JP2019196542A - Apparatus for producing powder by plasma rotating electrode process and method of producing powder - Google Patents
Apparatus for producing powder by plasma rotating electrode process and method of producing powder Download PDFInfo
- Publication number
- JP2019196542A JP2019196542A JP2018124681A JP2018124681A JP2019196542A JP 2019196542 A JP2019196542 A JP 2019196542A JP 2018124681 A JP2018124681 A JP 2018124681A JP 2018124681 A JP2018124681 A JP 2018124681A JP 2019196542 A JP2019196542 A JP 2019196542A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- chamber
- electrode member
- gas
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
本発明は、プラズマ回転電極法による粉末製造装置および粉末製造方法に関する。 The present invention relates to a powder manufacturing apparatus and a powder manufacturing method using a plasma rotating electrode method.
従来のプラズマ回転電極法による粉末製造装置50は、図7に示すように、ガス供給口51aとガス排出口51bとを有するチャンバー51と、長さ方向に沿った中心軸周りに回転可能に、チャンバー51の内部に配置された金属製または合金製の細長い電極部材52と、その電極部材52の一方の端部52aに向かってプラズマを照射可能なプラズマ照射手段53と、チャンバー51の内部に雰囲気ガスを供給するガス供給手段54とを有している(例えば、非特許文献1乃至3参照)。 As shown in FIG. 7, the powder manufacturing apparatus 50 according to the conventional plasma rotating electrode method can rotate around a central axis along the length direction, with a chamber 51 having a gas supply port 51 a and a gas discharge port 51 b, A metal or alloy elongated electrode member 52 disposed inside the chamber 51, a plasma irradiation means 53 capable of irradiating plasma toward one end 52 a of the electrode member 52, and an atmosphere inside the chamber 51 Gas supply means 54 for supplying gas (for example, see Non-Patent Documents 1 to 3).
この従来の粉末製造装置50は、ガス排出口51bからチャンバー51の内部のガスを排出して真空にしてから、ガス供給手段54からガス供給口51aを通してArやHeなどの雰囲気ガスをチャンバー51の内部に供給する。その後、チャンバー51を密封した状態で、電極部材52を回転させながら、プラズマ照射手段53でプラズマを照射する。これにより、電極部材52の一方の端部52aを溶解し、その融液を電極部材52の回転の遠心力によりチャンバー51の内部で吹き飛ばして凝固させ、球状の金属製または合金製の粉末を製造するようになっている。 In this conventional powder manufacturing apparatus 50, the gas inside the chamber 51 is discharged from the gas discharge port 51b to make a vacuum, and then an atmospheric gas such as Ar or He is supplied from the gas supply means 54 through the gas supply port 51a to the chamber 51. Supply inside. Thereafter, plasma is irradiated by the plasma irradiation means 53 while rotating the electrode member 52 in a state where the chamber 51 is sealed. Thereby, one end portion 52a of the electrode member 52 is dissolved, and the melt is blown off inside the chamber 51 by the centrifugal force of the rotation of the electrode member 52 to be solidified to produce a spherical metal or alloy powder. It is supposed to be.
しかしながら、非特許文献1乃至3に記載のような、図7に示す従来のプラズマ回転電極法による粉末製造装置50は、チャンバー51を密封した状態で粉末を製造するために、電極部材52を密封した状態で回転させる必要がある。このため、電極部材52を、ベアリングなどの電極部材52を支持する支持部に対して、芯出しが難しく、真空漏れを許さないという過酷な条件で設ける必要があり、そこでの摩擦が大きくなり、ベアリングなどの支持部が摩耗したり、破損したりするという課題があった。また、摩擦により温度が上昇し、電極部材52や支持部が膨張して電極部材52が回転しにくくなるという課題もあった。また、電極部材52の回転による共振の振動が大きくなりやすく、装置が破損する原因になるという課題もあった。 However, as described in Non-Patent Documents 1 to 3, the conventional plasma manufacturing apparatus 50 using the plasma rotating electrode method shown in FIG. 7 seals the electrode member 52 in order to manufacture the powder with the chamber 51 sealed. It is necessary to rotate in the state. For this reason, it is necessary to provide the electrode member 52 under a severe condition that it is difficult to center the support member that supports the electrode member 52 such as a bearing and does not allow vacuum leakage, and the friction there increases. There existed a subject that support parts, such as a bearing, were worn out or damaged. Further, there is a problem that the temperature rises due to friction, and the electrode member 52 and the support portion expand to make the electrode member 52 difficult to rotate. In addition, resonance vibration due to the rotation of the electrode member 52 is likely to increase, causing a problem that the device is damaged.
本発明は、このような課題に着目してなされたもので、電極部材の回転による摩擦や共振を抑制して、摩耗や破損、温度上昇を防ぐことができる、プラズマ回転電極法による粉末製造装置および粉末製造方法を提供することを目的とする。 The present invention has been made paying attention to such a problem, and suppresses friction and resonance caused by rotation of the electrode member to prevent wear, breakage, and temperature rise. And it aims at providing a powder manufacturing method.
上記目的を達成するために、本発明に係るプラズマ回転電極法による粉末製造装置は、ガス供給口と電極挿入口とを有するチャンバーと、前記ガス供給口から前記チャンバーの内部に雰囲気ガスを供給可能に設けられたガス供給手段と、細長く、少なくとも一方の端部が金属製または合金製であり、前記一方の端部が前記電極挿入口を通して前記チャンバーの内部に配置され、長さ方向に沿った中心軸周りに回転するよう設けられた電極部材と、前記チャンバーの内部で、前記電極部材の前記一方の端部に向かってプラズマを照射可能に設けられたプラズマ照射手段とを有し、前記電極部材を回転しつつ、前記ガス供給手段により前記チャンバーの内部に前記雰囲気ガスを供給したとき、前記雰囲気ガスが前記チャンバーの内部から排出されるよう、前記電極部材が前記電極挿入口に隙間をあけて配置されていることを特徴とする。 In order to achieve the above object, a powder manufacturing apparatus using a plasma rotating electrode method according to the present invention can supply an atmosphere gas into a chamber having a gas supply port and an electrode insertion port, and the gas supply port into the chamber. The gas supply means provided in the elongate, at least one end is made of metal or alloy, the one end is disposed inside the chamber through the electrode insertion port, and extends along the length direction. An electrode member provided to rotate around a central axis; and a plasma irradiation means provided inside the chamber so as to be able to irradiate plasma toward the one end of the electrode member, When the atmospheric gas is supplied into the chamber by the gas supply means while rotating the member, the atmospheric gas is discharged from the inside of the chamber. As the electrode member, characterized in that it is arranged with a gap in the electrode insertion slot.
本発明に係るプラズマ回転電極法による粉末製造方法は、本発明に係るプラズマ回転電極法による粉末製造装置を用いた、プラズマ回転電極法による粉末製造方法であって、前記チャンバーの内部に前記雰囲気ガスを充填した後、前記電極部材を回転しつつ、前記ガス供給手段により前記チャンバーの内部に前記雰囲気ガスを連続的に供給することにより、前記隙間を通して前記チャンバーの内部から前記雰囲気ガスを連続的に排出させ、この状態で、前記電極部材の前記一方の端部に向かって前記プラズマ照射手段によりプラズマを照射して、前記一方の端部を溶解し、その融液を前記電極部材の回転の遠心力により前記チャンバーの内部で吹き飛ばすことにより、金属製または合金製の粉末を製造することを特徴とする。 The powder manufacturing method by the plasma rotating electrode method according to the present invention is a powder manufacturing method by the plasma rotating electrode method using the powder manufacturing apparatus by the plasma rotating electrode method according to the present invention, wherein the atmosphere gas is placed inside the chamber. Then, the atmospheric gas is continuously supplied from the inside of the chamber through the gap by continuously supplying the atmospheric gas to the inside of the chamber by the gas supply means while rotating the electrode member. In this state, plasma is irradiated by the plasma irradiation means toward the one end of the electrode member to dissolve the one end, and the melt is centrifuged by rotation of the electrode member. A metal or alloy powder is produced by blowing off the inside of the chamber by force.
本発明に係るプラズマ回転電極法による粉末製造装置および粉末製造方法は、電極部材が電極挿入口に隙間をあけて配置されているため、ガス供給手段によりチャンバーの内部に雰囲気ガスを連続的に供給したとき、電極挿入口の隙間を通してチャンバーの内部から雰囲気ガスを連続的に排出させることができる。このように、雰囲気ガスが、チャンバーの内部で、ガス供給口から電極挿入口の隙間に向かって一方向に流れるため、プラズマ回転電極法により粉末を製造する際、チャンバーの内部に外気が入り込むのを防ぐことができ、外気により粉末が酸化するのを防止することができる。 In the powder manufacturing apparatus and the powder manufacturing method by the plasma rotating electrode method according to the present invention, since the electrode member is disposed with a gap in the electrode insertion port, the atmospheric gas is continuously supplied into the chamber by the gas supply means. Then, the atmospheric gas can be continuously discharged from the inside of the chamber through the gap of the electrode insertion opening. As described above, since atmospheric gas flows in one direction from the gas supply port toward the gap between the electrode insertion port inside the chamber, when the powder is manufactured by the plasma rotating electrode method, the outside air enters the chamber. It is possible to prevent the powder from being oxidized by the outside air.
本発明に係るプラズマ回転電極法による粉末製造装置および粉末製造方法で、前記隙間は、前記電極部材の回転を支持する軸受部に設けられていてもよい。この場合、電極部材から軸受部までが密閉されている従来のものと比べて、回転する電極部材と軸受部との間の摩擦を抑制することができ、摩耗や破損、温度上昇を防ぐことができる。温度上昇により電極部材やその支持部が膨張して電極部材が回転しにくくなるのを防ぐことができるため、電極部材をスムーズに回転し続けることができる。また、電極部材の回転による共振も抑制することができ、装置が破損するのを防ぐことができる。 In the powder manufacturing apparatus and the powder manufacturing method using the plasma rotating electrode method according to the present invention, the gap may be provided in a bearing portion that supports the rotation of the electrode member. In this case, the friction between the rotating electrode member and the bearing portion can be suppressed as compared with the conventional one in which the electrode member to the bearing portion are sealed, thereby preventing wear, breakage, and temperature rise. it can. Since it can prevent that an electrode member and its support part expand | swell by a temperature rise and an electrode member becomes difficult to rotate, an electrode member can be rotated smoothly. Further, resonance due to rotation of the electrode member can be suppressed, and the apparatus can be prevented from being damaged.
また、本発明に係るプラズマ回転電極法による粉末製造装置で、前記電極部材は、前記電極挿入口の周縁部と接触しないよう設けられていてもよい。この場合、電極部材と電極挿入口の周縁部との間に隙間を形成することができる。電極部材と電極挿入口の周縁部とが接触しないため、それらの間に摩擦や共振が発生するのを防ぐことができ、摩耗や破損、温度上昇を効果的に防ぐことができる。 Moreover, in the powder manufacturing apparatus by the plasma rotating electrode method according to the present invention, the electrode member may be provided so as not to come into contact with a peripheral portion of the electrode insertion port. In this case, a gap can be formed between the electrode member and the peripheral edge of the electrode insertion opening. Since the electrode member and the peripheral edge portion of the electrode insertion opening do not come into contact with each other, friction and resonance can be prevented from occurring between them, and wear, breakage, and temperature rise can be effectively prevented.
本発明に係るプラズマ回転電極法による粉末製造方法は、製造される粉末が酸化しないよう、前記粉末を製造する前に、前記電極部材を停止した状態で前記隙間を密閉し、前記チャンバーの内部のガスを排出して真空にした後、前記ガス供給手段により前記チャンバーの内部に前記雰囲気ガスを供給して充填することが好ましい。このとき、電極挿入口の隙間を塞ぐために、本発明に係るプラズマ回転電極法による粉末製造装置は、前記電極部材が停止しているとき、前記隙間を密閉する密閉部材を有していてもよい。また、電極部材を回転させて粉末を製造している間は、隙間をあけておく必要があるため、前記密閉部材は、前記電極部材が回転したとき、前記隙間を開放するよう構成されていることが好ましい。 In the method for producing a powder by the plasma rotating electrode method according to the present invention, before producing the powder, the gap is sealed in a state where the electrode member is stopped so that the produced powder is not oxidized. It is preferable that after the gas is exhausted and evacuated, the atmospheric gas is supplied and filled into the chamber by the gas supply means. At this time, in order to close the gap of the electrode insertion opening, the powder manufacturing apparatus by the plasma rotating electrode method according to the present invention may have a sealing member that seals the gap when the electrode member is stopped. . Further, since it is necessary to leave a gap while the powder is produced by rotating the electrode member, the sealing member is configured to open the gap when the electrode member is rotated. It is preferable.
この密閉部材を有する場合、例えば、前記電極部材との間に前記隙間をあけて、前記電極挿入口の周辺部に沿って設けられた密閉機構を有し、前記密閉機構は、前記隙間に向かって開口し、前記電極部材の回転方向に沿って円環状に設けられた環状室と、前記環状室にガスを供給する加圧手段と、前記環状室から前記ガスを排出する減圧手段とを有し、前記密閉部材は、リング状で、前記電極部材の回転方向に沿って前記環状室の内部に配置されており、前記電極部材が停止しているとき、前記加圧手段で前記環状室に前記ガスを供給することにより、前記密閉部材が前記環状室の開口に向かって移動して、前記電極部材と前記環状室との間で前記隙間を密閉し、前記電極部材が回転するとき、前記減圧手段で前記環状室から前記ガスを排出することにより、前記密閉部材が前記環状室の内部に向かって移動して、前記隙間を開放するよう構成されていてもよい。これにより、隙間の密閉および開放を比較的容易に行うことができる。 In the case of having this sealing member, for example, there is a sealing mechanism provided along the periphery of the electrode insertion opening with the gap between the electrode member and the sealing mechanism facing the gap. And an annular chamber provided in an annular shape along the rotation direction of the electrode member, a pressurizing means for supplying gas to the annular chamber, and a decompression means for discharging the gas from the annular chamber. The sealing member is in a ring shape and is disposed in the annular chamber along the rotation direction of the electrode member. When the electrode member is stopped, the pressure member causes the annular chamber to By supplying the gas, the sealing member moves toward the opening of the annular chamber, seals the gap between the electrode member and the annular chamber, and when the electrode member rotates, The gas is discharged from the annular chamber by decompression means. The Rukoto, and said sealing member is moved towards the interior of the annular chamber, may be configured so as to open the gap. Thereby, sealing and opening of the gap can be performed relatively easily.
本発明に係るプラズマ回転電極法による粉末製造装置は、前記チャンバーの内部で前記隙間を覆うよう、前記雰囲気ガスと同じガスを噴射可能に設けられたガス噴射手段を有していてもよい。この場合、ガス噴射手段から噴射されるガスにより、電極挿入口の隙間から外気が入り込むのをより効果的に防ぐことができ、製造される粉末の酸化防止効果を高めることができる。 The powder manufacturing apparatus by the plasma rotating electrode method according to the present invention may have gas injection means provided so as to be able to inject the same gas as the atmospheric gas so as to cover the gap inside the chamber. In this case, the gas injected from the gas injection means can more effectively prevent outside air from entering through the gap between the electrode insertion ports, and can enhance the antioxidant effect of the produced powder.
また、この場合、前記ガス噴射手段は、前記電極部材を冷却可能に、前記電極部材に向かって前記ガスを噴射可能であってもよい。この場合、電極部材を冷却することができるため、電極部材が膨張して回転しにくくなるのをより効果的に防ぐことができる。 In this case, the gas injection means may be capable of injecting the gas toward the electrode member so that the electrode member can be cooled. In this case, since an electrode member can be cooled, it can prevent more effectively that an electrode member expand | swells and becomes difficult to rotate.
本発明に係るプラズマ回転電極法による粉末製造装置は、開閉手段を有し、前記電極部材は、前記電極挿入口の配置位置に対して、前記チャンバーの外側から着脱可能に設けられ、前記開閉手段は、前記電極部材を前記電極挿入口の配置位置から外したとき、前記電極挿入口を密閉可能に設けられていてもよい。この場合、例えば電極部材を交換する際など、電極部材を電極挿入口の配置位置から外したときに、開閉手段で電極挿入口を密封することにより、真空のチャンバーの内部に外気や塵埃等の不純物が入ったり、チャンバーの内部から雰囲気ガスが漏れたりするのを防ぐことができる。 The powder manufacturing apparatus by the plasma rotating electrode method according to the present invention has opening / closing means, and the electrode member is detachably provided from the outside of the chamber with respect to the arrangement position of the electrode insertion port, and the opening / closing means May be provided so that the electrode insertion port can be sealed when the electrode member is removed from the arrangement position of the electrode insertion port. In this case, for example, when the electrode member is removed from the position where the electrode insertion port is disposed, for example, when the electrode member is replaced, the electrode insertion port is sealed with an opening / closing means, so that the outside of the vacuum chamber is free of air, dust, etc. It is possible to prevent impurities from entering and atmospheric gas from leaking from the inside of the chamber.
本発明によれば、電極部材の回転による摩擦や共振を抑制して、摩耗や破損、温度上昇を防ぐことができる、プラズマ回転電極法による粉末製造装置および粉末製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the powder manufacturing apparatus and powder manufacturing method by a plasma rotating electrode method which can suppress the friction and resonance by rotation of an electrode member, and can prevent wear, damage, and a temperature rise can be provided.
以下、図面に基づいて、本発明の実施の形態について説明する。
図1乃至図6は、本発明の実施の形態のプラズマ回転電極法による粉末製造装置を示している。
図1に示すように、粉末製造装置10は、チャンバー11とガス供給手段12と軸受部13と電極部材14とプラズマ照射手段15とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 show an apparatus for producing powder by the plasma rotating electrode method according to an embodiment of the present invention.
As shown in FIG. 1, the powder manufacturing apparatus 10 includes a chamber 11, a gas supply unit 12, a bearing portion 13, an electrode member 14, and a plasma irradiation unit 15.
チャンバー11は、所定の厚みを有する円板状を成し、両面が鉛直になるよう設置されている。チャンバー11は、一方の表面の上部に設けられたガス供給口21と、他方の表面の中心部に設けられた電極挿入口22と、下部側面に設けられた漏斗状の回収部23とを有している。回収部23は、下端に開閉可能な回収口23aを有している。 The chamber 11 has a disk shape with a predetermined thickness, and is installed so that both surfaces are vertical. The chamber 11 has a gas supply port 21 provided at the upper part of one surface, an electrode insertion port 22 provided at the center of the other surface, and a funnel-shaped recovery part 23 provided at the lower side surface. is doing. The collection unit 23 has a collection port 23a that can be opened and closed at the lower end.
ガス供給手段12は、ガス供給口21に連通しており、ガス供給口21からチャンバー11の内部に雰囲気ガスを供給可能に設けられている。雰囲気ガスは、Ar、He、N2などである。軸受部13は、電極挿入口22の周縁部に沿って取り付けられている。具体的な一例では、軸受部13は、ベアリングから成っている。 The gas supply means 12 communicates with the gas supply port 21 and is provided so as to be able to supply atmospheric gas from the gas supply port 21 into the chamber 11. The atmospheric gas is Ar, He, N 2 or the like. The bearing portion 13 is attached along the peripheral edge portion of the electrode insertion port 22. In a specific example, the bearing portion 13 is made of a bearing.
電極部材14は、細長い円柱状を成し、少なくとも一方の端部14aがCoやTi等の金属製、または合金製である。電極部材14は、一方の端部14aが電極挿入口22を通してチャンバー11の内部に配置され、他方の端部14bがチャンバー11の外部に配置されている。電極部材14は、軸受部13を介して電極挿入口22に回転可能に取り付けられており、モーターなどにより他方の端部14bを回転させることにより、長さ方向に沿った中心軸周りに回転するよう構成されている。 The electrode member 14 has an elongated cylindrical shape, and at least one end portion 14a is made of a metal such as Co or Ti or an alloy. One end portion 14 a of the electrode member 14 is disposed inside the chamber 11 through the electrode insertion port 22, and the other end portion 14 b is disposed outside the chamber 11. The electrode member 14 is rotatably attached to the electrode insertion port 22 via the bearing portion 13, and rotates around the central axis along the length direction by rotating the other end portion 14b with a motor or the like. It is configured as follows.
プラズマ照射手段15は、電極部材14の一方の端部14aに対向するよう、チャンバー11の一方の表面を貫通して設けられたプラズマトーチ25と、プラズマトーチ25と電極部材14との間に電圧を印加可能に設けられた電圧印加部26とを有している。プラズマ照射手段15は、電圧印加部26でプラズマトーチ25と電極部材14との間に電圧を印加することにより、チャンバー11の内部で、プラズマトーチ25から電極部材14の一方の端部14aに向かってプラズマを照射するよう構成されている。 The plasma irradiation means 15 has a plasma torch 25 provided so as to penetrate one surface of the chamber 11 so as to face one end portion 14 a of the electrode member 14, and a voltage between the plasma torch 25 and the electrode member 14. And a voltage application unit 26 provided so as to be able to apply. The plasma irradiation means 15 applies a voltage between the plasma torch 25 and the electrode member 14 by the voltage application unit 26, so that the plasma irradiation means 15 moves from the plasma torch 25 toward one end 14 a of the electrode member 14 inside the chamber 11. It is configured to irradiate plasma.
粉末製造装置10は、電極部材14の回転を支持する軸受部13に、チャンバー11の内部と外部とに連通した隙間16が設けられている。粉末製造装置10は、電極部材14を回転しつつ、ガス供給手段12によりチャンバー11の内部に雰囲気ガスを供給したとき、雰囲気ガスがチャンバー11の内部からその隙間16を通って排出されるようになっている。 In the powder manufacturing apparatus 10, a gap 16 communicating with the inside and the outside of the chamber 11 is provided in the bearing portion 13 that supports the rotation of the electrode member 14. When the powder production apparatus 10 rotates the electrode member 14 and supplies the atmospheric gas to the inside of the chamber 11 by the gas supply means 12, the atmospheric gas is discharged from the inside of the chamber 11 through the gap 16. It has become.
本発明の実施の形態のプラズマ回転電極法による粉末製造方法は、本発明の実施の形態のプラズマ回転電極法による粉末製造装置10により実施することができる。すなわち、まず、チャンバー11の内部のガスを排出して真空にしてから、ガス供給手段12によりチャンバー11の内部に雰囲気ガスを供給し、チャンバー11の内部に雰囲気ガスを充填する。その後、電極部材14を回転しつつ、ガス供給手段12によりチャンバー11の内部に雰囲気ガスを連続的に供給する。これにより、電極挿入口22の軸受部13の隙間16を通して、チャンバー11の内部から雰囲気ガスを連続的に排出させることができる。 The powder manufacturing method by the plasma rotating electrode method of the embodiment of the present invention can be performed by the powder manufacturing apparatus 10 by the plasma rotating electrode method of the embodiment of the present invention. That is, first, after the gas inside the chamber 11 is discharged and evacuated, the gas supply means 12 supplies the atmospheric gas into the chamber 11 and fills the chamber 11 with the atmospheric gas. Thereafter, the atmospheric gas is continuously supplied into the chamber 11 by the gas supply means 12 while rotating the electrode member 14. Thereby, atmospheric gas can be continuously discharged | emitted from the inside of the chamber 11 through the clearance gap 16 of the bearing part 13 of the electrode insertion port 22. FIG.
このように雰囲気ガスを供給しながらオーバーフローさせた状態で、プラズマ照射手段15により、電極部材14の一方の端部14aに向かってプラズマトーチ25からプラズマを照射する。これにより、電極部材14の一方の端部14aが溶解し、その融液が電極部材14の回転の遠心力によりチャンバー11の内部で吹き飛ばされて冷却され、ほぼ球状の金属製または合金製の粉末となる。こうして製造された粉末は、チャンバー11の下部の回収部23に集まるため、回収口23aから回収することができる。回収された粉末は、例えば、従来の工業用の用途の他に、積層造形法(3Dプリンタ)の原料粉末としても利用することができる。 In such a state where the atmosphere gas is supplied and overflowed, plasma is irradiated from the plasma torch 25 toward the one end portion 14a of the electrode member 14 by the plasma irradiation means 15. As a result, one end portion 14a of the electrode member 14 is dissolved, and the melt is blown off inside the chamber 11 by the centrifugal force of rotation of the electrode member 14 to be cooled, so that a substantially spherical metal or alloy powder It becomes. The powder thus produced collects in the recovery unit 23 at the bottom of the chamber 11 and can be recovered from the recovery port 23a. The recovered powder can be used, for example, as a raw material powder for an additive manufacturing method (3D printer) in addition to conventional industrial applications.
本発明の実施の形態のプラズマ回転電極法による粉末製造装置10および粉末製造方法は、粉末の製造中に、雰囲気ガスが、チャンバー11の内部で、ガス供給口21から電極挿入口22の隙間16に向かって一方向に流れるため、チャンバー11の内部に外気が入り込むのを防ぐことができ、外気により粉末が酸化するのを防止することができる。 In the powder manufacturing apparatus 10 and the powder manufacturing method according to the plasma rotating electrode method of the embodiment of the present invention, the atmospheric gas is generated in the gap 16 between the gas supply port 21 and the electrode insertion port 22 inside the chamber 11 during the powder manufacturing. Therefore, the outside air can be prevented from entering the chamber 11 and the powder can be prevented from being oxidized by the outside air.
また、軸受部13に隙間16が設けられているため、電極部材14から軸受部13までが密閉されている従来のものと比べて、回転する電極部材14と軸受部13との間の摩擦を抑制することができ、摩耗や破損、温度上昇を防ぐことができる。温度上昇により電極部材14やその支持部が膨張して電極部材14が回転しにくくなるのを防ぐことができるため、電極部材14をスムーズに回転し続けることができる。また、電極部材14の回転による共振も抑制することができ、装置が破損するのを防ぐことができる。 Further, since the gap 16 is provided in the bearing portion 13, the friction between the rotating electrode member 14 and the bearing portion 13 is reduced as compared with the conventional one in which the electrode member 14 to the bearing portion 13 are sealed. It can be suppressed, and wear, breakage, and temperature rise can be prevented. Since it can prevent that the electrode member 14 and its support part expand | swell by temperature rise, and the electrode member 14 becomes difficult to rotate, the electrode member 14 can continue rotating smoothly. Further, resonance due to rotation of the electrode member 14 can also be suppressed, and the apparatus can be prevented from being damaged.
なお、粉末製造装置10は、軸受部13を有さず、電極部材14が電極挿入口22の周縁部と接触しないよう設けられていてもよい。この場合、電極部材14と電極挿入口22の周縁部との間に隙間16を形成することができる。電極部材14と電極挿入口22の周縁部とが接触しないため、それらの間に摩擦や共振が発生するのを防ぐことができ、摩耗や破損、温度上昇を効果的に防ぐことができる。 In addition, the powder manufacturing apparatus 10 does not have the bearing part 13 and may be provided so that the electrode member 14 may not contact the peripheral part of the electrode insertion port 22. In this case, a gap 16 can be formed between the electrode member 14 and the peripheral edge of the electrode insertion opening 22. Since the electrode member 14 and the peripheral edge portion of the electrode insertion port 22 do not come into contact with each other, friction and resonance can be prevented from occurring between them, and wear, breakage, and temperature rise can be effectively prevented.
また、図2に示すように、粉末製造装置10は、電極部材14が停止しているとき、電極挿入口22の隙間16を密閉し、電極部材14が回転したとき、その隙間16を開放するよう構成された密閉部材31を有していてもよい。この場合、雰囲気ガスを供給する前に、チャンバー11の内部を真空にする際に、密閉部材31により電極挿入口22の隙間16を塞ぐことができる。また、電極部材14を回転させて粉末を製造している間は、雰囲気ガスを排出するために、密閉部材31により電極挿入口22の隙間16をあけておくことができる。 As shown in FIG. 2, the powder manufacturing apparatus 10 seals the gap 16 of the electrode insertion port 22 when the electrode member 14 is stopped, and opens the gap 16 when the electrode member 14 rotates. You may have the sealing member 31 comprised in this way. In this case, the gap 16 of the electrode insertion opening 22 can be closed by the sealing member 31 when the inside of the chamber 11 is evacuated before supplying the atmospheric gas. Further, while the electrode member 14 is rotated to produce the powder, the gap 16 of the electrode insertion port 22 can be opened by the sealing member 31 in order to discharge the atmospheric gas.
また、図3に示すように、粉末製造装置10は、チャンバー11の内部で電極挿入口22の隙間16を覆うよう、雰囲気ガスと同じガスを噴射可能に設けられたガス噴射手段32を有していてもよい。図3に示す一例では、ガス噴射手段32は、チャンバー11の電極挿入口22の内側で、電極部材14の側面を囲うよう設けられた噴射部33を有し、噴射部33から電極部材14の側面に向かって、隙間なく雰囲気ガスを噴射するようになっている。この場合、ガス噴射手段32から噴射されるガスにより、電極挿入口22の隙間16から外気が入り込むのをより効果的に防ぐことができ、製造される粉末の酸化防止効果を高めることができる。また、ガス噴射手段32から噴射されるガスにより、電極部材14を冷却することができ、電極部材14が膨張して回転しにくくなるのをより効果的に防ぐことができる。 Further, as shown in FIG. 3, the powder manufacturing apparatus 10 includes gas injection means 32 provided so as to be able to inject the same gas as the atmospheric gas so as to cover the gap 16 of the electrode insertion port 22 inside the chamber 11. It may be. In the example shown in FIG. 3, the gas injection means 32 has an injection portion 33 provided so as to surround the side surface of the electrode member 14 inside the electrode insertion port 22 of the chamber 11, and from the injection portion 33 to the electrode member 14. The atmosphere gas is jetted toward the side surface without any gap. In this case, the gas injected from the gas injection means 32 can more effectively prevent outside air from entering through the gap 16 of the electrode insertion port 22, and can enhance the antioxidant effect of the produced powder. Moreover, the electrode member 14 can be cooled by the gas injected from the gas injection means 32, and it can prevent more effectively that the electrode member 14 expand | swells and becomes difficult to rotate.
また、図4に示すように、粉末製造装置10は、電極部材14との間に隙間16をあけて、電極挿入口22の周辺部に沿って設けられた密閉機構41を有していてもよい。このとき、密閉機構41は、環状室42と加減圧室43と加圧手段44と減圧手段45と密閉部材46とを有している。環状室42は、隙間16に向かって開口し、電極部材14の回転方向に沿って円環状に設けられている。加減圧室43は、環状室42の開口42aとは反対側で、環状室42に接続しており、環状室42との間が仕切板47で仕切られている。仕切板47は、環状室42と加減圧室43とを連通するために、厚みを貫通して設けられた連通孔47aを有している。 Further, as shown in FIG. 4, the powder manufacturing apparatus 10 may have a sealing mechanism 41 provided along the periphery of the electrode insertion opening 22 with a gap 16 between the electrode manufacturing member 10 and the electrode member 14. Good. At this time, the sealing mechanism 41 includes an annular chamber 42, a pressurizing / depressurizing chamber 43, a pressurizing unit 44, a decompressing unit 45, and a sealing member 46. The annular chamber 42 opens toward the gap 16 and is provided in an annular shape along the rotation direction of the electrode member 14. The pressurizing / depressurizing chamber 43 is connected to the annular chamber 42 on the side opposite to the opening 42 a of the annular chamber 42, and is partitioned from the annular chamber 42 by a partition plate 47. The partition plate 47 has a communication hole 47 a provided so as to penetrate the thickness in order to communicate the annular chamber 42 and the pressurization / decompression chamber 43.
加圧手段44は、加圧弁44aを介して加減圧室43にガスを供給するよう設けられ、連通孔47aを通して環状室42にガスを供給可能になっている。減圧手段45は、減圧弁45aを介して加減圧室43からガスを排出するよう設けられ、連通孔47aを通して環状室42からガスを排出可能になっている。密閉部材46は、弾性を有するOリングから成り、電極部材14の回転方向に沿って環状室42の内部に配置されている。密閉部材46は、環状室42を幅方向で閉塞可能な厚みを有している。 The pressurizing means 44 is provided so as to supply gas to the pressurizing / depressurizing chamber 43 through the pressurizing valve 44a, and can supply gas to the annular chamber 42 through the communication hole 47a. The decompression means 45 is provided so as to exhaust gas from the pressurization / decompression chamber 43 through the decompression valve 45a, and can exhaust gas from the annular chamber 42 through the communication hole 47a. The sealing member 46 is made of an elastic O-ring, and is disposed inside the annular chamber 42 along the rotation direction of the electrode member 14. The sealing member 46 has a thickness capable of closing the annular chamber 42 in the width direction.
この場合、以下のようにして、密閉機構41により、隙間16を密閉および開放することができる。まず、電極部材14が停止しているとき、図4(a)に示すように、減圧弁45aを閉じて加圧弁44aを開け、加圧手段44により加減圧室43から連通孔47aを通して環状室42にガスを供給する。これにより、密閉部材46が環状室42の開口42aに向かって移動するとともに、環状室42が高圧になるため、密閉部材46が電極部材14の周囲に密着して、電極部材14と環状室42との間で隙間16を密閉することができる。次に、電極部材14が回転するとき、図4(b)に示すように、加圧弁44aを閉じて減圧弁45aを開け、減圧手段45により加減圧室43および連通孔47aを通して環状室42からガスを排出する。これにより、環状室42が真空(低圧)になるため、密閉部材46が電極部材14から離れて環状室42の内部に向かって移動し、隙間16を開放することができる。なお、軸受部13は、密閉した状態で電極部材14を支持する必要はなく、密閉機構41に対して、チャンバー11の内側に設けられていても、外側に設けられていてもよく、密閉機構41に内蔵されていてもよい。 In this case, the gap 16 can be sealed and opened by the sealing mechanism 41 as follows. First, when the electrode member 14 is stopped, as shown in FIG. 4 (a), the pressure reducing valve 45a is closed and the pressure increasing valve 44a is opened, and the pressure applying means 44 causes the annular chamber to pass through the communication hole 47a. Gas is supplied to 42. As a result, the sealing member 46 moves toward the opening 42a of the annular chamber 42, and the annular chamber 42 becomes high pressure. Therefore, the sealing member 46 comes into close contact with the periphery of the electrode member 14, and the electrode member 14 and the annular chamber 42 are in close contact with each other. The gap 16 can be sealed between the two. Next, when the electrode member 14 rotates, as shown in FIG. 4 (b), the pressurizing valve 44a is closed and the pressure reducing valve 45a is opened, and the pressure reducing means 45 causes the pressure chamber 45 and the communication hole 47a to leave the annular chamber 42. Exhaust the gas. Thereby, since the annular chamber 42 becomes a vacuum (low pressure), the sealing member 46 moves away from the electrode member 14 toward the inside of the annular chamber 42, and the gap 16 can be opened. The bearing portion 13 does not need to support the electrode member 14 in a sealed state, and may be provided inside or outside the chamber 11 with respect to the sealing mechanism 41. 41 may be incorporated.
また、粉末製造装置10は、電極部材14を電極挿入口22の配置位置から外したとき、電極挿入口22を密閉可能に設けられた開閉手段を有していてもよい。このとき、電極部材14は、例えば、電極挿入口22の配置位置に対して、チャンバー11の外側から着脱可能に設けられている。この場合、例えば電極部材14を交換する際など、電極部材14を電極挿入口22の配置位置から外したときに、開閉手段で電極挿入口22を密封することにより、真空のチャンバー11の内部に外気や塵埃等の不純物が入ったり、チャンバー11の内部から雰囲気ガスが漏れたりするのを防ぐことができる。 Moreover, the powder manufacturing apparatus 10 may have an opening / closing means provided so that the electrode insertion port 22 can be sealed when the electrode member 14 is removed from the arrangement position of the electrode insertion port 22. At this time, the electrode member 14 is detachably provided from the outside of the chamber 11 with respect to the arrangement position of the electrode insertion port 22, for example. In this case, when the electrode member 14 is removed from the position where the electrode insertion port 22 is disposed, for example, when the electrode member 14 is exchanged, the electrode insertion port 22 is sealed by the opening / closing means, so that the vacuum chamber 11 is filled. It is possible to prevent impurities such as outside air and dust from entering and leakage of atmospheric gas from the inside of the chamber 11.
この場合、開閉手段は、電極挿入口22を密閉可能であれば、いかなる構成であってもよい。例えば、図5に示すように、開閉部材は、電極挿入口22の近傍で、チャンバー11の側面に対して垂直な回転軸48aを中心として、電極挿入口22を塞ぐ位置と開放する位置との間で、チャンバー11の外側面または内側面に沿って回転可能に設けられた蓋部材48を有していてもよい。また、開閉手段は、チャンバー11の内部または外部の電極挿入口22の近傍で、チャンバー11の側面に対して平行な回転軸を中心として、チャンバー11の外側または内側に向かって回転し、電極挿入口22を開閉可能に設けられた蓋部材を有していてもよい。また、開閉部材は、電極挿入口22のチャンバー11の内部側または外部側の開口部に、チャンバー11の内側面または外側面に沿ってスライドし、電極挿入口22を開閉可能に設けられたスライド式の蓋部材を有していてもよい。 In this case, the opening / closing means may have any configuration as long as the electrode insertion port 22 can be sealed. For example, as shown in FIG. 5, the opening / closing member has a position where the electrode insertion port 22 is closed and a position where the electrode insertion port 22 is opened around the rotation axis 48 a perpendicular to the side surface of the chamber 11 in the vicinity of the electrode insertion port 22. A lid member 48 provided to be rotatable along the outer side surface or the inner side surface of the chamber 11 may be provided. The opening / closing means rotates inside or outside the chamber 11 around the rotation axis parallel to the side surface of the chamber 11 toward the outside or inside of the chamber 11 to insert the electrode You may have the cover member provided so that the opening | mouth 22 could be opened and closed. The opening / closing member slides along the inner surface or the outer surface of the chamber 11 into the opening on the inner side or the outer side of the chamber 11 of the electrode insertion port 22 so that the electrode insertion port 22 can be opened and closed. You may have a formula lid member.
図1に示すプラズマ回転電極法による粉末製造装置10を用い、本発明の実施の形態の粉末製造方法により、金属製粉末の製造を行った。雰囲気ガスをArとし、電極部材14としてTi6Al4Vを用い、電極部材14の回転数を20,000rpmとした。また、プラズマ照射手段15により、アルゴンガスで120kW出力の条件で、ガス流量を35リットル/min以下、冷却水流量を約25m3/hとして、電極部材14の一方の端部14aに向かってプラズマを照射した。 Metal powder was manufactured by the powder manufacturing method of the embodiment of the present invention using the powder manufacturing apparatus 10 by the plasma rotating electrode method shown in FIG. The atmosphere gas was Ar, Ti 6 Al 4 V was used as the electrode member 14, and the rotation speed of the electrode member 14 was 20,000 rpm. Further, the plasma irradiation means 15 performs plasma toward one end portion 14a of the electrode member 14 at a gas flow rate of 35 liters / min or less and a cooling water flow rate of about 25 m 3 / h under the condition of 120 kW output with argon gas. Was irradiated.
また、比較のため、図7に示す従来のプラズマ回転電極法による粉末製造装置50を用いて、金属製粉末の製造を行った。製造中のチャンバー51の外部の温度を最大450Kとし、それ以外の条件は、図1に示す粉末製造装置10を用いた場合と同じ条件とした。 For comparison, metal powder was manufactured using a powder manufacturing apparatus 50 according to the conventional plasma rotating electrode method shown in FIG. The temperature outside the chamber 51 during manufacture was set to 450 K at the maximum, and other conditions were the same as when the powder manufacturing apparatus 10 shown in FIG. 1 was used.
図1に示す粉末製造装置10により製造された粉末の走査型電子顕微鏡(SEM)写真を、図6(a)および(b)に、その粉末を半分研磨したときのSEM写真を、図6(c)に示す。図6(a)および(b)に示すように、製造された粉末は、直径D50が60μm〜90μmの球状を成していることが確認された。また、製造された粉末の酸素含有量を測定したところ、100ppmであった。また、図6(c)に示すように、製造された粉末は空洞化されていないことも確認された。これに対し、図7に示す従来の粉末製造装置50を用いて製造された粉末も、直径D50が約60μm〜90μmの球状であり、酸素含有量が100ppmであった。このように、図1に示す粉末製造装置10を用いても、チャンバー51を密封して製造する従来の粉末製造装置50とほぼ同じ品質の粉末を製造できることが確認された。 A scanning electron microscope (SEM) photograph of the powder produced by the powder production apparatus 10 shown in FIG. 1 is shown in FIGS. 6A and 6B, and an SEM photograph when the powder is half-polished is shown in FIG. c). As shown to Fig.6 (a) and (b), it was confirmed that the manufactured powder has comprised the spherical shape whose diameter D50 is 60 micrometers-90 micrometers. Moreover, it was 100 ppm when the oxygen content of the manufactured powder was measured. Moreover, as shown in FIG.6 (c), it was also confirmed that the manufactured powder is not hollowed out. On the other hand, the powder manufactured using the conventional powder manufacturing apparatus 50 shown in FIG. 7 was also spherical with a diameter D50 of about 60 μm to 90 μm and an oxygen content of 100 ppm. Thus, it was confirmed that even with the powder production apparatus 10 shown in FIG. 1, it is possible to produce a powder having substantially the same quality as that of the conventional powder production apparatus 50 that is produced by sealing the chamber 51.
また、製造後の摩耗の状態等を観察したところ、図1に示す粉末製造装置10の軸受部13は、図7に示す従来の粉末製造装置50の軸受部と比べて、寿命が100倍程度延びることが確認された。 Further, when the state of wear and the like after production was observed, the bearing portion 13 of the powder production apparatus 10 shown in FIG. 1 has a life of about 100 times that of the bearing portion of the conventional powder production apparatus 50 shown in FIG. It was confirmed to extend.
10 (プラズマ回転電極法による)粉末製造装置
11 チャンバー
21 ガス供給口
22 電極挿入口
23 回収部
23a 回収口
12 ガス供給手段
13 軸受部
14 電極部材
15 プラズマ照射手段
25 プラズマトーチ
26 電圧印加部
16 隙間
31 密閉部材
32 ガス噴射手段
33 噴射部
41 密閉機構
42 環状室
42a 開口
43 加減圧室
44 加圧手段
44a 加圧弁
45 減圧手段
45a 減圧弁
46 密閉部材
47 仕切板
47a 連通孔
48 蓋部材
48a 回転軸
50 従来の(プラズマ回転電極法による)粉末製造装置
51 チャンバー
51a ガス供給口
51b ガス排出口
52 電極部材
53 プラズマ照射手段
54 ガス供給手段
DESCRIPTION OF SYMBOLS 10 Powder manufacturing apparatus (by plasma rotating electrode method) 11 Chamber 21 Gas supply port 22 Electrode insertion port 23 Recovery part 23a Recovery port 12 Gas supply means 13 Bearing part 14 Electrode member 15 Plasma irradiation means 25 Plasma torch 26 Voltage application part 16 Gap
31 sealing member 32 gas injection means 33 injection part
41 Sealing mechanism 42 Annular chamber 42a Opening 43 Pressurizing / depressurizing chamber 44 Pressurizing means 44a Pressurizing valve 45 Depressurizing means 45a Pressure reducing valve 46 Sealing member 47 Partition plate 47a Communication hole
48 Lid member 48a Rotating shaft
DESCRIPTION OF SYMBOLS 50 Conventional powder manufacturing apparatus (by plasma rotating electrode method) 51 Chamber 51a Gas supply port 51b Gas discharge port 52 Electrode member 53 Plasma irradiation means 54 Gas supply means
Claims (9)
前記ガス供給口から前記チャンバーの内部に雰囲気ガスを供給可能に設けられたガス供給手段と、
細長く、少なくとも一方の端部が金属製または合金製であり、前記一方の端部が前記電極挿入口を通して前記チャンバーの内部に配置され、長さ方向に沿った中心軸周りに回転するよう設けられた電極部材と、
前記チャンバーの内部で、前記電極部材の前記一方の端部に向かってプラズマを照射可能に設けられたプラズマ照射手段とを有し、
前記電極部材を回転しつつ、前記ガス供給手段により前記チャンバーの内部に前記雰囲気ガスを供給したとき、前記雰囲気ガスが前記チャンバーの内部から排出されるよう、前記電極部材が前記電極挿入口に隙間をあけて配置されていることを
特徴とするプラズマ回転電極法による粉末製造装置。 A chamber having a gas supply port and an electrode insertion port;
Gas supply means provided so as to be able to supply atmospheric gas into the chamber from the gas supply port;
Elongated, at least one end is made of metal or alloy, and the one end is disposed inside the chamber through the electrode insertion port, and is provided to rotate around a central axis along the length direction. An electrode member;
Plasma irradiation means provided inside the chamber so as to be able to irradiate plasma toward the one end of the electrode member,
When the atmosphere gas is supplied to the inside of the chamber by the gas supply means while rotating the electrode member, the electrode member has a gap in the electrode insertion port so that the atmosphere gas is discharged from the inside of the chamber. An apparatus for producing powder by a plasma rotating electrode method, characterized by being arranged with a gap in between.
前記密閉機構は、前記隙間に向かって開口し、前記電極部材の回転方向に沿って円環状に設けられた環状室と、前記環状室にガスを供給する加圧手段と、前記環状室から前記ガスを排出する減圧手段とを有し、前記密閉部材は、リング状で、前記電極部材の回転方向に沿って前記環状室の内部に配置されており、前記電極部材が停止しているとき、前記加圧手段で前記環状室に前記ガスを供給することにより、前記密閉部材が前記環状室の開口に向かって移動して、前記電極部材と前記環状室との間で前記隙間を密閉し、前記電極部材が回転するとき、前記減圧手段で前記環状室から前記ガスを排出することにより、前記密閉部材が前記環状室の内部に向かって移動して、前記隙間を開放するよう構成されていることを
特徴とする請求項2記載のプラズマ回転電極法による粉末製造装置。 Having the sealing member, having the sealing mechanism provided along the periphery of the electrode insertion opening, with the gap between the electrode member,
The sealing mechanism opens toward the gap, and is provided with an annular chamber provided in an annular shape along the rotation direction of the electrode member, pressurizing means for supplying gas to the annular chamber, and the annular chamber from the annular chamber Pressure reducing means for discharging gas, and the sealing member is in a ring shape and is arranged inside the annular chamber along the rotation direction of the electrode member, and when the electrode member is stopped, By supplying the gas to the annular chamber by the pressurizing means, the sealing member moves toward the opening of the annular chamber, and seals the gap between the electrode member and the annular chamber, When the electrode member rotates, the gas is discharged from the annular chamber by the decompression means, so that the sealing member moves toward the inside of the annular chamber and opens the gap. The claim 2 characterized by the above-mentioned Powder production equipment using the plasma rotating electrode method.
前記電極部材は、前記電極挿入口の配置位置に対して、前記チャンバーの外側から着脱可能に設けられ、
前記開閉手段は、前記電極部材を前記電極挿入口の配置位置から外したとき、前記電極挿入口を密閉可能に設けられていることを
特徴とする請求項1乃至7のいずれか1項に記載のプラズマ回転電極法による粉末製造装置。 Having opening and closing means,
The electrode member is detachably provided from the outside of the chamber with respect to the arrangement position of the electrode insertion port,
The said opening / closing means is provided so that the said electrode insertion port can be sealed when the said electrode member is removed from the arrangement | positioning position of the said electrode insertion port. The powder manufacturing device by the plasma rotating electrode method.
前記チャンバーの内部に前記雰囲気ガスを充填した後、前記電極部材を回転しつつ、前記ガス供給手段により前記チャンバーの内部に前記雰囲気ガスを連続的に供給することにより、前記隙間を通して前記チャンバーの内部から前記雰囲気ガスを連続的に排出させ、
この状態で、前記電極部材の前記一方の端部に向かって前記プラズマ照射手段によりプラズマを照射して、前記一方の端部を溶解し、その融液を前記電極部材の回転の遠心力により前記チャンバーの内部で吹き飛ばすことにより、金属製または合金製の粉末を製造することを
特徴とするプラズマ回転電極法による粉末製造方法。
A method for producing a powder by a plasma rotating electrode method using the powder producing apparatus by a plasma rotating electrode method according to any one of claims 1 to 8,
After the atmosphere gas is filled into the chamber, the atmosphere gas is continuously supplied into the chamber by the gas supply means while rotating the electrode member, thereby allowing the inside of the chamber to pass through the gap. The atmospheric gas is continuously discharged from
In this state, the one end of the electrode member is irradiated with plasma by the plasma irradiating means to dissolve the one end, and the melt is dissolved by the centrifugal force of the rotation of the electrode member. A powder production method by a plasma rotating electrode method, wherein metal or alloy powder is produced by blowing away inside a chamber.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018088688 | 2018-05-02 | ||
JP2018088688 | 2018-05-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019196542A true JP2019196542A (en) | 2019-11-14 |
JP7154570B2 JP7154570B2 (en) | 2022-10-18 |
Family
ID=68537838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018124681A Active JP7154570B2 (en) | 2018-05-02 | 2018-06-29 | POWDER MANUFACTURING APPARATUS AND POWDER MANUFACTURING METHOD BY PLASMA ROTATING ELECTRODE METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7154570B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111644613A (en) * | 2020-06-30 | 2020-09-11 | 石家庄钢铁有限责任公司 | High-carbon-chromium GCr15 bearing steel spherical powder and preparation method thereof |
CN112191857A (en) * | 2020-12-04 | 2021-01-08 | 西安欧中材料科技有限公司 | Method for preparing iron-based powder by using high-energy-density plasma rotating electrode |
CN114888297A (en) * | 2022-04-13 | 2022-08-12 | 浙江亚通焊材有限公司 | Powder manufacturing equipment capable of continuously atomizing by adopting bar |
CN117259770A (en) * | 2023-11-21 | 2023-12-22 | 西安赛隆增材技术股份有限公司 | Gas control system for preparing powder based on PREP and application method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6192370A (en) * | 1984-10-12 | 1986-05-10 | Nippon Pillar Packing Co Ltd | Emergency shaft sealing device |
JPS62227007A (en) * | 1986-03-28 | 1987-10-06 | Daido Steel Co Ltd | Production of powder |
JP3133621U (en) * | 2007-04-27 | 2007-07-19 | 株式会社島津製作所 | Vacuum chamber and vacuum film forming apparatus |
-
2018
- 2018-06-29 JP JP2018124681A patent/JP7154570B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6192370A (en) * | 1984-10-12 | 1986-05-10 | Nippon Pillar Packing Co Ltd | Emergency shaft sealing device |
JPS62227007A (en) * | 1986-03-28 | 1987-10-06 | Daido Steel Co Ltd | Production of powder |
JP3133621U (en) * | 2007-04-27 | 2007-07-19 | 株式会社島津製作所 | Vacuum chamber and vacuum film forming apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111644613A (en) * | 2020-06-30 | 2020-09-11 | 石家庄钢铁有限责任公司 | High-carbon-chromium GCr15 bearing steel spherical powder and preparation method thereof |
CN112191857A (en) * | 2020-12-04 | 2021-01-08 | 西安欧中材料科技有限公司 | Method for preparing iron-based powder by using high-energy-density plasma rotating electrode |
CN112191857B (en) * | 2020-12-04 | 2021-07-06 | 西安欧中材料科技有限公司 | Method for preparing iron-based powder by using high-energy-density plasma rotating electrode |
CN114888297A (en) * | 2022-04-13 | 2022-08-12 | 浙江亚通焊材有限公司 | Powder manufacturing equipment capable of continuously atomizing by adopting bar |
CN114888297B (en) * | 2022-04-13 | 2023-06-30 | 浙江亚通新材料股份有限公司 | Powder preparation equipment capable of continuously atomizing by adopting bar stock |
CN117259770A (en) * | 2023-11-21 | 2023-12-22 | 西安赛隆增材技术股份有限公司 | Gas control system for preparing powder based on PREP and application method thereof |
CN117259770B (en) * | 2023-11-21 | 2024-02-13 | 西安赛隆增材技术股份有限公司 | Gas control system for preparing powder based on PREP and application method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7154570B2 (en) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2019196542A (en) | Apparatus for producing powder by plasma rotating electrode process and method of producing powder | |
US3982913A (en) | Method and apparatus for degassing metallic melts | |
US8574336B2 (en) | Ultrasonic degassing of molten metals | |
JP5643567B2 (en) | Method for manufacturing fluid dynamic bearing | |
TW201627585A (en) | Cooling structure of bearing device | |
JP2008208432A (en) | METHOD FOR PRODUCING POWDER SINTERED COMPACT OF TiAl INTERMETALLIC COMPOUND BASED ALLOY | |
JP2008254052A (en) | METHOD FOR PRODUCING Ti ALLOY CASTING | |
CN113165116B (en) | Laser welding device | |
JP2020026541A (en) | Powder production apparatus and powder production method using plasma rotating electrode method | |
JP2016069711A (en) | Fine particle generator | |
JP2736969B2 (en) | Quartz crucible manufacturing equipment | |
JP5789866B2 (en) | Sealing method for ferrous sintered parts | |
JP2020012139A (en) | Powder-manufacturing apparatus by plasma rotating electrode method | |
KR101746057B1 (en) | Ball milling device for high energy and alloyed powder using the same | |
JP2019019399A (en) | Metal oxide thin piece production device and metal oxide thin piece production method | |
JP2015048489A (en) | Anti-friction material, manufacturing method thereof, puffer cylinder, manufacturing method thereof, and puffer type gas circuit breaker | |
JP2000225455A (en) | Cast iron casting method and apparatus | |
CN110280775A (en) | Floating seal arrangement and rotation fuel pulverizing plant with the floating seal arrangement | |
JP2008156732A (en) | Magnetron sputtering system and film deposition method using the same | |
JPH02256915A (en) | Porous static pressure bearing and manufacture thereof | |
JP4187073B2 (en) | Sealing device for a processing device using a rotary table | |
JP2001240903A (en) | Raw material drive for powder production | |
JP2005153002A (en) | Rotary hot water casting equipment | |
JP6350324B2 (en) | Single crystal manufacturing equipment | |
CN105441699A (en) | Strong shearing microbubble degassing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180702 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200214 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7154570 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |