[go: up one dir, main page]

JP2019205239A - Power conversion system - Google Patents

Power conversion system Download PDF

Info

Publication number
JP2019205239A
JP2019205239A JP2018097537A JP2018097537A JP2019205239A JP 2019205239 A JP2019205239 A JP 2019205239A JP 2018097537 A JP2018097537 A JP 2018097537A JP 2018097537 A JP2018097537 A JP 2018097537A JP 2019205239 A JP2019205239 A JP 2019205239A
Authority
JP
Japan
Prior art keywords
power
active
factor
control means
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018097537A
Other languages
Japanese (ja)
Inventor
奨一 加藤
Shoichi Kato
奨一 加藤
森 泰久
Yasuhisa Mori
泰久 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018097537A priority Critical patent/JP2019205239A/en
Publication of JP2019205239A publication Critical patent/JP2019205239A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】力率を落として運転した際に最適に発電する。【解決手段】交流電力系統に接続された電力変換機と、該電力変換機の力率を制御する力率制御手段と、前記電力変換機の出力する有効電力を制御する有効電力制御手段と、を有する電力変換システムであって、力率1で出力可能な有効電力に前記力率制御手段で制御する力率を掛けた電力以上となるように、前記有効電力制御手段によって制御する有効電力を増減する有効電力調整機能を有することを特徴とする電力変換システムを提供する。【選択図】図2PROBLEM TO BE SOLVED: To optimally generate power when operating with a reduced power factor. SOLUTION: A power converter connected to an AC power system, a power factor control means for controlling a power factor of the power converter, and an active power control means for controlling active power output by the power converter. In the power conversion system having, the active power controlled by the active power control means is equal to or more than the power obtained by multiplying the active power outputable at the power factor 1 by the power factor controlled by the power factor control means. Provided is a power conversion system having an active power adjusting function of increasing or decreasing. [Selection diagram] Figure 2

Description

本発明は、電力変換システムに関する。   The present invention relates to a power conversion system.

近年太陽光発電の設置が全国的に増加し、分散型小型発電システムでは電圧上昇の問題が深刻化してきた。そのため、分散型小型発電システムから系統に対して進相無効電力を注入することによりこれを緩和する施策が行われている(特許文献1)。   In recent years, the installation of photovoltaic power generation has increased nationwide, and the problem of voltage rise has become serious in distributed small power generation systems. For this reason, measures have been taken to mitigate this by injecting phase reactive power from the distributed small power generation system to the system (Patent Document 1).

特開2014-166009号公報JP 2014-166009

特許文献1のように、進相無効電力を注入することは力率を悪化させ、同じ有効電力を出力するために必要な電流実効値レベルが増加する。電流が増加することにより、分散型小型発電システムの部品定格のスペックアップや、内部温度の上昇を抑える処置などが必要となる。このため、分散型小型発電システムが出力する有効電力を、落とした力率の分だけ絞って出力する必要がある。しかしながらこの処置は、分散型小型発電システムが本来発電可能な有効電力を十分に出力することができないという恐れがある。   As in Patent Document 1, injecting phase advance reactive power deteriorates the power factor, and the current effective value level necessary to output the same active power increases. As the current increases, it is necessary to improve the component ratings of the distributed compact power generation system and to take measures to suppress the rise in internal temperature. For this reason, it is necessary to reduce the active power output by the distributed compact power generation system by the amount of the dropped power factor. However, this measure has a risk that the distributed compact power generation system cannot sufficiently output the effective power that can be generated.

本発明は、発電システムの力率を落として発電した際、分散型小型発電システムが本来発電可能な有効電力を可能な限り維持するシステムを提供することにある。   An object of the present invention is to provide a system that maintains as much as possible the effective power that can be generated by a distributed compact power generation system when generating power by reducing the power factor of the power generation system.

本発明は、上記の課題を解決するためになされたものであり、交流電力系統に接続された電力変換機と、該電力変換機の力率を制御する力率制御手段と、前記電力変換機の出力する有効電力を制御する有効電力制御手段と、を有する電力変換システムであって、力率1で出力可能な有効電力に前記力率制御手段で制御する力率を掛けた電力以上となるように、前記有効電力制御手段によって制御する有効電力を増減する有効電力調整機能を有することを特徴とする。   The present invention has been made to solve the above-described problems, and includes a power converter connected to an AC power system, power factor control means for controlling the power factor of the power converter, and the power converter. An active power control means for controlling the effective power output by the power conversion system, wherein the effective power that can be output at a power factor of 1 multiplied by the power multiplied by the power factor controlled by the power factor control means As described above, the present invention is characterized by having an active power adjustment function for increasing or decreasing the active power controlled by the active power control means.

本発明によれば、発電システムの力率を落として発電した際であっても、分散型小型発電システムが本来発電可能な有効電力を可能な限り維持できるようになる。   ADVANTAGE OF THE INVENTION According to this invention, even when it is at the time of generating electric power by reducing the power factor of a power generation system, the distributed small power generation system can maintain active power which can be generated originally as much as possible.

本発明に関するシステム構成を示す概略図。Schematic which shows the system configuration regarding this invention. 本発明適用前の有効電力調整機能と有効電力制御機能を示す概略図。Schematic which shows the active power adjustment function and active power control function before this invention application. 本発明を適用した有効電力調整機能と有効電力制御機能を示す概略図Schematic showing active power adjustment function and active power control function to which the present invention is applied

以下本発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

本発明の実施例を図1から図2を用いて説明する。まず,図1に本発明の実施例におけるシステム構成図を示す。   An embodiment of the present invention will be described with reference to FIGS. First, FIG. 1 shows a system configuration diagram in an embodiment of the present invention.

このシステムは、太陽電池1、太陽電池1で発生した直流電力を交流電力に変換する電力変換機2、交流電力系統である商用系統3から構成されている。   This system includes a solar cell 1, a power converter 2 that converts DC power generated in the solar cell 1 into AC power, and a commercial system 3 that is an AC power system.

電力変換機2は、太陽電池1で発生した直流電力を交流電力に変換して商用系統3へと出力する電力変換回路20、電力変換回路20を制御する制御手段21、商用系統3の電圧Voutを検出する電圧検出手段22、電力変換回路20から商用系統3へと出力する電流Ioutを検出する電流検出手段23からなる。制御手段21は、電圧検出手段22と電流検出手段23の情報から力率λを算出する電力演算機能210、電力変換機2から商用系統3へ出力される有効電力Poutが力率目標値λrefで有効電力目標値Prefに略一致するように電流指令値Irefを決定する有効電力制御機能211、力率λを力率目標値λrefに略一致するように電圧Voutと電流Ioutの位相差θを制御する力率制御機能212、電流IoutをVoutに対して位相差θを持たせて電流指令値Irefに略一致するように制御する電流制御機能213、電圧Voutと力率目標値λrefに応じて有効電力Prefを増減する有効電力調整機能214、最大限発電可能な電力Pmを計算する最大発電電力演算手段215を有する。   The power converter 2 includes a power conversion circuit 20 that converts DC power generated in the solar cell 1 into AC power and outputs the AC power, a control unit 21 that controls the power conversion circuit 20, and a voltage Vout of the commercial system 3. Voltage detection means 22 for detecting the current, and current detection means 23 for detecting the current Iout output from the power conversion circuit 20 to the commercial system 3. The control means 21 has a power calculation function 210 for calculating the power factor λ from the information of the voltage detection means 22 and the current detection means 23, and the active power Pout output from the power converter 2 to the commercial system 3 is the power factor target value λref. Active power control function 211 for determining the current command value Iref so as to substantially match the effective power target value Pref, and control the phase difference θ between the voltage Vout and the current Iout so that the power factor λ substantially matches the power factor target value λref. Power factor control function 212 for controlling current Iout to have a phase difference θ with respect to Vout so that it substantially matches the current command value Iref, effective according to voltage Vout and power factor target value λref An active power adjustment function 214 that increases or decreases the power Pref, and a maximum generated power calculation means 215 that calculates the maximum power Pm that can be generated.

ここで、電圧Voutが202Vrmsの時、力率λが1で電力変換機2の出力することのできる最大の有効電力Poutのことを最大電力Pmax、電流Ioutを最大電流Imaxとする。通常、PoutはPmaxを、IoutはImaxを超えて運転してはならないものとする。   Here, when the voltage Vout is 202 Vrms, the maximum active power Pout that can be output from the power converter 2 when the power factor λ is 1 is the maximum power Pmax, and the current Iout is the maximum current Imax. Normally, Pout should not drive Pmax and Iout should not exceed Imax.

また、本実施例においては、入力となる電力源として太陽電池を用いて説明を行うが、入力となる電力源はガスコージェネレーションでもよいし、風力発電機でもよいし、燃料電池や蓄電池等でもよい。あるいはAC/ACインバータのように入力が交流電気の電力変換機であっても良い。   In this embodiment, a solar cell is used as an input power source. However, the input power source may be gas cogeneration, a wind power generator, a fuel cell, a storage battery, or the like. . Alternatively, an AC electric power converter may be used such as an AC / AC inverter.

また、最大発電電力演算手段215は、電力の入力源が太陽電池の場合であればMPPT(Maximum Power Point Tracking・最大電力点追従)のように時系列によって変動する最大限発電可能な電力を計算する手段を想定しているが、蓄電池や風力発電等が入力源の場合は別の方法により計算しても良い。   The maximum generated power calculation means 215 calculates the maximum power that can be generated that varies with time series, such as MPPT (Maximum Power Point Tracking) if the power input source is a solar cell. However, when a storage battery, wind power generation or the like is an input source, the calculation may be performed by another method.

図2に本発明適用前の有効電力調整機能214’と有効電力制御機能211を示す。S2141はλrefとPmaxを乗算することにより、第一の有効電力制限値Plim1を計算する。S2142は出力可能な電力とPlim1の小さいほう選択し、Prefにする。S2111はPrefとλrefを除算することにより、皮相電力指令値Srefを計算する。次にS2112でSrefをVoutで除算することによりIrefを計算する。   FIG. 2 shows an active power adjustment function 214 ′ and an active power control function 211 before application of the present invention. In S2141, the first active power limit value Plim1 is calculated by multiplying λref by Pmax. In S2142, the smaller of the output power and Plim1 is selected and set to Pref. In S2111, the apparent power command value Sref is calculated by dividing Pref and λref. In step S2112, Iref is calculated by dividing Sref by Vout.

有効電力調整機能214’は、力率目標値λrefと最大電力Pmax、および最大発電電力演算手段215によって得られる出力可能な電力PmからPrefを決定し、有効電力制御機能211はPoutがPrefと略一致させるために必要な電流指令値であるIrefをIref=Pref÷λref÷Voutとして計算する。   The active power adjustment function 214 ′ determines Pref from the power factor target value λref, the maximum power Pmax, and the output power Pm obtained by the maximum generated power calculation means 215, and the active power control function 211 abbreviates Pout as Pref. Iref, which is a current command value necessary for matching, is calculated as Iref = Pref ÷ λref ÷ Vout.

ここで、仮に有効電力調整機能214’が力率を考慮せずに、出力可能な電力を最大限出力するようPref=Pmaxとし、Vout=202Vとした場合、力率を下げると有効電力制御機能211が計算する電流指令値はIref=Pmax÷λref÷202>Imaxとなり、IrefがImaxを超えて運転してしまう。具体的にPmax=5500W,λ=0.85, Vout=202Vの場合を考えると、Imax=5500÷202=27.2A、Iref=5500÷0.85÷202=32.3Aとなり、最大電流27.2Aに対して超えてしまう。   Here, assuming that Pref = Pmax and Vout = 202V so that the active power adjustment function 214 ′ outputs the maximum possible power without considering the power factor, the active power control function can be achieved by lowering the power factor. The current command value calculated by 211 is Iref = Pmax ÷ λref ÷ 202> Imax, and Iref exceeds Imax. Specifically, considering Pmax = 5500W, λ = 0.85, Vout = 202V, Imax = 5500 ÷ 202 = 27.2A, Iref = 5500 ÷ 0.85 ÷ 202 = 32.3A, which exceeds the maximum current of 27.2A. End up.

このため、有効電力調整機能214’は、IrefがImaxを超えないように有効電力制限値Plim1を計算してPrefを制限する機能を持つ。S2141によってPlim1=Pmax×λrefを有効電力目標値Prefの制限として設け、Pref≦Plim1とする。これにより、Pout≦Pmax×λrefとなり、Iout≦Imaxを維持することができる。具体的にPmax=5500W,λref=0.85で最大限発電する場合を考えると、Plim1=5500×0.85=4675、Iout=4675÷0.85÷202=27.2となり、最大電流27.2Aに対して、出力電流が27.2Aとなる。   Therefore, the active power adjustment function 214 'has a function of limiting the Pref by calculating the active power limit value Plim1 so that Iref does not exceed Imax. By S2141, Plim1 = Pmax × λref is provided as a limit of the active power target value Pref, and Pref ≦ Plim1. As a result, Pout ≦ Pmax × λref, and Iout ≦ Imax can be maintained. Specifically, considering the case of maximum power generation with Pmax = 5500W, λref = 0.85, Plim1 = 5500 × 0.85 = 4675, Iout = 4675 ÷ 0.85 ÷ 202 = 27.2. 27.2A.

しかし、これはすなわち、力率目標値λrefを0.85まで低下させたい場合、Pmaxの85%までしか発電することができないことを意味する。   However, this means that, when it is desired to reduce the power factor target value λref to 0.85, power can be generated only up to 85% of Pmax.

次に、図3を用いて本発明を適用した有効電力調整機能214と有効電力制御機能211の動作について説明する。   Next, operations of the active power adjustment function 214 and the active power control function 211 to which the present invention is applied will be described with reference to FIG.

本発明では、電圧Voutを用いることで有効電力調整機能214がPrefをより適切に調整する。実現のため、有効電力調整機能214’にS2143とS2144を追加している。S2143はVoutを202Vで除算し、この値をS2144にてS2141で出力したPlim1との乗算を実施、これをS2142への入力としている。Plim1は電圧Voutが202Vrmsの時、IrefがImaxを超えないことを前提とした数値であるが、電圧Voutが高くなった場合、Pref=Pmaxの時にIref<Imaxとなるため、Prefをその分大きくすることが可能である。   In the present invention, the active power adjustment function 214 adjusts Pref more appropriately by using the voltage Vout. For realization, S2143 and S2144 are added to the active power adjustment function 214 '. In S2143, Vout is divided by 202V, and this value is multiplied by Plim1 output in S2141 in S2144, and this is used as an input to S2142. Plim1 is a value based on the premise that Iref does not exceed Imax when voltage Vout is 202Vrms. However, when voltage Vout becomes high, Iref <Imax when Pref = Pmax, so Pref is increased accordingly. Is possible.

これにより、電圧が202Vrmsより高くなった場合、Iref≦Imaxを満たす最大限の有効電力指令値Pref≦Pmaxを得ることができる。   As a result, when the voltage is higher than 202 Vrms, it is possible to obtain the maximum active power command value Pref ≦ Pmax that satisfies Iref ≦ Imax.

例として、まず、Vout=202V, Pmax=5500W, λref=0.85の場合を考えると、Plim2=5500×0.85÷202×202=4675、Iref=4675÷0.85÷202=27.2となり、最大電流27.2Aに対して、出力電流が27.2Aとなる。   As an example, first consider the case of Vout = 202V, Pmax = 5500W, λref = 0.85, Plim2 = 5500 × 0.85 ÷ 202 × 202 = 4675, Iref = 4675 ÷ 0.85 ÷ 202 = 27.2, and the maximum current is 27.2A. On the other hand, the output current is 27.2A.

一方、Vout=220V, Pmax=5500W, λref=0.85の場合は、Plim2=5500×0.85÷202×220=5092、Iref=5092÷0.85÷220=27.2となり、最大電流27.2Aに対して、出力電流が27.2Aとなる。このとき、Plim2=5092Wまで発電可能であり、これは最大発電量Pmaxの93%に相当する。   On the other hand, when Vout = 220V, Pmax = 5500W, λref = 0.85, Plim2 = 5500 × 0.85 ÷ 202 × 220 = 5092, Iref = 5092 ÷ 0.85 ÷ 220 = 27.2, and the output current against the maximum current of 27.2A Becomes 27.2A. At this time, power generation is possible up to Plim2 = 5092W, which corresponds to 93% of the maximum power generation amount Pmax.

このように、電圧が上昇した場合にはより大きな有効電力を発電することができ、かつ、電流指令値Irefが最大電流Imaxを超えないようにすることが可能となる。   As described above, when the voltage rises, it is possible to generate larger active power and to prevent the current command value Iref from exceeding the maximum current Imax.

1 太陽電池
2 電力変換機
3 商用系統
20 電力変換回路
21 制御手段
22 電圧検出手段
23 電流検出手段
210 電力演算機能
211 有効電力制御機能
212 力率制御機能
213 電流制御機能
214 有効電力調整機能
214’本発明適用前の有効電力調整機能
215 最大発電電力演算手段
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Power converter 3 Commercial system 20 Power conversion circuit 21 Control means 22 Voltage detection means 23 Current detection means 210 Power calculation function 211 Effective power control function 212 Power factor control function 213 Current control function 214 Effective power adjustment function 214 ' Active power adjustment function 215 before application of the present invention Maximum generated power calculation means

Claims (2)

交流電力系統に接続された電力変換機と、
該電力変換機の力率を制御する力率制御手段と、
前記電力変換機の出力する有効電力を制御する有効電力制御手段と、
を有する電力変換システムであって、
力率1で出力可能な有効電力に前記力率制御手段で制御する力率を掛けた電力以上となるように、前記有効電力制御手段によって制御する有効電力を増減する有効電力調整機能を有することを特徴とする電力変換システム。
A power converter connected to the AC power system;
Power factor control means for controlling the power factor of the power converter;
Active power control means for controlling the active power output by the power converter;
A power conversion system comprising:
It has an active power adjustment function to increase or decrease the active power controlled by the active power control means so that the effective power that can be output at a power factor of 1 is equal to or higher than the power multiplied by the power factor controlled by the power factor control means. Power conversion system characterized by
前記有効電力調整機能は、前記電圧検出手段で検出された電圧が増加するとともに前記電力変換機の出力する有効電力を増加させ、前記電圧検出手段で検出された電圧が減少するとともに前記電力変換機の出力する有効電力を減少させることを特徴とする請求項1に記載の電力変換システム。   The active power adjustment function increases the effective power output from the power converter while increasing the voltage detected by the voltage detecting means, and decreases the voltage detected by the voltage detecting means while reducing the voltage detected by the voltage detecting means. 2. The power conversion system according to claim 1, wherein the effective power output from the power source is reduced.
JP2018097537A 2018-05-22 2018-05-22 Power conversion system Pending JP2019205239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018097537A JP2019205239A (en) 2018-05-22 2018-05-22 Power conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018097537A JP2019205239A (en) 2018-05-22 2018-05-22 Power conversion system

Publications (1)

Publication Number Publication Date
JP2019205239A true JP2019205239A (en) 2019-11-28

Family

ID=68727485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018097537A Pending JP2019205239A (en) 2018-05-22 2018-05-22 Power conversion system

Country Status (1)

Country Link
JP (1) JP2019205239A (en)

Similar Documents

Publication Publication Date Title
TWI545878B (en) Power conversion system, method of operating a power conversion system and solar power conversion system
JP5391598B2 (en) Stabilized control system for distributed power supply
US7855467B2 (en) Hybrid power generation of wind-power generator and battery energy storage system
JP5717172B2 (en) Power supply system
JP5167106B2 (en) Wind power plant and its power generation control method
US20150008743A1 (en) Power Supply System
KR101752465B1 (en) Control method of photovoltaic power generating system having day/night mode function
JP2008154334A (en) Inverter
WO2011111511A1 (en) Solar power generation system and feeding system
KR20220163844A (en) Output fluctuations controlling system of new and renewable energy sources and output controlling method the same
JP2011233439A (en) Operation control method and system for fuel cell
US10693163B2 (en) Fuel cell system and vehicle
JP4046700B2 (en) Grid-connected inverter device
JP6297522B2 (en) Renewable energy output system, renewable energy output fluctuation suppression method, and renewable energy output fluctuation suppression program
JP2001346332A (en) Power fluctuation compensating system
JP2018023262A (en) Power supply system
JP2019205239A (en) Power conversion system
JP4569223B2 (en) Power supply
JP2006067673A (en) Power supply
JP4049080B2 (en) Isolated operation detection method and power supply apparatus
JP2011167014A (en) Device for control of converter
JP7700499B2 (en) Distributed power supply control device, control program, and distributed power supply system
JP7607490B2 (en) Power System
CN117352788B (en) Battery parameter dynamic control method based on current, electric equipment and electronic equipment
JP2008092719A (en) Instantaneous voltage drop compensation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180523