JP2020019664A - Production method of high purity cobalt chloride aqueous solution - Google Patents
Production method of high purity cobalt chloride aqueous solution Download PDFInfo
- Publication number
- JP2020019664A JP2020019664A JP2018143223A JP2018143223A JP2020019664A JP 2020019664 A JP2020019664 A JP 2020019664A JP 2018143223 A JP2018143223 A JP 2018143223A JP 2018143223 A JP2018143223 A JP 2018143223A JP 2020019664 A JP2020019664 A JP 2020019664A
- Authority
- JP
- Japan
- Prior art keywords
- cobalt
- aqueous solution
- solution
- cobalt chloride
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 104
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 239000000243 solution Substances 0.000 claims abstract description 72
- 238000000605 extraction Methods 0.000 claims abstract description 47
- 229910021446 cobalt carbonate Inorganic materials 0.000 claims abstract description 39
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 claims abstract description 39
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 31
- 239000002699 waste material Substances 0.000 claims abstract description 31
- 238000000638 solvent extraction Methods 0.000 claims abstract description 28
- 238000005406 washing Methods 0.000 claims abstract description 28
- 239000012074 organic phase Substances 0.000 claims abstract description 25
- 239000002994 raw material Substances 0.000 claims abstract description 24
- 238000004140 cleaning Methods 0.000 claims abstract description 15
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 claims abstract description 14
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims abstract description 14
- 239000002002 slurry Substances 0.000 claims abstract description 14
- 150000001412 amines Chemical class 0.000 claims abstract description 12
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 238000002156 mixing Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 97
- 229910017052 cobalt Inorganic materials 0.000 claims description 75
- 239000010941 cobalt Substances 0.000 claims description 75
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 74
- 239000011777 magnesium Substances 0.000 claims description 68
- 229910052749 magnesium Inorganic materials 0.000 claims description 58
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 57
- 239000007788 liquid Substances 0.000 claims description 54
- 229910052759 nickel Inorganic materials 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 40
- 239000010949 copper Substances 0.000 claims description 35
- 229910052802 copper Inorganic materials 0.000 claims description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 26
- 239000011701 zinc Substances 0.000 claims description 20
- 239000011572 manganese Substances 0.000 claims description 19
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- 230000002378 acidificating effect Effects 0.000 claims description 17
- 229910052748 manganese Inorganic materials 0.000 claims description 17
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 12
- 230000033116 oxidation-reduction process Effects 0.000 claims description 11
- 239000007800 oxidant agent Substances 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000003957 anion exchange resin Substances 0.000 claims description 7
- XTAZYLNFDRKIHJ-UHFFFAOYSA-N n,n-dioctyloctan-1-amine Chemical group CCCCCCCCN(CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-N 0.000 claims description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 6
- 239000012527 feed solution Substances 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 6
- 238000005363 electrowinning Methods 0.000 claims description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 5
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 4
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 claims description 4
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims 2
- 239000012071 phase Substances 0.000 claims 1
- 239000012535 impurity Substances 0.000 abstract description 24
- 238000001704 evaporation Methods 0.000 abstract description 5
- 230000008020 evaporation Effects 0.000 abstract description 5
- 239000012530 fluid Substances 0.000 abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 24
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 16
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 16
- 125000001309 chloro group Chemical group Cl* 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 13
- 238000011084 recovery Methods 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000008346 aqueous phase Substances 0.000 description 9
- 239000007774 positive electrode material Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 7
- 238000009854 hydrometallurgy Methods 0.000 description 7
- 238000002386 leaching Methods 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 238000003723 Smelting Methods 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZDFBXXSHBTVQMB-UHFFFAOYSA-N 2-ethylhexoxy(2-ethylhexyl)phosphinic acid Chemical compound CCCCC(CC)COP(O)(=O)CC(CC)CCCC ZDFBXXSHBTVQMB-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 229910018058 Ni-Co-Al Inorganic materials 0.000 description 2
- 229910018144 Ni—Co—Al Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical group [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- -1 phosphate ester Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HZIUHEQKVCPTAJ-UHFFFAOYSA-N 3-(2-ethylhexoxyphosphonoyloxymethyl)heptane Chemical compound CCCCC(CC)COP(=O)OCC(CC)CCCC HZIUHEQKVCPTAJ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910017435 S2 In Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 150000001804 chlorine Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Removal Of Specific Substances (AREA)
- Extraction Or Liquid Replacement (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、高純度塩化コバルト水溶液の製造方法に関し、より詳しくは、コバルト及びマグネシウムを含有する塩化ニッケル水溶液、及びマグネシウムを含有する塩化コバルト水溶液を処理してマグネシウム濃度の低い塩化コバルト水溶液を得る高純度塩化コバルト水溶液の製造方法に関する。 The present invention relates to a method for producing a high-purity aqueous cobalt chloride solution, and more particularly to a method for treating a nickel chloride aqueous solution containing cobalt and magnesium, and a cobalt chloride aqueous solution containing magnesium to obtain a cobalt chloride aqueous solution having a low magnesium concentration. The present invention relates to a method for producing a pure cobalt chloride aqueous solution.
コバルトは、特殊鋼や磁性材料の合金用元素として様々な産業界において広く利用されている。例えば特殊鋼では、コバルトの有する優れた耐摩耗性や耐熱性を活かして航空宇宙、発電機、特殊工具の分野で用いられており、磁性材料では、コバルトを含有する強磁性合金材料が小型ヘッドホンや小型モーター等に用いられている。コバルトは更にリチウムイオン二次電池の正極材の原料としても使用されており、近年、小型パーソナルコンピューターやスマートフォン等の移動式情報処理端末用はもとより自動車用及び電力貯蔵用のリチウムイオン二次電池が普及するに従って、コバルトを含有する正極材料に対する需要は増加の一途をたどっている。 Cobalt is widely used in various industries as an alloying element for special steels and magnetic materials. For example, special steels are used in the fields of aerospace, power generators and special tools, taking advantage of the excellent wear and heat resistance of cobalt.For magnetic materials, ferromagnetic alloy materials containing cobalt are used in small headphones. And small motors. Cobalt is also used as a raw material for the positive electrode material of lithium-ion secondary batteries.In recent years, lithium-ion secondary batteries for automobiles and power storage as well as mobile information processing terminals such as small personal computers and smartphones have been used. With its widespread use, the demand for cobalt-containing cathode materials is ever increasing.
コバルトは、鉱物資源としてはニッケルや銅に付随して含まれることが多く、ニッケル製錬や銅製錬の副産物として産出されるものが大半を占めている。そのため、コバルトの製造においては、ニッケルや銅を始めとする他元素からコバルトを効率よく分離することが技術的に重要であり、そのための様々な技術が提案されている。例えばニッケルの湿式製錬において副産物としてコバルトを回収する場合、まず原料に対して鉱酸や酸化剤等を用いて浸出処理又は抽出処理を行うことでニッケル及びコバルトを含む水溶液を得た後、得られた酸性水溶液等に対して各種の有機抽出剤を用いた溶媒抽出を行うことによってニッケル及びコバルトを含む水溶液からコバルトを分離して回収することが一般的に行われている。このようにして回収したコバルトは不純物の品位が低いことが好ましく、特にリチウムイオン二次電池の正極材料の原料として用いる塩化コバルト水溶液では、不純物であるマグネシウムの含有率ができるだけ低いことが求められている。 Cobalt is often included in nickel and copper as a mineral resource, and most of it is produced as a by-product of nickel smelting or copper smelting. Therefore, in the production of cobalt, it is technically important to efficiently separate cobalt from other elements such as nickel and copper, and various techniques have been proposed. For example, when recovering cobalt as a by-product in the hydrometallurgy of nickel, first, an aqueous solution containing nickel and cobalt is obtained by subjecting the raw material to leaching treatment or extraction treatment using a mineral acid or an oxidizing agent, and then obtaining the aqueous solution. It is common practice to separate and recover cobalt from an aqueous solution containing nickel and cobalt by performing solvent extraction on the obtained acidic aqueous solution and the like using various organic extractants. It is preferable that the cobalt recovered in this way has a low impurity quality. In particular, in a cobalt chloride aqueous solution used as a raw material of a positive electrode material of a lithium ion secondary battery, it is required that the content of magnesium as an impurity is as low as possible. I have.
例えば、不純物を含むニッケル水溶液から高純度硫酸ニッケル水溶液を得る方法として、特許文献1には溶媒抽出法が開示されている。この技術は、ニッケルを担持した酸性抽出剤と不純物を含む粗硫酸ニッケル水溶液とを接触させることにより、酸性抽出剤中のニッケルと粗硫酸ニッケル水溶液中の不純物とを置換してニッケルの純度を高めるものである。この特許文献1では、抽出剤の濃度と処理時のpHとを調整することで、不純物、特にマグネシウム品位の低い高純度の硫酸ニッケルが得られると記載されている。 For example, as a method for obtaining a high-purity nickel sulfate aqueous solution from a nickel aqueous solution containing impurities, Patent Document 1 discloses a solvent extraction method. This technique increases the purity of nickel by contacting an acidic extractant carrying nickel with a crude nickel sulfate aqueous solution containing impurities, thereby displacing nickel in the acidic extractant with impurities in the crude nickel sulfate aqueous solution. Things. Patent Document 1 describes that by adjusting the concentration of the extractant and the pH at the time of treatment, impurities, in particular, high-purity nickel sulfate having a low magnesium grade can be obtained.
上記特許文献1の溶媒抽出法では、粗硫酸ニッケル水溶液中の銅、マンガン、亜鉛、カドミウム等の不純物のほとんどが酸性抽出剤側に抽出されるため、これら不純物元素は、最終的に塩化コバルト水溶液に分配される。そのため、上記溶媒抽出法で得た塩化コバルト水溶液は、例えば特許文献2に開示されているような浄液工程に送られ、ここで該不純物元素の除去が行われる。 In the solvent extraction method of Patent Document 1, most of impurities such as copper, manganese, zinc, and cadmium in the crude nickel sulfate aqueous solution are extracted to the acidic extractant side. Distributed to Therefore, the aqueous cobalt chloride solution obtained by the solvent extraction method is sent to, for example, a liquid purification step disclosed in Patent Document 2, where the impurity element is removed.
またニッケル水溶液からコバルトを回収する溶媒抽出法として、アミン系抽出剤を用いる技術が提案されている。例えば特許文献3には、コバルトを含む塩化ニッケル水溶液に対してアミン系抽出剤と希釈剤とからなる有機溶媒を混合することにより、コバルトを溶媒抽出して塩化コバルト水溶液を生成する方法が開示されている。 As a solvent extraction method for recovering cobalt from an aqueous nickel solution, a technique using an amine extractant has been proposed. For example, Patent Document 3 discloses a method in which an organic solvent composed of an amine-based extractant and a diluent is mixed with a nickel chloride aqueous solution containing cobalt to extract cobalt as a solvent to produce an aqueous cobalt chloride solution. ing.
上記したような酸性抽出剤によるニッケル水溶液の抽出処理に際し、マグネシウムはコバルト、カルシウム、鉄などの他の不純物に比べて酸性抽出剤に抽出されにくく、その抽出特性はニッケルとコバルトの中間に位置する。そのため、マグネシウムは他の不純物に比べてニッケル及びコバルトと分離し難いという傾向がある。従って、高純度硫酸ニッケル水溶液にはニッケルと共に液相に分配された一部のマグネシウムが残存することになり、残りのマグネシウムは有機相に抽出された後、粗塩化コバルト液に分配されることとなる。 In the process of extracting an aqueous nickel solution with an acidic extractant as described above, magnesium is less likely to be extracted by an acidic extractant than other impurities such as cobalt, calcium, and iron, and its extraction characteristics are located between nickel and cobalt. . Therefore, magnesium tends to be harder to separate from nickel and cobalt than other impurities. Therefore, in the high-purity nickel sulfate aqueous solution, a part of magnesium distributed in the liquid phase together with nickel remains, and the remaining magnesium is extracted into the organic phase and then distributed to the crude cobalt chloride liquid. Become.
このように、塩化コバルト液にはマグネシウムが含まれるものの、これを選択的に除去するのは困難であった。塩化コバルトは、電解工程で処理されて電気コバルトとして製品化されるほか、中和用の炭酸コバルトの原料として一部使用されることがあり、この炭酸コバルトの生成条件ではマグネシウムはほとんど炭酸塩を生成しないため、炭酸コバルト製造工程においてろ液側にマグネシウムを抜き出すことができる。 As described above, although the cobalt chloride liquid contains magnesium, it has been difficult to selectively remove the magnesium. Cobalt chloride is processed in an electrolysis process to produce electric cobalt, and may be partially used as a raw material of cobalt carbonate for neutralization. Since it is not generated, magnesium can be extracted to the filtrate side in the cobalt carbonate production process.
しかしながら、この炭酸コバルト製造工程から抜き出されるマグネシウムの量は、ニッケルの湿式製錬プラント全体からみれば微量であるため、マグネシウムを効果的に除去するものではなかった。また、塩化コバルト液にマグネシウムが含まれていても、電解工程においてはマグネシウムが電気コバルトに分配されることは無いが、塩化コバルト液は、直接リチウムイオン二次電池の正極材料の原料として用いられるため、塩化コバルト液に許容限度以上のマグネシウムが含まれていると、リチウムイオン二次電池の正極材料の原料として使用することができなくなる。従って、ニッケルの湿式製錬プラントにおいてマグネシウムを効率よく除去して副産物として回収されるコバルトを高純度の塩化コバルト水溶液として製造する方法が求められていた。 However, since the amount of magnesium extracted from the cobalt carbonate production process is very small in view of the entire nickel hydrometallurgy plant, magnesium has not been effectively removed. Further, even if magnesium is contained in the cobalt chloride solution, magnesium is not distributed to the electric cobalt in the electrolysis step, but the cobalt chloride solution is directly used as a raw material of a positive electrode material of a lithium ion secondary battery. Therefore, if the cobalt chloride solution contains magnesium at a level higher than the allowable limit, it cannot be used as a raw material for a positive electrode material of a lithium ion secondary battery. Accordingly, there has been a demand for a method of efficiently removing magnesium in a nickel hydrometallurgy plant and producing cobalt recovered as a by-product as a high-purity aqueous cobalt chloride solution.
本発明者らは上記課題を解決すべく、ニッケルの湿式製錬プロセスに組み込まれているコバルト回収プロセス全体におけるマグネシウムの分配挙動に着目して鋭意検討を重ねた結果、高純度塩化コバルト水溶液を電解工程で処理した後に排出される電解廃液にはマグネシウムが濃縮しているため、この電解廃液を上流側の溶媒抽出工程に繰り返すことで、マグネシウム濃度の低い塩化コバルト水溶液を効率的に得られることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors have conducted intensive studies focusing on the distribution behavior of magnesium in the entire cobalt recovery process incorporated in the nickel hydrometallurgical process, and as a result, electrolyzed high purity cobalt chloride aqueous solution. Since magnesium is concentrated in the electrolytic waste liquid discharged after the treatment in the process, by repeating the electrolytic waste liquid in the solvent extraction step on the upstream side, it is possible to efficiently obtain a cobalt chloride aqueous solution having a low magnesium concentration. As a result, the present invention has been completed.
すなわち、本発明に係る高純度塩化コバルト水溶液の製造方法は、コバルト及びマグネシウムを含有する塩化ニッケル水溶液にアミン系抽出剤を混合してコバルトを有機相に抽出すると共にコバルトが除去された塩化ニッケル水溶液を得る抽出段、前記有機相に洗浄液を混合して該有機相中に含まれるエントレインメントとして該有機相中に混入した微量のニッケルを除去する洗浄段、及び前記洗浄段で洗浄した有機相に弱酸性水溶液を混合してコバルトを逆抽出して粗塩化コバルト水溶液を得る逆抽出段から構成される溶媒抽出工程と、マグネシウムを含有する塩化コバルト水溶液を前記粗塩化コバルト水溶液に混合して得た混合液に酸化剤及び/又は硫化剤と共に炭酸コバルトのスラリーを添加して不純物を除去する浄液工程とから構成される高純度塩化コバルト水溶液の製造方法であって、前記浄液工程で得た高純度塩化コバルト水溶液の少なくとも一部を電解採取法による電解工程に電解給液として供給すると共に、該電解工程から排出される電解廃液を前記洗浄液として使用するものと、前記炭酸コバルトの生成用の原料として使用するものと、該生成した炭酸コバルトのレパルプ用水溶液として使用するものと、蒸発濃縮して電解給液として繰り返すものとに分配することを特徴としている。 That is, the method for producing a high-purity cobalt chloride aqueous solution according to the present invention comprises mixing an amine-based extractant with a nickel chloride aqueous solution containing cobalt and magnesium to extract cobalt into an organic phase and removing the cobalt chloride aqueous solution. An extraction step, a washing step of mixing a washing solution with the organic phase to remove trace amounts of nickel mixed in the organic phase as entrainment contained in the organic phase, and an organic phase washed in the washing step. A solvent extraction step comprising a back-extraction step of mixing a weakly acidic aqueous solution to back-extract cobalt to obtain a crude cobalt chloride aqueous solution, and a magnesium-containing aqueous cobalt chloride solution mixed with the crude cobalt chloride aqueous solution were obtained. A liquid purification step of adding a cobalt carbonate slurry together with an oxidizing agent and / or a sulfide agent to the mixed solution to remove impurities. A high purity cobalt chloride aqueous solution, wherein at least a part of the high purity cobalt chloride aqueous solution obtained in the liquid purification step is supplied as an electrolytic supply solution to an electrolysis step by an electrowinning method and discharged from the electrolysis step. The electrolytic waste liquid to be used as the washing liquid, the one used as a raw material for the production of the cobalt carbonate, the one used as an aqueous solution for repulping of the produced cobalt carbonate, It is characterized by being distributed to those that repeat.
本発明によれば、マグネシウム濃度の低い高純度塩化コバルト水溶液を効率よく製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the high purity cobalt chloride aqueous solution with low magnesium concentration can be manufactured efficiently.
以下、本発明の実施形態に係る高純度塩化コバルト水溶液の製造方法について図1のプロセスフロー図を参照しながら説明する。この図1に示す高純度塩化コバルトの製造方法は、ニッケルの湿式製錬プロセスに組み込まれたコバルト回収プロセスである。この高純度塩化コバルトの製造方法は、2種類の原料を用いており、それらのうちの第1の原料であるコバルト及びマグネシウムを含有する粗塩化ニッケル水溶液は電気ニッケルの製造プロセスで生成され、第2の原料である含マグネシウム塩化コバルト水溶液は硫酸ニッケルの製造プロセスで生成される。従って、まずこれら2つの上流プロセスについて簡単に説明し、その後、本発明の実施形態の高純度塩化コバルト水溶液の製造方法について説明する。 Hereinafter, a method for producing a high-purity aqueous cobalt chloride solution according to an embodiment of the present invention will be described with reference to the process flow diagram of FIG. The method for producing high-purity cobalt chloride shown in FIG. 1 is a cobalt recovery process incorporated in a nickel hydrometallurgy process. This method for producing high-purity cobalt chloride uses two types of raw materials, and among them, the first raw material, a crude nickel chloride aqueous solution containing cobalt and magnesium, is produced in a production process of electric nickel. The magnesium-containing aqueous solution of cobalt chloride, which is the raw material of No. 2, is produced in a process for producing nickel sulfate. Therefore, first, these two upstream processes will be briefly described, and then, the method for producing a high-purity aqueous cobalt chloride solution according to the embodiment of the present invention will be described.
1.電気ニッケルの製造プロセス
電気ニッケルの製造プロセスでは、まず、原料のニッケル・コバルト混合硫化物(MS又はミックスサルファイドとも称する)及びニッケルマットを塩素浸出して塩素浸出液を得る。ニッケル・コバルト混合硫化物の化学組成は、一般的にNiが50〜60質量%、Coが4〜6質量%、Sが30〜34質量%(いずれも乾燥量基準)であり、不純物としてMg、Fe、Cu、Znなどを含んでいる。一方、ニッケルマットの化学組成は、一般的にNiが74〜80質量%、Coが約1質量%、Cuが0.1〜0.4質量%、Feが0.1〜0.7質量%、Sが18〜23質量%(いずれも乾燥量基準)であり、不純物としてFe、Cu、Znなどを含んでいる。
1. Production Process of Electric Nickel In the production process of electric nickel, first, a raw material nickel / cobalt mixed sulfide (also referred to as MS or mixed sulfide) and a nickel mat are leached with chlorine to obtain a chlorine leaching solution. The chemical composition of the nickel-cobalt mixed sulfide is generally 50 to 60% by mass of Ni, 4 to 6% by mass of Co, 30 to 34% by mass of S (both on a dry basis), and Mg as an impurity. , Fe, Cu, Zn and the like. On the other hand, the chemical composition of the nickel matte is generally 74 to 80% by mass of Ni, approximately 1% by mass of Co, 0.1 to 0.4% by mass of Cu, and 0.1 to 0.7% by mass of Fe. , S is 18 to 23% by mass (all on a dry basis), and contains Fe, Cu, Zn and the like as impurities.
これらを原料にして得られる塩素浸出液は、主成分が塩化ニッケル溶液であり、不純物としてコバルトのほか、鉄、銅、鉛、マンガン、亜鉛、マグネシウム等を含んでいる。この塩素浸出液は、セメンテーション工程及び脱鉄工程で順次処理される。セメンテーション工程では、原料のニッケルマットスラリー及びニッケル・コバルト混合硫化物スラリーと上記塩素浸出液との混合により該塩素浸出液中の銅が還元されてセメンテーション残渣となることで銅の除去が行われる。脱鉄工程では上記セメンテーション工程で脱銅された塩化ニッケル水溶液に酸化剤及び中和剤を加えて鉄澱物を生成することで脱鉄を行う。このようにして銅及び鉄が除去されることで、前述した第1の原料としてのコバルト及びマグネシウムを含有する粗塩化ニッケル水溶液が得られる。 The chlorine leaching solution obtained by using these as a raw material is a nickel chloride solution as a main component, and contains iron, copper, lead, manganese, zinc, magnesium, and the like as impurities in addition to cobalt. This chlorine leachate is sequentially processed in the cementation step and the iron removal step. In the cementation step, copper in the chlorine leachate is reduced by mixing the raw material nickel matte slurry and nickel / cobalt mixed sulfide slurry with the chlorine leachate to form a cementation residue, thereby removing copper. In the deironing step, an oxidizing agent and a neutralizing agent are added to the nickel chloride aqueous solution decopperized in the cementation step to form iron deposits, thereby deironing. By removing copper and iron in this manner, the above-mentioned crude nickel chloride aqueous solution containing cobalt and magnesium as the first raw material is obtained.
2.硫酸ニッケルの製造プロセス
硫酸ニッケルの製造プロセスでは、まず、原料のニッケルマット又はニッケル・コバルト混合硫化物を加圧浸出して浸出液を得る。この加圧浸出により、ニッケルマットやニッケル・コバルト混合硫化物に含まれるニッケル、コバルト、及び不純物が浸出され、粗硫酸ニッケル水溶液が得られる。上記の加圧浸出の条件は、例えば圧力1.8〜2.0MPaG、温度140〜180℃である。この加圧浸出で得られる加圧浸出液は主成分が硫酸ニッケル水溶液であり、不純物としてコバルトのほか、鉄、銅、鉛、マンガン、亜鉛、マグネシウム等を含んでいる。
2. Nickel Sulfate Production Process In the nickel sulfate production process, first, a nickel matte or nickel-cobalt mixed sulfide as a raw material is leached under pressure to obtain a leachate. By this pressure leaching, nickel, cobalt, and impurities contained in the nickel matte and the nickel / cobalt mixed sulfide are leached to obtain a crude nickel sulfate aqueous solution. The conditions for the above pressure leaching are, for example, a pressure of 1.8 to 2.0 MPaG and a temperature of 140 to 180 ° C. The pressure leaching solution obtained by this pressure leaching is a nickel sulfate aqueous solution as a main component, and contains iron, copper, lead, manganese, zinc, magnesium and the like as impurities in addition to cobalt.
上記加圧浸出液としての粗硫酸ニッケル水溶液は、脱鉄工程を経て酸性抽出剤による溶媒抽出工程で処理され、該粗硫酸ニッケル水溶液に含まれる不純物が除去される。上記酸性抽出剤としては、ジ−(2−エチルヘキシル)ホスホン酸(通称D2EHPA)や、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル(製品名PC−88A)などの燐酸エステル系酸性抽出剤が用いられる。この酸性抽出剤による溶媒抽出工程は、抽出段、洗浄段、交換段、ニッケル回収段、コバルト回収段、及び逆抽出段から一般的に構成される。 The crude nickel sulfate aqueous solution as the pressurized leachate is subjected to a solvent extraction step using an acidic extractant after a deironing step, thereby removing impurities contained in the crude nickel sulfate aqueous solution. As the acidic extractant, a phosphate ester-based acidic extractant such as di- (2-ethylhexyl) phosphonic acid (commonly known as D2EHPA) or mono-2-ethylhexyl 2-ethylhexylphosphonate (product name PC-88A) is used. . The solvent extraction step using the acidic extractant generally comprises an extraction stage, a washing stage, an exchange stage, a nickel recovery stage, a cobalt recovery stage, and a back extraction stage.
上記酸性抽出剤を用いた溶媒抽出では、抽出反応に水素イオンが関与するため、pHによって抽出率が変化する。抽出率は金属によって異なり、Fe>Zn>Cu>Mn>Co>Ca>Mg>Niの順に抽出されやすい。すなわち、Feが最も抽出され易く、Niが最も抽出されにくい。そこで、有機相の流れに従って抽出段、洗浄段、交換段、ニッケル回収段、コバルト回収段、及び逆抽出段の順に段階的にpHを下げていくことにより、これら複数種類の金属をそれぞれの段で別々に分離回収することができる。 In the solvent extraction using the acidic extractant, since the extraction reaction involves hydrogen ions, the extraction rate changes depending on the pH. The extraction ratio differs depending on the metal, and it is easy to extract in the order of Fe> Zn> Cu> Mn> Co> Ca> Mg> Ni. That is, Fe is most easily extracted, and Ni is hardly extracted. Therefore, by gradually decreasing the pH in the order of the extraction stage, the washing stage, the exchange stage, the nickel recovery stage, the cobalt recovery stage, and the back-extraction stage in accordance with the flow of the organic phase, these plural types of metals can be removed from each stage. Can be separated and collected separately.
この酸性抽出剤で抽出されたコバルトは、コバルト回収段にて塩酸水溶液で逆抽出された後、脱亜鉛工程で処理されることで、前述した第2の原料としてのマグネシウムを含有する塩化コバルト水溶液となる。上記したように、マグネシウムの抽出のされやすさは、ニッケルとコバルトの中間に位置するため、脱鉄工程を経て酸性抽出剤による溶媒抽出工程で処理される硫酸ニッケル水溶液に含まれるマグネシウムの大部分についても、コバルト回収段にて塩酸水溶液で逆抽出されるので、脱亜鉛工程を経た後の塩化コバルト水溶液に含まれることになる。このマグネシウムを含有する塩化コバルト水溶液は、例えばCo濃度が70〜85g/L程度、Mg濃度が0.1〜0.7g/L程度になる。 Cobalt extracted with this acidic extractant is back-extracted with an aqueous hydrochloric acid solution at a cobalt recovery stage, and then treated in a dezincing step, so that a cobalt chloride aqueous solution containing magnesium as the above-mentioned second raw material is obtained. Becomes As described above, since the ease of extraction of magnesium is located between nickel and cobalt, most of the magnesium contained in the aqueous solution of nickel sulfate that is treated in the solvent extraction step using an acidic extractant after the iron removal step Is also back-extracted with the aqueous hydrochloric acid solution at the cobalt recovery stage, and thus is included in the aqueous cobalt chloride solution after the dezincification step. This cobalt chloride aqueous solution containing magnesium has, for example, a Co concentration of about 70 to 85 g / L and a Mg concentration of about 0.1 to 0.7 g / L.
3.高純度塩化コバルト水溶液及び電気コバルトの製造方法
次に、ニッケルの湿式製錬プロセスに組み込まれた本発明の実施形態の高純度塩化コバルトの製造方法について図1を参照しながら説明する。この本発明の実施形態の高純度塩化コバルトの製造方法は、溶媒抽出工程S1、脱マンガン工程S2、脱銅工程S3、脱亜鉛工程S4、電解工程S5、炭酸コバルト製造工程S6、及び蒸発濃縮工程S7で構成されており、脱亜鉛工程S4で得た高純度塩化コバルト水溶液を電解採取法の電解給液として電解工程S5に供給することにより、製品として電気コバルトを製造している。更に、高純度塩化コバルト水溶液は一部抜き取られてリチウムイオン二次電池の正極材料の原料として用いられている。なお、図1において「[]」の内側に記載されている元素は、各溶液に含まれ得る代表的な元素を例示したものであり、これらが必ず記載通りに含まれていることを意味するわけではない。以下、これら工程の各々について説明する。
3. Method for Producing High-Purity Cobalt Chloride Aqueous Solution and Electric Cobalt Next, a method for producing a high-purity cobalt chloride according to an embodiment of the present invention incorporated in a nickel hydrometallurgy process will be described with reference to FIG. The method for producing high-purity cobalt chloride according to the embodiment of the present invention includes a solvent extraction step S1, a demanganese step S2, a copper removal step S3, a dezincification step S4, an electrolysis step S5, a cobalt carbonate production step S6, and an evaporative concentration step. The electrolytic cobalt is manufactured as a product by supplying the high-purity aqueous solution of cobalt chloride obtained in the dezincification step S4 to the electrolysis step S5 as an electrolytic feed solution for the electrowinning method. Further, a part of the high-purity cobalt chloride aqueous solution is withdrawn and used as a raw material for a positive electrode material of a lithium ion secondary battery. In FIG. 1, the elements described inside “[]” are representative elements that can be included in each solution, which means that they are always included as described. Do not mean. Hereinafter, each of these steps will be described.
(1)溶媒抽出工程S1
溶媒抽出工程S1は、抽出始液としての前述した第1の原料である粗塩化ニッケル水溶液に対して抽出処理を行うことにより、ニッケルとコバルトとを分離する工程である。この溶媒抽出工程S1は、抽出段S11、洗浄段S12、及び逆抽出段S13から構成されており、それらの各々は、例えば複数のミキサー・セトラー装置を直列に接続して有機相と水相とを互いに向流に流す方式の向流多段方式が好適に用いられる。この場合、ミキサー・セトラーの数は抽出始液の組成、抽出剤の種類、抽出装置等によって適宜定めることができる。このように、有機相と水相との接触を確実に行って効率のよい液液抽出を行うためには向流多段方式を採用することが好ましい。
(1) Solvent extraction step S1
The solvent extraction step S1 is a step of separating nickel and cobalt by performing an extraction treatment on the above-described first raw material aqueous solution of crude nickel chloride as an extraction starting liquid. The solvent extraction step S1 is composed of an extraction stage S11, a washing stage S12, and a back extraction stage S13, each of which is connected to, for example, a plurality of mixer-settler devices in series to form an organic phase and an aqueous phase. Are preferably used. In this case, the number of mixers / settlers can be determined as appropriate depending on the composition of the extraction starting solution, the type of extractant, the extraction device, and the like. As described above, it is preferable to employ a countercurrent multi-stage method in order to ensure the contact between the organic phase and the aqueous phase and perform efficient liquid-liquid extraction.
この溶媒抽出工程S1では抽出剤にアミン系抽出剤を使用する。このアミン系抽出剤の種類については特に制約はないが、反応性の高さや水に対する溶解度の低さの点から3級アミン系抽出剤が好ましく、取り扱いやすさや価格等を考慮すると、例えば、TNOA(Tri−n−octylamine)やTIOA(Tri−i−octylamine)がより好ましい。この抽出剤を希釈して抽出用の有機溶媒を調製するための希釈剤としては、水に対する溶解度の低さや良好な油水分離性の点から芳香族炭化水素が好ましい。この希釈剤を抽出剤と混合して有機相(有機溶媒)を調製する際、有機相としての好適な粘度を確保するために抽出剤の濃度を10〜40体積%にするのが好ましい。 In this solvent extraction step S1, an amine-based extractant is used as the extractant. The type of the amine-based extractant is not particularly limited, but a tertiary amine-based extractant is preferable in terms of high reactivity and low solubility in water. Considering ease of handling and price, for example, TNOA (Tri-n-octylamine) and TIOA (Tri-i-octylamine) are more preferable. As a diluent for diluting the extractant to prepare an organic solvent for extraction, an aromatic hydrocarbon is preferred from the viewpoint of low solubility in water and good oil-water separation. When the organic phase (organic solvent) is prepared by mixing the diluent with the extractant, the concentration of the extractant is preferably adjusted to 10 to 40% by volume in order to secure a suitable viscosity as the organic phase.
上記のTNOAやTIOA等の3級アミンは、下記式1に示すように塩酸が付加することで活性化し、その結果、下記式2に例示するように金属クロロ錯イオンの抽出能力が発現する。これにより、ニッケルとコバルトの分離特性に優れた抽出剤となる。なお、式1及び式2中の「:」は、窒素原子の非共有電子対を表す。
[式1]
R3N:+HCl→R3N:HCl
[式2]
2R3N:HCl+CoCl4 2−→(R3N:H)2CoCl4+2Cl−
The above tertiary amines such as TNOA and TIOA are activated by the addition of hydrochloric acid as shown in the following formula 1, and as a result, the extraction ability of metal chloro complex ions is expressed as shown in the following formula 2. As a result, the extractant has excellent separation characteristics between nickel and cobalt. Note that “:” in Formulas 1 and 2 represents a lone electron pair of a nitrogen atom.
[Equation 1]
R 3 N: + HCl → R 3 N: HCl
[Equation 2]
2R 3 N: HCl + CoCl 4 2− → (R 3 N: H) 2 CoCl 4 + 2Cl −
上記式2に示す反応から分かるように、抽出段S11では金属元素のクロロ錯イオンとアミンとが反応して金属元素のクロロ錯イオンを担持したアミンが生成される。従ってCo、Cu、Zn、Fe等のクロロ錯イオンを形成する金属種が有機相中に抽出され、クロロ錯イオンを形成しないニッケルやマグネシウムは抽出残液に残留する。これによりNi及びMgがそれ以外の金属元素から分離される。 As can be seen from the reaction shown in the above formula 2, in the extraction stage S11, the chloro complex ion of the metal element reacts with the amine to produce an amine carrying the chloro complex ion of the metal element. Therefore, metal species that form chloro complex ions such as Co, Cu, Zn, and Fe are extracted into the organic phase, and nickel and magnesium that do not form chloro complex ions remain in the extraction residue. Thereby, Ni and Mg are separated from other metal elements.
上記抽出段S11から抜き出された抽出後有機は、次に後段の洗浄段S12に移送される。この洗浄段S12では、該抽出後有機に洗浄液を混合することで、前段の抽出段S11において水相から分離しきれず微細な水滴の形態のエントレインメントとして抽出後有機相中に懸濁する主にニッケルからなる不純物が除去される。この洗浄段S12での洗浄は、従来は純度が高い塩化コバルト水溶液である逆抽出液を用いていたが、本発明の実施形態の製造方法では、この洗浄液に後述する電解工程S5から排出される電解廃液を用いている。 The extracted organics extracted from the extraction stage S11 are then transferred to a subsequent washing stage S12. In the washing stage S12, by mixing the washing solution with the organic after the extraction, the entrainment in the form of fine water droplets that cannot be completely separated from the aqueous phase in the preceding extraction stage S11 is mainly suspended in the organic phase after the extraction. The impurities made of nickel are removed. Conventionally, the washing in the washing step S12 uses a back-extraction solution that is a high-purity aqueous solution of cobalt chloride. However, in the manufacturing method according to the embodiment of the present invention, the washing solution is discharged from an electrolysis step S5 described later. Electrolysis waste liquid is used.
すなわち、電解廃液は塩化コバルト水溶液からなるため、該電解廃液で有機相を洗浄することによって、抽出段S11からエントレインメントとして持ち込まれる該有機相中のニッケルと塩化コバルト水溶液からなる洗浄液中のコバルトとが置換され、これにより有機相のニッケル濃度を低下させることができる。更に電解廃液にはマグネシウムが濃縮しているため、この電解廃液を洗浄段S12の洗浄液として用いることで、ニッケル製錬プロセスに組み込まれたコバルト回収プロセスの系内から効果的にマグネシウムを抜き出すことができる。つまり、マグネシウムが濃縮した洗浄終液が抽出段に繰り返されることで、マグネシウムが抽出残液側に分配し、図1に示したプロセスから抜出されることになる。 That is, since the electrolytic waste liquid is composed of an aqueous solution of cobalt chloride, by washing the organic phase with the electrolytic waste liquid, nickel in the organic phase brought as an entrainment from the extraction stage S11 and cobalt in the cleaning liquid composed of the aqueous cobalt chloride solution are removed. Is substituted, whereby the nickel concentration of the organic phase can be reduced. Further, since magnesium is concentrated in the electrolytic waste liquid, by using this electrolytic waste liquid as a cleaning liquid in the cleaning step S12, it is possible to effectively extract magnesium from the system of the cobalt recovery process incorporated in the nickel smelting process. it can. That is, by repeating the washing final solution in which the magnesium is concentrated in the extraction stage, the magnesium is distributed to the extraction residual liquid side, and is extracted from the process shown in FIG.
これにより、後述する脱亜鉛工程S4で得た高純度塩化コバルト水溶液の質量基準のCo/Mg比を500〜1000程度に、より好ましくは700程度にすることができる。なお、このCo/Mg比が所望の値に満たない場合は、上記電解廃液を洗浄液として洗浄段S12に供給する量を増やせばよい。すなわち、上記高純度塩化コバルト水溶液の質量基準のCo/Mg比は、電解廃液を洗浄液として使用する量で調整することができる。 As a result, the mass-based Co / Mg ratio of the high-purity cobalt chloride aqueous solution obtained in the dezincing step S4 described below can be set to about 500 to 1000, more preferably about 700. If the Co / Mg ratio is less than a desired value, the amount of the electrolytic waste liquid supplied to the cleaning stage S12 as a cleaning liquid may be increased. That is, the Co / Mg ratio based on the mass of the high-purity cobalt chloride aqueous solution can be adjusted by the amount of the electrolytic waste liquid used as the cleaning liquid.
上記洗浄段S12で洗浄された洗浄後有機は、次に後段の逆抽出段S13に移送される。この逆抽出段S13では、洗浄済みの有機相である洗浄後有機に弱酸性水溶液を混合することにより、上記式2の逆反応である下記式3に従ってコバルトのクロロ錯イオンを担持したアミンが逆抽出処理される。これにより、コバルトは有機相から水相中に移動する。
[式3]
(R3N:H)2CoCl4→2R3N:HCl+CoCl2
The washed organics washed in the washing stage S12 are then transferred to the subsequent back extraction stage S13. In this back-extraction stage S13, the amine carrying the chloro complex ion of cobalt is reversed according to the following formula 3, which is the reverse reaction of formula 2, by mixing a weakly acidic aqueous solution with the washed organic, which is the washed organic phase. It is extracted. As a result, cobalt moves from the organic phase into the aqueous phase.
[Equation 3]
(R 3 N: H) 2 CoCl 4 → 2R 3 N: HCl + CoCl 2
上記したように、溶媒抽出工程S1では、金属のクロロ錯イオンの生成のしやすさに基づき、塩化ニッケル水溶液からコバルト等を分離し、塩化コバルト水溶液を得ている。一般的には溶媒抽出工程S1の抽出始液であるコバルト及びマグネシウムを含有する塩化ニッケル水溶液は、塩化物イオン濃度が200〜250g/Lと高濃度であり、Co、Cu、Zn、Feは安定したクロロ錯イオンを形成している。この抽出始液を上記溶媒抽出工程S1で処理することによって、逆抽出段S13からの水相中の塩化物イオン濃度を100g/L以下にまで低減することができる。すなわち、コバルトのクロロ錯イオンは逆抽出段S13の水相中の塩化物イオン濃度が低濃度の領域では不安定となり、塩化コバルトとなって水相中に逆抽出される。ただし、銅、亜鉛、鉄のクロロ錯イオンは該逆抽出段S13の水相中の塩化物イオン濃度が低濃度の領域において安定であるため、それらのほとんどは有機相中に留まる。 As described above, in the solvent extraction step S1, cobalt and the like are separated from the aqueous nickel chloride solution to obtain an aqueous cobalt chloride solution based on the ease with which metal chloro complex ions are formed. Generally, an aqueous solution of nickel chloride containing cobalt and magnesium, which is an extraction starting solution in the solvent extraction step S1, has a high chloride ion concentration of 200 to 250 g / L, and Co, Cu, Zn, and Fe are stable. To form chloro complex ions. By treating this extraction starting solution in the solvent extraction step S1, the chloride ion concentration in the aqueous phase from the back extraction stage S13 can be reduced to 100 g / L or less. That is, the chloro complex ion of cobalt becomes unstable in a region where the chloride ion concentration in the aqueous phase of the back extraction stage S13 is low, and becomes cobalt chloride and is back-extracted into the aqueous phase. However, most of the chloro complex ions of copper, zinc and iron remain in the organic phase because the chloride ion concentration in the aqueous phase in the back extraction stage S13 is stable in a low concentration region.
前述したようにマグネシウムはアミン系抽出剤に抽出されないので、上記の逆抽出段S13から水相側として抜き出される逆抽出液としての粗塩化コバルト水溶液には、マグネシウムは含まれていない。しかしながら、この粗塩化コバルト水溶液には微量のMn、Cu、Zn、Cd等の不純物が含まれている。そのため、以下に示すような脱マンガン工程S2、脱銅工程S3、及び脱亜鉛工程S4で構成される浄液工程でこれら不純物の除去処理が行われる。 As described above, since magnesium is not extracted by the amine-based extractant, magnesium is not contained in the crude aqueous cobalt chloride solution as the back-extraction liquid extracted as the aqueous phase from the back-extraction stage S13. However, this crude cobalt chloride aqueous solution contains trace amounts of impurities such as Mn, Cu, Zn, and Cd. Therefore, these impurities are removed in a liquid purification process including a demanganese process S2, a copper removal process S3, and a zinc removal process S4 as described below.
(2)脱マンガン工程S2
脱マンガン工程S2は、マンガン、銅、亜鉛を含有する上記粗塩化コバルト水溶液に、硫酸ニッケルの製造プロセスから供給される前述した第2の原料であるマグネシウムを含有する塩化コバルト水溶液を混合し、これにより得られる混合水溶液に酸化剤を添加すると共に炭酸コバルトスラリーを添加してpHを1.4〜3.0に調整することにより、マンガンの酸化物からなる沈澱物を生成させ、これを固液分離により除去してマンガンが除去された脱Mn塩化コバルト水溶液を得る工程である。
(2) Demanganese step S2
In the demanganese removing step S2, the above-described crude cobalt chloride aqueous solution containing manganese, copper, and zinc is mixed with the above-described magnesium chloride-containing aqueous solution, which is the second raw material supplied from the nickel sulfate production process, and mixed. By adding an oxidizing agent to the mixed aqueous solution obtained by the above and adding a cobalt carbonate slurry to adjust the pH to 1.4 to 3.0, a precipitate comprising a manganese oxide is formed, and this is solid-liquid This is a step of obtaining a de-Mn-cobalt chloride aqueous solution from which manganese has been removed by separation.
すなわち、塩化コバルト水溶液中のマンガンは、酸化剤による高酸化性雰囲気下での反応により酸化物からなる沈澱物を生成するため、塩化コバルト水溶液から分離除去することができる。この高酸化性雰囲気下での酸化物の生成反応は、例えば酸化剤として塩素ガスを用いた場合は下記式4により表すことができる。
[式4]
Mn2++Cl2+2CoCO3→MnO2+2Cl−+2Co2++2CO2
In other words, manganese in the aqueous cobalt chloride solution can be separated and removed from the aqueous cobalt chloride solution because the manganese in the aqueous cobalt chloride solution produces a precipitate consisting of an oxide by a reaction under a highly oxidizing atmosphere with an oxidizing agent. The reaction of forming an oxide in a highly oxidizing atmosphere can be represented by the following equation 4 when chlorine gas is used as an oxidizing agent, for example.
[Equation 4]
Mn 2+ + Cl 2 + 2CoCO 3 → MnO 2 + 2Cl − + 2Co 2+ + 2CO 2
この生成反応は、pHが1.4未満ではマンガンの除去が不十分となり、3.0を超えるとマンガンの沈澱に伴うコバルトの共沈澱量が増加する。また、酸化還元電位(ORP)は800〜1050mV(Ag/AgCl電極基準)に調整することが好ましい。上記酸化還元電位が800mV未満では水溶液中のマンガンの除去が不十分となり、逆に酸化還元電位が1050mVを超えてもさらなるマンガンの除去効果は得られないため経済的でない。上記酸化還元電位は、酸化剤の添加量によって調整することができる。使用する酸化剤としては、特に限定されるものではないが、酸化還元電位を800mV以上に維持することができ、アルカリ金属等による新たな不純物汚染の恐れがなく、しかも安価であることから塩素ガスが好ましい。 In this production reaction, when the pH is less than 1.4, manganese is not sufficiently removed, and when the pH exceeds 3.0, the amount of cobalt coprecipitated with the precipitation of manganese increases. Further, the oxidation-reduction potential (ORP) is preferably adjusted to 800 to 1,050 mV (based on an Ag / AgCl electrode). When the oxidation-reduction potential is less than 800 mV, the removal of manganese in the aqueous solution becomes insufficient. On the contrary, when the oxidation-reduction potential exceeds 1050 mV, no further manganese removal effect can be obtained, which is not economical. The oxidation-reduction potential can be adjusted by the amount of the oxidizing agent added. The oxidizing agent to be used is not particularly limited, but chlorine gas can be maintained at an oxidation-reduction potential of 800 mV or more, and there is no risk of new impurity contamination by an alkali metal or the like and chlorine gas is used because it is inexpensive. Is preferred.
この脱マンガン工程S2で処理する粗塩化コバルト水溶液は、pH1.4未満の強酸性水溶液であるため、炭酸コバルトスラリーを適量添加することで上記のpHの範囲内となるように調整する。このようにpH調整に炭酸コバルトを用いることで他の不純物金属元素の混入を避けることができる。また、炭酸コバルトを後述する炭酸コバルト製造工程S6において作製することにより、ニッケル湿式製錬プロセスに組み込まれているコバルト回収プロセス系内からマグネシウムをろ液として効果的に抜き出すことも可能になる。 Since the crude cobalt chloride aqueous solution to be treated in the demanganese step S2 is a strongly acidic aqueous solution having a pH of less than 1.4, the pH is adjusted to be within the above-mentioned range by adding an appropriate amount of a cobalt carbonate slurry. By using cobalt carbonate for pH adjustment as described above, it is possible to avoid mixing of other impurity metal elements. Further, by producing cobalt carbonate in the later described cobalt carbonate production step S6, it becomes possible to effectively extract magnesium as a filtrate from the cobalt recovery process system incorporated in the nickel hydrometallurgy process.
(3)脱銅工程S3
脱銅工程S3は、上記脱マンガン工程S2で得られたマンガンが除去された脱Mn塩化コバルト水溶液に硫化剤を添加すると共に、炭酸コバルトスラリーを添加してpHを1.3〜2.0に調整することにより、塩化コバルト水溶液から銅の硫化物からなる沈澱物を生成させ、これを固液分離により除去してマンガン及び銅が除去された脱Cu塩化コバルト水溶液を得る工程である。すなわち、塩化コバルト水溶液中の銅は、下記化学式5に従って硫化銅の沈澱物を生成して、水溶液中から除去される。
[式5]
CuCl2+H2S→CuS+2HCl
(3) Copper removal step S3
In the copper removal step S3, a sulphating agent is added to the manganese-removed cobalt chloride aqueous solution from which the manganese obtained in the above-mentioned manganese removal step S2 has been removed, and a cobalt carbonate slurry is added to adjust the pH to 1.3 to 2.0. In this step, a precipitate comprising copper sulfide is generated from the aqueous cobalt chloride solution by adjustment, and the precipitate is removed by solid-liquid separation to obtain a de-Cu aqueous cobalt chloride solution from which manganese and copper have been removed. That is, copper in the aqueous cobalt chloride solution forms a precipitate of copper sulfide according to the following chemical formula 5, and is removed from the aqueous solution.
[Equation 5]
CuCl 2 + H 2 S → CuS + 2HCl
この生成反応では、pHが1.3未満では、水溶液中の銅の除去が不十分となると共に、生成する硫化物沈澱のろ過性が悪化する。逆にpHが2.0を超えると、銅の除去に伴うコバルト共沈澱量が増加するため好ましくない。また、塩化コバルト水溶液の酸化還元電位(ORP)を−100〜−50mV(Ag/AgCl電極基準)に調整することが好ましい。すなわち、酸化還元電位が−50mVを超えると水溶液中の銅の除去が不十分となり、逆に酸化還元電位が−100mV未満ではコバルトの共沈殿量が増加するため好ましくない。 In this formation reaction, if the pH is less than 1.3, the removal of copper from the aqueous solution becomes insufficient, and the filterability of the formed sulfide precipitate deteriorates. Conversely, if the pH exceeds 2.0, the amount of cobalt coprecipitated with the removal of copper increases, which is not preferable. Further, it is preferable to adjust the oxidation-reduction potential (ORP) of the aqueous cobalt chloride solution to -100 to -50 mV (based on an Ag / AgCl electrode). That is, when the oxidation-reduction potential exceeds -50 mV, the removal of copper in the aqueous solution becomes insufficient, and when the oxidation-reduction potential is less than -100 mV, the coprecipitation amount of cobalt increases, which is not preferable.
上記酸化還元電位は、硫化剤の添加量によって調整することができる。硫化剤としては、特に限定されるものではないが、硫化水素、硫化ナトリウム、水硫化ナトリウム等を用いることができ、これらの中ではアルカリ金属等による新たな不純物汚染の恐れがない点で硫化水素ガスが好ましい。また、上記pHは、硫化剤として硫化水素や水硫化ナトリウムを用いる場合は、その硫化剤の添加量とpH調整剤としての炭酸コバルトスラリーの添加量とによって調整することができる。上記のように、pH調整剤として炭酸コバルトスラリーを用いることで、他の不純物金属元素の混入を避けることができる。この炭酸コバルトスラリーは、前述したように、炭酸コバルト製造工程S6においてマグネシウムをろ過側に抜き出しながら作製することができる。 The oxidation-reduction potential can be adjusted by the amount of the sulfurizing agent added. Although there is no particular limitation on the sulfurizing agent, hydrogen sulfide, sodium sulfide, sodium hydrosulfide, and the like can be used. Gas is preferred. When hydrogen sulfide or sodium hydrosulfide is used as the sulfurizing agent, the pH can be adjusted by the addition amount of the sulfurizing agent and the addition amount of the cobalt carbonate slurry as the pH adjuster. As described above, the use of the cobalt carbonate slurry as the pH adjuster can avoid mixing of other impurity metal elements. As described above, this cobalt carbonate slurry can be produced while extracting magnesium to the filtration side in the cobalt carbonate production step S6.
(4)脱亜鉛工程S4
脱亜鉛工程S4は、上記脱銅工程S3で得られたマンガン及び銅が除去された塩化コバルト水溶液を弱塩基性陰イオン交換樹脂に接触させることによって、該塩化コバルト水溶液中の亜鉛を吸着除去し、これにより高純度塩化コバルト水溶液を得る工程である。すなわち、塩化コバルト水溶液中の亜鉛は、下記式6に従って弱塩基性陰イオン交換樹脂に吸着されることにより、塩化コバルト水溶液中から除去される。
[式6]
ZnCl4 2−+2R(CH3)2N:H+−Cl−
→(R(CH3)2N:H)2ZnCl4+2Cl−
(式中のRは樹脂の基材(母体)を表し、「:」は窒素原子の非共有電子対を表す。)
(4) Dezincing step S4
The dezincing step S4 adsorbs and removes zinc in the aqueous cobalt chloride solution by contacting the aqueous solution of cobalt chloride from which manganese and copper obtained in the above copper removing step S3 have been removed with a weakly basic anion exchange resin. This is a step of obtaining a high-purity aqueous cobalt chloride solution. That is, zinc in the aqueous cobalt chloride solution is removed from the aqueous cobalt chloride solution by being adsorbed on the weakly basic anion exchange resin according to the following formula 6.
[Equation 6]
ZnCl 4 2- + 2R (CH 3 ) 2 N: H + -Cl -
→ (R (CH 3 ) 2 N: H) 2 ZnCl 4 + 2Cl −
(R in the formula represents a resin base material (base), and “:” represents a lone electron pair of a nitrogen atom.)
この脱亜鉛工程S4で得た高純度塩化コバルト水溶液は、後段の電解工程S5に電解給液として連続的に供給される。なお、この高純度塩化コバルト水溶液は、その一部をリチウムイオン二次電池の正極材の製造工程に移送してリチウムイオン二次電池の正極材料の原料として用いてもよい。この場合、リチウムイオン二次電池の正極材の製造工程では、高純度塩化コバルト水溶液と硫酸ニッケル水溶液を所定の比率で混合し、更にアルミン酸ソーダを添加してアルミニウム比率を調整し、中和剤を添加することにより、Ni−Co−Alの混合水酸化物を生成する。更に、Ni−Co−Alの混合水酸化物を乾燥し、水酸化リチウムと混合して焙焼することにより、リチウムイオン二次電池の正極材が完成する。 The high-purity aqueous solution of cobalt chloride obtained in the dezincing step S4 is continuously supplied to the subsequent electrolytic step S5 as an electrolytic supply liquid. A part of the high-purity cobalt chloride aqueous solution may be transferred to a process for manufacturing a positive electrode material of a lithium ion secondary battery and used as a raw material of a positive electrode material of the lithium ion secondary battery. In this case, in the manufacturing process of the positive electrode material of the lithium ion secondary battery, a high-purity cobalt chloride aqueous solution and a nickel sulfate aqueous solution are mixed at a predetermined ratio, and sodium aluminate is further added to adjust the aluminum ratio, and the neutralizing agent is used. To produce a mixed hydroxide of Ni—Co—Al. Further, the mixed hydroxide of Ni-Co-Al is dried, mixed with lithium hydroxide and roasted, whereby a positive electrode material of a lithium ion secondary battery is completed.
脱亜鉛工程S4において弱塩基性陰イオン交換樹脂に供給する塩化コバルト水溶液は、上記脱銅工程S3で処理された後の塩化コバルト水溶液であるから、そのpHは1.3〜2.0であり、塩化物イオン濃度は100g/L以下である。前述の通り、このように塩化物イオン濃度が低い場合、塩化コバルト水溶液中のCu、Zn、Fe等はクロロ錯イオンを形成するが、Coはクロロ錯イオンを形成しない。 Since the aqueous solution of cobalt chloride supplied to the weakly basic anion exchange resin in the dezincification step S4 is an aqueous solution of cobalt chloride after the treatment in the above-described decopperization step S3, its pH is 1.3 to 2.0. , Chloride ion concentration is 100 g / L or less. As described above, when the chloride ion concentration is thus low, Cu, Zn, Fe and the like in the aqueous cobalt chloride solution form chloro complex ions, but Co does not form chloro complex ions.
上記した低い塩化物イオン濃度では、陰イオン交換樹脂に対するコバルトの分配係数はほぼゼロであるが、亜鉛クロロ錯イオンの分配係数は1000程度である。従って、亜鉛を含有する塩化コバルト水溶液を弱塩基性陰イオン交換樹脂に接触させることによって、塩化コバルト水溶液中の亜鉛を選択的に吸着除去することができる。この脱亜鉛工程S4において用いる弱塩基性イオン交換樹脂としては、特に限定されるものではないが、例えば、オルガノ社製の弱塩基性陰イオン交換樹脂IRA400(商品名)およびIRA96SB(商品名)を好適に使用することができる。 At the low chloride ion concentration described above, the partition coefficient of cobalt to the anion exchange resin is almost zero, but the partition coefficient of zinc chloro complex ion is about 1000. Therefore, by bringing the aqueous cobalt chloride solution containing zinc into contact with the weakly basic anion exchange resin, the zinc in the aqueous cobalt chloride solution can be selectively adsorbed and removed. The weakly basic ion exchange resin used in the dezincing step S4 is not particularly limited, and examples thereof include a weakly basic anion exchange resin IRA400 (trade name) and IRA96SB (trade name) manufactured by Organo Corporation. It can be suitably used.
なお、この脱亜鉛工程S4に用いる亜鉛吸着装置は一般的なものでよく、例えばカラム方式の充填塔を用いることができる。充填塔の場合は、塔内充填部の流速分布が流れ方向に垂直な断面全体に亘ってほぼ均一になるような給液方法が好ましく、一般的には塔底から給液する方式よりも塔頂から給液する方式が好ましいが、これは使用する装置の構造等によって異なる場合がある。 The zinc adsorption device used in the dezincing step S4 may be a general one, and for example, a column-type packed tower can be used. In the case of a packed tower, it is preferable to use a liquid feeding method in which the flow velocity distribution of the packed portion in the tower is substantially uniform over the entire cross section perpendicular to the flow direction. A method of supplying liquid from the top is preferred, but this may vary depending on the structure of the device used and the like.
(5)電解工程S5
電解工程S5は、上記脱亜鉛工程S4で得られた高純度塩化コバルト水溶液の少なくとも一部を不溶性電極をアノードに用いた電解採取法の電解給液として供給することにより電気コバルトを生成する工程である。その際、副生成物として塩素ガス及び電解廃液が排出される。この電解工程S5では、まず種板電解により母板に薄くコバルトを電着させて種板を製造し、その電着した種板を剥ぎ取って加工することでカソードを作製する。このカソードの加工は、具体的には剥ぎ取った種板の4辺を切断等によりトリミングし、その上辺部2ヶ所に湾曲させた吊手リボンの両端部を取り付ける。この吊手リボンの内側に導電及び支持のためのクロスビームを挿通させることで、該カソードを電解槽内に垂下させることができる。
(5) Electrolysis step S5
The electrolysis step S5 is a step in which at least a part of the high-purity cobalt chloride aqueous solution obtained in the dezincification step S4 is supplied as an electrolytic supply solution in an electrowinning method using an insoluble electrode as an anode to generate electric cobalt. is there. At that time, chlorine gas and electrolytic waste liquid are discharged as by-products. In the electrolysis step S5, first, a seed plate is manufactured by thinly electrodepositing cobalt on the mother plate by seed plate electrolysis, and the electrodeposited seed plate is peeled off and processed to produce a cathode. Specifically, this cathode is processed by trimming four sides of the peeled seed plate by cutting or the like, and attaching both ends of a curved hanging ribbon to two upper sides thereof. By inserting a cross beam for conductivity and support inside the hanging ribbon, the cathode can be suspended in the electrolytic cell.
上記の電解槽には電解液が満たされており、この電解液に浸漬するようにカソードとアノードを交互に並べ、コマーシャル電解用の直流電流を流すことによって電気コバルトを作製することができる。上記アノードには、チタン板に酸化ルテニウムがコーティングされたものを用いる。アノード表面からは電気分解によって塩素ガスが発生するので、アノードは隔膜に隔てられたアノードボックス内に収められており、このアノードボックスから塩素ガスと電解廃液とが吸引排出される。 The above-mentioned electrolytic cell is filled with an electrolytic solution, and cathodes and anodes are alternately arranged so as to be immersed in the electrolytic solution, and electric cobalt can be produced by flowing a direct current for commercial electrolysis. As the anode, a titanium plate coated with ruthenium oxide is used. Since chlorine gas is generated by electrolysis from the anode surface, the anode is housed in an anode box separated by a diaphragm, and chlorine gas and electrolytic waste liquid are sucked and discharged from the anode box.
この電解工程S5での電解条件の一具体例を挙げると、アノード及びカソードの寸法が約1m×0.8m、電解槽1槽当たりカソードが52枚及びアノードが53枚、電流密度は270A/m2、通電時間は種板電解が約1日、コマーシャル電解が7〜10日である。電解給液は連続的に供給され、その供給量は電解槽1槽当たり35〜45L/分である。 As a specific example of the electrolysis conditions in the electrolysis step S5, the dimensions of the anode and the cathode are about 1 m × 0.8 m, 52 cathodes and 53 anodes per electrolytic cell, and the current density is 270 A / m. 2. The energization time is about 1 day for seed plate electrolysis and 7 to 10 days for commercial electrolysis. The electrolytic supply liquid is continuously supplied, and the supply amount is 35 to 45 L / min per electrolytic cell.
この電解工程S5では電解採取法による電気分解が行われるので、電解給液のコバルト濃度に対して電解廃液のコバルト濃度は低下するが、マグネシウム濃度は低下しない。従来、この電解工程S5から排出される電解廃液は、後述する炭酸コバルトの原料として使用される以外は電解給液として繰り返していた。その際、コバルト濃度を一定に保つために電解廃液を後述する蒸発濃縮工程S7で蒸発濃縮する。従って、マグネシウムは電解工程S5の系内に徐々に蓄積していくことになる。従来は、マグネシウムは、炭酸コバルトへの付着液や炭酸コバルトのレパルプ用水溶液としての電解廃液として浄液工程に繰り返されるため、ニッケル製錬プロセスに組み込まれたコバルト回収プロセスの系内に徐々に蓄積しくことになっていた。よって、上記脱亜鉛工程S4で得られた高純度塩化コバルト水溶液のマグネシウム濃度が高い状態となっていた。 In the electrolysis step S5, the electrolysis is performed by the electrowinning method, so that the cobalt concentration of the electrolytic waste liquid decreases with respect to the cobalt concentration of the electrolytic feed solution, but the magnesium concentration does not decrease. Conventionally, the waste electrolytic solution discharged from the electrolysis step S5 has been repeatedly used as an electrolytic feed solution except that it is used as a raw material for cobalt carbonate described below. At that time, in order to keep the cobalt concentration constant, the electrolytic waste liquid is evaporated and concentrated in an evaporation and concentration step S7 described later. Therefore, magnesium gradually accumulates in the system of the electrolysis step S5. Conventionally, magnesium is accumulated in the cobalt recovery process system incorporated in the nickel smelting process because magnesium is repeated in the purification process as an adhesion solution to cobalt carbonate and an electrolytic waste solution as an aqueous solution for cobalt repulping. Was supposed to be. Therefore, the magnesium concentration of the high-purity cobalt chloride aqueous solution obtained in the dezincing step S4 was high.
そこで、本発明の実施形態の高純度塩化コバルト水溶液の製造方法では、電解工程S5から排出される電解廃液を、上記洗浄段S12の洗浄液として使用するものと、後述する炭酸コバルト製造工程S6において炭酸コバルトの生成用の原料として使用するものと、該生成した炭酸コバルトのレパルプ用水溶液として使用するものと、後述する蒸発濃縮工程S7において蒸発濃縮して電解給液として繰り返すものとに分配している。 Therefore, in the method for producing a high-purity cobalt chloride aqueous solution according to the embodiment of the present invention, the electrolytic waste liquid discharged from the electrolytic step S5 is used as the cleaning liquid in the cleaning step S12, and the electrolytic solution is used in the cobalt carbonate producing step S6 described later. It is divided into one to be used as a raw material for producing cobalt, one to be used as a repulp aqueous solution of the produced cobalt carbonate, and one to be repeatedly evaporated and concentrated as an electrolytic feed solution in an evaporation and concentration step S7 described below. .
(6)炭酸コバルト製造工程S6
炭酸コバルト製造工程S6は、上記の電解工程S5から排出される電解廃液の一部を抜き取って、炭酸化反応により炭酸コバルトを生成し、これを固液分離により回収した後に電解廃液でレパルプして炭酸コバルトスラリーを製造する工程である。この炭酸コバルト製造工程S6では、炭酸化剤として炭酸ナトリウムを用いるのが好ましい。炭酸ナトリウムは、入手が容易でコスト上有利だからである。
(6) Cobalt carbonate production process S6
In the cobalt carbonate production step S6, a part of the electrolytic waste liquid discharged from the above-mentioned electrolytic step S5 is extracted, a cobalt carbonate is generated by a carbonation reaction, and this is recovered by solid-liquid separation and then repulp with the electrolytic waste liquid. This is a step of producing a cobalt carbonate slurry. In this cobalt carbonate production step S6, it is preferable to use sodium carbonate as the carbonating agent. This is because sodium carbonate is easily available and cost-effective.
また、炭酸化反応時はpHを6.5〜7.5とすることが好ましい。pHが6.5未満ではろ液中のコバルト濃度が増加するため、そのまま排水処理工程で処理するとコバルトのロスになり、逆にpHが7.5を超えると水酸化物を生成し、ろ過性が悪化するからである。上記のように生成した炭酸コバルトを固液分離した後、電解廃液でレパルプすることにより、炭酸塩を生成しないマグネシウムをろ液として排出することができる。固液分離装置には特に限定がなく、フィルタープレス等のろ過器を使用することができるが、デカンターと称される連続式の遠心重力分級器が好ましい。 During the carbonation reaction, the pH is preferably adjusted to 6.5 to 7.5. If the pH is less than 6.5, the concentration of cobalt in the filtrate increases, so that if treated in the wastewater treatment step as it is, loss of cobalt will occur. Conversely, if the pH exceeds 7.5, hydroxide will be generated and the filtration property will increase. Is worse. After solid-liquid separation of the cobalt carbonate generated as described above, repulp is performed with the electrolytic waste liquid, so that magnesium that does not generate carbonate can be discharged as a filtrate. There is no particular limitation on the solid-liquid separator, and a filter such as a filter press can be used, but a continuous centrifugal gravity classifier called a decanter is preferable.
(7)蒸発濃縮工程S7
蒸発濃縮工程S7は、上記電解工程S5で得られた電解廃液のうち、溶媒抽出工程S1及び炭酸コバルト製造工程S6で使用した以外の残部を蒸発濃縮して、該電解工程S5の電解給液として繰り返す工程である。蒸発濃縮装置としては一般的な真空蒸発濃縮装置を使用することができるが、低pHかつ高塩化物イオン濃度水溶液を取り扱うため、その接液部は耐腐食性の材質を用いるのが好ましい。なお、蒸発濃縮工程S7で処理する電解廃液は、上記電解工程S5から排出される電解廃液の全量から、上記溶媒抽出工程S1の洗浄段で使用する量と、上記炭酸コバルト製造工程S6で炭酸化によって生成される炭酸コバルトの原料として使用する量と、炭酸コバルト製造工程S6でレパルプのために使用する量とを減じた残量となる。
(7) Evaporation concentration step S7
The evaporative concentration step S7 evaporates and concentrates the remaining portion of the electrolytic waste liquid obtained in the electrolysis step S5 other than those used in the solvent extraction step S1 and the cobalt carbonate production step S6, as an electrolytic feed solution in the electrolysis step S5. It is a process to be repeated. As the evaporative concentrator, a general vacuum evaporative concentrator can be used. However, in order to handle an aqueous solution having a low pH and a high chloride ion concentration, it is preferable to use a corrosion-resistant material for the liquid contact portion. The electrolytic waste liquid to be treated in the evaporative concentration step S7 is calculated based on the total amount of the electrolytic waste liquid discharged from the electrolytic step S5, the amount used in the washing stage of the solvent extraction step S1, and the amount of carbonic acid in the cobalt carbonate producing step S6. And the amount used for the repulping in the cobalt carbonate production step S6.
上記したように、本発明の実施形態の高純度塩化コバルト水溶液の製造方法ではマグネシウムが濃縮した電解廃液を溶媒抽出工程の洗浄段における洗浄始液として用いることで、コバルト回収プロセスの系内でのマグネシウムの蓄積を防止でき、よってマグネシウム濃度の低い高純度塩化コバルト水溶液を効率よく製造することができる。 As described above, in the method for producing a high-purity cobalt chloride aqueous solution according to the embodiment of the present invention, the electrolytic waste liquid in which magnesium is concentrated is used as a washing start solution in the washing stage of the solvent extraction step, so that the in-cobalt recovery process system is used. Accumulation of magnesium can be prevented, so that a high-purity aqueous solution of cobalt chloride having a low magnesium concentration can be efficiently produced.
[実施例]
図1に示すような高純度塩化コバルトの製造プロセスフローに従って約3ヶ月間の実操業を行った。その結果、電解廃液中の質量基準のCo/Mg比を170にすることができ、結果的に脱亜鉛工程S4で得た塩化コバルト水溶液中の質量基準のCo/Mg比を700にすることができ、マグネシウム濃度の低い高純度塩化コバルト水溶液を得ることができた。
[Example]
The actual operation was performed for about three months according to the manufacturing process flow of high purity cobalt chloride as shown in FIG. As a result, the mass-based Co / Mg ratio in the electrolytic waste liquid can be made 170, and as a result, the mass-based Co / Mg ratio in the aqueous cobalt chloride solution obtained in the dezincification step S4 can be made 700. As a result, a high-purity cobalt chloride aqueous solution having a low magnesium concentration was obtained.
[比較例]
比較のため、溶媒抽出工程S1の洗浄段S12に導入する洗浄液に、電解廃液に代えて逆抽出段S13から抜き出される粗塩化コバルト水溶液の一部を使用した以外は上記の実施例と同様にして約3ヶ月間の実操業を行った。その結果、電解廃液中のマグネシウム濃度は0.7g/Lとなり、結果的に脱亜鉛工程S4で得た塩化コバルト水溶液中の質量基準のCo/Mg比が450となり、上記実施例に比べてマグネシウム濃度が高くなった。
[Comparative example]
For comparison, in the same manner as in the above example except that a part of the crude cobalt chloride aqueous solution extracted from the back extraction stage S13 was used instead of the electrolytic waste solution as the cleaning solution to be introduced into the washing stage S12 of the solvent extraction step S1. For about three months. As a result, the magnesium concentration in the electrolytic waste liquid was 0.7 g / L, and as a result, the mass-based Co / Mg ratio in the aqueous cobalt chloride solution obtained in the dezincification step S4 was 450, and the magnesium concentration was lower than that in the above example. The concentration has increased.
S1 溶媒抽出工程
S2 脱マンガン工程
S3 脱銅工程
S4 脱亜鉛工程
S5 電解工程
S6 炭酸コバルト製造工程
S7 蒸発濃縮工程
S11 抽出段
S12 洗浄段
S13 逆抽出段
S1 Solvent extraction step S2 Demanganese step S3 Copper removal step S4 Dezincification step S5 Electrolysis step S6 Cobalt carbonate production step S7 Evaporation concentration step S11 Extraction stage S12 Washing stage S13 Reverse extraction stage
Claims (5)
前記マンガンが除去された塩化コバルト水溶液に前記硫化剤及び前記炭酸コバルトスラリーを添加することでpH1.3〜2.0及び酸化還元電位−100〜−50mV(Ag/AgCl電極基準)に調整して銅硫化物を生成し、これを除去してマンガン及び銅が除去された塩化コバルト水溶液を得る脱銅工程と、
前記マンガン及び銅が除去された塩化コバルト水溶液を弱塩基性陰イオン交換樹脂に接触させることによって該塩化コバルト水溶液中の亜鉛を吸着除去して高純度塩化コバルト水溶液を得る脱亜鉛工程とからなることを特徴とする、請求項1又は2に記載の高純度塩化コバルト水溶液の製造方法。 In the liquid purification step, the oxidizing agent and the cobalt carbonate slurry are added to the mixed solution to adjust the pH to 1.4 to 3.0 and the oxidation-reduction potential to 800 to 1050 mV (based on the Ag / AgCl electrode), thereby oxidizing manganese. A manganese-removing step of obtaining a cobalt chloride aqueous solution from which manganese has been removed by removing the manganese,
The sulfuric acid and the cobalt carbonate slurry were added to the aqueous solution of cobalt chloride from which manganese had been removed to adjust the pH to 1.3 to 2.0 and the oxidation-reduction potential to -100 to -50 mV (based on the Ag / AgCl electrode). A copper removal process for producing copper sulfide and removing it to obtain a cobalt chloride aqueous solution from which manganese and copper have been removed,
A dezincing step of contacting the aqueous solution of cobalt chloride from which the manganese and copper have been removed with a weakly basic anion exchange resin to adsorb and remove zinc in the aqueous solution of cobalt chloride to obtain a high-purity aqueous solution of cobalt chloride. The method for producing a high-purity aqueous solution of cobalt chloride according to claim 1 or 2, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018143223A JP7070208B2 (en) | 2018-07-31 | 2018-07-31 | Method for manufacturing high-purity cobalt chloride aqueous solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018143223A JP7070208B2 (en) | 2018-07-31 | 2018-07-31 | Method for manufacturing high-purity cobalt chloride aqueous solution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020019664A true JP2020019664A (en) | 2020-02-06 |
JP7070208B2 JP7070208B2 (en) | 2022-05-18 |
Family
ID=69589014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018143223A Active JP7070208B2 (en) | 2018-07-31 | 2018-07-31 | Method for manufacturing high-purity cobalt chloride aqueous solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7070208B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113801996A (en) * | 2021-09-06 | 2021-12-17 | 天津市茂联科技有限公司 | Deep purification and impurity removal process for cobalt chloride solution |
JP7156491B1 (en) | 2021-04-22 | 2022-10-19 | 住友金属鉱山株式会社 | Method for producing cobalt sulfate |
WO2022269962A1 (en) | 2021-06-25 | 2022-12-29 | 住友金属鉱山株式会社 | Method for producing cobalt sulfate |
CN115636490A (en) * | 2022-11-29 | 2023-01-24 | 广西师范大学 | A kind of dechlorination method of chlorine-containing rare earth wastewater |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000017347A (en) * | 1998-07-07 | 2000-01-18 | Sumitomo Metal Mining Co Ltd | Production of high purity cobalt solution |
JP2008266774A (en) * | 2007-03-29 | 2008-11-06 | Nikko Kinzoku Kk | Zinc recovery method |
JP2009074132A (en) * | 2007-09-20 | 2009-04-09 | Dowa Metals & Mining Co Ltd | Method for producing zinc electrolyte |
JP2011021219A (en) * | 2009-07-14 | 2011-02-03 | Sumitomo Metal Mining Co Ltd | Method for recovering copper from copper/iron-containing material |
JP2012211375A (en) * | 2011-03-31 | 2012-11-01 | Mitsubishi Materials Corp | Treatment method of cemented alloy scrap |
JP2013095979A (en) * | 2011-11-02 | 2013-05-20 | Toshiba Corp | Metal recovering method |
JP2015203134A (en) * | 2014-04-14 | 2015-11-16 | 住友金属鉱山株式会社 | Purification method of cobalt chloride aqueous solution |
JP2016030847A (en) * | 2014-07-29 | 2016-03-07 | 住友金属鉱山株式会社 | Purification method of cobalt chloride solution |
JP2017226568A (en) * | 2016-06-21 | 2017-12-28 | 住友金属鉱山株式会社 | Method for producing high purity cobalt sulfate aqueous solution |
-
2018
- 2018-07-31 JP JP2018143223A patent/JP7070208B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000017347A (en) * | 1998-07-07 | 2000-01-18 | Sumitomo Metal Mining Co Ltd | Production of high purity cobalt solution |
JP2008266774A (en) * | 2007-03-29 | 2008-11-06 | Nikko Kinzoku Kk | Zinc recovery method |
JP2009074132A (en) * | 2007-09-20 | 2009-04-09 | Dowa Metals & Mining Co Ltd | Method for producing zinc electrolyte |
JP2011021219A (en) * | 2009-07-14 | 2011-02-03 | Sumitomo Metal Mining Co Ltd | Method for recovering copper from copper/iron-containing material |
JP2012211375A (en) * | 2011-03-31 | 2012-11-01 | Mitsubishi Materials Corp | Treatment method of cemented alloy scrap |
JP2013095979A (en) * | 2011-11-02 | 2013-05-20 | Toshiba Corp | Metal recovering method |
JP2015203134A (en) * | 2014-04-14 | 2015-11-16 | 住友金属鉱山株式会社 | Purification method of cobalt chloride aqueous solution |
JP2016030847A (en) * | 2014-07-29 | 2016-03-07 | 住友金属鉱山株式会社 | Purification method of cobalt chloride solution |
JP2017226568A (en) * | 2016-06-21 | 2017-12-28 | 住友金属鉱山株式会社 | Method for producing high purity cobalt sulfate aqueous solution |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI809665B (en) * | 2021-04-22 | 2023-07-21 | 日商住友金屬礦山股份有限公司 | Manufacturing method of cobalt sulfate |
EP4116262A4 (en) * | 2021-04-22 | 2024-09-04 | Sumitomo Metal Mining Co., Ltd. | Production method for cobalt sulfate |
WO2022224499A1 (en) | 2021-04-22 | 2022-10-27 | 住友金属鉱山株式会社 | Production method for cobalt sulfate |
JP2022167760A (en) * | 2021-04-22 | 2022-11-04 | 住友金属鉱山株式会社 | Method for producing cobalt sulfate |
KR102785026B1 (en) | 2021-04-22 | 2025-03-20 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for producing cobalt sulfate |
JP7156491B1 (en) | 2021-04-22 | 2022-10-19 | 住友金属鉱山株式会社 | Method for producing cobalt sulfate |
KR20230028717A (en) | 2021-04-22 | 2023-03-02 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for producing cobalt sulfate |
WO2022269962A1 (en) | 2021-06-25 | 2022-12-29 | 住友金属鉱山株式会社 | Method for producing cobalt sulfate |
JP2023004393A (en) * | 2021-06-25 | 2023-01-17 | 住友金属鉱山株式会社 | Manufacturing method of cobalt sulfate |
TWI811993B (en) * | 2021-06-25 | 2023-08-11 | 日商住友金屬礦山股份有限公司 | Manufacturing method of cobalt sulfate |
EP4163257A4 (en) * | 2021-06-25 | 2024-04-17 | Sumitomo Metal Mining Co., Ltd. | Method for producing cobalt sulfate |
KR20230028221A (en) | 2021-06-25 | 2023-02-28 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for producing cobalt sulfate |
CN113801996A (en) * | 2021-09-06 | 2021-12-17 | 天津市茂联科技有限公司 | Deep purification and impurity removal process for cobalt chloride solution |
CN115636490A (en) * | 2022-11-29 | 2023-01-24 | 广西师范大学 | A kind of dechlorination method of chlorine-containing rare earth wastewater |
Also Published As
Publication number | Publication date |
---|---|
JP7070208B2 (en) | 2022-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7070209B2 (en) | Method for manufacturing high-purity cobalt chloride aqueous solution | |
JP6471912B2 (en) | Method for producing high purity cobalt sulfate aqueous solution | |
JP7070208B2 (en) | Method for manufacturing high-purity cobalt chloride aqueous solution | |
US8585798B2 (en) | Method for recovering metal from ore | |
JP4352823B2 (en) | Method for refining copper raw materials containing copper sulfide minerals | |
JP5439997B2 (en) | Method for recovering copper from copper-containing iron | |
JP6098569B2 (en) | Purification method of aqueous cobalt chloride solution | |
JP6658238B2 (en) | Method for removing impurities from aqueous cobalt solution | |
JP6728905B2 (en) | Purification method of cobalt chloride aqueous solution | |
JP7552487B2 (en) | How to make cobalt sulfate | |
JP4316582B2 (en) | Method for producing metallic nickel from crude nickel sulfate | |
JP6233478B2 (en) | Purification method of bismuth | |
CN104419826A (en) | Method for preparing electrodeposited zinc by ammonia leaching of zinc oxide | |
CN107815540A (en) | A kind of method of hydrometallurgy metal nickel cobalt and its salt product | |
CN111826525A (en) | Method for producing metal cobalt by sulfuric acid system electrodeposition | |
JP7099592B1 (en) | Manufacturing method of cobalt sulfate | |
JP2008115429A (en) | Method for recovering silver in hydrometallurgical copper refining process | |
JP7383550B2 (en) | Manganese ion removal method | |
KR102785026B1 (en) | Method for producing cobalt sulfate | |
JP7707876B2 (en) | How to make cobalt sulfate | |
JP2019081920A (en) | Method for leaching mixed sulfide containing nickel and cobalt | |
JP2023066461A (en) | Production method of aqueous cobalt chloride solution with low magnesium concentration | |
CN113355701A (en) | Method for separating and recovering silver and gallium | |
JP2007290937A (en) | Purification method of nickel chloride aqueous solution | |
CA1125227A (en) | Process for recovering cobalt electrolytically |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220418 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7070208 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |