JP2019203918A - 画像形成装置、その制御方法及びプログラム - Google Patents
画像形成装置、その制御方法及びプログラム Download PDFInfo
- Publication number
- JP2019203918A JP2019203918A JP2018096960A JP2018096960A JP2019203918A JP 2019203918 A JP2019203918 A JP 2019203918A JP 2018096960 A JP2018096960 A JP 2018096960A JP 2018096960 A JP2018096960 A JP 2018096960A JP 2019203918 A JP2019203918 A JP 2019203918A
- Authority
- JP
- Japan
- Prior art keywords
- image
- toner
- amount
- image forming
- forming apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fixing For Electrophotography (AREA)
- Control Or Security For Electrophotography (AREA)
Abstract
【課題】画像解析の対象となるハーフトーン画像に対しトナー載り量を変化させるような調整等がその後に行われても、画像解析結果と、実際にプリンタエンジンで出力される時点でのトナー載り量との間で大きな齟齬が生じないようにする。【解決手段】電子写真方式の画像形成装置であって、印刷対象のコントーン画像からハーフトーン画像を生成する量子化手段と、前記ハーフトーン画像をPWM変換した画像信号に基づき、記録紙にトナー像を形成して定着させる画像形成手段と、前記ハーフトーン画像を解析し、所定範囲のトナー載り量を有する所定サイズの画像領域の有無を判定する解析手段と、前記解析の結果に基づき、前記定着に関するパラメータを設定する設定手段と、前記量子化手段で前記ハーフトーン画像が生成された後、トナー載り量の変化を伴う処理を行う処理手段と、を備え、前記所定範囲は、前記処理手段による処理の内容に基づき決定されることを特徴とする。【選択図】 図11
Description
本発明は、電子写真方式の画像形成装置におけるトナー像の定着温度制御とオフセットトナーのクリーニング制御の技術に関する。
電子写真方式による画像形成では、熱を加えることによりトナーを溶かし、圧力を加えることによって記録紙上にトナー像を定着させている。この定着時の温度が適切でない場合、トナー像を記録紙上に適切に定着することができず画像不良が発生する。例えば、定着温度が適切な温度よりも低い場合、トナーに伝わる熱量が不足してトナーが溶けきれず、記録紙へのトナー定着不良が発生する。一方で、定着温度が適切な温度よりも高い場合は、トナーを溶かし過ぎてしまう。これにより、本来は記録紙上に定着されるべきトナーが定着ローラや加熱フィルムに付着し、その結果、想定された画像濃度が記録紙上で表現されないことになる。そして、トナーは表面温度が低い側へ移動する性質があるところ、印刷を重ねるほど定着ローラが蓄熱してその表面温度が加熱フィルムよりも高くなることで、加熱フィルム側へトナーが移動し、加熱フィルム表面にトナーが徐々に蓄積してしまう。これを放置しておくと、次の定着プロセスの際に汚れとして記録紙上の画像に出てしまうので、適宜クリーニングを行い、定着ローラや加熱フィルムに付着してしまったトナー(オフセットトナー)を除去する必要がある。
このように定着プロセス時の温度制御やオフセットトナーのクリーニングは電子写真方式による画像形成において重要であるところ、その対応策として、例えば特許文献1には、印刷対象の画像を解析し、トナー載り量が所定値を超える画像部分の面積に応じて定着温度を制御する方法が開示されている。
上記画像解析は通常、プリンタエンジンに出力される前の網点(疑似中間調)で表現されたハーフトーン画像に対し実施される。しかしながら、印刷時の設定条件等によっては、画像解析の対象とされたハーフトーン画像の内容にさらなる調整が加えられることがあり、実際にプリンタエンジンで記録紙上に画像形成を行う段階では、画像解析の時点で予測されたトナー載り量から変化している場合がある。そうなると、画像解析の結果に基づいて定着温度やクリーニング頻度を適切に制御することが困難になる。
そこで本発明は、画像解析の対象となるハーフトーン画像に対しトナー載り量を変化させるような調整等がその後に行われても、画像解析結果と、実際にプリンタエンジンで出力される時点でのトナー載り量との間で大きな齟齬が生じないようにすることを目的としている。
本発明に係る画像形成装置は、電子写真方式の画像形成装置であって、印刷対象のコントーン画像からハーフトーン画像を生成する量子化手段と、前記ハーフトーン画像をPWM変換した画像信号に基づき、記録紙にトナー像を形成して定着させる画像形成手段と、前記ハーフトーン画像を解析し、所定範囲のトナー載り量を有する所定サイズの画像領域の有無を判定する解析手段と、前記解析の結果に基づき、前記定着に関するパラメータを設定する設定手段と、前記量子化手段で前記ハーフトーン画像が生成された後、トナー載り量の変化を伴う処理を行う処理手段と、を備え、前記所定範囲は、前記処理手段による処理の内容に基づき決定されることを特徴とする。
本発明によれば、画像解析の対象となるハーフトーン画像に対しトナー載り量を変化させる調整等がその後に行われても、画像解析結果と、実際にプリンタエンジンで出力される時点でのトナー載り量との間で大きな齟齬が生じないようにすることができる。その結果、定着温度の制御やオフセットトナーのクリーニング制御を適切に実施することが可能となる。
以下、図面を参照して本発明の実施の形態を詳しく説明する。尚、以下の実施の形態は特許請求の範囲に係る発明を限定するものでなく、また実施の形態で説明されている特徴の組み合わせの全てが発明の解決手段に必須のものとは限らない。
図1は、本実施形態に係る、電子写真方式のカラープリンタを含む印刷システムを示す図である。図1の印刷システムは、カラープリンタ10とホストPC20とが、LAN30を介して接続されている。カラープリンタ10は、コントローラ100、操作部11、プリンタエンジン200を備える。プリンタエンジン200は、図1において破線で囲まれた、電子写真方式にて画像形成を行う部分を指す。プリンタエンジン200には、シアン(C)、マゼンタ(M)、イエロー(Y)、ブラック(K)の各トナーに対応した4つのステーションが存在している。水平方向に配列されたこれら4つのステーションによって、イエロー、マゼンタ、シアン、ブラックの順にトナー像が順次形成される。
各ステーションには像担持体として感光ドラム201を備えている。感光ドラム201の周面には帯電器202、露光装置203、現像装置204、クリーニング装置207、前露光器208が配置されている。現像装置204には感光ドラム201へ現像材(トナー)を供給する現像ローラ205が配置されている。中間転写ユニット206では中間転写ベルト209と、中間転写ベルト209を介して各ステーションに1次転写ローラ210が感光ドラム201と対向で接触する。さらに、2次転写内側ローラ211と2次転写ローラ212も中間転写ベルト209を介して接触し、搬送方向に中間転写ベルトが回転するような構成で配置されている。定着装置213は、加熱フィルム(加熱回転体)214、定着ローラ215及び加圧ローラ216で構成され、記録紙222に転写されているトナーを加熱、加圧して定着させる。定着装置213の詳細は後述する。排紙ローラ217は定着装置213を通紙した記録紙222を排紙トレイ218に排出する。環境温湿度センサ219はプリンタエンジン200の設置環境の温度および湿度のセンシングを行い、コントローラ100に通知する。濃度検知センサ220は中間転写ベルト209上に転写されたトナー像を測定し、測定した濃度データをコントローラ100に通知する。クリーニングブレード221は2次転写時に記録紙222に転写されずに中間転写ベルト209上に残存したトナーのクリーニングを行う。給紙ローラ224は給紙カセット223に格納されている記録紙222を給紙する。
<コントローラ>
続いて、コントローラ100の詳細について説明する。図2は、コントローラ100の内部構成を示すブロック図である。コントローラ100は、CPU103、RAM104、ROM105、HDD106、操作部I/F107、ネットワークI/F108を有し、これら各部はシステムバス101を介して接続されている。さらに、システムバス101にはイメージバスI/F110が接続され、イメージバス102を介してデバイスI/F111、コントーン画像処理部112、ハーフトーン画像処理部113、画像解析部114が接続されている。イメージバス102は、PCIバスやIEEE1394などの高速バスであり、システムバス101との間で画像データを高速で転送する。
続いて、コントローラ100の詳細について説明する。図2は、コントローラ100の内部構成を示すブロック図である。コントローラ100は、CPU103、RAM104、ROM105、HDD106、操作部I/F107、ネットワークI/F108を有し、これら各部はシステムバス101を介して接続されている。さらに、システムバス101にはイメージバスI/F110が接続され、イメージバス102を介してデバイスI/F111、コントーン画像処理部112、ハーフトーン画像処理部113、画像解析部114が接続されている。イメージバス102は、PCIバスやIEEE1394などの高速バスであり、システムバス101との間で画像データを高速で転送する。
CPU103は、プログラムに従って各種の演算処理を行い、カラープリンタ10全体の制御を担う。RAM104は、各種データの一時記憶を行うメモリであり、CPU103のワークメモリとしても用いられる。ROM105はCPU103が実行する各種プログラムを記憶する。HDD106は、システムソフトウェアや入力画像データ等を格納する大容量記憶装置である。操作部I/F107は、操作部11に表示する画像のデータを操作部11に提供したり、操作部11上でユーザが入力した情報をCPU103に伝えたりするインタフェースである。ネットワークI/F108は、LAN30を介してホストPC20との間で印刷ジョブ等のやり取りを行うインタフェースである。イメージバスI/F110は、イメージバス102を接続し、データ構造を変換するバスブリッジである。デバイスI/F111は、プリンタエンジン200に対して画像データや各種指示を出力するインタフェースであり、同期系/非同期系の変換なども行う。コントーン画像処理部112は、印刷対象となる入力画像(多値のビットマップ画像)に対し、色変換処理や量子化処理といった画像処理を行う。ハーフトーン画像処理部113は、コントーン画像処理部112で生成されたハーフトーン画像に対し、プリンタエンジン200が処理可能な画像フォーマットに変換する処理を行う。また、ハーフトーン画像処理部113は、トナーを節約した印刷が指定されている場合は省トナー処理も行う。なお、コントーン画像処理部112及びハーフトーン画像処理部113の詳細については後述する。
<プリンタエンジン>
次に、プリンタエンジン200において、ハーフトーン画像処理部113から受信した画像信号(パルス幅信号)に従って、記録紙に印刷する各工程(帯電、露光、現像、転写、定着)について説明する。
次に、プリンタエンジン200において、ハーフトーン画像処理部113から受信した画像信号(パルス幅信号)に従って、記録紙に印刷する各工程(帯電、露光、現像、転写、定着)について説明する。
まず、感光ドラム201が時計回りの方向に所定のプロセススピードで回転駆動される。次に、帯電器202によって不図示のバイアス電源からバイアス印可制御が行われることにより、感光ドラム201の表面がマイナス極性に均一に帯電される。
次に、露光装置203はコントローラ100から送られてくるパルス幅信号に基づき、帯電後の感光ドラム201表面にレーザを照射する。レーザが照射された部分は帯電によって感光ドラム201の表面に保持されている電荷が除去され、パルス幅信号に基づいた画像パターンの静電潜像が形成される。
次に、露光装置203はコントローラ100から送られてくるパルス幅信号に基づき、帯電後の感光ドラム201表面にレーザを照射する。レーザが照射された部分は帯電によって感光ドラム201の表面に保持されている電荷が除去され、パルス幅信号に基づいた画像パターンの静電潜像が形成される。
次に、現像装置204の内部に設けられたトナー担持体である現像ローラ205に現像バイアスが印可されることにより、マイナス極性に帯電したトナーが感光ドラム201に飛翔、付着してトナー像として現像される。現像されたトナー像は1次転写ローラ210において、感光ドラム201から中間転写ベルト209の表面に1次転写される。
次に、中間転写ベルト209に1次転写されたトナー像を、2次転写内側ローラ211と2次転写外側ローラ212の対向位置において給紙ローラ224によって給紙された記録紙222に転写する。ここまでの処理が、イエロー、マゼンタ、シアン、ブラックの各ステーションにて実施される。
各ステーションでCMYKの4種類のトナー像が転写された記録紙222は、定着装置213に搬送される。そして、定着装置213にて加熱・加圧され、転写されたトナー像が記録紙222上に定着する。図3は、定着装置213の詳細を示す図である。定着装置213は、定着ローラ215と対向する位置に加圧ローラ216が配置されて、定着ニップを形成している。そして、定着ローラ215の外周面に対して加熱フィルム214が当接して、接触加熱部を形成している。加熱フィルム214内部には加熱ヒータ305が存在し、接触加熱部を介して定着ローラ215表面が外部加熱される構成になっている。また、位置ずれや破損を防止するため、加熱ヒータ305はヒータホルダ304で保持されている。そして、加熱ヒータ305による熱エネルギーが未定着トナー301を担持した記録紙222に伝えられ、未定着トナー301を加熱する。すなわち、トナー像が転写された記録紙222が定着ニップにまでくると、定着ローラ215表面の熱が未定着トナー301と記録紙222に伝わり、記録紙222表面に定着トナー302が形成される。
こうして、トナー像が定着された記録紙222は、排紙ローラ217を通して排紙トレイ218に排出される。
以上で1枚の記録紙222の片面に対する4色カラーの画像形成が終了する。
<コントーン画像処理部>
続いて、コントーン画像処理部112の詳細について説明する。図4(a)は、コントーン画像処理部112の内部構成を表わすブロック図である。コントーン画像処理部112は、色変換部401、載り量制限部402、ガンマ補正部403、疑似中間調処理部404で構成される。コントーン画像処理部112の処理対象である多値のビットマップ画像であるコントーン画像は、ホストPC20から送られた印刷ジョブに含まれる描画コマンド(PDLコマンド)をCPU103が解釈してビットマップ化することで得られる。ここでは、RGB各8ビットのコントーン画像がCPU103から入力されるものとする。
続いて、コントーン画像処理部112の詳細について説明する。図4(a)は、コントーン画像処理部112の内部構成を表わすブロック図である。コントーン画像処理部112は、色変換部401、載り量制限部402、ガンマ補正部403、疑似中間調処理部404で構成される。コントーン画像処理部112の処理対象である多値のビットマップ画像であるコントーン画像は、ホストPC20から送られた印刷ジョブに含まれる描画コマンド(PDLコマンド)をCPU103が解釈してビットマップ化することで得られる。ここでは、RGB各8ビットのコントーン画像がCPU103から入力されるものとする。
入力されたRGB色空間のコントーン画像は、まず、色変換部401において、プリンタエンジン200で用いる4種類のトナーに対応する、CMYK色空間のコントーン画像に色変換される。次に、載り量制限部402において、色変換処理されたCMYKのコントーン画像に対し、プリンタエンジン200で印刷可能な最大トナー載り量に制限する処理がなされる。ここで載り量とはシアン、マゼンタ、イエロー、ブラックの信号値の比率である。CMYK各色の信号値が8bitの本実施形態の場合、その最大値は255となり、この場合を100%とする。CMYK4色の総和は400%が最大となる。ここでは例えばCMY信号値をK信号値に置き換えることにより、最大トナー載り量を200%に制限する。次に、ガンマ補正部403において、CMYKのコントーン画像に対し、プリンタエンジン200の特性に応じて濃度を補正するガンマ補正がなされる。具体的には、CMYK各色に対して入力濃度レベルと出力濃度レベルを対応付けるLUT(ルックアップテーブル)を用いたり、或いは関数を用いた演算により、補正後の濃度値が求められる。そして、量子化部404において、ガンマ補正後のCMYKのコントーン画像に対し、例えば組織的ディザ法を用いて量子化処理がなされ、網点で表現された画像(ハーフトーン画像)が生成される。本実施形態ではオン(1)とオフ(0)の2値への量子化を例に説明するが、量子化値は4値や16値でもよい。量子化処理で用いる閾値マトリクスは、写真画像には安定した階調性を優先する低線数のスクリーン、文字画像には解像度を優先する高線数のスクリーンといった具合に、対象となる画像の特徴に合わせて変更するようにしてもよい。
<ハーフトーン画像処理部>
続いて、ハーフトーン画像処理部113の詳細について説明する。図4(b)は、コントーン画像処理部113の内部構成を表わすブロック図である。
続いて、ハーフトーン画像処理部113の詳細について説明する。図4(b)は、コントーン画像処理部113の内部構成を表わすブロック図である。
ハーフトーン画像処理部113は、コントーン画像処理部112から出力されたハーフトーン画像の各画素の濃度値をパルス幅で表現した信号に変換し、画素単位又はライン単位で順次プリンタエンジン102に渡す。その際、使用するトナー量を節約する省トナー印刷が指定されていれば、省トナー処理も行う。ハーフトーン画像処理部113は、PWM変換部411と省トナー処理部412とで構成される。そして、省トナー処理部412は、中間調判定部421、エッジ判定部422及び間引き部414で構成される。
まず、必ず行われるPWM(Pulse Width Modulation)制御、すなわち、パルス幅変調処理について説明する。パルス幅変調処理は、ハーフトーン画像における各画素を、主走査方向に対し複数の1画素未満のサブピクセル(本実施形態では16個のサブピクセル)に分割し、その画素値(階調値)に応じた露光量を表すパルス幅信号に変換する処理である。例えば、注目画素が、階調値=1のオン画素であったとする。この場合、通常印刷時は16個のサブピクセルをすべて(100%)露光するようなパルス幅信号に変換される。しかしながら、バーコード印刷時などは例えば12/16個(75%)のサブピクセルを露光するようなパルス幅信号に変換される。これは、バーコードを構成する個々の線が少し細く印刷されるようにパルス幅を制御することで、バーコードの読み取り性能を向上させる目的でなされる一種の濃度調整処理である。
なお、パルス幅変調処理によって各画素が複数のサブピクセルに分割された場合、分割される前に比べ画像のデータ量が増える。この点、量子化処理後のハーフトーン画像のデータをページ単位でスプールしておき、そこから処理対象の画像データをライン単位で取得してパルス幅変換処理を行って、得られたパルス幅信号を順次プリンタエンジン200に出力するようにする。これにより、リカバリ印刷用や溜め置き印刷用にHDD106やRAM104に一時保存する際の画像データ量を削減することができる。
次に、省トナー印刷が設定されている場合に行われる省トナー処理について説明する。省トナー処理部412に入力されたハーフトーン画像に対しては、各画素が中間調領域の画素であるかどうか及びエッジ部の画素であるかどうかの判定が、中間調判定部421とエッジ判定部422とでそれぞれなされる。これらの判定は、非中間調領域の画素であって、かつ、エッジ部の画素を、後段の間引き処理の対象から除外するために行う。
中間調判定部421では、注目画素に対し、当該注目画素を中心とした所定ウィンドウサイズ(例えば11×11画素)の画素群を参照して、注目画素が中間調領域の画素であるか否かを判定する。中間調判定部421に注目画素を含む11×11画素の画素群が入力されると、図5の(a)〜(d)に示すような、それぞれが5×5画素の4つのArea1〜4に分割される。図5の(a)〜(d)において、網掛け部分は注目画素を示している。そして、各エリアについて、エリア内に含まれる全ての画素がオフ画素であるか否か(階調値が0であるか)が判定される。4つのArea1〜4のうちいずれか1つのエリアで、エリア内の全画素がオフ画素である場合は、注目画素は中間調領域に属さない(非中間調領域の画素である)と判定する。一方、それ以外の場合は、注目画素は中間調領域に属する画素であると判定する。なお、この判定では、4つすべてのAreaにおいてエリア内の全画素がオン画素である(階調値が1である)場合も、注目画素は中間調領域の画素であると判定されることになる。つまり、中間調判定部421で判定する“中間調”は、必ずしも面積階調における“中間調”とは一致しない。中間調判定の結果は、後段の間引き部423に出力される。
エッジ判定部422では、注目画素に対し、当該注目画素を中心とした所定ウィンドウサイズ(例えば3×3画素)の画素群を参照して、注目画素がオブジェクトのエッジ部の画素であるか否かを判定する。図6(a)は、エッジ判定部422に入力される、注目画素を含む3×3画素の画素群を示しており、斜線部分は注目画素を示している。図6(b)は、注目画素とその上の隣接画素を示している。注目画素がオン画素で、かつ、隣接画素がオフ画素であった場合、注目画素は上エッジ画素と判定される。同様に、図6(c)では注目画素とその下の隣接画素を、図6(d)では注目画素とその左の隣接画素を、図6(e)では注目画素とその右の隣接画素をそれぞれ参照して、エッジ判定がなされる。そして、判定結果が後段の間引き部423へ出力される。
間引き部414は、ハーフトーン画像内のオン画素を間引いて、トナー消費量を一定割合低減させる処理を行う。具体的には、予め用意した間引きパターンを用いて、所定の画素位置にあるオン画素をオフ画素に置き換える(ここでは、階調値を1から0に変更する)処理を行う。この際に置き換えの対象となるオン画素は、中間調領域の画素であって、かつ、非エッジ部の画素である。省トナー印刷の場合、こうして一定数のオン画素が間引かれた画像のデータが、PWM変換部411でパルス幅信号に変換されることになる。
<解決すべき課題の確認>
電子写真方式のプリンタでは、感光ドラム上にレーザを照射し潜像パターンを作成している。このためプリンタエンジン200に対してはライン単位で画像データが順次送信され、ライン単位で画像形成が行われる。一方、定着温度の制御のための単位面積当たりのトナー載り量の解析処理では、画像の副走査方向の情報も必要であるため、ページ単位もしくは一定以上のライン数の画像を対象として実施される。ところで、上述したように、省トナー印刷時やバーコード印刷時には、ハーフトーン画像処理部113において所定の濃度調整処理が施される。そうなると、画像解析によって得られたトナー載り量と、プリンタエンジン200で画像形成される時点での実際のトナー載り量との間に齟齬が生じる。そして、画像解析の結果に基づき決定された定着温度は結果的に不適切な温度となって、画像不良に繋がる恐れがある。このような問題に対処するべく、本実施形態では、画像形成時の実際のトナー載り量を見越した画像解析を行えるようにする。
電子写真方式のプリンタでは、感光ドラム上にレーザを照射し潜像パターンを作成している。このためプリンタエンジン200に対してはライン単位で画像データが順次送信され、ライン単位で画像形成が行われる。一方、定着温度の制御のための単位面積当たりのトナー載り量の解析処理では、画像の副走査方向の情報も必要であるため、ページ単位もしくは一定以上のライン数の画像を対象として実施される。ところで、上述したように、省トナー印刷時やバーコード印刷時には、ハーフトーン画像処理部113において所定の濃度調整処理が施される。そうなると、画像解析によって得られたトナー載り量と、プリンタエンジン200で画像形成される時点での実際のトナー載り量との間に齟齬が生じる。そして、画像解析の結果に基づき決定された定着温度は結果的に不適切な温度となって、画像不良に繋がる恐れがある。このような問題に対処するべく、本実施形態では、画像形成時の実際のトナー載り量を見越した画像解析を行えるようにする。
<印刷処理全体フロー>
図7は、本実施形態に係る印刷処理の全体の流れを示すフローチャートである。本フローは、CPU103がROM105或いはHDD106に記憶されたプログラムをRAM104に展開してこれを実行することによって実現されるものとする。なお、以下の説明において記号「S」はステップを表す。
図7は、本実施形態に係る印刷処理の全体の流れを示すフローチャートである。本フローは、CPU103がROM105或いはHDD106に記憶されたプログラムをRAM104に展開してこれを実行することによって実現されるものとする。なお、以下の説明において記号「S」はステップを表す。
S701では、ホストPC20から印刷ジョブが入力される。CPU103は、入力された印刷ジョブに含まれる描画コマンドに従って、RGB多値(ここでは各8ビット)のビットマップ画像を生成する。RGB多値のビットマップ画像のデータは、コントーン画像処理部112に送られる。
S702では、コントーン画像処理部112において、RGB各8ビットのビットマップ画像に対し、前述の色変換処理、載り量制限処理、ガンマ補正処理、量子化処理が施され、CMYKの各トナーに対応する2値のハーフトーン画像が生成される。続くS703では、CPU103によってスプール処理が実行される。すなわち、S702で生成されたハーフトーン画像のデータがHDD106等に一時保存される。なお、印刷ジョブ内で複数ページの印刷が指定されている場合、S702及びS703の各処理はページ単位で順次実行される。
S704では、スプールされたハーフトーン画像のデータがページ単位で読み出され、画像解析部114において、所定トナー載り量を有する所定サイズの画像領域の有無をページ単位で判定する画像解析処理が実行される。この画像解析処理の詳細は後述する。
また、S704の処理と並行してS705では、スプールされたハーフトーン画像のデータがライン単位で読み出され、ハーフトーン画像処理部113において、パルス幅変調処理を含む所定の画像処理が実行される。例えば、省トナー印刷が指定されている場合にはオン画素を一定数間引く処理(省トナー処理)が、パルス幅変調処理に先立って実行される。また、バーコード印刷が指定されている場合には、パルス幅変調処理の際に、通常時よりも狭いパルス幅に変換される。省トナー印刷やバーコード印刷が指定された際に実行される、これら濃度変化(トナー載り量変化)を伴う調整処理の詳細については後述する。
次に、S706では、CPU103が、環境温湿度センサ219に対して、プリンタエンジン200周辺の温度及び湿度の測定を指示し、その測定結果を動作環境情報として取得する。続くS707では、CPU103が、S704での画像解析処理の結果及びS706で取得した動作環境情報に基づき、印刷処理時の定着プロセスに関するパラメータ(以下、「定着パラメータ」と呼ぶ。)を決定する。本実施形態では、この定着パラメータとして、定着プロセス実行時の温度及び定着プロセス実行後の加熱フィルムに付着したオフセットトナーのクリーニング頻度が決定される。なお、画像解析処理はページ単位で行われるので、上記定着温度とクリーニング頻度もページ単位で決定・制御されることになる。
まず、定着温度の決定における基本的な考え方について説明する。例えば、ページ内の低載り量部分は網点密度が低く、定着装置213と記録紙222との接地面が多くなる。よって、定着時には、記録紙222に含まれる水分によって、トナーを融解させるための熱量が奪われやすくなる。ここで、カラープリンタの動作環境として、通常時の環境が温度25度、湿度50%であるとする。この場合において、例えば温度・湿度が相対的に高い環境(例えば温度30度、湿度80%)では、記録紙222に含まれる水分量が通常時よりも多くなる。この場合、記録紙222によって奪われる熱量が増加するため、トナーが十分に融解されないことになる。トナーを十分に融解できないと、ページ面内において濃度不足や濃度ムラが生じる原因となる。そこで、例えば画像解析によって低載り量の画像領域が検知され、かつ、通常時よりも高温・高湿度の環境であると判定された場合には、デフォルトの定着温度よりも高めの温度(例えばプラス5度)を、適用する定着温度として決定する。このように、画像解析結果と動作環境情報とに基づいて、定着プロセス実行時の温度がページ単位で決定される。
続いて、オフセットトナーのクリーニング頻度の決定における基本的な考え方について説明する。まず、低温・低湿度の環境では、記録紙222に含まれる水分量が相対的に少ないため、定着時に記録紙222のよって奪われる熱量が少なくなる。そうなると、低載り量部分では熱量過多となってトナーが分離し、最終的に加熱フィルム214にそれが付着し、次回の定着プロセス時に記録紙222上に汚れとなって現れてしまう場合がある。そこで、例えば画像解析によって低トナー載り量の画像領域が検知され、かつ、通常時よりも低温・低湿度の環境である場合には、デフォルトのプラス10%(例えば、20ページ印刷する毎に1回実施を18ページ印刷する毎に1回実施に変更)に、オフセットトナーのクリーニング頻度が設定される。このように、画像解析結果と動作環境情報とに基づいて、オフセットトナーのクリーニング頻度が決定される。
S708では、プリンタエンジン200において印刷処理が実行される。具体的には、ハーフトーン画像処理部113から出力されるライン単位のパルス幅信号データに従って記録紙222上に画像が形成される。この画像形成時には、S707で決定された定着パラメータに含まれる情報に従い、ページ単位で定着温度が制御される。1ページ分の印刷処理が完了すると、S709でCPU103が、オフセットトナーのクリーニングの要否を判定する。この判定では、S707で決定された定着パラメータに含まれるクリーニング頻度が参照され、クリーニングの実行タイミングが到来していれば、クリーニングの必要ありと判定されることになる。クリーニングが必要であると判定された場合はS710に進み、必要ないと判定された場合はS711に進む。
そして、S710では、プリンタエンジン200において、オフセットトナーを取り除くクリーニング処理が実行される。具体的には、まず、表面温度の関係が、加熱フィルム214>定着ローラ215>加圧ローラ216の状態になるようにする。そして、加熱フィルム214に付着していたトナーを、定着ローラ215を介して加圧ローラ216側に移動させる。そのタイミングで接触加熱部に記録紙222を到達させ、定着ローラ215と加圧ローラ216の表面に付着したオフセットトナーを、記録紙222に付着させて排紙する。こうして、オフセットトナーが、加熱フィルム214、定着ローラ215及び加圧ローラ216の表面から除去される。
S711では、未処理のページがあるかどうかの判定がなされる。印刷指示のあった全ページの印刷処理が完了していれば、本フローは終了となる。一方、未処理のページがあれば、S708に戻って次のページの印刷処理が実行される。
以上が、本実施形態に係る印刷処理の全体フローである。
<画像解析処理>
続いて、上述のS704における画像解析処理の詳細を説明する。図8は、本実施形態に係る、所定トナー載り量を有する所定サイズの画像領域の有無をページ単位で判定する画像解析処理の流れを示すフローチャートである。本実施形態では、トナー載り量が少ない所定サイズの画像領域(低載り量領域)がページ内にあるかどうかを判定する場合を例に説明するものとする。なお、所定トナー載り量の範囲を変更することで高載り量領域の有無をページ単位で判定するも可能である。以下、図8のフローに沿って説明する。
続いて、上述のS704における画像解析処理の詳細を説明する。図8は、本実施形態に係る、所定トナー載り量を有する所定サイズの画像領域の有無をページ単位で判定する画像解析処理の流れを示すフローチャートである。本実施形態では、トナー載り量が少ない所定サイズの画像領域(低載り量領域)がページ内にあるかどうかを判定する場合を例に説明するものとする。なお、所定トナー載り量の範囲を変更することで高載り量領域の有無をページ単位で判定するも可能である。以下、図8のフローに沿って説明する。
S801では、処理対象ページのハーフトーン画像のうち注目する局所領域(ここでは16×16画素)におけるトナー載り量TnrSumが算出される。具体的には、注目局所領域内の全画素(16×16画素の場合は256個)のうちオン画素の数が占める割合(オン画素比率)が求められる。例えば、注目局所領域内のオン画素数が128個であった場合のトナー載り量TnrSumは、(128/256)×100=50%となる。図9(a)はページ内の局所領域の配置を示した図であり、符号901は注目局所領域を示している。図9(a)では、主走査方向にM個、副走査方向にN個の局所領域が配置されており、例えば、(M,N)=(0,0)の位置から主走査方向へ移動しながら各局所領域におけるトナー載り量TnrSumが順次算出されることになる。
S802では、S801で算出された注目局所領域のトナー載り量が、予め指定された所定トナー載り量に該当するかどうかが判定される。前述のとおり低載り量領域の検出を目的とする本実施形態では、通常印刷時においてトナー載り量が10%〜40%の範囲が、所定トナー載り量として設定されているものとする。そして、省トナー印刷やバーコード印刷といったトナー載り量の変化を伴う特定印刷が指定されている場合は、同じ低載り量領域の検出を目的として、通常印刷時よりも少し高めの範囲が所定トナー載り量として設定されることになる。その理由を含めた詳細については後述する。判定の結果、注目局所領域のトナー載り量が所定トナー載り量である10%〜40%の範囲内であれば、S803に進む。一方、範囲外であればS804に進む。なお、低載り量領域の検出を目的として通常印刷時の載り量範囲を10%〜40%としているが、下限及び上限を規定する閾値はこれに限定されるものではない。定着装置213と記録紙222の接触面が一定以上に大きくなる載り量範囲の中から、定着性が低下して濃度ムラが目立ちやすくなる載り量範囲や、オフセットトナーによる汚れが懸念される載り量範囲を、テスト印刷を行うなどして見極め、適宜設定すればよい。そして、濃度調整によってトナー載り量が変化する特定の印刷条件が指定された場合に、通常時よりも高めの閾値が適用されるように制御されればよい。
S803では、副走査連結数カウンタがカウントアップされる。副走査連結数カウンタは、所定トナー載り量を有する局所領域が副走査方向に何個連続しているかを係数するカウンタである。この副走査連結数のカウントは、主走査位置毎に行う。なお、副走査連結数カウンタの初期値は0に設定されている。
S804では、副走査連結数カウンタの現カウント値SV_crが、ここまでの最大カウント値SV_maxよりも大きいか否かが判定される。現カウント値SV_crがここまでの最大カウント値SV_maxよりも大きい場合はS805に進む。一方、現カウント値SV_crがこれまでの最大カウント値SV_max以下である場合はS806に進む。なお、副走査連結数カウンタの最大カウント値SV_maxの初期値は0に設定されている。
S805では、副走査連結数カウンタの最大カウント値SV_maxが、現カウント値SV_crの値で更新される。そして、S806では、副走査連結数カウンタの現カウント値SV_crが初期化される。
S807では、現在の主走査位置における局所領域の副走査連結数の計数が完了したか否か(副走査方向N番目の局所領域まで処理したか)が判定される。完了している場合はS808に進む。一方、完了していない場合はS801に戻り、同じ主走査位置における次の局所領域を対象として処理が続行される。ここまでの処理により、注目主走査位置における、所定トナー載り量を有する局所領域が繋がって構成される最も大きな画像領域の副走査方向の長さを特定することができる。
S808では、全ての主走査位置について副走査連結数の計数が完了したか否か(主走査方向M番目の局所領域まで処理したか)が判定される。完了している場合はS809に進む。一方、完了していない場合は隣の主走査位置に移動し、S801に戻って次の局所領域を対象として処理が続行される。図9(b)は、図9(a)に示すページの一部(主走査位置M=1〜3、副走査位置N=1〜12)についての、所定トナー載り量を有すると判定された局所領域を示している。図9(b)に示す一部においては、主走査位置M=0における副走査連結数の最大カウント値SV_maxは2、主走査位置M=1〜3における副走査連結数の最大カウント値SV_maxは4となる。このような処理をすべての主走査位置0〜Mを対象として副走査位置N番目まで行うと、処理対象ページ内の各主走査位置における副走査最大連結数が得られる。
S809では、全ての主走査位置(0〜M)のうち注目する主走査位置での副走査最大連結数(最終的なSV_maxの値)が、所定の閾値(例えば15)より大きいか否かが判定される。ここで、所定の閾値としての“15”は解像度が600dpiの場合の約10mmに相当する。判定の結果、注目主走査位置における副走査最大連結数が閾値より大きい場合はS810に進み、閾値以下の場合はS811に進む。なお、ここでの判定処理を終えた主走査位置の副走査連結数カウンタの最大カウント値SV_maxは順次初期化される。
S810では、主走査連結数カウンタがカウントアップされる。主走査連結数カウンタは、副走査最大連結数が閾値よりも大きい箇所が、現時点で主走査方向に何個連続しているかを係数するカウンタである。主走査連結数を計数することにより、所定トナー載り量を有する局所領域が繋がって構成される最も大きな画像領域の主走査方向の長さを特定することができる。なお、主走査連結数カウンタの初期値は0に設定されている。
S811では、主走査連結数カウンタの現カウント値MV_crが、ここまでの最大カウント値MV_maxよりも大きいか否かが判定される。現カウント値MV_crがここまでの最大カウント値MV_maxよりも大きい場合はS812に進む。一方、現カウント値MV_crがここまでの最大カウント値MV_max以下である場合はS813に進む。なお、主走査連結数カウンタの最大カウント値MV_maxの初期値は0に設定されている。
S812では、主走査連結数カウンタの最大カウント値MV_maxが、現カウント値MV_crの値で更新される。そして、S813では、主走査連結数カウンタの現カウント値MV_crの値が初期化される。
S814では、すべての主走査位置について主走査連結数の計数が完了したか否か(主走査方向M番目の局所領域まで処理したか)が判定される。完了している場合はS815に進む。一方、完了していない場合はS809に戻り、次の主走査位置を対象として処理が続行される。
S815では、主走査最大連結数(最終的なMV_maxの値)が、所定の閾値(例えば15)より大きいか否かが判定される。判定の結果、主走査最大連結数が閾値より大きい場合はS816に進み、閾値以下の場合はS817に進む。ここでの所定の閾値の意味は、S809における閾値と同じである。また、ここでの判定処理後、主走査連結数カウンタの最大カウント値SV_maxは初期化される。
S816では、処理対象ページ内に所定のトナー載り量を有する所定サイズ(ここでは10×10mm)以上の画像領域が存在することを示すフラグ情報(フラグ値=1)が、画像解析結果として出力される。また、S817では、処理対象ページ内に所定トナー載り量を有する所定サイズの画像領域が存在しないことを示すフラグ情報(フラグ値=0)が、画像解析結果として出力される。
以上が、S704における画像解析処理の内容である。これにより、プリンタエンジン200で画像形成を行う際に、画像解析結果に応じてページ単位で定着温度やクリーニング頻度を適切に調整することが可能となる。
<特定印刷時に画像解析パラメータを異ならせる理由>
図10(a)は、通常印刷時における、1つのオン画素を構成する16個のサブピクセルをすべて(100%)露光するパルス幅信号を示している。一方、図10(b)は、バーコード印刷時における、1つのオン画素を構成する16個のサブピクセルのうち12個(75%)のサブピクセルを露光するパルス幅信号を示している。バーコード印刷の場合はオン画素のトナー載り量が100%から75%へと変更され、濃度が25%低減されることになる。
図10(a)は、通常印刷時における、1つのオン画素を構成する16個のサブピクセルをすべて(100%)露光するパルス幅信号を示している。一方、図10(b)は、バーコード印刷時における、1つのオン画素を構成する16個のサブピクセルのうち12個(75%)のサブピクセルを露光するパルス幅信号を示している。バーコード印刷の場合はオン画素のトナー載り量が100%から75%へと変更され、濃度が25%低減されることになる。
図10(c)及び(d)は、画像解析部114に入力されるハーフトーン画像における16×16画素の局所領域の一例を示している。図10(c)は、通常印刷時のトナー載り量が50%の局所領域であり、同(d)はバーコード印刷時の濃度調整によってトナー載り量が50%から37.5%に変更された局所領域を示している。通常印刷時には、前述のS802での判定基準は、トナー載り量が10%〜40%の範囲に収まっているか否かである。したがって、図10(c)に示すトナー載り量50%の局所領域は、上記範囲から外れているので、所定のトナー載り量を有していないと判定される。一方、図10(d)に示すトナー載り量37.5%の局所領域は、上記範囲に入っているので、所定のトナー載り量を有していると判定される。そして、バーコード印刷が指定されている場合、プリンタエンジン200に対しては、画像解析時のトナー載り量50%の画像ではなく、トナー載り量が37.5%に変更された画像のデータが出力されることになる。仮に、図10(d)に示すトナー載り量37.5%の局所領域が主走査及び副走査方向に所定数以上連続するようであれば、本来は定着温度を上げる温調制御が必要となる。つまり、S704の画像解析処理の結果としてはページ内に低載り量領域が存在しないことを示すフラグ情報が出力されているものの、実際には低載り量領域が存在する画像のデータが出力されていることになる。こうなると、熱量不足による濃度ムラやあるいは熱量過多による加熱フィルムの汚れといった問題が発生する可能性が高くなる。そして、同様の問題は、省トナー印刷が指定されて、ハーフトーン画像処理部113で省トナー処理が実行される場合にも起こり得るものである。
そこで、本実施形態では、特定印刷時の濃度調整によって、プリンタエンジン200での画像出力時には画像解析時からトナー載り量が変化してしまっている可能性を考慮し、画像解析パラメータ(S802で適用する所定トナー載り量)を切り換える。これにより、省トナー印刷やバーコード印刷が指定された場合でも、精度の高い画像解析を可能にして、定着温度やクリーニング頻度を適切に制御できるようにする。
<画像解析パラメータ設定処理>
図11は、本実施形態に係る、画像解析パラメータとしての所定トナー載り量を印刷条件に応じて変更する制御の流れを示すフローチャートである。このフローは、印刷ジョブを受信後(S701)にS702やS703の処理と並行にページ単位で実行され、S704の前に完了していればよい。なお、本フローは図7のフローと同様、CPU103がROM105或いはHDD106に記憶されたプログラムをRAM104に展開してこれを実行することによって実現されるものとする。
図11は、本実施形態に係る、画像解析パラメータとしての所定トナー載り量を印刷条件に応じて変更する制御の流れを示すフローチャートである。このフローは、印刷ジョブを受信後(S701)にS702やS703の処理と並行にページ単位で実行され、S704の前に完了していればよい。なお、本フローは図7のフローと同様、CPU103がROM105或いはHDD106に記憶されたプログラムをRAM104に展開してこれを実行することによって実現されるものとする。
S1101では、印刷ジョブに対し、ハーフトーン画像に対する濃度調整を伴うような特定の印刷条件(上述の省トナー印刷やバーコード印刷)が指定されているかどうかが判定される。この判定は、例えば印刷ジョブのヘッダ情報に含まれる印刷設定の内容を参照して行う。或いは、操作部11を介してユーザが設定した印刷条件を設定して判定する。判定の結果、濃度調整を伴う特定の印刷条件が指定されている場合はS1102に進む。一方、濃度調整を伴う特定の印刷条件が指定されていない場合はS1103に進む。
S1102では、S802での判定基準(所定トナー載り量)として、通常印刷用の閾値ではなく、特定印刷用の閾値を設定する。具体的には、例えばバーコード印刷が指定されていた場合であれば、通常印刷用の下限10%、上限40%の閾値に代えて、例えば下限13%、上限53%の閾値を設定する。この値は、バーコード印刷時の露光調整量が25%低減(12/16)のときの逆数(16/12)を、通常時の上下限値である10%と40%にそれぞれ乗算して得られる値である。このように、特定印刷時には、通常印刷時よりも高いトナー載り量範囲を検出するように閾値を設定することで、プリンタエンジン200に実際に出力されるトナー載り量に合致した画像解析が可能となる。
S1103では、S802での判定基準として、通常印刷用の閾値を設定する。本実施形態の場合、前述のとおり、10%〜40%が設定されることになる。
以上が、本実施形態における画像解析パラメータ設定処理の内容である。
以上が、本実施形態における画像解析パラメータ設定処理の内容である。
<変形例>
上述の例では、省トナー印刷やバーコード印刷が指定された場合のハーフトーン画像処理部113における濃度調整を想定して、所定トナー載り量を規定する閾値の設定を変更していた。しかしながら、ハーフトーン画像処理部113における画像処理よりもさらに下流で実施される現像バイアスの調整によっても、トナー載り量は変化し得る。
上述の例では、省トナー印刷やバーコード印刷が指定された場合のハーフトーン画像処理部113における濃度調整を想定して、所定トナー載り量を規定する閾値の設定を変更していた。しかしながら、ハーフトーン画像処理部113における画像処理よりもさらに下流で実施される現像バイアスの調整によっても、トナー載り量は変化し得る。
まず、現像バイアスの調整によってトナー載り量がどのように変化するのかを説明する。例えばパルス幅変調にて16/16(100%)を露光している場合の濃度(反射濃度=Log10(1/R)、R=反射率)が1.3であったとする。この場合、コントーン画像処理部112やハーフトーン画像処理部113での画像処理では濃度1.3以上を出力することができない。ここで、露光装置203による露光量と現像ローラ205に印可された現像バイアスとの差分である電位差が大きいほど、現像されるトナー量は増加する。そのため、例えば濃度1.4を出力したいときには、現像バイアスを調整することでトナー載り量を増やすことが行われる。図12(a)は、現像が行われた感光ドラム201の表面状態を示している。この例では−500Vに帯電された感光ドラム201に対し、露光した位置が−100Vになり、潜像画像が作像されている。ここで現像バイアスを印可することによって現像装置204からトナー1201が露光された位置に飛翔、付着する。図12(b)は、現像バイアスを図12(a)よりもマイナス側に設定した場合を示している。この場合、図12(a)に比べ露光した位置の電位と現像バイアスとの電位差が大きくなるため、より多くのトナーが飛翔、付着してトナー載り量が増加することになる。仮に、画像解析部114に入力されるハーフトーン画像におけるトナー載り量が35%であった場合、現像バイアスの調整によってトナー載り量が20%増加すると、実際のトナー載り量は42%となる。ここで、低載り量領域を検出するための所定トナー載り量が10%〜40%であれば、42%のトナー載り量を有する画像領域は、所定トナー載り量を有さなので、定着温度はデフォルトのままでよいはずである。しかしながら、画像解析の対象となるハーフトーン画像ではトナー載り量が35%であることから、所定トナー載り量を有していると判定されてしまう。その結果、高すぎる定着温度が設定されることになり、画像不良の原因となるのに加え、無駄な電力消費にも繋がってしまう。
そこで、サービスマンやユーザによって、現像バイアスの調整がなされた場合にも、その調整内容に応じて、画像解析パラメータとしての所定トナー載り量を変更するようにしてもよい。
以上のように、本実施形態によれば、画像解析の対象となるハーフトーン画像におけるトナー載り量が、プリンタエンジンで実際に出力されるときに変化する場合であっても、高精度な画像解析を実現できる。その結果、適切に定着温度やクリーニングの制御を実施することができる。
実施形態1では、画像解析対象のハーフトーン画像に対するその後の処理によってプリンタエンジンでの画像出力時にはトナー載り量が変化してしまっている可能性を考慮し、画像解析パラメータを切り換える態様について説明した。そして、上記処理の1つには、省トナー処理(オン画素の間引き処理)も含まれていた。この間引き処理では、所定の間引きパターンを用いることで、ハーフトーン画像内のオン画素を間引いて、トナー消費量を一定割合低減させている。この間引きパターンと量子化処理で用いるディザパターンとが干渉し、間引き処理時のトナー載り量の変化量が線形に変化しない場合がある。以下、詳しく説明する。
図13(a)は、5×5画素の間引きパターンの一例を示している。図13(a)において、白四角で示す位置が間引きを実施する画素位置を表し、黒四角で示す位置が間引きを実施しない画素位置を表す。そして、図13(b)は、図13(a)の間引きパターンを処理対象となる画像1300に適用する様子を示している。画像1300における左上隅の座標位置(0、0)を原点として主走査方向及び副走査方向に繰り返し間引きパターンを適用することで、間引き処理が実行される。図14(a)は600dpiの画像にスクリーン線数が106線のディザパターンを適用して得られたハーフトーン画像の一部(16×16画素)を示し、同(b)はそれに対し間引き処理を行った結果を示している。太線で囲まれた5×5画素の領域が間引きパターンに対応している。この場合、間引き処理を行う前の図14(a)の部分画像では、256画素のうち8画素にドットが形成される。これに対し、間引き処理を行った後の図14(b)の部分画像では、256画素のうち4画素にしかドットが形成されない。これは、106線のディザパターンを用いて量子化されたハーフトーン画像に対し間引き処理を行なうと、16×16画素の領域あたり4つのオン画素が間引かれることを意味している。図14(c)は600dpiの画像に134線のディザパターンを適用して得られたハーフトーン画像の一部(16×16画素)を示し、同(d)はそれに対し間引き処理を行った結果を示している。この場合、間引き処理を行う前後で形成されるドット数は共に256画素のうち13画素で両者に違いはなく、間引き処理後もオン画素が間引かれていない(トナー節約の効果が得られない)ことになる。
図15は、通常印刷時のトナー載り量の変化と、省トナー印刷時のトナー載り量の変化とを比較可能に示したグラフである。横軸は量子化処理後のハーフトーン画像における16×16画素の局所領域内のオン画素数を示しており、オン画素(=オンドット)の数が多くなるほど濃度が濃くなり、その最大値は256である。縦軸はトナー載り量を示しており、前述したとおり、16×16画素の局所領域におけるオン画素が占める割合(オン画素比率)を示している。106線のディザパターンで量子化されている場合は間引きパターンとの干渉が少なく、間引き処理を行った場合も線形的にトナー載り量が変化している。これに対し、134線のディザパターンで量子化されている場合は間引きパターンとの干渉が多く、低濃度域から高濃度域にかけてトナー載り量が非線形に変化している。なお、ここでは、106線と134線の場合を例に説明を行ったがスクリーン線数はこれらに限定されるわけではない。また、ここではスクリーン線数にのみ言及したが、間引きパターンとディザパターンとの干渉という観点からはスクリーン角度も影響し得ることはいうまでもない。このように、間引きパターンとディザパターンとの干渉によってトナー載り量が線形的に変化しない場合、所定トナー載り量を規定する閾値を、省トナー印刷を含む特定印刷か否かに応じて切り替える実施形態1の手法では対処が困難で、判定精度が低下する。
そこで、間引きパターンとディザパターンとの干渉によって中間濃度域のトナー載り量が線形的に変化しない場合であっても、画像解析精度が低下しないようにする態様を、実施形態2として説明する。なお、実施形態1と共通する内容は説明を省略することとし、以下では差異点である画像解析パラメータの設定処理について説明を行うこととする。
<画像解析パラメータ設定処理>
図16は、本実施形態に係る、画像解析パラメータとしての所定トナー載り量を、印刷条件とディザパターンに応じて変更する制御の流れを示すフローチャートである。このフローはページ単位で実行され、S704の前に完了していればよい。ただし、量子化処理後のハートーン画像とその生成に使用されたディザパターンの情報が必要なので、本フローの実行開始の時点で、受信した印刷ジョブについての量子化処理までが完了している必要がある。なお、本フローは図7のフローと同様、CPU103がROM105或いはHDD106に記憶されたプログラムをRAM104に展開してこれを実行することによって実現されるものとする。
図16は、本実施形態に係る、画像解析パラメータとしての所定トナー載り量を、印刷条件とディザパターンに応じて変更する制御の流れを示すフローチャートである。このフローはページ単位で実行され、S704の前に完了していればよい。ただし、量子化処理後のハートーン画像とその生成に使用されたディザパターンの情報が必要なので、本フローの実行開始の時点で、受信した印刷ジョブについての量子化処理までが完了している必要がある。なお、本フローは図7のフローと同様、CPU103がROM105或いはHDD106に記憶されたプログラムをRAM104に展開してこれを実行することによって実現されるものとする。
S1601では、S702の量子化処理で得られたハーフトーン画像のデータが取得される。続くS1602では、取得したハーフトーン画像における局所領域内に存在するオン画素数が取得される。この際は、処理対象ページ内の任意の局所領域から取得してもよいし、複数の局所領域からオン画素数を取得してその平均値を求めてもよい。
S1603では、省トナー印刷が指定されているか否かが判定される。この判定のやり方は、実施形態1の図11のフローにおけるS1101と同様である。省トナー印刷が指定されていればS1604に進み、指定されていなければS1605に進む。
S1604では、ハーフトーン画像の生成時に使用されたディザパターンの情報が取得される。ここで、ディザパターンの情報には、スクリーン線数とスクリーン角度が含まれる。続くS1605では、S1602で取得した局所領域内オン画素数とS1604で取得したディザパターン情報とに基づき、所定トナー載り量が設定される。この際には、例えば予め用意したLUT(ルックアップテーブル)を参照して所定トナー載り量を決定する。参照するLUTは、例えば前述の図15に示したような、局所領域におけるオン画素数(濃度値)とトナー載り量との対応関係を規定した変換テーブルである。このようなLUTを、複数のスクリーン線数やスクリーン角度の組合せからなるディザパターンの種類毎に作成しておけばよい。このように、局所領域内のオン画素数とトナー載り量とを対応付けた変換テーブルを、使用され得るディザパターン毎に用意しておくことで、濃度値に対して非線形に変化し得る中間濃度域におけるトナー載り量を精度よく判別することができる。
S1606では、S1602で取得した局所領域内オン画素数に基づき、画像解析パラメータとしての所定トナー載り量が設定される。この際には、予め用意しておいた通常印刷用のLUT(図15を参照)を参照して所定トナー載り量を決定すればよい。
以上が、本実施形態における画像解析パラメータ設定処理の内容である。
本実施形態によれば、省トナー印刷時の間引き処理で用いる間引きパターンと量子化処理で用いるディザパターンとの干渉によって中間濃度域のトナー載り量が非線形に変化する場合であっても、画像解析精度の低下を抑制することが可能となる。
(その他の実施形態)
本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
Claims (14)
- 電子写真方式の画像形成装置であって、
印刷対象のコントーン画像からハーフトーン画像を生成する量子化手段と、
前記ハーフトーン画像をPWM変換した画像信号に基づき、記録紙にトナー像を形成して定着させる画像形成手段と、
前記ハーフトーン画像を解析し、所定範囲のトナー載り量を有する所定サイズの画像領域の有無を判定する解析手段と、
前記解析の結果に基づき、前記定着に関するパラメータを設定する設定手段と、
前記量子化手段で前記ハーフトーン画像が生成された後、トナー載り量の変化を伴う処理を行う処理手段と、
を備え、
前記所定範囲は、前記処理手段による処理の内容に基づき決定される
ことを特徴とする画像形成装置。 - 前記所定トナー載り量は、印刷条件に応じて設定されることを特徴とする請求項1に記載の画像形成装置。
- 前記所定トナー載り量は、前記印刷条件として省トナー印刷が指定されている場合、前記ハーフトーン画像の生成に用いられたディザパターンに基づき設定されることを特徴とする請求項2に記載の画像形成装置。
- 前記画像形成手段の温度及び湿度を測定するセンサを備え、
前記設定手段は、前記センサの測定結果及び前記解析の結果に基づき、前記定着に関するパラメータをページ単位で設定する
ことを特徴とする請求項1乃至3のいずれか1項に記載の画像形成装置。 - 前記定着に関するパラメータは、定着プロセス実行時の温度であることを特徴とする請求項4に記載の画像形成装置。
- 前記定着に関するパラメータは、定着プロセス実行後の加熱フィルムに付着したオフセットトナーのクリーニング頻度であることを特徴とする請求項4に記載の画像形成装置。
- 前記処理手段における前記処理は、前記ハーフトーン画像における各画素の濃度値を調整する処理であることを特徴とする請求項1乃至6のいずれか1項に記載の画像形成装置。
- 前記濃度値を調整する処理は、前記ハーフトーン画像内のオン画素を間引く処理であることを特徴とする請求項7に記載の画像形成装置。
- 前記濃度値を調整する処理は、前記PWM変換の際に、通常時のパルス幅よりも狭いパルス幅に変換する処理であることを特徴とする請求項7に記載の画像形成装置。
- 前記通常時のパルス幅よりも狭いパルス幅に変換する処理は、バーコード印刷が指定された際に実行されることを特徴とする請求項9に記載の画像形成装置。
- 前記濃度値を調整する処理は、現像ローラに印可する現像バイアスを調整する処理であることを特徴とする請求項7に記載の画像形成装置。
- 前記所定トナー載り量は、その下限を示す閾値と上限を示す閾値とで規定されることを特徴とする請求項1乃至11のいずれか1項に記載の画像形成装置。
- 電子写真方式の画像形成装置によって画像を形成する方法であって、
前記画像形成装置は、印刷対象のコントーン画像を量子化して得たハーフトーン画像をPWM変換した画像信号に基づき、記録紙にトナー像を形成して定着させる画像形成手段を有し、
前記ハーフトーン画像を解析し、所定範囲のトナー載り量を有する所定サイズの画像領域の有無を判定するステップと、
前記解析の結果に基づき、前記定着に関するパラメータを設定するステップと、
前記ハーフトーン画像が生成された後、トナー載り量の変化を伴う処理を行うステップと、
を含み、
前記所定範囲は、前記トナー載り量の変化を伴う処理の内容に応じて異なる
ことを特徴とする方法。 - コンピュータを、請求項1乃至12のいずれか1項に記載の画像形成装置の一部として機能させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018096960A JP2019203918A (ja) | 2018-05-21 | 2018-05-21 | 画像形成装置、その制御方法及びプログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018096960A JP2019203918A (ja) | 2018-05-21 | 2018-05-21 | 画像形成装置、その制御方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019203918A true JP2019203918A (ja) | 2019-11-28 |
Family
ID=68726794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018096960A Pending JP2019203918A (ja) | 2018-05-21 | 2018-05-21 | 画像形成装置、その制御方法及びプログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019203918A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11917115B1 (en) | 2023-03-10 | 2024-02-27 | Ricoh Company, Ltd. | Shift compensation mechanism |
-
2018
- 2018-05-21 JP JP2018096960A patent/JP2019203918A/ja active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11917115B1 (en) | 2023-03-10 | 2024-02-27 | Ricoh Company, Ltd. | Shift compensation mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9014586B2 (en) | Image processing apparatus and controlling method for controlling a fixing temperature | |
JP5803268B2 (ja) | 画像形成装置、画像形成方法、およびプログラム | |
JP7350560B2 (ja) | 画像形成装置 | |
KR20120013827A (ko) | 색 정합 오차 보상을 수행하는 컨트롤러 칩 및 화상형성장치와 그 방법들 | |
US20100231936A1 (en) | Image processing apparatus and image processing method | |
JP2017037100A (ja) | 画像形成装置およびその制御方法 | |
US9354564B2 (en) | Image forming apparatus, image forming method, and program | |
JP3703162B2 (ja) | 画像形成装置 | |
JP5171165B2 (ja) | 画像形成装置 | |
US8446641B2 (en) | Image processing apparatus and image processing method | |
JP2011109272A (ja) | 画像形成装置及び画像形成方法 | |
JP6731162B2 (ja) | 画像形成装置およびトナー量算出方法 | |
JP2013020153A (ja) | 画像形成装置 | |
JP2009145692A (ja) | 画像形成装置および画質調整方法 | |
JP2019203918A (ja) | 画像形成装置、その制御方法及びプログラム | |
JP2017053985A (ja) | 画像形成装置、画像形成装置の制御方法、及びプログラム | |
JP5885688B2 (ja) | 画像形成装置 | |
JP6768202B2 (ja) | 画像形成装置およびトナー量算出方法 | |
JP6394993B2 (ja) | 画像形成装置およびトナー消費量算出方法 | |
JP5464287B2 (ja) | 印刷装置、ピント判定方法、及び、ピント判定プログラム | |
US20190179238A1 (en) | Image forming apparatus, image forming method, and storage medium | |
JP6209894B2 (ja) | 画像処理装置、画像形成装置、及び画像処理プログラム | |
JP5737838B2 (ja) | 画像形成装置及び画像形成方法 | |
JP6836725B2 (ja) | 画像形成装置 | |
JP6818779B2 (ja) | 画像形成装置、画像形成方法及びプログラム |