[go: up one dir, main page]

JP6728905B2 - Purification method of cobalt chloride aqueous solution - Google Patents

Purification method of cobalt chloride aqueous solution Download PDF

Info

Publication number
JP6728905B2
JP6728905B2 JP2016076010A JP2016076010A JP6728905B2 JP 6728905 B2 JP6728905 B2 JP 6728905B2 JP 2016076010 A JP2016076010 A JP 2016076010A JP 2016076010 A JP2016076010 A JP 2016076010A JP 6728905 B2 JP6728905 B2 JP 6728905B2
Authority
JP
Japan
Prior art keywords
cobalt chloride
cadmium
zinc
aqueous
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016076010A
Other languages
Japanese (ja)
Other versions
JP2017186198A (en
JP2017186198A5 (en
Inventor
亜季子 藤
亜季子 藤
道 天野
道 天野
二郎 早田
二郎 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016076010A priority Critical patent/JP6728905B2/en
Publication of JP2017186198A publication Critical patent/JP2017186198A/en
Publication of JP2017186198A5 publication Critical patent/JP2017186198A5/ja
Application granted granted Critical
Publication of JP6728905B2 publication Critical patent/JP6728905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、塩化コバルト水溶液の精製方法に関する。より詳しくは、塩化コバルト水溶液中の亜鉛およびカドミウムを弱塩基性イオン交換樹脂によって吸着除去する方法に関する。 The present invention relates to a method for purifying an aqueous cobalt chloride solution. More specifically, it relates to a method for adsorbing and removing zinc and cadmium in an aqueous solution of cobalt chloride by a weakly basic ion exchange resin.

コバルトは、特殊鋼や磁性材料の合金用元素として、産業上、広く利用されている。特殊鋼としては、優れた耐摩耗性、耐熱性から、航空宇宙、発電機、工具用途に用いられ、磁性材料としては、強い磁性を生かして小型ヘッドホンや小型モーター等に用いられている。さらには、コバルトは、リチウムイオン二次電池の正極材の原料として使用されているが、近年、自動車用、電力貯蔵用、小型パーソナルコンピューターやスマートフォン等の移動式情報処理端末用として、リチウムイオン二次電池の需要は増加の一途をたどっている。 Cobalt is widely used industrially as an alloying element for special steels and magnetic materials. As a special steel, it is used for aerospace, power generators and tools due to its excellent wear resistance and heat resistance, and as a magnetic material, it is used for small headphones, small motors, etc. by taking advantage of its strong magnetism. Furthermore, cobalt is used as a raw material for the positive electrode material of lithium-ion secondary batteries, but in recent years, lithium-ion secondary batteries have been used for automobiles, power storage, and mobile information processing terminals such as small personal computers and smartphones. Demand for secondary batteries continues to increase.

コバルトは、鉱物資源としてはニッケルや銅に付随して含まれることが多く、ニッケル製錬や銅製錬の副産物として産出されるものが大半を占めているため、コバルトの製造においてはニッケルや銅を始めとする不純物の分離が重要な技術要素となっている。 Cobalt is often included as a mineral resource in association with nickel and copper, and most of it is produced as a by-product of nickel smelting and copper smelting. The initial separation of impurities is an important technical element.

例えば、ニッケルの湿式製錬において副産物としてコバルトを回収する場合、まずニッケルとコバルトを含む水溶液を得るために、原料を鉱酸や酸化剤等を用いて水溶液に浸出または抽出するかもしくは溶解処理に付する。得られた酸性水溶液中に含まれるニッケルとコバルトは、各種の有機抽出剤を用いた溶媒抽出法によって分離回収されるのが一般的である。しかし、ニッケル製錬においてはコバルトも不純物の1種であり、得られたコバルト水溶液には処理原料に含有される各種不純物が残留していることが多い。 For example, when recovering cobalt as a by-product in hydrometallurgy of nickel, first, in order to obtain an aqueous solution containing nickel and cobalt, the raw material is leached or extracted into the aqueous solution using a mineral acid, an oxidizing agent, or the like, or a dissolution treatment is performed. Attach. Nickel and cobalt contained in the obtained acidic aqueous solution are generally separated and recovered by a solvent extraction method using various organic extractants. However, in smelting nickel, cobalt is also one of the impurities, and the obtained aqueous cobalt solution often contains various impurities contained in the processing raw material.

そこで、ニッケルの湿式製錬においてコバルトを回収する際には、上記溶媒抽出法によってニッケルが分離回収されたコバルト水溶液から、更にマンガン、銅、亜鉛、カドミウム等の不純物元素を除去することが必要になる。すなわち、不純物含有量の少ない高純度コバルト製品を製造するためには、あらかじめコバルトを含有するニッケル水溶液から分離回収されたコバルト水溶液中の不純物元素を除去した後、電解採取法等によってコバルトを製品化することが必要となる。 Therefore, when recovering cobalt in hydrometallurgy of nickel, it is necessary to further remove impurity elements such as manganese, copper, zinc, and cadmium from the cobalt aqueous solution from which nickel has been separated and recovered by the solvent extraction method. Become. That is, in order to produce a high-purity cobalt product with a low content of impurities, after removing the impurity elements in the cobalt aqueous solution that has been separated and recovered from the cobalt-containing nickel aqueous solution in advance, the cobalt is commercialized by an electrolytic extraction method or the like. Will be required.

ところで、ニッケルの湿式製錬において得られる、マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液から、これら不純物元素を除去して塩化コバルト水溶液を精製する方法として、(1)前記マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液に酸化剤を添加し、酸化還元電位およびpHを調整することにより、マンガンの酸化物沈澱を生成させて分離し、マンガンが除去された塩化コバルト水溶液を得る脱マンガン工程、(2)前記マンガンが除去された塩化コバルト水溶液に硫化剤を添加し、酸化還元電位およびpHを調整することにより、銅の硫化物沈澱を生成させて分離し、マンガンおよび銅が除去された塩化コバルト水溶液を得る脱銅工程、(3)前記マンガンおよび銅が除去された塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させることによって、該塩化コバルト水溶液中の亜鉛およびカドミウムを吸着除去する脱亜鉛工程、を備える塩化コバルト水溶液の精製方法がある。 By the way, as a method for purifying an aqueous cobalt chloride solution by removing these impurity elements from an aqueous cobalt chloride solution containing manganese, copper, zinc, and cadmium obtained in hydrometallurgy of nickel, (1) the manganese, copper, An oxidizing agent is added to a cobalt chloride aqueous solution containing zinc and cadmium, and the redox potential and pH are adjusted to generate an oxide precipitate of manganese, which is then separated to obtain a cobalt chloride aqueous solution from which manganese has been removed. Manganese step (2) A sulfidizing agent is added to the cobalt chloride aqueous solution from which the manganese has been removed, and the redox potential and pH are adjusted to form a sulfide precipitate of copper, which is then separated to remove manganese and copper. And (3) adsorbing zinc and cadmium in the cobalt chloride aqueous solution by bringing the weakly basic anion exchange resin into contact with the cobalt chloride aqueous solution from which the manganese and copper have been removed. There is a method for purifying an aqueous cobalt chloride solution, which comprises a dezincification step of removing.

前記(1)から(3)の工程を経て得られた塩化コバルト水溶液は、pH調整の後、電解工程に供給され、電気コバルトとして製品化される。 The aqueous solution of cobalt chloride obtained through the steps (1) to (3) is supplied to the electrolysis step after pH adjustment, and is commercialized as electric cobalt.

ここで、前記脱亜鉛工程において、塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させて、塩化コバルト水溶液中からのカドミウムの吸着除去が不十分となり、脱亜鉛工程後の塩化コバルト水溶液中に微量のカドミウムが残留する場合があり、カドミウムが電気コバルトに混入して規格外となってしまうことがあった。 Here, in the dezincification step, a weakly basic anion exchange resin is brought into contact with the cobalt chloride aqueous solution to result in insufficient adsorption and removal of cadmium from the cobalt chloride aqueous solution. A small amount of cadmium may remain, and cadmium may be mixed with electric cobalt and out of specification.

特許文献1には、鉄、銅、亜鉛およびコバルトを含有する塩化ニッケル水溶液から、これら金属元素を効率的に除去し、高純度の塩化ニッケル水溶液を製造することができる塩化ニッケル水溶液の精製方法として、塩化ニッケル水溶液を陰イオン交換樹脂と接触してイオン交換処理に付し、亜鉛を除去する方法が開示されている。 Patent Document 1 discloses a method for purifying a nickel chloride aqueous solution which can efficiently remove these metal elements from a nickel chloride aqueous solution containing iron, copper, zinc and cobalt to produce a highly pure nickel chloride aqueous solution. , A method of removing zinc by contacting an aqueous solution of nickel chloride with an anion exchange resin and subjecting it to an ion exchange treatment is disclosed.

しかしながら、特許文献1の方法は、亜鉛を除去対象金属としており、カドミウムの除去方法については記載も示唆もされていない。 However, the method of Patent Document 1 uses zinc as a metal to be removed, and the method for removing cadmium is neither described nor suggested.

特開2010−248043号公報JP, 2010-248043, A

そこで、本発明は、上記従来技術の問題点に鑑みて考案されたものであり、塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させて、塩化コバルト水溶液中の亜鉛およびカドミウムを吸着除去するに際し、吸着除去後の塩化コバルト水溶液中にカドミウムを残留させない、塩化コバルト水溶液の精製方法を提供することを目的としている。 Therefore, the present invention has been devised in view of the above-mentioned problems of the prior art, and a weak basic anion exchange resin is brought into contact with an aqueous cobalt chloride solution to adsorb and remove zinc and cadmium in the aqueous cobalt chloride solution. In this case, it is an object of the present invention to provide a method for purifying an aqueous cobalt chloride solution, which does not leave cadmium in the aqueous cobalt chloride solution after adsorption removal.

本発明者らは、上記目的を達成すべく、特に、弱塩基性陰イオン交換樹脂に吸着された亜鉛およびカドミウムを溶離させる溶離方法について鋭意検討を重ねた結果、特定の溶離条件にて溶離を行うことでカドミウムの吸着除去を完全なものとすることができることを見出し、本発明を完成させるに至った。 In order to achieve the above-mentioned object, the inventors of the present invention have made extensive studies particularly about an elution method for eluting zinc and cadmium adsorbed on a weakly basic anion exchange resin, and as a result, elution was performed under specific elution conditions. It was found that the adsorption and removal of cadmium can be completed by carrying out, and the present invention has been completed.

すなわち、本発明の第1の発明は、塩化コバルト水溶液の精製方法は、マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液の精製方法であって、(1)前記塩化コバルト水溶液に酸化剤を添加し、酸化還元電位およびpHを調整することにより、マンガンの酸化物沈澱を生成させて分離し、マンガンが除去された塩化コバルト水溶液を得る脱マンガン工程、(2)前記マンガンが除去された塩化コバルト水溶液に硫化剤を添加し、酸化還元電位およびpHを調整することにより、銅の硫化物沈澱を生成させて分離し、マンガンおよび銅が除去された塩化コバルト水溶液を得る脱銅工程、(3)前記マンガンおよび銅が除去された塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させることによって、該塩化コバルト水溶液中の亜鉛およびカドミウムを吸着除去する脱亜鉛工程、を備え、前記脱亜鉛工程において、弱塩基性陰イオン交換樹脂に吸着された亜鉛およびカドミウムを除去するに際し、亜鉛およびカドミウムを、溶離させる溶離水量を、亜鉛吸着装置における前記弱塩基性陰イオン交換樹脂の充填容量の25〜30倍とすることで、塩化コバルト水溶液中のカドミウム濃度を0.1mg/L未満とすることを特徴とする塩化コバルト水溶液の精製方法を提供する。 That is, the first invention of the present invention is a method for purifying an aqueous cobalt chloride solution, which is a method for purifying an aqueous cobalt chloride solution containing manganese, copper, zinc, and cadmium, wherein (1) an oxidizing agent is added to the aqueous cobalt chloride solution. A manganese deoxidation step of adding and adjusting the oxidation-reduction potential and pH to produce an oxide precipitate of manganese and separating it to obtain a cobalt chloride aqueous solution from which manganese has been removed; A decoppering step of obtaining a cobalt chloride aqueous solution from which manganese and copper have been removed by producing a sulfide precipitate of copper and separating the sulfide by adding a sulfidizing agent to the cobalt aqueous solution and adjusting the redox potential and pH. ) A dezincification step of adsorbing and removing zinc and cadmium in the cobalt chloride aqueous solution by bringing a weakly basic anion exchange resin into contact with the cobalt chloride aqueous solution from which the manganese and copper have been removed. In removing the zinc and cadmium adsorbed on the weakly basic anion exchange resin, the amount of elution water for eluting zinc and cadmium is set to 25 to the filling capacity of the weakly basic anion exchange resin in the zinc adsorption device. The purification method of the aqueous cobalt chloride solution is characterized in that the concentration of cadmium in the aqueous cobalt chloride solution is set to less than 0.1 mg/L by increasing the amount to 30 times.

また、本発明の第2の発明は、前記脱亜鉛工程において、弱塩基性陰イオン交換樹脂に接触させる塩化コバルト水溶液のpHが1.3〜1.5であり、塩化物イオン濃度が10g/L以下であることを特徴とする第1の発明に記載の塩化コバルト水溶液の精製方法を提供する。 Moreover, 2nd invention of this invention WHEREIN: In the said dezincification process, pH of the cobalt chloride aqueous solution made to contact with a weakly basic anion exchange resin is 1.3-1.5, and chloride ion concentration is 10 g/. A method for purifying an aqueous cobalt chloride solution according to the first invention is characterized in that it is L or less.

さらに、本発明の第3の発明は、前記脱亜鉛工程で用いる亜鉛吸着装置が、カラム方式の充填塔であることを特徴とする第1の発明、第2の発明のいずれかに記載の塩化コバルト水溶液の精製方法を提供する。 Furthermore, a third invention of the present invention is characterized in that the zinc adsorbing device used in the dezincification step is a column type packed tower, and the chloride according to any one of the first invention and the second invention is characterized. A method for purifying an aqueous cobalt solution is provided.

本発明の塩化コバルト水溶液の精製方法によれば、塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させて、塩化コバルト水溶液中の亜鉛およびカドミウムを吸着除去するに際し、吸着除去後の塩化コバルト水溶液中のカドミウム濃度を0.1mg/L未満とすることができる。これにより、この塩化コバルト水溶液を電解工程に供給して得られた電気コバルト中のカドミウム濃度を0.0005重量%以下とすることができる。 According to the method for purifying an aqueous cobalt chloride solution of the present invention, a weakly basic anion exchange resin is brought into contact with the aqueous cobalt chloride solution to adsorb and remove zinc and cadmium in the aqueous cobalt chloride solution. The cadmium concentration therein can be less than 0.1 mg/L. As a result, the cadmium concentration in the electric cobalt obtained by supplying this aqueous solution of cobalt chloride to the electrolysis step can be made 0.0005 wt% or less.

本発明に係る溶離水量と溶離水中の亜鉛およびカドミウム濃度の関係を示した図である。It is a figure showing the relation between the amount of eluting water and the concentration of zinc and cadmium in eluting water concerning the present invention.

ここでは、本発明の一実施形態として、ニッケルの湿式製錬における塩化コバルト水溶液の精製プロセスへの適用を例にとって、以下に説明する。 Here, as one embodiment of the present invention, application to a refining process of an aqueous solution of cobalt chloride in hydrometallurgy of nickel will be described as an example.

1.塩化コバルト水溶液の精製プロセス
本発明の処理原料液となる、マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液は、ニッケルの湿式製錬における溶媒抽出工程から産出される塩化コバルト水溶液である。
1. Refining Process of Aqueous Cobalt Chloride Solution The aqueous cobalt chloride solution containing manganese, copper, zinc, and cadmium, which is the raw material solution for treatment of the present invention, is an aqueous cobalt chloride solution produced in the solvent extraction step in hydrometallurgy of nickel.

ニッケルとコバルトを分離するための溶媒抽出法では、有機抽出剤として、ジ−(2−エチルヘキシル)ホスホン酸(D2EHPA)や2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル等の燐酸エステル系酸性抽出剤や、トリ−ノルマル−オクチルアミン(TNOA)等のアミン系抽出剤が使用されている。燐酸エステル系酸性抽出剤とアミン系抽出剤は両者ともに優れたニッケルとコバルトの分離性能を有するが、一般的にはアニオンが硫酸イオンの場合は燐酸エステル系酸性抽出剤が、アニオンが塩化物イオンの場合にはアミン系抽出剤が使用される。 In the solvent extraction method for separating nickel and cobalt, a phosphoric acid ester-based acidic extractant such as di-(2-ethylhexyl)phosphonic acid (D2EHPA) or 2-ethylhexylphosphonate mono-2-ethylhexyl is used as an organic extractant. , Amine-based extractants such as tri-normal-octylamine (TNOA) have been used. Both the phosphate ester-based acidic extractant and the amine-based extractant have excellent nickel-cobalt separation performance. Generally, when the anion is sulfate ion, the phosphate ester-based acidic extractant is the anion and chloride is the chloride ion. In this case, an amine extractant is used.

これら、燐酸エステル系酸性抽出剤を用いた溶媒抽出工程から得られた塩化コバルト水溶液、アミン系抽出剤を用いた溶媒抽出工程から得られた塩化コバルト水溶液のいずれか、あるいは両方の混合水溶液が、本発明の脱マンガン工程で処理される These, cobalt chloride aqueous solution obtained from the solvent extraction step using a phosphoric acid ester-based acidic extractant, either cobalt chloride aqueous solution obtained from the solvent extraction step using an amine-based extractant, or a mixed solution of both, Treated in the demanganization process of the present invention

本発明の処理原料液となる、マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液の組成としては、コバルトが60〜80g/L、鉄が0.002〜0.02g/L、マンガンが0.002〜0.1g/L、銅が0.001〜0.5g/L、亜鉛が0.002〜0.1g/L、カドミウムが0.0001〜0.002g/Lが例示される。 The composition of the aqueous cobalt chloride solution containing manganese, copper, zinc, and cadmium, which is the processing raw material liquid of the present invention, is 60 to 80 g/L for cobalt, 0.002 to 0.02 g/L for iron, and 0 for manganese. 0.002-0.1 g/L, copper 0.001-0.5 g/L, zinc 0.002-0.1 g/L, and cadmium 0.0001-0.002 g/L are exemplified.

脱マンガン工程では、マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液に、酸化剤として塩素ガスを吹き込み、中和剤として炭酸コバルトを添加することで、マンガンおよび鉄を除去する。脱銅工程では、脱マンガン工程後の塩化コバルト水溶液に、硫化剤として硫化水素ガスを吹き込み、中和剤として炭酸コバルトを添加することで、銅等を硫化物として除去する。 In the manganese removal step, manganese and iron are removed by blowing chlorine gas as an oxidizing agent and adding cobalt carbonate as a neutralizing agent into a cobalt chloride aqueous solution containing manganese, copper, zinc, and cadmium. In the decoppering step, hydrogen sulfide gas is blown as a sulfiding agent and cobalt carbonate is added as a neutralizing agent to the aqueous cobalt chloride solution after the demanganizing step to remove copper and the like as sulfides.

2.脱亜鉛工程
脱亜鉛工程では、脱銅工程後の塩化コバルト水溶液に、弱塩基性陰イオン交換樹脂を接触させることで、亜鉛およびカドミウムを吸着除去する。上記脱亜鉛工程において弱塩基性陰イオン交換樹脂に供給する塩化コバルト水溶液は、前記脱銅工程後の塩化コバルト水溶液であるから、例えば、そのpHは1.3〜1.5であり、塩化物イオン濃度は10g/L以下である。このように塩化物イオン濃度が十分に低い場合、塩化コバルト水溶液中のCu、Zn、Fe、Cdはクロロ錯イオンを形成するが、Coはクロロ錯イオンを形成しない。
2. Dezincification step In the dezincification step, zinc and cadmium are adsorbed and removed by bringing a weakly basic anion exchange resin into contact with the aqueous cobalt chloride solution after the decoppering step. Since the aqueous solution of cobalt chloride supplied to the weakly basic anion exchange resin in the dezincification step is the aqueous solution of cobalt chloride after the decoppering step, for example, its pH is 1.3 to 1.5, and chloride The ion concentration is 10 g/L or less. When the chloride ion concentration is sufficiently low, Cu, Zn, Fe, and Cd in the cobalt chloride aqueous solution form chloro complex ions, but Co does not form chloro complex ions.

上記した低い塩化物イオン濃度では、陰イオン交換樹脂に対するコバルトの分配係数はほぼゼロであるが、亜鉛クロロ錯イオンおよびカドミウムクロロ錯イオンの分配係数は十分に高い。したがって、亜鉛を含有する塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させることによって、塩化コバルト水溶液中の亜鉛及びカドミウムを選択的に吸着除去することができる。 At the above-mentioned low chloride ion concentration, the partition coefficient of cobalt to the anion exchange resin is almost zero, but the partition coefficients of zinc chloro complex ion and cadmium chloro complex ion are sufficiently high. Therefore, zinc and cadmium in the cobalt chloride aqueous solution can be selectively adsorbed and removed by bringing the weakly basic anion exchange resin into contact with the cobalt chloride aqueous solution containing zinc.

上記脱亜鉛工程において用いる弱塩基性陰イオン交換樹脂としては、特に限定されるものではないが、例えば、オルガノ社製の弱塩基性陰イオン交換樹脂IRA96SB(商品名)を最適に使用することができる。尚、上記脱亜鉛工程に係る亜鉛吸着装置は、一般的に使用されているものでよく、例えばカラム方式の充填塔を用いることができる。 The weakly basic anion exchange resin used in the dezincification step is not particularly limited, but for example, the weakly basic anion exchange resin IRA96SB (trade name) manufactured by Organo Corporation is optimally used. it can. The zinc adsorbing device for the dezincification step may be a commonly used one, and for example, a column type packed tower can be used.

弱塩基性陰イオン交換樹脂に塩化コバルト水溶液中の亜鉛及びカドミウムを選択的に吸着した亜鉛およびカドミウムの溶離は、水と接触させることで簡単に実施できる。塩化物イオン濃度を低下させれば、亜鉛クロロ錯イオンおよびカドミウムクロロ錯イオンが形成されなくなるためである。また、水による溶離を行えば、弱塩基性陰イオン交換樹脂も再生される。 The elution of zinc and cadmium, which is obtained by selectively adsorbing zinc and cadmium in an aqueous cobalt chloride solution on a weakly basic anion exchange resin, can be easily carried out by contacting with water. This is because zinc chloro complex ions and cadmium chloro complex ions are not formed when the chloride ion concentration is reduced. Further, the weak basic anion exchange resin is regenerated by elution with water.

したがって、適切なタイミングで亜鉛吸着装置への塩化コバルト水溶液の通液を停止し、水で溶離を行い、弱塩基性陰イオン交換樹脂を再生し、亜鉛吸着装置への塩化コバルト水溶液の通液を再開する作業を繰返せば、脱亜鉛工程の運転を行うことができる。 Therefore, stop the passage of the cobalt chloride aqueous solution to the zinc adsorption device at an appropriate timing, elute with water, regenerate the weakly basic anion exchange resin, and pass the cobalt chloride aqueous solution to the zinc adsorption device. By repeating the restarting work, the dezincification process can be operated.

ここで、亜鉛吸着装置は、2基以上を並列に配置することが望ましい。1基の亜鉛吸着装置の溶離作業時に、別の1基の亜鉛吸着装置に通液を行えば、通液を止めること無く運転が行えるからである。 Here, it is desirable to arrange two or more zinc adsorption devices in parallel. This is because, if the liquid is passed through another zinc adsorbing device during elution of one zinc adsorbing device, the operation can be performed without stopping the liquid passing.

図1は、本発明に係る溶離水量と溶離水中の亜鉛およびカドミウム濃度の関係を示した図である。従来は、脱亜鉛工程では、吸着除去の対象金属である亜鉛とカドミウムのうち、カドミウムよりも物量の多い亜鉛を基準として溶離水量を決めていたため、溶離水量を樹脂の充填容量で除した体積比率、いわゆるBVを14と定めていた。 FIG. 1 is a diagram showing the relationship between the amount of eluting water and the concentrations of zinc and cadmium in the eluting water according to the present invention. Conventionally, in the dezincification process, of the target metals for adsorption and removal, zinc and cadmium, the amount of elution water was determined based on zinc, which has a larger amount than cadmium, so the volume ratio obtained by dividing the amount of elution water by the filling volume of the resin. The so-called BV was set at 14.

しかしながら、BVを14とすると、溶離後の弱塩基性陰イオン交換樹脂にはカドミウムが残留している場合があり、そのカドミウムが残留した弱塩基性陰イオン交換樹脂に次の通液を行うと、カドミウムの吸着除去が不十分になる場合があることが分かった。これは、カドミウムクロロ錯イオンの安定度、言い換えればカドミウムクロロ錯イオンの分配係数は亜鉛クロロ錯イオンよりも十分に高いが、樹脂に吸着されたカドミウムの濃度が高いと、液中に再溶出する可能性が高くなるためであると解釈できる。 However, when the BV is 14, there are cases where cadmium remains in the weakly basic anion exchange resin after elution, and when the following liquid is passed through the weakly basic anion exchange resin in which the cadmium remains. It was found that the adsorption removal of cadmium may be insufficient. This is because the stability of the cadmium chloro complex ion, in other words, the distribution coefficient of the cadmium chloro complex ion is sufficiently higher than that of the zinc chloro complex ion, but it re-elutes in the liquid when the concentration of cadmium adsorbed on the resin is high. It can be interpreted that it is because the possibility is high.

そこで、本発明では、弱塩基性陰イオン交換樹脂に吸着された亜鉛およびカドミウムを溶離させる溶離水量を、弱塩基性陰イオン交換樹脂の充填容量の25〜30倍とする。本発明の実施により、吸着除去後の塩化コバルト水溶液中のカドミウム濃度を0.1mg/L未満とすることができる。 Therefore, in the present invention, the amount of water for eluting zinc and cadmium adsorbed on the weakly basic anion exchange resin is set to 25 to 30 times the filling capacity of the weakly basic anion exchange resin. By carrying out the present invention, the cadmium concentration in the aqueous cobalt chloride solution after adsorption removal can be made less than 0.1 mg/L.

溶離水量が弱塩基性陰イオン交換樹脂の充填容量の25倍未満では、本発明の効果を得ることができない。また、溶離水量が弱塩基性陰イオン交換樹脂の充填容量の30倍を超えても、溶離水量が増えて溶離時間が増加するだけで、排水処理量の増加、作業時間の増加や装置効率の低下を引き起こすだけで、それ以上の効果は期待できない。 If the amount of eluted water is less than 25 times the filling capacity of the weakly basic anion exchange resin, the effect of the present invention cannot be obtained. Further, even if the amount of eluting water exceeds 30 times the filling capacity of the weakly basic anion exchange resin, the amount of eluting water increases and the elution time only increases, increasing the amount of wastewater treatment, increasing the working time, and increasing the device efficiency. It only causes a decrease, and no further effect can be expected.

以下、実施例および比較例により、本発明を詳細に説明するが、本実施例および比較例の記載により本発明の範囲が特別に限定されるものでは無い。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not particularly limited by the description of the Examples and Comparative Examples.

(実施例1)
ニッケルの湿式製錬の溶媒抽出工程において分離回収された塩化コバルト水溶液を脱マンガン工程、脱銅工程、脱亜鉛工程の順序で処理した。
(Example 1)
The cobalt chloride aqueous solution separated and recovered in the solvent extraction step of the nickel hydrometallurgy was treated in the order of the demanganization step, the decoppering step, and the dezincing step.

上記各工程における反応条件および反応装置は以下の通りである。
(1)脱マンガン工程
塩素吹込み量:5〜10kg/h
反応時の酸化還元電位:800〜1050mV(Ag/AgCl電極基準)
反応時のpH:2.0〜3.0
The reaction conditions and reaction apparatus in each of the above steps are as follows.
(1) Demanganization process Chlorine blowing rate: 5 to 10 kg/h
Redox potential during reaction: 800 to 1050 mV (Ag/AgCl electrode reference)
PH during reaction: 2.0 to 3.0

(2)脱銅工程
硫化水素吹込み量:2〜3kg/h
反応時の酸化還元電位:−100〜−50mV(Ag/AgCl電極基準)
反応時のpH:1.3〜1.5
(2) Copper removal step Hydrogen sulfide injection rate: 2-3 kg/h
Redox potential during reaction: -100 to -50 mV (Ag/AgCl electrode reference)
PH during reaction: 1.3 to 1.5

(3)脱亜鉛工程
イオン交換樹脂塔:5m(充填樹脂量)×2基、FRP製
弱塩基性陰イオン交換樹脂:アンバーライト(登録商標)IRA96SB(オルガノ製)
(3) Dezincification process Ion exchange resin tower: 5 m 3 (filling resin amount) x 2 units, made of FRP Weakly basic anion exchange resin: Amberlite (registered trademark) IRA96SB (made by Organo)

脱亜鉛工程では、本発明に従い、溶離水の水量を30BVとして溶離を行った。 In the dezincing step, elution was carried out according to the present invention with the amount of eluting water being 30 BV.

その結果、脱亜鉛工程後の塩化コバルト水溶液のカドミウム濃度は0.1mg/L未満であった。また、この塩化コバルト水溶液を電解工程に供給して得られた電気コバルト中のカドミウム濃度は0.0005重量%以下だった。 As a result, the cadmium concentration of the aqueous cobalt chloride solution after the dezincification step was less than 0.1 mg/L. Further, the cadmium concentration in the electric cobalt obtained by supplying this aqueous solution of cobalt chloride to the electrolysis step was 0.0005% by weight or less.

(比較例1)
脱亜鉛工程で溶離水の水量を14BVとして溶離を行った以外は、実施例1と同じ条件で、操業を行った。
(Comparative Example 1)
The operation was performed under the same conditions as in Example 1 except that elution was carried out with the amount of eluting water being 14 BV in the dezincification step.

その結果、脱亜鉛工程後の塩化コバルト水溶液のカドミウム濃度は0.1mg/L以上となることがあった。また、この塩化コバルト水溶液を電解工程に供給して得られた電気コバルト中のカドミウム濃度は0.0005重量%以下だったが、0.0005重量%ぎりぎりのものもあった。

As a result, the cadmium concentration of the aqueous cobalt chloride solution after the dezincification step may be 0.1 mg/L or more. Further, the cadmium concentration in the electric cobalt obtained by supplying this aqueous solution of cobalt chloride to the electrolysis step was 0.0005% by weight or less, but there was also a very small amount of 0.0005% by weight.

Claims (3)

マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液の精製方法であって、
(1)マンガン、銅、亜鉛、カドミウムを含有する塩化コバルト水溶液に酸化剤を添加し、酸化還元電位およびpHを調整することにより、マンガンの酸化物沈澱を生成させて分離し、マンガンが除去された塩化コバルト水溶液を得る脱マンガン工程、
(2)前記マンガンが除去された塩化コバルト水溶液に硫化剤を添加し、酸化還元電位およびpHを調整することにより、銅の硫化物沈澱を生成させて分離し、マンガンおよび銅が除去された塩化コバルト水溶液を得る脱銅工程、
(3)前記マンガンおよび銅が除去された塩化コバルト水溶液に弱塩基性陰イオン交換樹脂を接触させることによって、該塩化コバルト水溶液中の亜鉛およびカドミウムを吸着除去する脱亜鉛工程、
を備え、
前記脱亜鉛工程において、弱塩基性陰イオン交換樹脂に吸着された亜鉛およびカドミウムを除去し、弱塩基性陰イオン交換樹脂を再生するに際し、亜鉛およびカドミウムを溶離させる溶離水量を、亜鉛吸着装置における前記弱塩基性陰イオン交換樹脂の充填容量の25〜30倍とすることで、塩化コバルト水溶液中のカドミウム濃度を0.1mg/L未満とすることを特徴とする塩化コバルト水溶液の精製方法。
A method for purifying an aqueous cobalt chloride solution containing manganese, copper, zinc, cadmium,
(1) An oxidizing agent is added to a cobalt chloride aqueous solution containing manganese, copper, zinc, and cadmium, and the redox potential and pH are adjusted to generate and separate an oxide precipitate of manganese, and manganese is removed. Demanganization step to obtain an aqueous cobalt chloride solution,
(2) A sulfidizing agent is added to the cobalt chloride aqueous solution from which the manganese has been removed, and the redox potential and pH are adjusted to form a sulfide precipitate of copper, which is then separated to remove the manganese and copper chloride. Decoppering step to obtain an aqueous cobalt solution,
(3) A dezincification step of adsorbing and removing zinc and cadmium in the cobalt chloride aqueous solution by bringing a weakly basic anion exchange resin into contact with the cobalt chloride aqueous solution from which the manganese and copper have been removed,
Equipped with
In the dezincification step to remove zinc and cadmium adsorbed to the weakly basic anion exchange resin, when reproducing a weakly basic anion exchange resin, the elution amount of water is eluted zinc and cadmium, in the zinc adsorber A method for purifying an aqueous cobalt chloride solution, which comprises setting the cadmium concentration in the aqueous cobalt chloride solution to less than 0.1 mg/L by adjusting the filling capacity of the weakly basic anion exchange resin to 25 to 30 times.
前記脱亜鉛工程において、弱塩基性陰イオン交換樹脂に接触させる塩化コバルト水溶液のpHが1.3〜1.5であり、塩化物イオン濃度が10g/L以下であることを特徴とする請求項1に記載の塩化コバルト水溶液の精製方法。 In the dezincification step, the pH of the aqueous cobalt chloride solution brought into contact with the weakly basic anion exchange resin is 1.3 to 1.5, and the chloride ion concentration is 10 g/L or less. 1. The method for purifying an aqueous cobalt chloride solution according to 1. 前記脱亜鉛工程で用いる亜鉛吸着装置が、カラム方式の充填塔であることを特徴とする請求項1、2のいずれかに記載の塩化コバルト水溶液の精製方法。 The method for purifying an aqueous cobalt chloride solution according to claim 1, wherein the zinc adsorption device used in the dezincification step is a column type packed tower.
JP2016076010A 2016-04-05 2016-04-05 Purification method of cobalt chloride aqueous solution Expired - Fee Related JP6728905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076010A JP6728905B2 (en) 2016-04-05 2016-04-05 Purification method of cobalt chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076010A JP6728905B2 (en) 2016-04-05 2016-04-05 Purification method of cobalt chloride aqueous solution

Publications (3)

Publication Number Publication Date
JP2017186198A JP2017186198A (en) 2017-10-12
JP2017186198A5 JP2017186198A5 (en) 2019-05-09
JP6728905B2 true JP6728905B2 (en) 2020-07-22

Family

ID=60044595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076010A Expired - Fee Related JP6728905B2 (en) 2016-04-05 2016-04-05 Purification method of cobalt chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP6728905B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042237A (en) * 2019-04-28 2019-07-23 西北有色金属研究院 A method of depth removal cadmium prepares cobalt from cobalt chloride
CN111826525B (en) * 2020-07-24 2021-11-26 广西银亿新材料有限公司 Method for producing metal cobalt by sulfuric acid system electrodeposition
JP7627436B2 (en) 2020-10-23 2025-02-06 住友金属鉱山株式会社 How to manufacture cadmium metal
JP7156491B1 (en) * 2021-04-22 2022-10-19 住友金属鉱山株式会社 Method for producing cobalt sulfate
CN113186409B (en) * 2021-04-29 2022-11-25 金川集团镍盐有限公司 Method for deeply removing cadmium from cobalt sulfate solution
JP7099592B1 (en) 2021-06-25 2022-07-12 住友金属鉱山株式会社 Manufacturing method of cobalt sulfate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354118A (en) * 1989-07-24 1991-03-08 Sumitomo Chem Co Ltd How to recover rhenium
JP2008038236A (en) * 2006-08-10 2008-02-21 Sumitomo Metal Mining Co Ltd Method of separating zinc from aqueous nickel chloride solution
JP6098569B2 (en) * 2014-04-14 2017-03-22 住友金属鉱山株式会社 Purification method of aqueous cobalt chloride solution

Also Published As

Publication number Publication date
JP2017186198A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6728905B2 (en) Purification method of cobalt chloride aqueous solution
Botelho Junior et al. A review of nickel, copper, and cobalt recovery by chelating ion exchange resins from mining processes and mining tailings
JP6471912B2 (en) Method for producing high purity cobalt sulfate aqueous solution
CN105483382B (en) The separation and recovery method of the refuse battery material extract of nickel and cobalt containing manganese
CN106048217A (en) Comprehensive recycling method for zinc oxide powder
JP2020019665A (en) Production method of high purity cobalt chloride aqueous solution
JP6098569B2 (en) Purification method of aqueous cobalt chloride solution
JP2011214132A (en) Recovery method for cobalt
JP7070208B2 (en) Method for manufacturing high-purity cobalt chloride aqueous solution
Ge et al. Recovery of platinum from spent automotive catalyst based on hydrometallurgy
JP5939910B2 (en) Cobalt recovery method
JP2017190478A (en) Method for removing impurity from cobalt aqueous solution
CN107519948B (en) Composite amino weakly-alkaline anion exchange resin and method for recovering rhenium from arsenic sulfide slag leachate
JP5154622B2 (en) Method for recovering cobalt contained in copper-containing aqueous solution
TW202300460A (en) Method for producing cobalt sulfate
CN103339270B (en) The direct purification of nickel laterite leach liquor
JP5042090B2 (en) Method for producing high purity zinc oxide powder
JP7486021B2 (en) Method for producing cadmium hydroxide
JP6346402B2 (en) Cobalt recovery method
CN104099638A (en) Method for removing metal ion impurity from nickel anode electrolyte
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
WO2021059940A1 (en) Method for recovering scandium, and ion exchange method
AU2011201892A1 (en) Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption
CN116056774B (en) Method for producing cobalt sulfate
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170405

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees