outdoor temperature. The discharge side temperature detector 14 for detecting the discharge side temperature of the compressor 9 and the control device (control board) 15 provided in the outdoor unit 1 are provided.

前記吐出側温度検出器14は、前記圧縮機9から吐出される吐出ガスが通過する部分の温度を検出できれば良く、例えば圧縮機の温度でも、或いは圧縮機から吐出される冷媒ガスが流れる冷媒配管の温度を検出するようにしても良い。   The discharge side temperature detector 14 only needs to be able to detect the temperature of the portion through which the discharge gas discharged from the compressor 9 passes. For example, the refrigerant pipe through which the refrigerant gas discharged from the compressor flows or at the compressor temperature. The temperature may be detected.

前記圧縮機9は、本実施例では、その運転周波数がインバータで可変して制御される容量可変式圧縮機で構成されている。前記切換え弁10は、前記圧縮機9から吐出された冷媒の流れ方向及び前記圧縮機9へ吸い込まれる冷媒の流れ方向を切換える弁であり、本実施例では四方弁で構成されている。この切換え弁10は、暖房運転時には図1に実線矢印で示すように冷媒が流れ、冷房運転時には点線矢印で示すように冷媒が流れるように、前記制御装置15によりその流路が切り替えられるように制御される。   In the present embodiment, the compressor 9 is composed of a variable capacity compressor whose operating frequency is controlled by an inverter. The switching valve 10 is a valve for switching the flow direction of the refrigerant discharged from the compressor 9 and the flow direction of the refrigerant sucked into the compressor 9, and is constituted by a four-way valve in this embodiment. The switching valve 10 is switched by the control device 15 so that the refrigerant flows as shown by a solid arrow in FIG. 1 during heating operation and the refrigerant flows as shown by a dotted arrow during cooling operation. Be controlled.

前記室外熱交換器11は、本実施例では、狭い間隔で並置された多数枚のフィンと、これらのフィンを貫通する蛇行状の冷媒パイプなどで構成されたフィンチューブ型熱交換器を使用している。この室内熱交換器11では、前記冷媒パイプ内を流れる冷媒と、前記室外ファンにより通風される外気(室外空気)とが熱交換されるように構成されている。   In the present embodiment, the outdoor heat exchanger 11 uses a finned tube heat exchanger composed of a large number of fins juxtaposed at narrow intervals and a meandering refrigerant pipe passing through the fins. ing. The indoor heat exchanger 11 is configured such that heat is exchanged between the refrigerant flowing through the refrigerant pipe and the outside air (outdoor air) ventilated by the outdoor fan.

前記室外膨張弁12は、冷凍サイクルの主回路を流れる冷媒の減圧を行うための電子式膨張弁であり、前記室外熱交換器11と前記液阻止弁7(或いは、液接続配管4)との間に設置されている。   The outdoor expansion valve 12 is an electronic expansion valve for depressurizing the refrigerant flowing through the main circuit of the refrigeration cycle, and is provided between the outdoor heat exchanger 11 and the liquid blocking valve 7 (or the liquid connection pipe 4). It is installed between.

前記吐出側温度検出器14は、本実施例では圧縮機9の外郭を形成する容器(ケーシング)に取り付けられており、前記圧縮機9で圧縮されて温度が上昇した冷媒ガスが通過する部分の前記容器の外表面の温度を検出するようにしている。   In the present embodiment, the discharge side temperature detector 14 is attached to a container (casing) that forms the outline of the compressor 9, and the refrigerant gas compressed by the compressor 9 and having a raised temperature passes therethrough. The temperature of the outer surface of the container is detected.

前記外気温度検出器13は、外気温度を検出するためのものであり、本実施例では前記室外機1の内部における発熱の影響を受けないように、該室外機1の外板に取り付けられて外気温度を検出するようにしている。   The outside air temperature detector 13 is for detecting the outside air temperature. In the present embodiment, the outside air temperature detector 13 is attached to the outer plate of the outdoor unit 1 so as not to be affected by heat generation inside the outdoor unit 1. The outside air temperature is detected.

前記制御装置15は、前記外気温度検出器13、吐出側温度検出器14等の検出器で検出された信号や、リモコン(図示せず)などの操作スイッチで設定された信号等に基づいて、空気調和機50を構成する機器の制御を行う。   The control device 15 is based on signals detected by detectors such as the outside air temperature detector 13 and discharge-side temperature detector 14, signals set by operation switches such as a remote controller (not shown), and the like. Control of the devices constituting the air conditioner 50 is performed.

また、前記制御装置15は、演算装置16、記憶装置17、表示装置18などで構成されており、前記記憶装置17には、前記外気温度検出器13や前記吐出側温度検出器14などの検出器で検出された信号(温度情報)などが記憶される。また、前記演算装置16は、前記外気温度検出器13や吐出側温度検出器14等で検出された温度情報などに基づいて、空気調和機50を構成する各種機器(圧縮機9、切換え弁10、室外膨張弁12、室内膨張弁8など)の制御を行う。   The control device 15 includes an arithmetic device 16, a storage device 17, a display device 18, and the like. The storage device 17 detects the outside air temperature detector 13, the discharge side temperature detector 14, and the like. The signal (temperature information) detected by the vessel is stored. In addition, the arithmetic unit 16 is configured so that various devices (compressor 9, switching valve 10) constituting the air conditioner 50 are based on temperature information detected by the outside temperature detector 13, the discharge side temperature detector 14, and the like. The outdoor expansion valve 12, the indoor expansion valve 8 and the like are controlled.

前記表示装置18は、前記演算装置16により制御されて、前記記憶装置17に記憶されている情報や、前記演算装置16への入力情報、制御情報、判断情報などを表示するためのもので、例えば、7セグメントディスプレイを複数個組み合わせて構成することができる。   The display device 18 is controlled by the arithmetic device 16 to display information stored in the storage device 17, input information to the arithmetic device 16, control information, judgment information, and the like. For example, a plurality of 7-segment displays can be combined.

前記室内機2には、室内熱交換器6、室内膨張弁8、室内ファン(図示せず)などが具備されている。前記室内熱交換器6と前記室内膨張弁8は、前記ガス接続配管3と前記液接続配管4との間に、直列に接続して設けられている。   The indoor unit 2 includes an indoor heat exchanger 6, an indoor expansion valve 8, an indoor fan (not shown), and the like. The indoor heat exchanger 6 and the indoor expansion valve 8 are connected in series between the gas connection pipe 3 and the liquid connection pipe 4.

前記室内熱交換器6は、前記室外熱交換器11と同様に、本実施例では、多数枚のフィンと、これらを貫通する蛇行状の冷媒パイプなどで構成されたフィンチューブ型熱交換器を使用している。この冷媒パイプ内を流れる冷媒と室内ファンにより通風される室内空気とが熱交換されるように構成されている。   Like the outdoor heat exchanger 11, the indoor heat exchanger 6 is a fin-tube heat exchanger composed of a large number of fins and a meandering refrigerant pipe passing therethrough. I use it. The refrigerant flowing in the refrigerant pipe and the indoor air ventilated by the indoor fan are configured to exchange heat.

前記室内膨張弁8は、冷凍サイクルの主回路を流れる冷媒の減圧を行うための電子式膨張弁であり、前記室内熱交換器6と前記液接続配管4との間に設置されている。
なお、本実施例では上記室内機2が1台のみの例を示しているが、室内機2を並列に2台以上設置して、前記室外機1と接続するように構成することも同様に可能である。
The indoor expansion valve 8 is an electronic expansion valve for depressurizing the refrigerant flowing through the main circuit of the refrigeration cycle, and is installed between the indoor heat exchanger 6 and the liquid connection pipe 4.
In this embodiment, only one indoor unit 2 is shown, but two or more indoor units 2 may be installed in parallel and connected to the outdoor unit 1 in the same manner. Is possible.

次に、図1に示す空気調和機50の冷凍サイクルの動作について説明する。
まず、暖房運転について説明する。暖房運転時には、前記圧縮機9から吐出される高温高圧のガス冷媒は、実線矢印に示すように、前記切換え弁10によりガス阻止弁5側に流され、ガス接続配管3を通って前記室内機2の室内熱交換器6に流入する。室内熱交換器6に流入した高温高圧のガス冷媒は室内空気と熱交換して凝縮し、液冷媒となり、その後この液冷媒は、全開状態の室内膨張弁8、液接続配管4及び液阻止弁7を通過して室外膨張弁12に至り、この室外膨張弁12により減圧されて低温低圧のガス液混合冷媒となる。この減圧された冷媒は、前記室外熱交換器11に流入して外気(室外空気)と熱交換して蒸発され、ガス冷媒となって、前記切換え弁10を通過後、前記圧縮機9に戻される。
Next, operation | movement of the refrigerating cycle of the air conditioner 50 shown in FIG. 1 is demonstrated.
First, the heating operation will be described. During the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 9 is caused to flow to the gas blocking valve 5 side by the switching valve 10 as shown by the solid line arrow, and passes through the gas connection pipe 3 and the indoor unit. 2 flows into the indoor heat exchanger 6. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 6 is condensed by exchanging heat with the indoor air, and becomes a liquid refrigerant. 7 passes through the outdoor expansion valve 12 and is decompressed by the outdoor expansion valve 12 to become a low-temperature low-pressure gas-liquid mixed refrigerant. The decompressed refrigerant flows into the outdoor heat exchanger 11 and exchanges heat with the outside air (outdoor air) to evaporate to become a gas refrigerant, and returns to the compressor 9 after passing through the switching valve 10. It is.

冷房運転の場合には、前記圧縮機9から吐出される高温高圧のガス冷媒は、点線矢印に示すように、前記切換え弁10により、室外熱交換器11側に流され、前記室外熱交換器11で外気と熱交換して凝縮され、液冷媒となる。この液冷媒は、全開状態の室外膨張弁12、液阻止弁7及び液接続配管4を通って室内機2に流入し、室内膨張弁8で減圧されて低温低圧のガス液混合冷媒となる。この減圧された低温低圧の冷媒は、室内熱交換器6に流入して室内空気と熱交換されて蒸発し、ガス冷媒となる。このガス冷媒はその後、ガス接続配管3、ガス阻止弁5及び切換え弁10を通過して前記圧縮機9に戻される。   In the case of the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 9 is caused to flow toward the outdoor heat exchanger 11 by the switching valve 10 as indicated by a dotted arrow, and the outdoor heat exchanger 11 is condensed by exchanging heat with the outside air and becomes a liquid refrigerant. This liquid refrigerant flows into the indoor unit 2 through the fully-expanded outdoor expansion valve 12, the liquid blocking valve 7, and the liquid connection pipe 4, and is decompressed by the indoor expansion valve 8 to become a low-temperature and low-pressure gas-liquid mixed refrigerant. The decompressed low-temperature and low-pressure refrigerant flows into the indoor heat exchanger 6, exchanges heat with room air, and evaporates to become a gas refrigerant. Thereafter, the gas refrigerant passes through the gas connection pipe 3, the gas blocking valve 5, and the switching valve 10 and is returned to the compressor 9.

次に、暖房運転時におけるガス漏れ判定について、図2及び図3により説明する。図2、図3は本実施例における冷媒漏れ判定を説明するフローチャートで、図2は初期段階の圧縮機起動時のフローを説明する図、図3はその後(初期段階の圧縮機起動時以後)の圧縮機起動時のフローを説明する図である。なお、これらのフローチャートで示されるガス漏れ判定の制御は前記演算装置16、前記記憶装置17及び前記表示装置18などで構成される前記制御装置(制御基板)15により行われる。   Next, the gas leak determination during the heating operation will be described with reference to FIGS. 2 and 3 are flowcharts for explaining refrigerant leakage determination in this embodiment, FIG. 2 is a diagram for explaining the flow at the time of starting the compressor in the initial stage, and FIG. 3 is thereafter (after the start of the compressor at the initial stage). It is a figure explaining the flow at the time of the compressor starting of. The control of the gas leak determination shown in these flowcharts is performed by the control device (control board) 15 including the arithmetic device 16, the storage device 17, the display device 18, and the like.

まず、図2により、空気調和機50を設置後の初期段階の圧縮機起動時(例えば、最初の通常運転の開始時)(以下、初回起動時ということもある)の運転制御のフローを説明する。
ここでは、図1に示した空気調和機50が、その設置後の最初の通常運転時(初回起動時)に、暖房運転モードで運転開始される場合のガス漏れ判定の制御例を説明する。
First, referring to FIG. 2, the flow of operation control at the time of starting the compressor at the initial stage after installation of the air conditioner 50 (for example, at the start of the first normal operation) (hereinafter sometimes referred to as the initial start-up) will be described. To do.
Here, the control example of the gas leak determination when the air conditioner 50 shown in FIG. 1 is started in the heating operation mode during the first normal operation after the installation (first time activation) will be described.

まず、使用者により、空気調和機50が運転開始される(ステップS1)と、前記外気温度検出器13により外気温度が検出される(ステップS2)。次に、前記ステップS2で検出された外気温度に基づいて、ステップS3では、室外膨張弁12の開度を決定すると共に、前記室外膨張弁12の開度を前記決定された所定の開度に制御される。ここで、外気温度と前記室外膨張弁12の開度との関係は、予め前記記憶装置17にテーブルとして記憶されており、前記制御装置15(演算装置16)により前記室外膨張弁12は外気温度に対応した所定の開度に制御される。   First, when the user starts the operation of the air conditioner 50 (step S1), the outside air temperature detector 13 detects the outside air temperature (step S2). Next, based on the outside air temperature detected in Step S2, in Step S3, the opening degree of the outdoor expansion valve 12 is determined, and the opening degree of the outdoor expansion valve 12 is set to the determined predetermined opening degree. Be controlled. Here, the relationship between the outdoor temperature and the opening degree of the outdoor expansion valve 12 is stored in advance as a table in the storage device 17, and the outdoor expansion valve 12 is controlled by the control device 15 (calculation device 16). Is controlled to a predetermined opening degree corresponding to.

次に、圧縮機9を所定の回転数で一定時間運転し(ステップS4)、その後、前記吐出側温度検出器14により圧縮機温度、即ち圧縮機吐出側の温度を検出する(ステップS5)。上記ステップS2〜ステップS5で得られた各種パラメータは前記記憶装置17に記憶される(ステップS6)。   Next, the compressor 9 is operated at a predetermined rotational speed for a predetermined time (step S4), and then the compressor temperature, that is, the compressor discharge side temperature is detected by the discharge side temperature detector 14 (step S5). Various parameters obtained in steps S2 to S5 are stored in the storage device 17 (step S6).

その後、ステップS7では、空気調和機50は通常の運転、即ち負荷に応じた圧縮機の回転数制御や前記室外膨張弁12の開度制御が為され、使用者により空気調和機50の運転停止が為されるまで空気調和機50の運転は継続され、室温が所定の設定温度になるように空気調和機50は運転される。空気調和機50の運転停止指令が使用者により為されると、圧縮機9は停止され、空気調和機50の運転は終了する。   Thereafter, in step S7, the air conditioner 50 is operated normally, that is, the rotation speed control of the compressor according to the load and the opening degree control of the outdoor expansion valve 12 are performed, and the operation of the air conditioner 50 is stopped by the user. The operation of the air conditioner 50 is continued until the air conditioner 50 is performed, and the air conditioner 50 is operated so that the room temperature becomes a predetermined set temperature. When the operation stop command for the air conditioner 50 is issued by the user, the compressor 9 is stopped and the operation of the air conditioner 50 is ended.

次に、図3により、その後、即ち図2に示したフローでの運転制御が終了した後(初期段階の圧縮機起動時以後)の圧縮機起動時の運転制御のフローを説明する。
使用者により、空気調和機50が運転開始される(ステップS8)と、前記外気温度検出器13により外気温度が検出される(ステップS9)。次に、前記ステップS9で検出された外気温度に基づいて、ステップS10では、室外膨張弁12の開度を決定すると共に、前記室外膨張弁12の開度を前記決定された所定の開度に制御される。ここでも、予め前記記憶装置17にテーブルとして記憶されている前記外気温度と前記室外膨張弁12の開度との関係に基づいて、前記制御装置15(演算装置16)により前記室外膨張弁12は外気温度に対応した所定の開度に制御される。
Next, referring to FIG. 3, the flow of operation control at the time of starting the compressor after the end of the operation control in the flow shown in FIG.
When the operation of the air conditioner 50 is started by the user (step S8), the outside air temperature is detected by the outside air temperature detector 13 (step S9). Next, based on the outside air temperature detected in step S9, in step S10, the opening degree of the outdoor expansion valve 12 is determined, and the opening degree of the outdoor expansion valve 12 is set to the determined predetermined opening degree. Be controlled. Also here, the outdoor expansion valve 12 is controlled by the control device 15 (arithmetic device 16) based on the relationship between the outdoor temperature stored in advance in the storage device 17 as a table and the opening degree of the outdoor expansion valve 12. It is controlled to a predetermined opening corresponding to the outside air temperature.

次に、圧縮機9を所定の回転数で一定時間運転し(ステップS11)、その後、前記吐出側温度検出器14により圧縮機温度、即ち圧縮機吐出側の温度を検出する(ステップS12)。   Next, the compressor 9 is operated at a predetermined rotational speed for a predetermined time (step S11), and then the compressor temperature, that is, the compressor discharge side temperature is detected by the discharge side temperature detector 14 (step S12).

次に、ステップS13では、図2のステップS6で記憶している外気温度(初回外気温度)と、今回の起動時に上記ステップS9で検出された外気温度(今回外気温度)とを比較し、今回検出された外気温度が、図2のステップS6で記憶されている初回外気温度と同じであればステップS14に移る。ここで、今回外気温度が前記初回外気温度と同じとは、同一温度である場合の他に、予め定めている所定範囲以内の温度差であれば同一温度であるとする。   Next, in step S13, the outside air temperature (initial outside air temperature) stored in step S6 in FIG. 2 is compared with the outside air temperature detected in step S9 at the time of the current start-up (current outside air temperature). If the detected outside air temperature is the same as the initial outside air temperature stored in step S6 of FIG. 2, the process proceeds to step S14. Here, it is assumed that the current outside air temperature is the same as the initial outside air temperature, in addition to the same temperature, if the temperature difference is within a predetermined range set in advance.

ステップS14では、図2のステップS5で検出された圧縮機の吐出側温度(初回吐出側温度)と、今回の起動時に上記ステップS12で検出された圧縮機の吐出側温度(今回吐出側温度)とを比較する。ステップS14での比較の結果、温度が同一かどうかを判定する。ここでの同一か否かの判断は、今回吐出側温度が初回吐出側温度と比較し同一温度である場合の他に、予め定めている所定の許容範囲以内の温度差であれば同一であるとし、予め定めた所定の温度差以上となった場合に冷媒漏れがあると判定する。   In step S14, the compressor discharge side temperature (initial discharge side temperature) detected in step S5 of FIG. 2 and the compressor discharge side temperature (current discharge side temperature) detected in step S12 at the time of the current start-up. And compare. As a result of the comparison in step S14, it is determined whether or not the temperatures are the same. The determination of whether or not they are the same here is the same as long as the temperature difference is within a predetermined allowable range in addition to the case where the current discharge side temperature is the same temperature as the initial discharge side temperature. And it is determined that there is a refrigerant leak when the temperature difference exceeds a predetermined temperature difference.

即ち、ステップS14での判定の結果、温度が同一(所定の温度差未満)である場合(YES)には冷媒漏れはないと判定し、ステップS15に移り、空気調和機50の運転が停止されるまで、通常の運転が継続される。また、前記ステップS14での判定の結果、温度が所定の温度差以上となっている場合(NO)には冷媒漏れ(ガス漏れ)が生じていると判定し、ステップS16に移り、前記表示装置18に、ガス漏れを検知したことを表示する。   That is, as a result of the determination in step S14, if the temperatures are the same (less than a predetermined temperature difference) (YES), it is determined that there is no refrigerant leakage, the process proceeds to step S15, and the operation of the air conditioner 50 is stopped. Until normal operation continues. Further, if the result of determination in step S14 is that the temperature is greater than or equal to a predetermined temperature difference (NO), it is determined that refrigerant leakage (gas leakage) has occurred, the process proceeds to step S16, and the display device 18 indicates that a gas leak has been detected.

冷媒漏れが発生して冷凍サイクルに封入されている冷媒量が減少すると、空気調和機50を設置後の初期段階の圧縮機起動時(初回起動時)と同じ条件、即ち同じ外気温度で、空気調和機50を予め定めた所定の条件で運転(室外膨張弁12の開度を外気温度に応じて予め定めた所定の開度に固定すると共に、圧縮機9を一定時間一定の回転数に固定して運転)した場合、前記吐出側温度検出器14で検出される圧縮機の吐出側温度は、冷媒漏れが発生していない場合に比較して高くなる。従って、外気温度が同じ条件(前記ステップS13でYES)の場合、初回起動時に検出された初回吐出側温度と、今回起動時に検出された今回吐出側温度を比較する(上記ステップS14)ことにより、冷媒漏れの有無を判定することができる。   When refrigerant leakage occurs and the amount of refrigerant sealed in the refrigeration cycle decreases, the air under the same conditions, that is, the same outside air temperature, at the time of starting the compressor in the initial stage after the air conditioner 50 is installed (at the first startup) The conditioner 50 is operated under a predetermined condition (the opening degree of the outdoor expansion valve 12 is fixed at a predetermined opening degree corresponding to the outside air temperature, and the compressor 9 is fixed at a constant rotational speed for a certain period of time. When the operation is performed), the discharge side temperature of the compressor detected by the discharge side temperature detector 14 becomes higher than that in the case where no refrigerant leakage occurs. Therefore, when the outside air temperature is the same condition (YES in step S13), the first discharge side temperature detected at the first start and the current discharge side temperature detected at the current start are compared (step S14). The presence or absence of refrigerant leakage can be determined.

なお、上記ステップS13で、図2のステップS6で記憶している外気温度(初回外気温度)と、今回の起動時に上記ステップS9で検出された外気温度(今回外気温度)とを比較して、今回検出された外気温度が、前記初回外気温度と異なっている場合にはステップS15に移り、前記ステップS14における冷媒漏れの判定はせずに、空気調和機50の運転が停止されるまで通常の運転が継続される。   In step S13, the outside air temperature (initial outside air temperature) stored in step S6 in FIG. 2 is compared with the outside air temperature detected in step S9 at the time of the current start-up (current outside air temperature). If the detected outside air temperature is different from the initial outside air temperature, the process proceeds to step S15, and the refrigerant leakage is not determined in step S14, and the normal operation is stopped until the operation of the air conditioner 50 is stopped. Driving continues.

なお、上記ステップS9で検出された外気温度や、上記ステップS12で検出された圧縮機の吐出側温度のデータは前記制御装置15の前記記憶装置17などの記憶手段に一時的に記憶させて、冷媒漏れが発生していないと判定された場合には消去しても良いし、或いは消去せずに記憶しておき、空気調和機50の運転状態を継続的に記録するようにしても良い。   The outside air temperature detected in step S9 and the compressor discharge side temperature data detected in step S12 are temporarily stored in storage means such as the storage device 17 of the control device 15, When it is determined that no refrigerant leakage has occurred, the refrigerant may be deleted or stored without being erased, and the operation state of the air conditioner 50 may be continuously recorded.

本実施例によれば、空気調和機50を設置後の最初の起動時(初期段階の圧縮機起動時)に記憶したパラメータ(外気温度と圧縮機の吐出側温度)と、その後の空気調和機50の運転開始時(圧縮機起動時)における前記パラメータとを比較することにより、冷媒漏れ(ガス漏れ)の有無を継続的に判定していくことができる。   According to the present embodiment, the parameters (outside air temperature and compressor discharge side temperature) stored at the time of first start after installation of the air conditioner 50 (at the time of starting the compressor at the initial stage), and the subsequent air conditioner By comparing the parameters at the start of 50 operation (at the time of starting the compressor), it is possible to continuously determine the presence or absence of refrigerant leakage (gas leakage).

また、本実施例においては、前記特許文献1に示されたもののように、圧縮機9の吐出側や吸入側にそれぞれ圧力検出器及び温度検出器を備える必要がないため、安価に製作することができ、冷媒漏れを判定するための運転制御も簡単なものにすることができる。   Further, in the present embodiment, unlike the one disclosed in Patent Document 1, it is not necessary to provide a pressure detector and a temperature detector on the discharge side and the suction side of the compressor 9, respectively, so that it is manufactured at low cost. Therefore, the operation control for determining refrigerant leakage can be simplified.

更に、本実施例の空気調和機によれば、安価に製作できるだけでなく、圧縮機起動時に、空気調和機を所定の条件、例えば室外膨張弁の開度を外気温度に応じて予め定めた所定の開度に固定すると共に、圧縮機を一定時間一定の回転数に固定して運転して、圧縮機の吐出側温度を検出し、冷媒漏れの判定をするように構成しているから、回転数制御可能な圧縮機を採用している場合であっても、冷媒漏れの判定が可能な空気調和機を得ることができる。   Furthermore, according to the air conditioner of the present embodiment, not only can it be manufactured at a low cost, but also when the compressor is started, the air conditioner is subjected to predetermined conditions, for example, the opening of the outdoor expansion valve is predetermined according to the outside air temperature. The compressor is operated at a fixed rotational speed for a certain period of time, and the compressor discharge side temperature is detected and refrigerant leakage is determined. Even when a compressor that can be controlled by several numbers is employed, an air conditioner capable of determining refrigerant leakage can be obtained.

従って、本実施例の空気調和機によれば、安価で、しかも回転数制御可能な圧縮機を採用している場合であっても、冷媒漏れ(ガス漏れ)の判定が可能な空気調和機を得ることができる。   Therefore, according to the air conditioner of the present embodiment, an air conditioner that can determine refrigerant leakage (gas leakage) even when a low-cost compressor that can control the rotation speed is employed. Can be obtained.

なお、上記実施例では暖房運転時におけるガス漏れ判定について、図2及び図3を用いて説明したが、冷房運転時におけるガス漏れ判定も同様に可能である。冷房運転モードで運転開始される場合には、前記室外膨張弁12は全開とし、前記室内膨張弁8を減圧手段として使用する点が異なるのみで、他のフローは同じになる。   In the above-described embodiment, the gas leakage determination during the heating operation has been described with reference to FIGS. 2 and 3. However, the gas leakage determination during the cooling operation can be performed in the same manner. When the operation is started in the cooling operation mode, the outdoor expansion valve 12 is fully opened, and the other flows are the same except that the indoor expansion valve 8 is used as a pressure reducing means.

即ち、図2に示すステップS3、及び図3に示すステップS10では、外気温度検出器13により検出された外気温度に応じて室内膨張弁8の開度を決定して、その開度になるように前記室内膨張弁8の開度を制御すれば良い。図2及び図3に示す他のステップについては暖房運転時と同様である。従って、本発明は冷房運転時でも或いは冷房専用機であっても同様に適用することが可能である。   That is, in step S3 shown in FIG. 2 and step S10 shown in FIG. 3, the opening degree of the indoor expansion valve 8 is determined in accordance with the outside air temperature detected by the outside air temperature detector 13 so as to be the opening degree. The opening degree of the indoor expansion valve 8 may be controlled. Other steps shown in FIGS. 2 and 3 are the same as those in the heating operation. Therefore, the present invention can be similarly applied even during cooling operation or in a dedicated cooling machine.

また、空気調和機50を設置後の最初の起動時には暖房運転モードで起動されて、冷媒漏れ判定に使用される前記初回外気温度及び前記初回吐出側温度が記憶されている場合であっても、その後の最初の冷房運転モードでの起動時にも、前記冷媒漏れ判定に使用される初回外気温度及び初回吐出側温度も記憶しておけば、その後空気調和機50が暖房運転モードで起動されても、冷房運転モードで起動されても、何れの場合でも、冷媒漏れ判定をすることが可能になる。   Moreover, even when the initial outside temperature and the initial discharge side temperature used for the refrigerant leak determination are stored in the heating operation mode at the first startup after the air conditioner 50 is installed, If the initial outside air temperature and the initial discharge side temperature used for the refrigerant leakage determination are also stored at the time of starting in the first cooling operation mode after that, even if the air conditioner 50 is subsequently started up in the heating operation mode. Even in the case of being started in the cooling operation mode, it is possible to determine the refrigerant leakage in any case.

なお、上記実施例では、図3のステップS13で、初回外気温度と今回外気温度が同じかどうかを判定しているが、圧縮機起動時には室外膨張弁の開度が外気温度に応じて予め定めている所定の開度に制御されるので、前記ステップS13では外気温度を比較する代わりに、室外膨張弁の開度を比較するようにしても良い。   In the above embodiment, it is determined in step S13 in FIG. 3 whether or not the initial outside air temperature and the current outside air temperature are the same. However, when the compressor is started, the opening of the outdoor expansion valve is determined in advance according to the outside air temperature. In step S13, instead of comparing the outside air temperature, the opening of the outdoor expansion valve may be compared.

また、上記実施例では、室外機1に備えられた制御装置15で冷媒漏れの判定をするように構成しているが、冷媒漏れを判定する制御装置は室外機1に備えられるものには限定されず、室内機2やリモコンに制御装置を設けて冷媒漏れの判定や冷媒漏れの表示をしても良いし、或いは遠隔制御する別設置の制御装置や遠隔監視装置で前記冷媒漏れの判定や冷媒漏れの表示をするようにしても良い。   Moreover, in the said Example, although it comprised so that the refrigerant | coolant leakage determination might be performed with the control apparatus 15 with which the outdoor unit 1 was equipped, the control apparatus which determines refrigerant | coolant leakage is limited to what is provided with the outdoor unit 1. Alternatively, a control device may be provided in the indoor unit 2 or the remote controller to determine the refrigerant leakage or display the refrigerant leakage, or the refrigerant leakage may be determined by a separately installed control device or a remote monitoring device that is remotely controlled. You may make it display a refrigerant | coolant leak.

更に、上記実施例では、前記圧縮機として、インバータ駆動の回転数制御可能な圧縮機を使用した例について説明したが、回転数固定の一定速型圧縮機を使用した空気調和機の場合でも同様に実施可能である。また、前記室外膨張弁や室内膨張弁は開度制御が可能な電子膨張弁などを使用している場合について説明したが、キャピラリチューブなどの減圧手段を使用した空気調和機においても同様に実施可能である。このような一定速型の圧縮機や開度制御ができない減圧手段を使用した空気調和機の場合には、前記ステップS3やS10での膨張弁制御は不要になり、前記ステップS4やS11では圧縮機を一定時間運転するだけの制御で良い。   Further, in the above-described embodiment, an example in which an inverter-driven compressor capable of controlling the rotational speed is used as the compressor has been described. However, the same applies to an air conditioner using a constant speed compressor with a fixed rotational speed. Can be implemented. Moreover, although the case where the outdoor expansion valve or the indoor expansion valve uses an electronic expansion valve capable of controlling the opening degree has been described, it can be similarly applied to an air conditioner using a pressure reducing means such as a capillary tube. It is. In the case of such a constant speed type compressor or an air conditioner using pressure reducing means that cannot control the opening degree, the expansion valve control in steps S3 and S10 is not necessary, and the compression is not performed in steps S4 and S11. Control that only operates the machine for a certain period of time is sufficient.

1…室外機、2…室内機、
3…ガス接続配管、4…液接続配管、
5…ガス阻止弁、6…室内熱交換器、
7…液阻止弁、8…室内膨張弁、
9…圧縮機、10…切替え弁(四方弁)、
11…室外熱交換器、12…室外膨張弁、
13…外気温度検出器、14…吐出側温度検出器、
15…制御装置、16…演算装置、17…記憶装置、18…表示装置、
50…空気調和機。
1 ... outdoor unit, 2 ... indoor unit,
3 ... Gas connection piping, 4 ... Liquid connection piping,
5 ... Gas stop valve, 6 ... Indoor heat exchanger,
7 ... Liquid blocking valve, 8 ... Indoor expansion valve,
9 ... Compressor, 10 ... Switching valve (four-way valve),
11 ... outdoor heat exchanger, 12 ... outdoor expansion valve,
13 ... Outside air temperature detector, 14 ... Discharge side temperature detector,
DESCRIPTION OF SYMBOLS 15 ... Control apparatus, 16 ... Arithmetic apparatus, 17 ... Memory | storage device, 18 ... Display apparatus,
50 ... Air conditioner.

Claims (14)

回転数制御可能な圧縮機、室外熱交換器及び室外膨張弁を有する室外機と、
室内熱交換器を有する室内機を備え、
前記室外機と前記室内機を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、
外気温度を検出する外気温度検出器と、
前記圧縮機の吐出側温度を検出する吐出側温度検出器と、
前記圧縮機及び前記室外膨張弁を制御する制御装置と、
前記空気調和機設置後の初期段階の圧縮機起動時における、外気温度と、前記空気調和機を所定の条件で運転したときの圧縮機の吐出側温度を記憶しておく記憶装置と、
その後の圧縮機起動時における、外気温度と、前記空気調和機を前記所定の条件で運転したのきの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置と
を備えることを特徴とする空気調和機。
A compressor capable of controlling the rotational speed, an outdoor heat exchanger and an outdoor unit having an outdoor expansion valve;
An indoor unit having an indoor heat exchanger;
In the air conditioner that constitutes a refrigeration cycle by connecting the outdoor unit and the indoor unit with a refrigerant pipe,
An outside temperature detector for detecting the outside temperature;
A discharge side temperature detector for detecting a discharge side temperature of the compressor;
A control device for controlling the compressor and the outdoor expansion valve;
A storage device that stores an outside air temperature at the time of starting the compressor at an initial stage after the air conditioner is installed, and a discharge side temperature of the compressor when the air conditioner is operated under a predetermined condition;
After that, when the compressor is started, the outside air temperature and the discharge side temperature of the compressor when the air conditioner is operated under the predetermined condition are stored in the storage device at the initial stage outside temperature and compression. An air conditioner comprising: an arithmetic unit that determines refrigerant leakage in comparison with a discharge side temperature of the machine.
請求項1に記載の空気調和機において、暖房運転時に蒸発器となる前記室外熱交換器の上流に設けられている前記室外膨張弁の開度は、暖房運転開始時における圧縮機の起動時には、外気温度に応じて予め定めた所定の開度に制御されることを特徴とする空気調和機。   In the air conditioner according to claim 1, the opening degree of the outdoor expansion valve provided upstream of the outdoor heat exchanger serving as an evaporator during heating operation is as follows: An air conditioner that is controlled to a predetermined opening degree that is predetermined according to the outside air temperature. 請求項2に記載の空気調和機において、圧縮機起動時における前記空気調和機の前記所定の条件での運転とは、前記室外膨張弁の開度を外気温度に応じて予め定めた所定の開度に固定すると共に、圧縮機を一定時間一定の回転数に固定して運転される条件であることを特徴とする空気調和機。   3. The air conditioner according to claim 2, wherein the operation of the air conditioner under the predetermined condition when the compressor is started is a predetermined opening in which an opening degree of the outdoor expansion valve is predetermined according to an outside air temperature. The air conditioner is characterized in that the compressor is operated at a fixed rotational speed at a constant rotational speed for a certain period of time. 請求項2または3に記載の空気調和機において、前記記憶装置は、前記初期段階の圧縮機起動時における外気温度の代わりに、或いは外気温度と共に、前記初期段階の圧縮機起動時における前記室外膨張弁の開度を記憶しておき、
前記演算装置は、その後の圧縮機起動時における、前記外気温度に代えて室外膨張弁の開度を使用し、この室外膨張弁の開度と、前記空気調和機を前記所定の条件で運転したときの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の室外膨張弁の開度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する
ことを特徴とする空気調和機。
4. The air conditioner according to claim 2, wherein the storage device has the outdoor expansion at the time of starting the compressor at the initial stage, instead of or together with the outside air temperature at the time of starting the compressor at the initial stage. Remember the valve opening,
The computing device uses the opening of the outdoor expansion valve instead of the outside air temperature at the time of starting the compressor, and operates the opening of the outdoor expansion valve and the air conditioner under the predetermined condition. The refrigerant leakage is determined by comparing the discharge side temperature of the compressor with the opening degree of the outdoor expansion valve in the initial stage and the discharge side temperature of the compressor stored in the storage device. Machine.
請求項1〜4の何れかに記載の空気調和機において、前記制御装置は前記室外機に備えられており、この制御装置に、前記演算装置での冷媒漏れの判定結果を表示する表示装置が備えられていることを特徴とする空気調和機。   The air conditioner according to any one of claims 1 to 4, wherein the control device is provided in the outdoor unit, and a display device that displays a determination result of refrigerant leakage in the arithmetic device is provided on the control device. An air conditioner characterized by being provided. 請求項1〜5の何れかに記載の空気調和機において、前記制御装置は前記室外機に備えられ、この制御装置には前記記憶装置及び前記演算装置が備えられていることを特徴とする空気調和機。   6. The air conditioner according to claim 1, wherein the control device is provided in the outdoor unit, and the control device is provided with the storage device and the arithmetic device. Harmony machine. 圧縮機、室外熱交換器、減圧手段及び室内熱交換器を冷媒配管で接続して冷凍サイクルを構成する空気調和機において、
外気温度を検出する外気温度検出器と、
前記圧縮機の吐出側温度を検出する吐出側温度検出器と、
前記空気調和機設置後の初期段階の圧縮機起動時における、外気温度と、前記空気調和機を所定の条件で運転したときの圧縮機の吐出側温度を記憶しておく記憶装置と、
その後の圧縮機起動時における、外気温度と、前記空気調和機を前記所定の条件で運転したのきの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置と
を備えることを特徴とする空気調和機。
In an air conditioner that configures a refrigeration cycle by connecting a compressor, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger with refrigerant piping,
An outside temperature detector for detecting the outside temperature;
A discharge side temperature detector for detecting a discharge side temperature of the compressor;
A storage device that stores an outside air temperature at the time of starting the compressor at an initial stage after the air conditioner is installed, and a discharge side temperature of the compressor when the air conditioner is operated under a predetermined condition;
After that, when the compressor is started, the outside air temperature and the discharge side temperature of the compressor when the air conditioner is operated under the predetermined condition are stored in the storage device at the initial stage outside temperature and compression. An air conditioner comprising: an arithmetic unit that determines refrigerant leakage in comparison with a discharge side temperature of the machine.
請求項7に記載の空気調和機において、前記圧縮機は回転数固定の一定速型であり、前記減圧手段はキャピラリチューブであって、圧縮機起動時における前記空気調和機の前記所定の条件での運転とは、前記圧縮機を一定時間運転する条件であることを特徴とする空気調和機。   8. The air conditioner according to claim 7, wherein the compressor is a constant speed type with a fixed rotation speed, the pressure reducing means is a capillary tube, and the predetermined condition of the air conditioner when the compressor is started up. The operation of is an air conditioner characterized in that the compressor is operated for a certain period of time. 請求項7に記載の空気調和機において、前記圧縮機は回転数制御可能な圧縮機であり、前記減圧手段は開度制御が可能な電子膨張弁であって、圧縮機起動時における前記空気調和機の前記所定の条件での運転とは、前記電子膨張弁の開度を外気温度に応じて予め定めた所定の開度に固定すると共に、圧縮機を一定時間一定の回転数に固定して運転される条件であることを特徴とする空気調和機。   8. The air conditioner according to claim 7, wherein the compressor is a compressor capable of rotating speed control, and the pressure reducing means is an electronic expansion valve capable of opening degree control, and the air conditioner at the time of starting the compressor. The operation of the machine under the predetermined condition is to fix the opening of the electronic expansion valve to a predetermined opening determined in advance according to the outside air temperature, and to fix the compressor at a constant rotational speed for a certain period of time. An air conditioner characterized by operating conditions. 請求項9に記載の空気調和機において、前記圧縮機の吐出側に暖房運転と冷房運転の切り換えを可能にする切換え弁を備え、前記記憶装置は、前記空気調和機設置後の最初の暖房運転における圧縮機起動時の外気温度と、前記空気調和機を所定の条件で運転したときの圧縮機の吐出側温度を記憶すると共に、前記空気調和機設置後の最初の冷房運転における圧縮機起動時の外気温度と、前記空気調和機を所定の条件で運転したときの圧縮機の吐出側温度も記憶しておき、前記演算装置は、その後の暖房運転開始時及び冷房運転開始時の何れの場合でも冷媒漏れの判定が可能に構成されていることを特徴とする空気調和機。   10. The air conditioner according to claim 9, further comprising a switching valve that enables switching between a heating operation and a cooling operation on a discharge side of the compressor, wherein the storage device is a first heating operation after the air conditioner is installed. The outside air temperature at the time of starting the compressor and the discharge side temperature of the compressor when the air conditioner is operated under a predetermined condition are stored, and at the time of starting the compressor in the first cooling operation after the air conditioner is installed The outside air temperature of the compressor and the discharge side temperature of the compressor when the air conditioner is operated under a predetermined condition are stored, and the arithmetic unit is in any of the subsequent heating operation start and cooling operation start However, the air conditioner is characterized by being configured to be able to determine refrigerant leakage. 圧縮機、室外熱交換器及び室外膨張弁を有する室外機と、
室内熱交換器を有する室内機を備え、
前記室外機と前記室内機を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、
外気温度を検出する外気温度検出器と、
前記圧縮機の吐出側温度を検出する吐出側温度検出器と、
前記圧縮機及び前記室外膨張弁を制御する制御装置と、
前記空気調和機設置後の初期段階の圧縮機起動時における、前記室外膨張弁の開度と、前記圧縮機を所定の条件で運転したときの圧縮機の吐出側温度とを記憶しておく記憶装置と、
その後の圧縮機起動時における、前記室外膨張弁の開度と、前記圧縮機を前記所定の条件で運転したときの圧縮機の吐出側温度を、前記記憶装置に記憶されている初期段階の室外膨張弁の開度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置とを備え、
前記室外膨張弁の開度は、圧縮機の起動時には、外気温度に応じて予め定めた所定の開度に制御されるように構成されている
ことを特徴とする空気調和機。
An outdoor unit having a compressor, an outdoor heat exchanger, and an outdoor expansion valve;
An indoor unit having an indoor heat exchanger;
In the air conditioner that constitutes a refrigeration cycle by connecting the outdoor unit and the indoor unit with a refrigerant pipe,
An outside temperature detector for detecting the outside temperature;
A discharge side temperature detector for detecting a discharge side temperature of the compressor;
A control device for controlling the compressor and the outdoor expansion valve;
A memory for storing an opening degree of the outdoor expansion valve and a discharge side temperature of the compressor when the compressor is operated under a predetermined condition at the time of starting the compressor at an initial stage after the air conditioner is installed. Equipment,
In the initial stage of the outdoor operation, the opening degree of the outdoor expansion valve and the discharge side temperature of the compressor when the compressor is operated under the predetermined condition are stored in the storage device. An arithmetic unit for determining refrigerant leakage in comparison with the opening of the expansion valve and the discharge side temperature of the compressor;
The opening degree of the outdoor expansion valve is configured to be controlled to a predetermined opening degree determined in advance according to the outside air temperature when the compressor is started.
回転数制御可能な圧縮機、室外熱交換器及び室外膨張弁を有する室外機と、
室内熱交換器及び室内膨張弁を有する室内機を備え、
前記室外機と前記室内機を冷媒配管で接続して冷凍サイクルを構成している空気調和機において、
外気温度を検出する外気温度検出器と、前記圧縮機の吐出側温度を検出する吐出側温度検出器と、
前記圧縮機及び前記室内膨張弁を制御する制御装置と、
前記空気調和機設置後の初期段階の冷房運転での圧縮機起動時における、外気温度と、前記室内膨張弁の開度を外気温度に応じて予め決められた所定の開度にして前記圧縮機を一定時間一定の回転数に固定して運転したときの圧縮機の吐出側温度とを記憶しておく記憶装置と、
その後の圧縮機起動時における、外気温度と、前記室内膨張弁の開度を外気温度に応じて予め決められた所定の開度にして前記圧縮機を一定時間一定の回転数に固定して運転したのきの圧縮機の吐出側温度とを、前記記憶装置に記憶されている初期段階の外気温度及び圧縮機の吐出側温度と比較して冷媒漏れを判定する演算装置と
を備えることを特徴とする空気調和機。
A compressor capable of controlling the rotational speed, an outdoor heat exchanger and an outdoor unit having an outdoor expansion valve;
An indoor unit having an indoor heat exchanger and an indoor expansion valve;
In the air conditioner that constitutes a refrigeration cycle by connecting the outdoor unit and the indoor unit with a refrigerant pipe,
An outside air temperature detector for detecting an outside air temperature, a discharge side temperature detector for detecting a discharge side temperature of the compressor, and
A control device for controlling the compressor and the indoor expansion valve;
At the time of starting the compressor in the initial stage cooling operation after the air conditioner is installed, the compressor is set to a predetermined opening degree determined in advance according to the outside air temperature and the opening degree of the indoor expansion valve. A storage device that stores the discharge side temperature of the compressor when the motor is operated at a constant rotational speed for a certain period of time;
After that, when the compressor is started, the outside air temperature and the opening degree of the indoor expansion valve are set to a predetermined opening degree that is predetermined according to the outside air temperature, and the compressor is operated at a constant rotational speed for a certain period of time. And an arithmetic unit that determines refrigerant leakage by comparing the discharge side temperature of the compressor of the firewood with the outside air temperature at the initial stage stored in the storage device and the discharge side temperature of the compressor. Air conditioner.
請求項12に記載の空気調和機において、冷房運転時に蒸発器となる前記室内熱交換器の上流に設けられている前記室内膨張弁の開度は、圧縮機の起動時には、外気温度に応じて予め定めた所定の開度に制御されることを特徴とする空気調和機。   13. The air conditioner according to claim 12, wherein the opening of the indoor expansion valve provided upstream of the indoor heat exchanger that serves as an evaporator during cooling operation depends on the outside air temperature when the compressor is started. An air conditioner that is controlled to a predetermined opening degree. 請求項12または13に記載の空気調和機において、前記圧縮機の吐出側温度検出器の代わりに、前記室外熱交換器と前記室外膨張弁との間に液管の温度を検出する液管温度検出器を設け、この液管温度検出器で検出された温度を、圧縮機の前記吐出側温度に代えて使用し、冷媒漏れを判定することを特徴とする空気調和機。   14. The air conditioner according to claim 12, wherein the temperature of the liquid pipe is detected between the outdoor heat exchanger and the outdoor expansion valve instead of the discharge-side temperature detector of the compressor. An air conditioner characterized in that a detector is provided, and the temperature detected by the liquid pipe temperature detector is used in place of the discharge side temperature of the compressor to determine refrigerant leakage.
JP2012072625A 2012-03-28 2012-03-28 Air conditioner Pending JP2013204871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012072625A JP2013204871A (en) 2012-03-28 2012-03-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012072625A JP2013204871A (en) 2012-03-28 2012-03-28 Air conditioner

Publications (1)

Publication Number Publication Date
JP2013204871A true JP2013204871A (en) 2013-10-07

Family

ID=49524158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012072625A Pending JP2013204871A (en) 2012-03-28 2012-03-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP2013204871A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017006474A1 (en) * 2015-07-09 2018-01-18 三菱電機株式会社 Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP2018063099A (en) * 2016-10-14 2018-04-19 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle
JP2018204831A (en) * 2017-06-01 2018-12-27 サンデン・リテールシステム株式会社 Refrigeration equipment
CN110857808A (en) * 2018-08-24 2020-03-03 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN110857812A (en) * 2018-08-24 2020-03-03 奥克斯空调股份有限公司 Air conditioner and air conditioner refrigerant leakage detection method
WO2020067296A1 (en) 2018-09-28 2020-04-02 ダイキン工業株式会社 Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method
CN115789908A (en) * 2022-11-15 2023-03-14 宁波奥克斯电气股份有限公司 A method and device for controlling the opening of an expansion valve of an air conditioner, and a multi-connected air conditioner
WO2024119723A1 (en) * 2022-12-07 2024-06-13 青岛海信日立空调系统有限公司 Air conditioning device and fault detection method therefor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017006474A1 (en) * 2015-07-09 2018-01-18 三菱電機株式会社 Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
CN109716043B (en) * 2016-10-14 2020-12-08 三电汽车空调系统株式会社 Air conditioner for vehicle
JP2018063099A (en) * 2016-10-14 2018-04-19 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle
WO2018070178A1 (en) * 2016-10-14 2018-04-19 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN109716043A (en) * 2016-10-14 2019-05-03 三电汽车空调系统株式会社 Air conditioner for motor vehicle
US10870332B2 (en) 2016-10-14 2020-12-22 Sanden Automotive Climate Systems Corporation Vehicle air conditioner
JP2018204831A (en) * 2017-06-01 2018-12-27 サンデン・リテールシステム株式会社 Refrigeration equipment
CN110857812A (en) * 2018-08-24 2020-03-03 奥克斯空调股份有限公司 Air conditioner and air conditioner refrigerant leakage detection method
CN110857808A (en) * 2018-08-24 2020-03-03 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN110857808B (en) * 2018-08-24 2021-05-11 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN110857812B (en) * 2018-08-24 2021-05-18 奥克斯空调股份有限公司 Air conditioner and air conditioner refrigerant leakage detection method
WO2020067296A1 (en) 2018-09-28 2020-04-02 ダイキン工業株式会社 Refrigerant leakage determination device, freezing device including this refrigerant leakage determination device, and refrigerant leakage determination method
CN115789908A (en) * 2022-11-15 2023-03-14 宁波奥克斯电气股份有限公司 A method and device for controlling the opening of an expansion valve of an air conditioner, and a multi-connected air conditioner
WO2024119723A1 (en) * 2022-12-07 2024-06-13 青岛海信日立空调系统有限公司 Air conditioning device and fault detection method therefor

Similar Documents

Publication Publication Date Title
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
JP2013204871A (en) Air conditioner
JP6582496B2 (en) Air conditioning indoor unit
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP2010007995A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
CN101216231A (en) Air Conditioner and Its Refrigerant Quantity Judgment Method
JP2007278665A (en) Air conditioner
JP2005257219A (en) Air conditioner
JP2019002639A (en) Refrigerant leakage detection method of ari conditioner, and air conditioner
AU2013275605B2 (en) Refrigerating Device
JP5693704B2 (en) Air conditioner
CN104903660A (en) Refrigeration device
JP5020114B2 (en) Air conditioner
JP2011007346A (en) Air conditioner
JP5535359B2 (en) Air conditioner
JP6042024B2 (en) Air conditioner
KR100630831B1 (en) Emergency operation method when room temperature sensor breakdown of air conditioner
JP5283560B2 (en) Air conditioner
JP2006207932A (en) Air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP2007212077A (en) Air-conditioner
KR20150037206A (en) Diagnostic apparatus of air conditional and method for controlling the same
JP5956839B2 (en) Air conditioner
JP2021162263A (en) Air conditioner, control method, and program
KR20000073043A (en) Fan trouble sensing method for air conditioner