[go: up one dir, main page]

JP2019525106A - High density material valve - Google Patents

High density material valve Download PDF

Info

Publication number
JP2019525106A
JP2019525106A JP2019529684A JP2019529684A JP2019525106A JP 2019525106 A JP2019525106 A JP 2019525106A JP 2019529684 A JP2019529684 A JP 2019529684A JP 2019529684 A JP2019529684 A JP 2019529684A JP 2019525106 A JP2019525106 A JP 2019525106A
Authority
JP
Japan
Prior art keywords
density material
valve
opening
valve member
material valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019529684A
Other languages
Japanese (ja)
Other versions
JP7019924B2 (en
Inventor
フェリクス ウェーバー,
フェリクス ウェーバー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Engineering GmbH
Original Assignee
Putzmeister Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56686669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2019525106(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Putzmeister Engineering GmbH filed Critical Putzmeister Engineering GmbH
Publication of JP2019525106A publication Critical patent/JP2019525106A/en
Application granted granted Critical
Publication of JP7019924B2 publication Critical patent/JP7019924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/003Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having a slidable movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0026Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an oscillating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0903Position of the driving piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0034Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an orbital movement, e.g. elbow-pipe type members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Lift Valve (AREA)
  • Multiple-Way Valves (AREA)
  • Sliding Valves (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

本発明は、第1貫通開口(27)と、第2貫通開口(28)と、両方の貫通開口(27、28)に関連付けられるバルブ部材(32)とを有する高密度材料バルブに関する。バルブ部材は枢動軸線(36)のまわりを枢動可能に取り付けられており、バルブ部材は枢動軸線を中心とする湾曲した封止面(38)を有する。第1状態(30)において、バルブ部材は第1貫通開口を開放し、第2貫通開口を閉鎖する。第2状態(29)において、バルブ部材は第2貫通開口を開放し、第1貫通開口を閉鎖する。バルブ部材は封止部(35)とピボット部(34)とを備え、ピボット部は枢動軸線において回転可能に取り付けられ、封止部は接続構造(37)を介してピボット部に接続されている。本発明にかかる高密度材料バルブは簡単な構造であり、材料の継続的な流れを高密度材料ポンプの出口(23)の方向に作り出すために用いることができる。【選択図】 図5The present invention relates to a high density material valve having a first through opening (27), a second through opening (28), and a valve member (32) associated with both through openings (27, 28). The valve member is mounted pivotably about a pivot axis (36), and the valve member has a curved sealing surface (38) about the pivot axis. In the first state (30), the valve member opens the first through opening and closes the second through opening. In the second state (29), the valve member opens the second through opening and closes the first through opening. The valve member comprises a sealing part (35) and a pivot part (34), the pivot part being rotatably mounted in a pivot axis, the sealing part being connected to the pivot part via a connection structure (37). Yes. The high density material valve according to the present invention is of simple construction and can be used to create a continuous flow of material in the direction of the outlet (23) of the high density material pump. [Selection] Figure 5

Description

本発明は、本発明は、第1貫通開口と、第2貫通開口と、両方の貫通開口と相互に作用するバルブ部材とを有する高密度材料バルブに関する。   The present invention relates to a high-density material valve having a first through-opening, a second through-opening, and a valve member that interacts with both through-openings.

このようなバルブは、生コンクリートまたはモルタルなどの高密度材料の搬送に使用される。この場合、高密度材料が第1貫通開口を通過する第1搬送状態と、高密度材料が第2貫通開口を通過する第2搬送状態とが存在する。高密度材料バルブは、特定の搬送状態に適した高密度材料用の貫通開口を開放する働きをする。   Such valves are used for conveying high density materials such as ready-mixed concrete or mortar. In this case, there are a first transport state in which the high-density material passes through the first through-opening and a second transport state in which the high-density material passes through the second through-opening. The high density material valve serves to open a through opening for a high density material suitable for a particular transport condition.

バルブ部材が2つの貫通開口に関連付けられる高密度材料バルブは、たとえば独国特許出願公開第102013215990号明細書、米国特許8,827,657号明細書、独国特許出願公開第19503986号明細書、独国特許出願公開第102005008938号明細書で既知である。バルブ部材はS字のパイプセグメント形状であり、その一端を任意で第1貫通開口または第2貫通開口に連結することができる。これは機械的に複雑である。   High density material valves in which the valve member is associated with two through-openings are described, for example, in DE 10 2013 215 990, U.S. Pat. No. 8,827,657, DE 19503986, It is known from German Offenlegungsschrift 10 2005008938. The valve member has an S-shaped pipe segment shape, and one end thereof can optionally be connected to the first through opening or the second through opening. This is mechanically complex.

本発明が解決しようとする課題は、より簡単な構造の高密度材料バルブを提案することである。上記の先行技術から始まり、この課題は請求項1に記載の特徴によって解決される。好適な実施形態は従属請求項に示されている。   The problem to be solved by the present invention is to propose a high density material valve with a simpler structure. Starting from the above prior art, this problem is solved by the features of claim 1. Preferred embodiments are given in the dependent claims.

本発明にかかる高密度材料バルブにおいて、両方の貫通開口に関連付けられるバルブ部材は枢動軸線に関して枢動可能に取り付けられ、この枢動軸線を中心とする湾曲した封止面を有する。バルブ部材は第1状態において、第1貫通開口を開放し、第2貫通開口を閉鎖する。バルブ部材は第2状態において、第2貫通開口を開放し、第1貫通開口を閉鎖する。本発明の一変形例において、バルブ部材は封止部とピボット部とを備える。ピボット部は枢動軸線において回転可能に取り付けられている。封止部は接続構造を介してピボット部に接続されている。   In the high-density material valve according to the invention, the valve member associated with both through-openings is pivotally mounted with respect to a pivot axis and has a curved sealing surface about this pivot axis. In the first state, the valve member opens the first through opening and closes the second through opening. In the second state, the valve member opens the second through opening and closes the first through opening. In one variation of the invention, the valve member comprises a sealing portion and a pivot portion. The pivot part is rotatably mounted on the pivot axis. The sealing part is connected to the pivot part via a connection structure.

本発明にかかる設計のおかげで貫通開口とバルブ部材の枢動軸線との間に簡単な空間的相関性があるため、高密度材料バルブの簡単な設計構成が可能になる。封止部が接続構造を介してピボット部に接続されている場合、封止部と貫通開口との間に確実な封止効果が得られる。   Thanks to the design according to the invention, there is a simple spatial correlation between the through-opening and the pivot axis of the valve member, which allows a simple design configuration of the high-density material valve. When the sealing portion is connected to the pivot portion via the connection structure, a reliable sealing effect can be obtained between the sealing portion and the through opening.

高密度材料は搬送しにくい媒体の総称である。高密度材料はたとえば、粗粒子状成分を含む物質、活性成分を含む物質などである。高密度材料はバルク材料であってもよい。一実施形態において、高密度材料は生コンクリートである。生コンクリートは30mmまでの大きさの粒子を含んでおり、見えない場所で結合して沈着物を形成するなどの理由から、搬送するのが難しい。   High density material is a generic term for media that are difficult to transport. Examples of the high-density material include a substance containing a coarse particulate component and a substance containing an active ingredient. The high density material may be a bulk material. In one embodiment, the high density material is ready-mixed concrete. Ready-mixed concrete contains particles with a size of up to 30 mm, and is difficult to transport because it binds in an invisible place to form a deposit.

バルブ部材は高密度材料バルブの内部空間に配置されてもよい。本発明にかかる高密度材料バルブは、高密度材料が貫通開口を通って高密度材料バルブの内部空間に入るように構成されてもよい。高密度材料バルブは、いったん中に入れられた高密度材料がまたバルブを出る際に通る出口開口をさらに有していてもよい。パイプが出口開口に接続されていてもよく、このパイプを通して高密度材料がさらに運搬される。貫通開口と出口開口との間の通路はバルブ部材を通らないように調整されてもよい。   The valve member may be disposed in the internal space of the high density material valve. The high-density material valve according to the present invention may be configured such that the high-density material enters the internal space of the high-density material valve through the through opening. The high density material valve may further have an outlet opening through which the high density material once placed also exits the valve. A pipe may be connected to the outlet opening, through which the dense material is further conveyed. The passage between the through opening and the outlet opening may be adjusted so as not to pass through the valve member.

第1貫通開口および第2貫通開口は、バルブ部材の封止面と相互に作用するように設計された封止面をそれぞれ有していてもよい。封止面はたとえば、貫通開口のまわりに延在する円形の、高密度材料バルブの筐体の内面でありうる。貫通開口の封止面はバルブ部材の枢動軸線を中心とする(同心の)湾曲部を有していてもよい。相互に作用する封止面の同心の湾曲部のおかげで、湾曲部の軸線に対応する枢動軸線を中心にバルブ部材を回転させることができる。このようにすれば、開口の一方はそこを通る自由な流れを得ることができ、それに対し、バルブ部材の封止面は封止するようなかたちで他方の貫通開口の封止面と相互に作用する。封止とは、100パーセントの気密性が要求されない適用領域について理解されるべきである。   The first through-opening and the second through-opening may each have a sealing surface designed to interact with the sealing surface of the valve member. The sealing surface can be, for example, the inner surface of a circular, high-density material valve housing that extends around the through-opening. The sealing surface of the through opening may have a (concentric) curved portion centered on the pivot axis of the valve member. Thanks to the concentric bends of the interacting sealing surfaces, the valve member can be rotated about a pivot axis corresponding to the bend axis. In this way, one of the openings can obtain a free flow therethrough, while the sealing surface of the valve member seals with the sealing surface of the other through-opening in a manner that seals. Works. Sealing should be understood for application areas where 100 percent airtightness is not required.

一実施形態において、同心の湾曲部は、シリンダ軸線が枢動軸線と同じである場合のシリンダ外皮の一部に相当する。本実施形態では、バルブ部材の封止面と枢動軸線との半径方向の間隔は、枢動軸線の長さにわたって均一である。この半径方向の間隔が枢動軸線に沿って変動する実施形態も含まれる。いずれの場合も、湾曲部は円周方向の円セグメントに相当してもよい。   In one embodiment, the concentric curvature corresponds to a portion of the cylinder skin when the cylinder axis is the same as the pivot axis. In this embodiment, the radial spacing between the sealing surface of the valve member and the pivot axis is uniform over the length of the pivot axis. Also included are embodiments in which this radial spacing varies along the pivot axis. In either case, the curved portion may correspond to a circular segment in the circumferential direction.

第1貫通開口と第2貫通開口との間に中間面が配置されてもよく、前記中間面も同様に枢動軸線を中心とする湾曲部を有する。このようにすれば、枢動軸線を中心とする連続した輪郭をつくることが可能であり、前記輪郭は第1貫通開口から中間面を通って第2貫通開口へ延在する。   An intermediate surface may be disposed between the first through-opening and the second through-opening, and the intermediate surface similarly has a curved portion centered on the pivot axis. In this way, it is possible to create a continuous contour centered on the pivot axis, the contour extending from the first through opening through the intermediate surface to the second through opening.

バルブ部材が第1または第2貫通開口を閉鎖する上記の切換状態に加え、高密度材料バルブは第1貫通開口と第2貫通開口の両方が開放されている第3切換状態(中間状態)を有してもよい。中間状態において、バルブ部材は第1貫通開口と第2貫通開口との間に位置してもよい。2つの貫通開口の間隔は、両方の貫通開口が完全に開放されるほど大きくてもよい。これには、開口を通ってのびる材料の流れに封止面の縁がさらされないという利点がある。一方または両方の貫通開口が引き続き部分的にバルブ部材で覆われているようにすることも可能である。   In addition to the switching state in which the valve member closes the first or second through opening, the high-density material valve has a third switching state (intermediate state) in which both the first through opening and the second through opening are open. You may have. In the intermediate state, the valve member may be located between the first through opening and the second through opening. The distance between the two through openings may be so large that both through openings are fully opened. This has the advantage that the edge of the sealing surface is not exposed to the flow of material extending through the opening. It is also possible for one or both through openings to continue to be partially covered by the valve member.

バルブ部材は封止部とピボット部とを備えていてもよく、ピボット部は枢動軸線において回転可能に取り付けられている。高密度材料バルブの異なる状態の間で切換処理を行うため、電動駆動装置がピボット部にかみ合っていてもよい。   The valve member may include a sealing portion and a pivot portion, the pivot portion being rotatably mounted on the pivot axis. In order to perform the switching process between different states of the high-density material valve, the electric drive device may be engaged with the pivot portion.

バルブ部材は、封止部とピボット部との間の接続をもたらす接続構造を備えていてもよい。接続構造は、枢動軸線に関してかかるトルクへの剛性を持つように設計されてもよい。ここで剛性を持つとは、枢動軸線に関してピボット部が曲がると、封止部も対応する枢動運動を行うことをいう。   The valve member may include a connection structure that provides a connection between the sealing portion and the pivot portion. The connection structure may be designed to be rigid to such torque with respect to the pivot axis. Here, having rigidity means that when the pivot portion is bent with respect to the pivot axis, the sealing portion also performs the corresponding pivot motion.

半径方向について、接続構造は封止部がピボット部と相対的に動くことを可能にしてもよい。このような相対的な動きによって、バルブ部材と貫通開口との間で所望の封止効果が生じるように封止面と枢動軸線との半径方向の間隔が適合されてもよい。   In the radial direction, the connection structure may allow the sealing part to move relative to the pivot part. By such relative movement, the radial spacing between the sealing surface and the pivot axis may be adapted so that the desired sealing effect occurs between the valve member and the through-opening.

接続構造は、封止部とピボット部との間に位置する弾性部材を備えてもよい。高密度材料バルブの始動状態において、弾性部材は圧縮されていてもよい。作動中に封止面同士の間で摩耗が生じると、弾性部材が引き伸ばされる。したがって、摩耗が自動的に補償される。   The connection structure may include an elastic member positioned between the sealing portion and the pivot portion. In the starting state of the high-density material valve, the elastic member may be compressed. When wear occurs between the sealing surfaces during operation, the elastic member is stretched. Thus, wear is automatically compensated.

これに加えて、またはこれに代えて、ピボット部に対して半径方向に封止部を動かすために、本発明にかかるバルブ部材は駆動装置を備えてもよい。駆動装置を用いて作動中に封止部の位置をピボット部に適合させてもよい。駆動装置を用いて弾性部材のばね張力を調整することも可能である。たとえば、駆動装置は油圧式駆動装置または機械式駆動装置であってもよい。   In addition or alternatively, the valve member according to the invention may be provided with a drive device in order to move the sealing part radially with respect to the pivot part. The position of the sealing part may be adapted to the pivot part during operation using the drive device. It is also possible to adjust the spring tension of the elastic member using the drive device. For example, the drive device may be a hydraulic drive device or a mechanical drive device.

一変形例においてバルブ部材は、封止面と、枢動可能に取り付けられたシャフトまたは枢動可能に取り付けられた複数のスタブシャフトとの間に、剛性連結部を備える。それにより、シャフトまたはスタブシャフトがバルブ筐体に対して弾性的に取り付けられているとき、バルブ筐体に対する封止面の半径方向の可動性がもたらされる。たとえば、シャフトまたはスタブシャフトのまわりに延在する1つ以上の弾性部材が設けられてもよい。本実施形態には、弾性部材が高密度材料の流れに影響されないというメリットがある。   In one variation, the valve member comprises a rigid connection between the sealing surface and a pivotally attached shaft or a plurality of pivotally attached stub shafts. Thereby, when the shaft or stub shaft is elastically attached to the valve housing, radial mobility of the sealing surface relative to the valve housing is provided. For example, one or more elastic members may be provided that extend around the shaft or stub shaft. This embodiment has an advantage that the elastic member is not affected by the flow of the high-density material.

バルブ部材は、本発明にかかる高密度材料バルブの筐体の中に配置されてもよい。心棒端が枢動軸線と直角をなす状態で、バルブ部材が筐体の端壁のそばに配置されてもよい。したがって、バルブ部材の枢動運動は端壁と平行になる。高密度材料の粗粒子状成分でもバルブ部材と端壁との間にスペースができるように、バルブ部材は端壁から離されていてもよい。これにより、バルブ部材が作動しやすくなる。   The valve member may be disposed in the housing of the high-density material valve according to the present invention. The valve member may be disposed near the end wall of the housing with the mandrel end perpendicular to the pivot axis. Thus, the pivoting movement of the valve member is parallel to the end wall. The valve member may be separated from the end wall so that even a coarse particulate component of the high density material creates a space between the valve member and the end wall. Thereby, a valve member becomes easy to operate.

別の一実施形態において、バルブ部材と端壁との間隔は高密度材料の粗粒子状成分より小さい。バルブ部材は、バルブ部材が作動しているときに高密度材料を端壁に沿う側へ押すへらを備えていてもよく、これによってバルブ部材と端壁との間で締め付けられる粒子がなくなる。へらは端壁にもたれかかっても、端壁から若干間隔をあけていてもよい。   In another embodiment, the spacing between the valve member and the end wall is less than the coarse particulate component of the dense material. The valve member may include a spatula that pushes the dense material to the side along the end wall when the valve member is operating, thereby eliminating particles that are clamped between the valve member and the end wall. The spatula may lean against the end wall or may be slightly spaced from the end wall.

筐体は第2端壁を有していてもよく、これによりバルブ部材は第1端壁および第2端壁の間に位置する。これに合わせてバルブ部材と第2端壁との相互作用を構成することができる。   The housing may have a second end wall whereby the valve member is located between the first end wall and the second end wall. Accordingly, the interaction between the valve member and the second end wall can be configured.

バルブ部材のシャフトは高密度材料バルブの筐体に取り付けることができる。ここに2つの軸受を、軸受間のバルブ部材を囲うように配置することができる。この軸受の間には、バルブ部材のピボット部の成分であるシャフトが延在することができる。   The shaft of the valve member can be attached to the housing of the high density material valve. Here, two bearings can be arranged so as to surround the valve member between the bearings. A shaft that is a component of the pivot portion of the valve member can extend between the bearings.

本発明にかかる高密度材料バルブは、高密度材料バルブの入口開口と出口開口との間の直線状の接続部が枢動軸線と交差するように設計されていてもよい。バルブ部材のシャフトが枢動軸線に沿って連続的に延在している場合、材料の流れは湾曲した軌道に沿ってシャフトより先へ運搬されなければならない。   The high density material valve according to the invention may be designed such that the straight connection between the inlet opening and the outlet opening of the high density material valve intersects the pivot axis. If the valve member shaft extends continuously along the pivot axis, the flow of material must be transported along the curved path beyond the shaft.

流動抵抗を低く維持するため、バルブ部材は材料の流れをシャフトより先へ導くガイド面を備えていてもよい。ガイド面は(バルブ部材が動く方向から見て)封止面と隣接していてもよく、バルブ部材と枢動軸線との先に略直線状の経路を画定してもよい。ガイド面は平坦なガイド面であってもよく、特に枢動軸線と平行の向きにすることのできるものであってもよい。材料の流れが出口開口に入りやすくなるように、ガイド面は出口開口に隣接する端部に凹部が設けられていてもよい。バルブ部材はこのようなガイド面を2つ備えていてもよく、このガイド面の間に封止面が囲われている。バルブの切換状態によって、材料の流れを一方および/または他方のガイド面に沿って導くことができる。   In order to keep the flow resistance low, the valve member may be provided with a guide surface that guides the flow of material beyond the shaft. The guide surface may be adjacent to the sealing surface (as viewed from the direction in which the valve member moves) and may define a substantially linear path ahead of the valve member and the pivot axis. The guide surface may be a flat guide surface, in particular one that can be oriented parallel to the pivot axis. The guide surface may be provided with a recess at the end adjacent to the outlet opening so that the material flow can easily enter the outlet opening. The valve member may be provided with two such guide surfaces, and a sealing surface is enclosed between the guide surfaces. Depending on the switching state of the valve, the material flow can be guided along one and / or the other guide surface.

枢動軸線がバルブ部材の胴体に囲まれるようにバルブ部材が設計されているときにこのようなガイド面は特にメリットがある。バルブ部材の弾性部材は、バルブ部材のシャフトのまわりに延在していても、枢動軸線と封止面との間に配置されていてもよい。   Such a guide surface is particularly advantageous when the valve member is designed such that the pivot axis is surrounded by the body of the valve member. The elastic member of the valve member may extend around the shaft of the valve member or may be disposed between the pivot axis and the sealing surface.

流動抵抗を低く維持するため、シャフトは2つのスタブシャフトを備えていてもよく、スタブシャフトはバルブ筐体の軸受に引き込まれる。2つのスタブシャフト同士の接続は接続構造によってもたらされ、接続構造と封止面との間隔は枢動軸線と封止面との間隔より小さい。接続構造は枢動軸線に沿って延在せず、むしろ封止面の近くに位置するため、出口開口に向かう経路上の材料の流れのために開けた空間が残る。特に、閉鎖されていない貫通開口の中間点から排出開口の中間点までのびる直線がバルブ部材と交差しないように接続構造が構成されていてもよい。   In order to keep the flow resistance low, the shaft may comprise two stub shafts, which are drawn into the bearings of the valve housing. The connection between the two stub shafts is provided by a connection structure, and the distance between the connection structure and the sealing surface is smaller than the distance between the pivot axis and the sealing surface. The connecting structure does not extend along the pivot axis, but rather is located near the sealing surface, leaving an open space for the flow of material on the path towards the outlet opening. In particular, the connection structure may be configured so that a straight line extending from an intermediate point of the through opening that is not closed to an intermediate point of the discharge opening does not intersect the valve member.

シャフトと封止部との接続のため、接続構造は封止部までのびる支柱を有していてもよい。特に、支柱は半径方向に向けられていてもよい。封止部について、支柱は中央に位置していてもよい。支柱がバルブ筐体の端壁から間隔をあけている場合、高密度材料が支柱のまわりを適切に流れることができる。   For the connection between the shaft and the sealing portion, the connection structure may have a support column extending to the sealing portion. In particular, the struts may be oriented in the radial direction. About a sealing part, the support | pillar may be located in the center. If the struts are spaced from the end wall of the valve housing, the high density material can flow properly around the struts.

接続構造は封止部の方向にのびる2つの支柱を有することも可能である。支柱は互いに平行で、半径方向に向けられていてもよい。これらの支柱は、枢動軸線と封止部の中心の間にある領域が開けた状態で維持され、そこを高密度材料が流れることができるように配置されてもよい。枢動軸線とバルブ部材の封止面との間隔について、開けた状態で維持される領域は少なくとも10%、好ましくは少なくとも30%、より好ましくは少なくとも50%にわたって広がっていてもよい。   The connection structure can also have two struts extending in the direction of the seal. The struts may be parallel to each other and oriented radially. These struts may be arranged so that a region between the pivot axis and the center of the seal is maintained open, allowing high density material to flow there. With respect to the distance between the pivot axis and the sealing surface of the valve member, the area maintained open may extend over at least 10%, preferably at least 30%, more preferably at least 50%.

2つの支柱は筐体の端壁から間隔をあけていてもよい。また、支柱はへらとして構成されていてもよく、これにより、バルブ部材が作動しているときに高密度材料が端面に沿って押しのけられる。   The two struts may be spaced from the end wall of the housing. The struts may also be configured as spatulas, so that the high-density material is pushed along the end face when the valve member is operating.

材料の流れが一方の貫通開口を通ってバルブの内部空間に入り、バルブ部材を通り越し、出口開口を通ってまたバルブを出るように本発明にかかる高密度材料バルブが使用される場合(ポンプモード)、高密度材料バルブの内部空間とバルブ部材によって閉鎖された貫通開口に隣接する外部空間との間に圧力差が通常ある。高密度材料バルブは圧力差がバルブ部材に力を及ぼすように設計されていてもよく、これが封止効果を高める。   When the high-density material valve according to the invention is used so that the flow of material enters the interior space of the valve through one through opening, passes through the valve member, and exits the valve through the outlet opening (pump mode) ), There is usually a pressure difference between the internal space of the high-density material valve and the external space adjacent to the through opening closed by the valve member. High density material valves may be designed such that the pressure differential exerts a force on the valve member, which enhances the sealing effect.

内部空間の圧力が外部空間の圧力より高い場合、貫通開口の封止面に対してバルブ部材が半径方向に押し付けられる。方向をさす用語の半径とは、バルブ部材の枢動軸線に関するものである。このためバルブ部材は、内部空間内の圧力を半径方向にかかる力に変換する外面を有していてもよい。外面とは、バルブ部材の内部空間で高密度材料に接触している高密度材料バルブの領域をいう。   When the pressure in the internal space is higher than the pressure in the external space, the valve member is pressed in the radial direction against the sealing surface of the through opening. The term radius refers to the pivot axis of the valve member. For this reason, the valve member may have an outer surface that converts the pressure in the inner space into a force applied in the radial direction. The outer surface refers to the area of the high density material valve that is in contact with the high density material in the internal space of the valve member.

特に、バルブ部材は封止面の反対側に位置する外面を有していてもよい。外面は半径方向と垂直に交わるような向きであってもよい。すると、外面にかかる圧力は封止効果を直接高めるような向きとなる。   In particular, the valve member may have an outer surface located on the opposite side of the sealing surface. The outer surface may be oriented perpendicular to the radial direction. Then, the pressure applied to the outer surface is oriented to directly enhance the sealing effect.

バルブ部材は半径方向に対して傾いた外面を有していることも可能であり、そうすると圧力の一部のみが封止面の方向にかかる。   The valve member can also have an outer surface that is inclined with respect to the radial direction, so that only part of the pressure is applied in the direction of the sealing surface.

バルブ部材は2つの反対向きの傾いた外面を有していてもよい。反対とは、半径方向にかかる圧力の成分が積み重なるように外面が向けられていることを意味する。   The valve member may have two oppositely inclined outer surfaces. Opposite means that the outer surface is oriented so that the components of pressure applied in the radial direction are stacked.

材料の流れが逆方向に動くように本発明にかかる高密度材料バルブが使用される場合(吸引モード)、圧力差を使ってバルブ部材の封止効果を強めることが通常できなくなる。すると、封止効果は主にピボット部から封止部に及ぼされる力から生じるようになる。記述のとおり、この力は弾性バイアスまたは作動している駆動装置によって生み出される。   When the high-density material valve according to the present invention is used so that the material flow moves in the opposite direction (suction mode), it is usually impossible to enhance the sealing effect of the valve member using the pressure difference. Then, the sealing effect comes mainly from the force exerted from the pivot portion to the sealing portion. As described, this force is generated by an elastic bias or actuated drive.

さらに、本発明はそのような高密度材料バルブを装備しているポンプに関する。ポンプ運転中にポンプの搬送部材によって移動させられている材料が第1開口および/または第2開口を通って高密度材料バルブの内部空間に入るように高密度材料バルブが配置されていてもよい。   The invention further relates to a pump equipped with such a high density material valve. The high density material valve may be arranged such that the material being moved by the pump conveying member during pump operation enters the interior space of the high density material valve through the first opening and / or the second opening. .

ポンプは第1搬送シリンダと第2搬送シリンダとを備えていてもよい。各搬送シリンダにはピストンが配置されていてもよく、ピストンがポンプ運転中に後退運動をしながら搬送シリンダの内部空間へ高密度材料を吸引し、前進運動をしながら高密度材料バルブの貫通開口の方向に高密度材料を運ぶ。   The pump may include a first transfer cylinder and a second transfer cylinder. Each transfer cylinder may be provided with a piston. The piston draws high-density material into the internal space of the transfer cylinder while moving backward during pump operation, and passes through the opening of the high-density material valve while moving forward. Carry high density material in the direction of.

2つの搬送シリンダの搬送の流れは高密度材料バルブの上流で離隔し、共通の搬送の流れに集まって高密度材料バルブに結合してもよい。第1搬送シリンダからの搬送の流れは、高密度材料バルブの第1貫通開口を通って高密度材料バルブの内部空間に入ってもよい。第2搬送シリンダからの搬送の流れは、高密度材料バルブの第2貫通開口を通って高密度材料バルブの内部空間に入ってもよい。   The transport flows of the two transport cylinders may be separated upstream of the high density material valve and collected in a common transport stream and coupled to the high density material valve. The transport flow from the first transport cylinder may enter the internal space of the high density material valve through the first through opening of the high density material valve. The transport flow from the second transport cylinder may enter the internal space of the high density material valve through the second through opening of the high density material valve.

ピストンは、前進運動より後退運動の方が短い間隔で生じるように作動される。一方のピストンの前進運動の始まりは、他方のピストンの前進運動の終わりと重なっていてもよい。すると、両方のピストンが並行して高密度材料バルブの方向に材料を搬送している時間間隔が生じる。   The piston is actuated so that backward movement occurs at shorter intervals than forward movement. The start of the forward movement of one piston may overlap the end of the forward movement of the other piston. This creates a time interval in which both pistons carry material in the direction of the high density material valve in parallel.

高密度材料バルブの切換位置は、搬送シリンダ内のピストンの動きに合わせてもよい。第1搬送シリンダのピストンが前進運動中であり、第2搬送シリンダのピストンが後退運動中である場合、高密度材料バルブを、第1貫通開口が開き、第2貫通開口が閉鎖された第1状態に切り換えることができる。第2搬送シリンダのピストンが前進運動中であり、第1搬送シリンダのピストンが後退運動中である場合、高密度材料バルブを、第2貫通開口が開き、第1貫通開口が閉鎖された第2状態に切り換えることができる。両方の搬送シリンダのピストンが前進運動である中間段階では、どちらの貫通開口も閉鎖されていない状態に高密度材料バルブを切り換えることができる。高密度材料バルブの中間状態では、両方の貫通開口が開いていることが好ましい。   The switching position of the high-density material valve may be matched to the movement of the piston in the transfer cylinder. When the piston of the first transfer cylinder is moving forward, and the piston of the second transfer cylinder is moving backward, the first through-opening is opened and the first through-opening is closed. Can be switched to a state. When the piston of the second transfer cylinder is moving forward and the piston of the first transfer cylinder is moving backward, the high-density material valve is opened with the second through opening opened and the first through opening closed. Can be switched to a state. In the intermediate stage when the pistons of both transfer cylinders are moving forward, the high-density material valve can be switched to a state in which neither through opening is closed. In the intermediate state of the high density material valve, it is preferred that both through openings are open.

第1搬送シリンダのピストンが後退運動中であり、第2搬送シリンダのピストンが前進運動中であるとすると、高密度材料バルブの第1貫通開口の上下流間に圧力差がある。高密度材料バルブの内部空間内の圧力は、前進運動によって第2搬送シリンダのピストンによって材料に及ぼされる圧力に実質的に相当する。第1貫通開口の上流には、第1搬送シリンダの吸引圧力が生じるが、かなり低い。上述のとおり、この圧力差を利用してバルブ部材と第1貫通開口との間の封止効果を強めることができる。逆に、第2搬送シリンダのピストンが後退運動中であり、第1搬送シリンダのピストンが前進運動中であるとすると、高密度材料バルブの第1貫通開口の上下流間に同様の圧力差がある。   If the piston of the first transfer cylinder is moving backward and the piston of the second transfer cylinder is moving forward, there is a pressure difference between the upstream and downstream of the first through opening of the high-density material valve. The pressure in the interior space of the high density material valve substantially corresponds to the pressure exerted on the material by the piston of the second transfer cylinder by the forward movement. Although the suction pressure of the first transfer cylinder is generated upstream of the first through opening, it is considerably low. As described above, this pressure difference can be used to enhance the sealing effect between the valve member and the first through opening. Conversely, if the piston of the second transfer cylinder is moving backward and the piston of the first transfer cylinder is moving forward, a similar pressure difference is generated between the upstream and downstream of the first through opening of the high-density material valve. is there.

バルブ部材の上下流間の圧力差は高密度材料バルブの切換処理の妨げになる。したがって、この圧力差に対して軽減された圧力差がバルブ部材の上下流間にあるときに切換処理が起こるように高密度材料バルブを設計してもよい。このため、貫通開口がバルブ部材によって閉鎖されている方のピストンの後退運動が完了している場合に限って切換処理が起こるのが好適である。それぞれのピストンが前進運動を開始して、それぞれの貫通開口の前ですでに圧力がもう一度蓄積している場合に限って切換処理が起こるのがさらに好適である場合もある。   The pressure difference between the upstream and downstream of the valve member hinders the switching process of the high-density material valve. Therefore, the high-density material valve may be designed so that the switching process occurs when the pressure difference reduced with respect to this pressure difference is between the upstream and downstream of the valve member. For this reason, it is preferable that the switching process occurs only when the backward movement of the piston whose through opening is closed by the valve member is completed. It may be more preferable for the switching process to occur only when each piston has started to move forward and pressure has already accumulated once more before each through opening.

他方のピストンの後退運動が始まる前に切換処理が終了するように高密度材料バルブが設計されていてもよい。特に、他方のピストンの前進運動が終わる前に切換処理が終了するように高密度材料バルブが設計されていてもよい。一方の貫通開口が閉鎖され、他方の貫通開口が開いている第1切換状態から、どちらの貫通開口も閉鎖されていない中間状態を経て、どちらかの貫通開口が閉鎖されているか開いている第2状態にバルブ部材が移行させられるように切換処理が設計されていてもよい。特に、バルブ部材の上下流間の圧力差が小さい場合に限ってバルブ部材の切換処理が始められるようにポンプが設計されていてもよい。   The high-density material valve may be designed so that the switching process ends before the other piston starts to move backward. In particular, the high density material valve may be designed so that the switching process is completed before the forward movement of the other piston is completed. From the first switching state in which one through-opening is closed and the other through-opening is opened, through the intermediate state in which neither through-opening is closed, either through-opening is closed or opened first. The switching process may be designed so that the valve member is shifted to two states. In particular, the pump may be designed so that the switching process of the valve member can be started only when the pressure difference between the upstream and downstream of the valve member is small.

上記はポンプのポンプモードに関するものである。吸引モードにおいて、ポンプは逆方向に操作されてもよい。吸引モードはたとえば、高密度材料バルブおよび付属の搬送ラインを清掃する働きまたはこの領域の障害物を取り除く働きをしてもよい。そして、搬送シリンダと高密度材料バルブとの相互作用は逆の手順で互いに調整される。   The above relates to the pump mode of the pump. In the suction mode, the pump may be operated in the reverse direction. The suction mode may, for example, serve to clean the high density material valve and the associated transfer line or to remove obstacles in this area. The interaction between the transport cylinder and the high-density material valve is adjusted to each other in the reverse procedure.

吸引モードにおいて、バルブ部材の上下流間の圧力差は通常バルブ部材の封止圧力を減少させる傾向にある。したがって、貫通開口の方向にかかる力がピボット部を介して封止部に及ぼされ、そのような陰圧差においてでも十分な封止効果を有するように、バルブ部材が設計されるべきである。   In the suction mode, the pressure difference between the upstream and downstream of the valve member usually tends to decrease the sealing pressure of the valve member. Therefore, the force applied in the direction of the through-opening is exerted on the sealing portion via the pivot portion, and the valve member should be designed so as to have a sufficient sealing effect even in such a negative pressure difference.

本発明は、好適な実施形態により、添付の図面を参照しつつ以下に一例として説明される。   The invention will now be described by way of example with reference to the accompanying drawings, in accordance with a preferred embodiment.

本発明にかかる高密度材料バルブを備えた、高密度材料ポンプ付き車両。A vehicle with a high-density material pump provided with the high-density material valve according to the present invention. 本発明にかかる高密度材料バルブを備えた高密度材料ポンプの(油圧記号による)ブロック図。1 is a block diagram (with hydraulic symbols) of a high density material pump with a high density material valve according to the invention. 本発明にかかる高密度材料バルブを備えた高密度材料ポンプの透視図。The perspective view of the high-density material pump provided with the high-density material valve | bulb concerning this invention. 図3のポンプの断面図。Sectional drawing of the pump of FIG. 図3の高密度材料ポンプの状態を表す概略図(図5Aはバルブ部材の状態を示し、図5Bはバルブの状態を示す)。Schematic showing the state of the high-density material pump of FIG. 3 (FIG. 5A shows the state of a valve member, FIG. 5B shows the state of a valve). 図3の高密度材料ポンプの別の状態を表す概略図(図6Aはバルブ部材の状態を示し、図6Bはバルブの状態を示す)。Schematic showing another state of the high-density material pump of FIG. 3 (FIG. 6A shows the state of the valve member, and FIG. 6B shows the state of the valve). 図3の高密度材料ポンプのさらに別の状態を表す概略図(図7Aはバルブ部材の状態を示し、図7Bはバルブの状態を示す)。Schematic showing still another state of the high-density material pump of FIG. 3 (FIG. 7A shows the state of the valve member, FIG. 7B shows the state of the valve). 図3の高密度材料ポンプのさらにもう1つの状態を表す概略図(図8Aはバルブ部材の状態を示し、図8Bはバルブの状態を示す)。FIG. 8A is a schematic diagram showing still another state of the high-density material pump of FIG. 3 (FIG. 8A shows a state of a valve member, and FIG. 8B shows a state of a valve). 本発明にかかるバルブ部材の概略図。Schematic of the valve member concerning this invention. バルブ部材の封止部にかかる圧力を表す図。The figure showing the pressure concerning the sealing part of a valve member. 一部が断面図で表された、本発明にかかる高密度材料バルブのバルブ部材。A valve member of a high-density material valve according to the present invention, a part of which is shown in a sectional view. 本発明の別の実施形態におけるバルブ部材。The valve member in another embodiment of the present invention. 本発明のさらに別の実施形態におけるバルブ部材。The valve member in another embodiment of this invention. 図13の実施形態の断面図。FIG. 14 is a cross-sectional view of the embodiment of FIG.

図1に表されたトラック14の積荷面には、コンクリートポンプ状の高密度材料ポンプ15が配置されている。高密度材料ポンプ15は、貯留槽(図示せず)からコンクリートが充填されるプレフィルタンク16を備える。高密度材料ポンプ15は、プレフィルタンクからコンクリートを吸引し、配送ブーム18に沿ってのびている接続パイプ17を介してコンクリートを搬送する。配送ブーム18は枢動リング19上に搭載され、数個の継ぎ目によって広げられることによってパイプ17の端をトラック14から間隔をあけた位置に置くことができる。この場所において、コンクリートが接続パイプ17から取り出される。   A concrete pump-like high-density material pump 15 is disposed on the loading surface of the truck 14 shown in FIG. The high density material pump 15 includes a prefill tank 16 filled with concrete from a storage tank (not shown). The high-density material pump 15 sucks the concrete from the prefill tank and conveys the concrete through the connection pipe 17 extending along the delivery boom 18. The delivery boom 18 is mounted on a pivot ring 19 and can be spread out by several seams to place the end of the pipe 17 at a distance from the track 14. At this location, concrete is removed from the connecting pipe 17.

図2に即した高密度材料ポンプは、第1搬送シリンダ21と第2搬送シリンダ22とを備える。各搬送シリンダ21、22は、ピストンを備えており、ピストンは後退運動をしながらプレフィルタンク16からコンクリートを吸引し、前進運動をしながらポンプの出口23の方向にコンクリートを搬送する。   The high-density material pump according to FIG. 2 includes a first transfer cylinder 21 and a second transfer cylinder 22. Each of the transfer cylinders 21 and 22 includes a piston. The piston sucks the concrete from the prefill tank 16 while moving backward, and transfers the concrete toward the outlet 23 of the pump while moving forward.

第1搬送シリンダ21は第1吸入バルブ24につながっている。第1搬送シリンダ21の後退運動中、吸入バルブ24は開かれているため、搬送シリンダ21はプレフィルタンク16からコンクリートを吸引することができる。第1搬送シリンダ21の前進運動中、吸入バルブ24は閉鎖されており、コンクリートがポンプ出口23の方向へ搬送されることが可能になる。第2搬送シリンダ22は第2吸入バルブ25につながっているため、第2吸入バルブ25の切換処理は第2搬送シリンダ22の後退運動および前進運動に同調する。   The first transport cylinder 21 is connected to the first suction valve 24. During the backward movement of the first transport cylinder 21, the suction valve 24 is opened, so that the transport cylinder 21 can suck concrete from the prefill tank 16. During the forward movement of the first transport cylinder 21, the suction valve 24 is closed, allowing the concrete to be transported in the direction of the pump outlet 23. Since the second transfer cylinder 22 is connected to the second intake valve 25, the switching process of the second intake valve 25 is synchronized with the backward movement and the forward movement of the second transfer cylinder 22.

ポンプは、第1搬送シリンダ21および第2搬送シリンダ22の両方に共通の排出バルブを形成する高密度材料バルブ26を備える。高密度材料バルブ26は、第1搬送シリンダ21で運ばれるコンクリート用の第1貫通開口27と、第2搬送シリンダ22で運ばれるコンクリート用の第2貫通開口28とを備える。高密度材料バルブのバルブ部材32は、第1切換状態29において、第1貫通開口27を閉鎖し、第2貫通開口28を開いたままにしておく。第2切換状態30において、高密度材料バルブ26は第2貫通開口28を閉鎖し、第1貫通開口27を開いたままにしておく。第3切換状態31(中間状態)においては、両方の貫通開口27、28が開いている。   The pump includes a high density material valve 26 that forms a discharge valve common to both the first transport cylinder 21 and the second transport cylinder 22. The high-density material valve 26 includes a first through opening 27 for concrete carried by the first transfer cylinder 21 and a second through opening 28 for concrete carried by the second transfer cylinder 22. In the first switching state 29, the valve member 32 of the high-density material valve closes the first through opening 27 and keeps the second through opening 28 open. In the second switching state 30, the high density material valve 26 closes the second through opening 28 and keeps the first through opening 27 open. In the third switching state 31 (intermediate state), both through openings 27 and 28 are open.

2つの搬送シリンダ21、22は、前進運動より後退運動の方が短い間隔で生じるように動かされる。一方の搬送シリンダの始まりは、他方の搬送シリンダの前進運動の終わりに重なる。したがって、どの瞬間においても、コンクリートが搬送シリンダ21、22の少なくとも一方から高密度材料バルブ26の方向に搬送されている。   The two transfer cylinders 21 and 22 are moved so that the backward movement occurs at a shorter interval than the forward movement. The beginning of one transport cylinder overlaps the end of the forward movement of the other transport cylinder. Therefore, at any moment, the concrete is conveyed from at least one of the conveying cylinders 21 and 22 toward the high-density material valve 26.

高密度材料バルブ26のバルブ部材32は、駆動装置によって異なる切換状態の間で能動的に切り換えられる。第1搬送シリンダ21が前進運動中で第2搬送シリンダ22が後退運動中である場合、高密度材料バルブ26は第1搬送シリンダ21からの材料の流れのみが高密度材料バルブ26を通り抜けられる切換状態30にある。第2搬送シリンダ22が前進運動中で第1搬送シリンダ21が後退運動中である場合、高密度材料バルブ26は第2搬送シリンダ22からの材料の流れのみが高密度材料バルブ26を通り抜けることができる切換状態29にある。搬送シリンダ21、22の両方が前進運動中である重複段階では、高密度材料バルブ26は搬送シリンダ21および22からの材料の流れが高密度材料バルブ26を通り抜けることができる中間状態31にある。   The valve member 32 of the high density material valve 26 is actively switched between different switching states depending on the drive. When the first transfer cylinder 21 is moving forward and the second transfer cylinder 22 is moving backward, the high-density material valve 26 is switched so that only the material flow from the first transfer cylinder 21 passes through the high-density material valve 26. It is in state 30. When the second transfer cylinder 22 is moving forward and the first transfer cylinder 21 is moving backward, the high-density material valve 26 can pass only the material flow from the second transfer cylinder 22 through the high-density material valve 26. It is in a switchable state 29 that can In the overlapped stage where both transfer cylinders 21, 22 are in forward motion, the high density material valve 26 is in an intermediate state 31 where the material flow from the transfer cylinders 21 and 22 can pass through the high density material valve 26.

2つの搬送シリンダ21、22には前進運動の基本速度がある。前進運動の基本速度は、搬送シリンダ21、22それぞれにとって他方の搬送シリンダが後退運動中に使われる。基本速度は、この段階でポンプ出口23の方向に搬送される材料の流れを画定する。搬送シリンダ21、22の両方が前進運動中である重複段階では、2つの前進運動の速度の合計が基本速度になるように、基本速度に比べて速度を遅くする。このようにして、重複段階でも材料の一定の流れがポンプ出口23の方向において維持される。   The two transfer cylinders 21 and 22 have a basic speed of forward movement. The basic speed of the forward movement is used for each of the transfer cylinders 21, 22 during the reverse movement of the other transfer cylinder. The basic speed defines the flow of material that is transported in the direction of the pump outlet 23 at this stage. In the overlapping stage where both the transfer cylinders 21 and 22 are moving forward, the speed is reduced compared to the basic speed so that the sum of the speeds of the two forward movements becomes the basic speed. In this way, a constant flow of material is maintained in the direction of the pump outlet 23 even in the overlapping stages.

図3は本発明にかかる高密度材料ポンプを透視図で表している。吸入バルブ25が開放された状態なので、ポンプの対応する吸入開口45は開けており、高密度材料を第2搬送シリンダ22でプレフィルタンク16(図1)から吸引することができる。第1吸入バルブ24は閉鎖された状態である。第1搬送シリンダ21のピストンが前進運動中のとき、材料の流れはポンプ出口23の方向に高密度材料バルブ26の第1貫通開口27を通り抜ける(図4参照)。   FIG. 3 is a perspective view of a high density material pump according to the present invention. Since the suction valve 25 is opened, the corresponding suction opening 45 of the pump is opened, and the high-density material can be sucked from the prefill tank 16 (FIG. 1) by the second transport cylinder 22. The first intake valve 24 is in a closed state. When the piston of the first transfer cylinder 21 is moving forward, the material flow passes through the first through opening 27 of the high-density material valve 26 in the direction of the pump outlet 23 (see FIG. 4).

ポンプの操作手順を図5から図8の概略図を使って説明する。図5Aにおいて、高密度材料バルブ26のバルブ部材32が切り換えられて第1搬送シリンダ21の貫通開口27を閉鎖し、前記バルブ部材は第2搬送シリンダ22の貫通開口28を開いたままにしておく。第2搬送シリンダ22の吸入バルブ25は閉鎖されている(図5B参照)。第2搬送シリンダ22は前進運動中であり、コンクリートを貫通開口28を通して高密度材料バルブ26の内部空間へ、そしてポンプ出口23へ搬送する。バルブ部材32の上下流間に圧力差があるおかげで、バルブ部材32と貫通開口27との間の封止効果が高まる。第1搬送シリンダ21の吸入バルブ24は開放されているため、第1搬送シリンダ21は後退運動をしながらプレフィルタンク16からポンプの吸入開口44を通してコンクリートを吸引することができる。   The operation procedure of the pump will be described with reference to the schematic diagrams of FIGS. In FIG. 5A, the valve member 32 of the high-density material valve 26 is switched to close the through opening 27 of the first transfer cylinder 21, and the valve member keeps the through opening 28 of the second transfer cylinder 22 open. . The suction valve 25 of the second transfer cylinder 22 is closed (see FIG. 5B). The second transport cylinder 22 is in a forward motion and transports concrete through the through opening 28 to the interior space of the high density material valve 26 and to the pump outlet 23. Thanks to the pressure difference between the upstream and downstream of the valve member 32, the sealing effect between the valve member 32 and the through opening 27 is enhanced. Since the suction valve 24 of the first transfer cylinder 21 is opened, the first transfer cylinder 21 can suck the concrete from the prefill tank 16 through the suction opening 44 of the pump while moving backward.

第1搬送シリンダ21の後退運動は第2搬送シリンダ22の前進運動より早く終了する。図6は、第1搬送シリンダ21の前進運動が始まり、第2搬送シリンダ22の前進運動がちょうど終わろうとする状態を表している。吸入バルブ24、25の両方が閉鎖されている。第1搬送シリンダ21が貫通開口27の前で再度圧力を高めたため、高密度材料バルブ26の中間状態31への切換が始まっており、バルブ部材32の上下流間にはごくわずかな圧力差がまだある。切換後、高密度材料バルブ26は中間状態31にあり、バルブ部材32は第1貫通開口27と第2貫通開口28との両方を開いたままにしておく。搬送シリンダ21、22の両方について前進運動が減速し、それまで第2搬送シリンダ22のみによって搬送されていた量の材料を、こんどは搬送シリンダ21、22両方が搬送する。   The backward movement of the first transfer cylinder 21 ends earlier than the forward movement of the second transfer cylinder 22. FIG. 6 shows a state in which the forward movement of the first transfer cylinder 21 starts and the forward movement of the second transfer cylinder 22 is about to end. Both intake valves 24, 25 are closed. Since the first conveying cylinder 21 has increased the pressure again in front of the through-opening 27, the high-density material valve 26 has started to be switched to the intermediate state 31, and there is a very small pressure difference between the upstream and downstream of the valve member 32. Still there. After switching, the high density material valve 26 is in the intermediate state 31 and the valve member 32 keeps both the first through opening 27 and the second through opening 28 open. The forward movement of both the transport cylinders 21 and 22 is decelerated, and both the transport cylinders 21 and 22 transport the amount of material that has been transported only by the second transport cylinder 22 until then.

第2搬送シリンダ22の前進運動が終わった後、吸入バルブ25が開放される(図7B参照)。減圧のため、第2搬送シリンダ22は吸入バルブ25が開く前に最初の後退運動をすでに行っていてもよい。吸入バルブ25が開放されると、第2搬送シリンダ22は後退運動をしながらプレフィルタンク16からポンプの吸入開口45を通してコンクリートを吸引することができる。第1搬送シリンダ21はその基本速度で前進し、ポンプ出口23への材料の流れは変わらず維持される。   After the forward movement of the second transfer cylinder 22 is finished, the suction valve 25 is opened (see FIG. 7B). Due to the pressure reduction, the second transfer cylinder 22 may have already performed the first backward movement before the intake valve 25 is opened. When the suction valve 25 is opened, the second transport cylinder 22 can suck the concrete from the prefill tank 16 through the suction opening 45 of the pump while moving backward. The first transfer cylinder 21 moves forward at its basic speed, and the material flow to the pump outlet 23 is maintained unchanged.

図8において、第1搬送シリンダ21の前進運動が終わるとともに、第2搬送シリンダ22の前進運動が再開する。第1搬送シリンダ21の前進運動が終わるとサイクル終了となり、ポンプは再度図5の状態に移行する。   In FIG. 8, the forward movement of the first transfer cylinder 21 is finished, and the forward movement of the second transfer cylinder 22 is resumed. When the forward movement of the first transfer cylinder 21 is finished, the cycle is finished, and the pump shifts again to the state shown in FIG.

高密度材料バルブ26のバルブ部材32は図9にしたがいピボット部34と封止部35とを備える。ピボット部34はシャフト33の2つの部分を有し、この部分によってピボット部は枢動軸線36に関して回転可能に取り付けられている。シャフト33と封止部35との間には接続構造48が形成されており、これは図9では単に概略的に表されている。接続構造48により、封止部35とシャフト33との半径方向の間隔を変えることが可能である。また、接続構造48はトルクへの剛性を持っている。したがって、シャフトがある角度だけ回転させられると、封止部35が同じ角度の枢動運動を行う。   The valve member 32 of the high-density material valve 26 includes a pivot portion 34 and a sealing portion 35 in accordance with FIG. The pivot part 34 has two parts of the shaft 33, by which the pivot part is rotatably mounted with respect to the pivot axis 36. A connecting structure 48 is formed between the shaft 33 and the sealing part 35, which is represented schematically in FIG. With the connection structure 48, the radial distance between the sealing portion 35 and the shaft 33 can be changed. Further, the connection structure 48 has rigidity against torque. Therefore, when the shaft is rotated by a certain angle, the sealing portion 35 performs the pivoting motion of the same angle.

封止部35の下面は、枢動軸線36を中心とする円筒部分の形状をした封止面38を形成している。高密度材料バルブ26の筐体は、同様に円筒部分の形状をした、一致する合わせ面を有する。高密度材料バルブ26の貫通開口27、28は、この合わせ面に形成されている。バルブ部材32の封止面38はバルブ筐体の合わせ面と相互に作用し、切換状態によって貫通開口27または貫通開口28を封止することができる。   The lower surface of the sealing portion 35 forms a sealing surface 38 in the shape of a cylindrical portion centered on the pivot axis 36. The housing of the high density material bulb 26 has matching mating surfaces that are also cylindrically shaped. The through openings 27 and 28 of the high-density material valve 26 are formed on this mating surface. The sealing surface 38 of the valve member 32 interacts with the mating surface of the valve housing, and the through opening 27 or the through opening 28 can be sealed depending on the switching state.

図10は、封止部35によって閉鎖された貫通開口27の前よりも、高密度材料バルブの内部空間の方が高圧となっている高密度材料バルブの状態を表している。バルブ部材32は封止面38の反対に位置する外面43を有し、高密度材料バルブ26内に存在する材料の圧力が外面43に対して半径方向にかかる。外側との圧力差は、バルブ部材32とバルブ筐体との間の封止効果を高めるのに役立つ。バルブ部材32は、互いに対称に位置する2つの外面44、45をさらに有する。外面44、45にかかる材料の圧力も同様に半径方向の成分を有するため、外面44、45も封止効果を高めるのに役立つ。   FIG. 10 shows a state of the high-density material valve in which the internal space of the high-density material valve is at a higher pressure than before the through opening 27 closed by the sealing portion 35. The valve member 32 has an outer surface 43 located opposite the sealing surface 38 and the pressure of the material present in the high density material valve 26 is applied to the outer surface 43 in the radial direction. The pressure difference with the outside serves to enhance the sealing effect between the valve member 32 and the valve housing. The valve member 32 further includes two outer surfaces 44 and 45 that are positioned symmetrically to each other. Since the material pressure on the outer surfaces 44, 45 also has a radial component, the outer surfaces 44, 45 also help enhance the sealing effect.

図11に表されたバルブ部材32において、ピボット部34はくぎ50を備え、くぎ50は封止部35の一致する凹部とかみ合う。くぎ50により、摺動ガイドが形成され、摺動ガイドに沿って封止部35がシャフト33に対して半径方向に動くことができる。摺動ガイドは他の方向の力への剛性を持っている。   In the valve member 32 shown in FIG. 11, the pivot portion 34 includes a nail 50, and the nail 50 engages with the corresponding concave portion of the sealing portion 35. The nail 50 forms a sliding guide, and the sealing portion 35 can move in the radial direction with respect to the shaft 33 along the sliding guide. The sliding guide has rigidity against forces in other directions.

ピボット部34と封止部35との間には弾性材料の板37が配置されている。板37は、ピボット部34と封止部35との間の接続構造の一部である。半径方向の圧力により板37は弾性的に圧縮されることが可能であるため、封止部35は摺動ガイドに沿ってピボット部34に近づく。   An elastic material plate 37 is disposed between the pivot portion 34 and the sealing portion 35. The plate 37 is a part of the connection structure between the pivot part 34 and the sealing part 35. Since the plate 37 can be elastically compressed by the pressure in the radial direction, the sealing portion 35 approaches the pivot portion 34 along the sliding guide.

工場調整済み状態の本発明にかかる高密度材料バルブ26は、板37が弾性的に圧縮され、その結果、板37によって半径方向に及ぼされる圧力であるバルブ筐体に対する弾性圧力をともなって封止部35が広がるように適合されている。ポンプの作動中にバルブ部材32またはバルブ筐体の摩耗が起こった場合、弾性板37が伸長することによりこれを自動的に補償することができる。吸引モードにおいて、板37は封止部35とバルブ筐体との間に確実に十分な押圧力がかかるようにしている。   The factory-adjusted high density material valve 26 according to the invention is sealed with elastic pressure on the valve housing, which is the pressure exerted radially by the plate 37 as a result of the plate 37 being elastically compressed. The part 35 is adapted to expand. If wear of the valve member 32 or the valve housing occurs during the operation of the pump, this can be automatically compensated for by the elastic plate 37 extending. In the suction mode, the plate 37 ensures that a sufficient pressing force is applied between the sealing portion 35 and the valve housing.

図11に表されているバルブ部材32はさらに、2つのスタブシャフト33の間に自由空間が挟まれるように設計されているため、材料の流れは貫通開口27、28からの直通路をポンプ出口23の方向に移動することができる。ピボット部34は2つの支柱51、52を備え、これらの支柱は半径方向に延在し、両者の間の自由空間を挟んでいる。半径方向において、自由空間は枢動軸線36と封止面38との間隔の50%以上にわたって広がっている。   The valve member 32 represented in FIG. 11 is further designed such that a free space is sandwiched between the two stub shafts 33, so that the material flow passes directly through the through openings 27, 28 to the pump outlet. It can move in the direction of 23. The pivot portion 34 includes two support columns 51 and 52, which extend in the radial direction and sandwich a free space between the both. In the radial direction, the free space extends over 50% of the distance between the pivot axis 36 and the sealing surface 38.

図12の実施形態でも、搬送の流れが排出開口の方向に動きやすいように、自由空間が同様に2つのスタブシャフト33の間に挟まれている。中央支柱53が半径方向に延在し、中央で封止部35に接続されている。支柱53のまわりには、材料の流れが動くのに十分なスペースがある。さらに、図12では見えないが、弾性板37および摺動ガイドによって図11と同様の接続構造が構成されている。   Also in the embodiment of FIG. 12, the free space is similarly sandwiched between the two stub shafts 33 so that the flow of conveyance is easy to move in the direction of the discharge opening. A central column 53 extends in the radial direction and is connected to the sealing portion 35 at the center. There is enough space around the column 53 for the flow of material to move. Furthermore, although not visible in FIG. 12, the elastic plate 37 and the sliding guide form a connection structure similar to that in FIG.

図13は、本発明にかかるバルブ部材32の別の実施形態を表している。封止部35はピボット部34のまわりに広がっているため、ピボット部34の断面は封止部の中に入っている。図14の断面図によると、封止部35の中でピボット部34は長方形の断面を有する。封止部35は、長方形の断面に一致する溝穴を有し、この中で弾性部材37がピボット部34の上と下とに配置されているため、封止部35とピボット部34との間の相対的回転運動が防止されつつ、封止部35はピボット部34に対して半径方向に動くことができる。ピボット部34はレバー39を備えており、異なる切換状態の間でバルブ部材32を切り換えるために、レバー39に駆動装置がかみ合ってもよい。   FIG. 13 shows another embodiment of the valve member 32 according to the present invention. Since the sealing portion 35 extends around the pivot portion 34, the cross section of the pivot portion 34 is in the sealing portion. According to the cross-sectional view of FIG. 14, the pivot portion 34 has a rectangular cross section in the sealing portion 35. The sealing portion 35 has a slot corresponding to a rectangular cross section, and the elastic member 37 is disposed above and below the pivot portion 34 in this, so that the space between the sealing portion 35 and the pivot portion 34 is between them. The sealing part 35 can move radially relative to the pivot part 34 while preventing relative rotational movement. The pivot part 34 includes a lever 39, and a drive device may engage the lever 39 to switch the valve member 32 between different switching states.

バルブ部材32は、軸線方向を指す2つの端面が高密度材料バルブ26の筐体46に直接寄りかかるような大きさとなっている。バルブ部材の両端面はへら55として構成される。バルブ部材32の切換処理のあいだ、へら55は高密度材料を筐体の端面に沿う側へ押す。   The valve member 32 has such a size that two end surfaces pointing in the axial direction directly lean against the casing 46 of the high-density material valve 26. Both end surfaces of the valve member are configured as spatula 55. During the switching process of the valve member 32, the spatula 55 pushes the high density material to the side along the end face of the housing.

バルブ部材の側面57はガイド面として構成される。ガイド面に沿って、材料の流れは高密度材料バルブの出口開口の方向へ搬送される。バルブ部材32の上側には凹部56が設けられ、凹部56によって材料の流れが排出開口の方向に動きやすくなる。   The side surface 57 of the valve member is configured as a guide surface. Along the guide surface, the material flow is conveyed in the direction of the outlet opening of the high density material valve. A concave portion 56 is provided on the upper side of the valve member 32, and the concave portion 56 facilitates movement of the material in the direction of the discharge opening.

Claims (14)

第1貫通開口(27)と、第2貫通開口(28)と、前記貫通開口(27、28)の両方に関連付けられるバルブ部材(32)とを備える高密度材料バルブであって、前記バルブ部材(32)が枢動軸線(36)に関して枢動可能に取り付けられており、前記バルブ部材(32)が前記枢動軸線(36)を中心として湾曲した封止面(38)を有し、第1状態(30)において前記バルブ部材(32)が前記第1貫通開口(27)の開放および前記第2貫通開口(28)の閉鎖を行い、第2状態(29)において前記バルブ部材(32)が前記第2貫通開口(28)の開放および前記第1貫通開口(27)の閉鎖を行い、前記バルブ部材(32)が封止部(35)とピボット部(34)とを備え、前記ピボット部(34)が前記枢動軸線(36)において回転可能に取り付けられており、前記封止部(35)が接続構造(37)を介して前記ピボット部(34)に接続されている、高密度材料バルブ。   A high density material valve comprising a first through opening (27), a second through opening (28), and a valve member (32) associated with both of the through openings (27, 28), wherein the valve member (32) is pivotally mounted with respect to a pivot axis (36), the valve member (32) having a sealing surface (38) curved about the pivot axis (36); In the first state (30), the valve member (32) opens the first through opening (27) and closes the second through opening (28), and in the second state (29), the valve member (32). Opens the second through-opening (28) and closes the first through-opening (27), and the valve member (32) includes a sealing part (35) and a pivot part (34), and the pivot Part (34) is the pivot axis (3 Rotatably mounted, the sealing portion (35) is connected to the pivot portion (34) via a connecting structure (37), high density material valve in). 前記バルブ部材(32)が前記高密度材料バルブの内部空間に配置されていることを特徴とする、請求項1に記載の高密度材料バルブ。   The high-density material valve according to claim 1, characterized in that the valve member (32) is arranged in the internal space of the high-density material valve. 前記第1貫通開口(27)と前記第2貫通開口(28)との間に、前記枢動軸線(36)を中心とする湾曲部を有する中間面が配置されていることを特徴とする、請求項1または2に記載の高密度材料バルブ。   An intermediate surface having a curved portion centered on the pivot axis (36) is disposed between the first through-opening (27) and the second through-opening (28). The high-density material valve according to claim 1 or 2. 第3切換状態において前記バルブ部材(32)が前記第1貫通開口(27)と前記第2貫通開口(28)との間に位置することを特徴とする、請求項1〜3のいずれか一項に記載の高密度材料バルブ。   The valve member (32) is located between the first through-opening (27) and the second through-opening (28) in the third switching state, according to any one of claims 1 to 3. The high-density material valve according to item. 前記接続構造(37)が前記枢動軸線(36)に関してかかるトルクへの剛性を持つことを特徴とする、請求項1〜4のいずれか一項に記載の高密度材料バルブ。   5. The high-density material valve according to claim 1, characterized in that the connection structure (37) is rigid to such a torque with respect to the pivot axis (36). 前記接続構造(37)が前記ピボット部(34)に対する前記封止部(35)の半径方向の動きを可能にすることを特徴とする、請求項1〜5のいずれか一項に記載の高密度材料バルブ。   A high according to any one of the preceding claims, characterized in that the connecting structure (37) allows a radial movement of the sealing part (35) relative to the pivot part (34). Density material valve. 前記接続構造が前記封止部(35)と前記ピボット部(34)との間に位置する弾性部材(37)を備えることを特徴とする、請求項1〜6のいずれか一項に記載の高密度材料バルブ。   The said connection structure is equipped with the elastic member (37) located between the said sealing part (35) and the said pivot part (34), It is any one of Claims 1-6 characterized by the above-mentioned. High density material valve. 前記バルブ部材(32)のシャフト(33)と前記バルブの筐体(46)との間に弾性部材が位置していることを特徴とする、請求項1〜7のいずれか一項に記載の高密度材料バルブ。   8. The elastic member according to claim 1, wherein an elastic member is located between the shaft of the valve member and the housing of the valve. High density material valve. 前記バルブ部材(32)が前記枢動軸線(36)において取り付けられた2つのスタブシャフト(33)を備え、前記2つのスタブシャフト(33)が互いの間に自由空間を挟んでいることを特徴とする、請求項1〜8のいずれか一項に記載の高密度材料バルブ。   The valve member (32) includes two stub shafts (33) attached at the pivot axis (36), and the two stub shafts (33) sandwich a free space between each other. The high-density material valve according to any one of claims 1 to 8. 前記バルブ部材(32)が前記枢動軸線(36)と前記封止面(38)との間に延在する1つの支柱(51、52、53)を備え、前記支柱(51、52、53)が前記高密度材料バルブ(26)の筐体(46)の端面から間隔をあけて配置されていることを特徴とする、請求項1〜9のいずれか一項に記載の高密度材料バルブ。   The valve member (32) includes one column (51, 52, 53) extending between the pivot axis (36) and the sealing surface (38), and the column (51, 52, 53). The high-density material valve according to claim 1, wherein the high-density material valve is arranged at a distance from an end face of the housing (46) of the high-density material valve (26). . 前記バルブ部材(32)がへら(55)を有し、前記バルブ部材(32)の切換処理中に前記高密度材料バルブ(26)の筐体(46)の端面に沿って前記へら(55)が動かされることを特徴とする、請求項1〜9のいずれか一項に記載の高密度材料バルブ。   The valve member (32) has a spatula (55) and the spatula (55) along the end face of the housing (46) of the high-density material valve (26) during the switching process of the valve member (32). The high-density material valve according to claim 1, wherein the high-density material valve is moved. 前記バルブ部材(32)が前記バルブ部材(32)の上下流間の圧力差を半径方向にかかる力に変換する外面(43、44、45)を備えることを特徴とする、請求項1〜11のいずれか一項に記載の高密度材料バルブ。   The said valve member (32) is provided with the outer surface (43, 44, 45) which converts the pressure difference between the upstream and downstream of the said valve member (32) into the force applied to a radial direction, The 1-11 characterized by the above-mentioned. The high-density material valve according to any one of the above. 請求項1〜12のいずれか一項に記載の高密度材料バルブを有する高密度材料ポンプにおいて、前記ポンプの搬送部材によって移動させられている前記材料が前記第1吸入開口(27)および/または前記第2吸入開口(28)を通って前記高密度材料ポンプの前記内部空間に入るように設計されていることを特徴とする、高密度材料ポンプ。   13. A high-density material pump having a high-density material valve according to any one of claims 1 to 12, wherein the material being moved by a conveying member of the pump is the first suction opening (27) and / or A high density material pump, characterized in that it is designed to enter the internal space of the high density material pump through the second suction opening (28). 前記バルブ部材(32)の上下流間に圧力差がないときに前記高密度材料バルブ(26)の状態を切り換えるように設計されていることを特徴とする、請求項13に記載の高密度材料ポンプ。   14. High density material according to claim 13, characterized in that it is designed to switch the state of the high density material valve (26) when there is no pressure difference between upstream and downstream of the valve member (32). pump.
JP2019529684A 2016-08-11 2017-08-04 High density material valve Active JP7019924B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16183665.5 2016-08-11
EP16183665.5A EP3282125A1 (en) 2016-08-11 2016-08-11 Valve for viscous materials
PCT/EP2017/069783 WO2018029099A1 (en) 2016-08-11 2017-08-04 Thick stock valve

Publications (2)

Publication Number Publication Date
JP2019525106A true JP2019525106A (en) 2019-09-05
JP7019924B2 JP7019924B2 (en) 2022-02-16

Family

ID=56686669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019529684A Active JP7019924B2 (en) 2016-08-11 2017-08-04 High density material valve

Country Status (6)

Country Link
US (1) US20200182230A1 (en)
EP (2) EP3282125A1 (en)
JP (1) JP7019924B2 (en)
KR (1) KR102334498B1 (en)
CN (1) CN109804161B (en)
WO (1) WO2018029099A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019839A (en) * 1974-03-29 1977-04-26 Friedrich Wilhelm Schwing Gmbh Distributing valves for viscous materials
JPS57135276A (en) * 1981-02-14 1982-08-20 Kyokuto Kaihatsu Kogyo Co Ltd Apparatus for changing over suction conveying section of concrete pump
JPH06200868A (en) * 1992-12-29 1994-07-19 Shintetsuku:Kk Ready-mixed concrete pressure feed pump
JP2000257731A (en) * 1999-03-09 2000-09-19 Ishikawajima Harima Heavy Ind Co Ltd Channel switching device
WO2013069325A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 Engine cooling control device
JP2016528433A (en) * 2013-08-13 2016-09-15 プッツマイスター エンジニアリング ゲーエムベーハー Two-cylinder viscous material pump with pipe switching part

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH96037A (en) 1921-04-27 1922-09-01 Bucher Guyer Ag Masch Three-way cock.
CH217841A (en) 1941-01-29 1941-11-15 Et Ateliers Du Kursaal Garage Key valve.
DE1653614U (en) * 1953-02-03 1953-04-09 Erich Iversen CULTIVATION IMPLEMENT.
DE1064308B (en) 1954-07-12 1959-08-27 Erich Kieback Dr Ing Rotary valve with part-cylindrical valve plate
DE1236287B (en) 1963-08-19 1967-03-09 Erkki Pietari Niskanen stopcock
DE1266595B (en) 1964-05-20 1968-04-18 Lederle Pumpen & Maschf Rotary valve for sugar centrifuges
US3279383A (en) 1965-01-06 1966-10-18 Burnup And Sims Inc Hydraulic powered mobile concrete pump assembly
US3398693A (en) * 1966-08-01 1968-08-27 Danken Inc Concrete pumping apparatus
DE1653614B2 (en) * 1967-06-10 1974-06-27 Bobbie Ray Oklahoma City Okla.(V.St.A.) Smith Rotary slide valve for a slurry pump, e.g. a concrete pump
DE1817568A1 (en) 1968-12-31 1970-07-09 Stetter Georg Control for a concrete pump
US3749525A (en) 1970-08-03 1973-07-31 D Hooper Hydraulically operated fluid aggregate pump
FR2177254A5 (en) 1972-03-24 1973-11-02 Pichon Maurice
IT1143815B (en) 1977-06-03 1986-10-22 Fata Fab App Sollevamento REVOLVING VALVE TO COMMAND THE FLOW OF A SOLID MATERILAE IN PARTICLES
DE3153268C2 (en) 1981-01-31 1988-01-28 Friedrich Wilh. Schwing Gmbh, 4690 Herne, De Two-cylinder viscous-material pump, preferably concrete pump
BE903948A (en) * 1985-12-30 1986-04-16 Neuckens Francois Piston-type concrete pump - has two cylinders in line connected to valve chamber between
FR2632377B1 (en) 1988-06-07 1990-09-07 Neu Ets VALVE WITH SPHERICAL CAP
DE19503986A1 (en) 1995-02-07 1996-08-08 Hudelmaier Ulrike Method and device for conveying concrete or other thick materials
DE29723204U1 (en) 1996-03-21 1998-04-30 Saxlund International GmbH, 29614 Soltau Valve with swiveling visor
BR0002048A (en) * 2000-03-02 2001-11-13 Mauro Moura Da Silva Concrete pumping valve
DE102004015768A1 (en) * 2004-03-31 2005-10-20 Christoph Rothdach Thick matter feed pump for sucking in concrete has a pour-in funnel to generate a continuous feed flow in a pipeline with a rotary slide valve
DE102005008938B4 (en) 2005-02-26 2007-01-25 Schwing, Friedrich, Dipl.-Ing. Pumping device and method for the continuous delivery pulpy masses
CN100357604C (en) * 2006-01-23 2007-12-26 三一重工股份有限公司 Distributing valve for concrete pump
CN101245866B (en) * 2008-03-24 2010-12-15 三一重工股份有限公司 Concrete distributing valve and concrete pumping mechanism
DE202008008060U1 (en) 2008-06-18 2008-10-02 Leifert, Rudolf Double piston pump
WO2010043238A1 (en) 2008-10-15 2010-04-22 Norgren Gmbh Pressure-sealing valve
DE102009005318B3 (en) 2009-01-16 2010-09-30 Schwing, Friedrich, Dipl.-Ing. Process for conveying mushy masses and pumping device for conveying mushy masses
CN102269161B (en) * 2011-04-22 2012-11-14 三一重工股份有限公司 Pumping mechanism and distribution valve thereof, and concrete pumping machine
CN202612694U (en) * 2012-03-26 2012-12-19 中交第二航务工程局有限公司 Hopper valve
CN202768380U (en) * 2012-04-25 2013-03-06 中联重科股份有限公司 Pumping distribution mechanism, pumping device and concrete pump
US8827657B1 (en) 2014-01-15 2014-09-09 Francis Wayne Priddy Concrete pump system and method
JP6200868B2 (en) 2014-08-19 2017-09-20 富士フイルム株式会社 Manufacturing method of optical film
DE102016118133A1 (en) 2016-09-26 2018-03-29 Pierburg Gmbh Rotary valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019839A (en) * 1974-03-29 1977-04-26 Friedrich Wilhelm Schwing Gmbh Distributing valves for viscous materials
JPS57135276A (en) * 1981-02-14 1982-08-20 Kyokuto Kaihatsu Kogyo Co Ltd Apparatus for changing over suction conveying section of concrete pump
JPH06200868A (en) * 1992-12-29 1994-07-19 Shintetsuku:Kk Ready-mixed concrete pressure feed pump
JP2000257731A (en) * 1999-03-09 2000-09-19 Ishikawajima Harima Heavy Ind Co Ltd Channel switching device
WO2013069325A1 (en) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 Engine cooling control device
JP2016528433A (en) * 2013-08-13 2016-09-15 プッツマイスター エンジニアリング ゲーエムベーハー Two-cylinder viscous material pump with pipe switching part

Also Published As

Publication number Publication date
EP3497329B1 (en) 2020-04-01
US20200182230A1 (en) 2020-06-11
KR20190038852A (en) 2019-04-09
EP3497329A1 (en) 2019-06-19
CN109804161A (en) 2019-05-24
CN109804161B (en) 2020-11-03
KR102334498B1 (en) 2021-12-03
WO2018029099A1 (en) 2018-02-15
JP7019924B2 (en) 2022-02-16
EP3282125A1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP5592096B2 (en) Vacuum valve
JP2015532250A (en) Flow path changing device and material collecting and conveying system
CN101905814B (en) Paper sheet takeout device
KR100934634B1 (en) Piston high density pump with continuous feed rate and control method for control thereof
JP2019525106A (en) High density material valve
JP4950874B2 (en) Piston pump for high viscosity materials
US20100278597A1 (en) Device for transporting powders along pipes
CN111606056B (en) Pull-type powder pressurized conveying device
JP2568342B2 (en) Material supply container for two cylinder type concentrated substance pump
JP3819952B2 (en) Separation device
JP4863205B2 (en) Device that can move by adsorbing negative pressure on the surface
JP3578361B2 (en) Channel switching device for reciprocating double row pump
JP6887670B2 (en) Route switching device and pneumatic transfer device
JP2001523800A (en) Valve device
JP6910070B2 (en) Tube pump
JP7248515B2 (en) piston pump
JP2001508516A (en) Pumps for concentrated substances
JP3955879B1 (en) Reciprocating device for intake
CN106457733B (en) For constituting the device and method of bottom opening in bag body
KR101281452B1 (en) Transferring device for sludge using changeover-valve switched simultaneously
JPH11159448A (en) Cam type pump
GB2325026A (en) Slurry pump
JPS6129986Y2 (en)
JP2022532436A (en) Concentrated substance pump and method of transporting concentrated substances
JPH0738672U (en) Cake pressure pump switching device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7019924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250