[go: up one dir, main page]

JP2019168383A - Electrode structure - Google Patents

Electrode structure Download PDF

Info

Publication number
JP2019168383A
JP2019168383A JP2018057680A JP2018057680A JP2019168383A JP 2019168383 A JP2019168383 A JP 2019168383A JP 2018057680 A JP2018057680 A JP 2018057680A JP 2018057680 A JP2018057680 A JP 2018057680A JP 2019168383 A JP2019168383 A JP 2019168383A
Authority
JP
Japan
Prior art keywords
electrode
anticorrosion
container
metal
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018057680A
Other languages
Japanese (ja)
Inventor
智之 永井
Tomoyuki Nagai
智之 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2018057680A priority Critical patent/JP2019168383A/en
Publication of JP2019168383A publication Critical patent/JP2019168383A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To provide an electrode structure which has structure capable of highly accurately measuring an electric potential of an anode while flowing anti-corrosion current from the anode even in such a situation that the anode is buried under the ground.SOLUTION: The electrode structure comprises a nonconductive container 2, an internal electrolyte 7, a reference electrode 8 disposed in a state of electrically contacting the internal electrolyte 7, metals 9a and 9b for a corrosion prevention electrode electrically connected to the reference electrode 8 and disposed on the outer surface of the container 2, and potential measurement means 16. The metals 9a and 9b for a corrosion prevention electrode can be electrically brought into contact with an external electrolyte G. The container 2 includes an open hole 5 electrically insulated from the metals 9a and 9b for a corrosion prevention electrode is formed in the vicinity of the metals 9a and 9b for a corrosion prevention electrode so as to communicate the inside and the outside of the container 2. A partition wall 6 made of porous material is installed in the open hole 5 and thereby the internal electrolyte 7 and the external electrolyte G can be electrically connected through the partition wall 6.SELECTED DRAWING: Figure 1

Description

本発明は、電気防食に用いられる電極構造体に関する。   The present invention relates to an electrode structure used for cathodic protection.

地中に埋設して使用される鋼管(鋼製埋設管)は、一般的に表面の塗装と併せて電気防食が施されている。例えば、外部電源法による電気防食では、地中に埋設された電極(例えば、Ti基材の表面にIr系金属酸化物を焼成した電極(MMOTi電極))を陽極として、当該陽極から防食対象となる鋼製埋設管に向けて電流を流し、この鋼製埋設管の電位が基準値以下となるように維持することで防食状態を達成する。   Steel pipes (steel buried pipes) used by being buried in the ground are generally subjected to cathodic protection in combination with the surface coating. For example, in the case of cathodic protection by the external power supply method, an electrode embedded in the ground (for example, an electrode obtained by firing an Ir-based metal oxide on the surface of a Ti base (MMOTi electrode)) is used as an anode, and the anticorrosion target from the anode. An anti-corrosion state is achieved by flowing an electric current toward the steel buried pipe and maintaining the potential of the steel buried pipe at a reference value or lower.

ここで、上記外部電源法による電気防食では、陽極の表面において、通常、水の電気分解により酸素が発生して電流が流れる。しかし、陽極が長年の使用によって劣化すると、十分な防食電流を流すためには、陽極の電位をより高い値にする必要があり、例えば、地中に海水が存在する場合などのように塩化物イオンが多く存在するような環境下においては、陽極表面に酸素ではなく毒性の強い塩素ガスが発生し、生態系に悪影響を及ぼすという問題が懸念される。   Here, in the anti-corrosion by the external power source method, oxygen is usually generated by electrolysis of water on the surface of the anode and a current flows. However, if the anode deteriorates due to long-term use, it is necessary to set the anode potential to a higher value in order to allow a sufficient anticorrosion current to flow. For example, when the seawater exists in the ground, chlorides are required. In an environment where there are many ions, there is a concern that toxic chlorine gas, not oxygen, is generated on the anode surface, which adversely affects the ecosystem.

このような問題を解決するものとして、例えば、特許文献1には、塩素発生率を低く抑えられる防食用電極が提案されている。この特許文献1記載の防食用電極は、貴金属の酸化物及び弁金属の酸化物からなる複合酸化物の下地上に、二酸化マンガンにタングステン酸などを組み合わせた複合酸化物ならなる物質を電着により付着させたものであり、当該防食用電極によれば、これを海水中で陽極として使用することにより、塩素発生率を低く抑えることができる。   In order to solve such a problem, for example, Patent Document 1 proposes an anticorrosion electrode that can keep the chlorine generation rate low. The electrode for anticorrosion described in Patent Document 1 is prepared by electrodeposition of a composite oxide composed of a combination of manganese dioxide and tungstic acid on the ground of a composite oxide composed of a noble metal oxide and a valve metal oxide. According to the anticorrosion electrode, the chlorine generation rate can be kept low by using this electrode as an anode in seawater.

また、陽極が劣化して塩素ガスが発生するような電位を示すようになった場合、陽極の交換等の措置を講じる必要があり、陽極がそのような電位になったことを把握するために、海水中に設置された陽極の電位を測定する方法が従来から知られている。   In addition, when the anode deteriorates and shows a potential that generates chlorine gas, it is necessary to take measures such as replacing the anode, in order to grasp that the anode has reached such a potential. A method for measuring the potential of an anode installed in seawater is conventionally known.

特許第3497707号公報Japanese Patent No. 3497707

ところが、上記特許文献1記載の防食用電極は、これを長年使用した場合に、電着させた複合酸化物が喪失して塩素ガスの発生を抑制する効果が失われ、塩素発生率を低く抑えることができなくなる。   However, the anticorrosion electrode described in Patent Document 1 loses the effect of suppressing the generation of chlorine gas by losing the electrodeposited composite oxide when it is used for many years, and keeps the chlorine generation rate low. I can't do that.

また、上記海水中に設置された陽極の電位を測定する方法については、海水の電気抵抗が比較的低いため、陽極の電位をある程度正確に測定することができるが、陽極が地中に埋設されているような状況においては、土壌の電気抵抗が高いため、陽極から防食電流を流した状態で当該陽極の電位を測定すると、IR誤差(電流と抵抗値の積の値が誤差として測定電位に含まれる現象)が1V以上になることもあり、正確に測定することが困難である。   As for the method of measuring the potential of the anode installed in the seawater, since the electrical resistance of seawater is relatively low, the potential of the anode can be measured with a certain degree of accuracy, but the anode is buried in the ground. In such a situation, since the electrical resistance of the soil is high, when the potential of the anode is measured in a state where an anticorrosion current flows from the anode, the IR error (the product of the current and resistance value becomes the error as the measured potential). The included phenomenon) may be 1 V or more, and it is difficult to measure accurately.

本発明は以上の実情に鑑みなされたものであり、陽極が地中に埋設されているような状況においても、陽極から防食電流を流したままで陽極の電位を高精度に測定することが可能な構造を備えた電極構造体の提供をその目的とする。   The present invention has been made in view of the above circumstances, and even in a situation where the anode is buried in the ground, the potential of the anode can be measured with high accuracy while the anticorrosion current is flowing from the anode. An object is to provide an electrode structure having a structure.

上記目的を達成するための本発明に係る電極構造体の特徴構成は、電気防食に用いられる電極構造体であって、
非導電性の容器と、
前記容器内に収容された内部電解質と、
前記容器内に、前記内部電解質に電気的に接触する状態で配設された照合電極と、
前記照合電極と電気的に接続されるとともに、外部電源が電気的に接続され、前記容器の外面に配設された防食電極用金属と、
前記照合電極の電位を基準とした前記防食電極用金属の電位を測定する電位測定手段とを備え、
前記防食電極用金属は、前記容器の外側の外部電解質に電気的に接触可能であり、
前記容器には、前記防食電極用金属と電気的に絶縁された少なくとも一つの貫通孔が該容器の内外を連通するように前記防食電極用金属の近傍に形成され、
前記貫通孔には、前記内部電解質が充填されるとともに、多孔質体からなる隔壁が設置されており、
前記隔壁を通して、前記内部電解質と前記外部電解質とが電気的に接続可能である点にある。
The characteristic structure of the electrode structure according to the present invention for achieving the above object is an electrode structure used for cathodic protection,
A non-conductive container;
An internal electrolyte housed in the container;
In the container, a reference electrode disposed in electrical contact with the internal electrolyte,
While being electrically connected to the reference electrode, an external power source is electrically connected, and the metal for the anticorrosion electrode disposed on the outer surface of the container,
A potential measuring means for measuring the potential of the metal for the anticorrosion electrode with respect to the potential of the reference electrode;
The metal for the anticorrosion electrode can be in electrical contact with an external electrolyte outside the container,
In the container, at least one through hole electrically insulated from the metal for the anticorrosion electrode is formed in the vicinity of the metal for the anticorrosion electrode so as to communicate with the inside and the outside of the container,
The through hole is filled with the internal electrolyte, and a partition wall made of a porous body is installed,
The internal electrolyte and the external electrolyte can be electrically connected through the partition wall.

上記特徴構成によれば、照合電極が電気的に接触した内部電解質と、容器の外側の外部電解質とが貫通孔に設けられた隔壁を通して電気的に接続可能であるとともに、貫通孔が防食電極用金属の近傍に形成されているため、照合電極と防食電極用金属との間に介在する外部電解質の量を限りなく少なくすることができ、外部電解質の抵抗の大きさに左右されるIR誤差を小さくすることができるため、防食電極用金属の電位を精度良く測定することができる。即ち、電極構造体を地中に埋設し、外部電解質が抵抗の大きい土壌であるような状況下において、電極構造体の防食電極用金属を陽極として鋼製埋設管を電気防食する際に、防食電極用金属から防食電流を流したままでも外部電解質に基づく抵抗が小さいため、IR誤差を小さくすることができ、陽極の電位を精度良く測定することができる。   According to the above characteristic configuration, the internal electrolyte in electrical contact with the reference electrode and the external electrolyte outside the container can be electrically connected through the partition provided in the through hole, and the through hole is for the anticorrosive electrode. Since it is formed in the vicinity of the metal, the amount of the external electrolyte interposed between the reference electrode and the metal for the anticorrosion electrode can be reduced as much as possible, and the IR error that depends on the resistance of the external electrolyte is reduced. Since it can be made small, the potential of the metal for anticorrosion electrodes can be measured with high accuracy. That is, in the situation where the electrode structure is buried in the ground and the external electrolyte is a highly resistant soil, the corrosion protection is performed when the steel buried pipe is subjected to electrocorrosion protection using the metal for the corrosion protection electrode of the electrode structure as an anode. Since the resistance based on the external electrolyte is small even when the anticorrosion current is applied from the electrode metal, the IR error can be reduced and the potential of the anode can be measured with high accuracy.

尚、外部電解質の抵抗の大きさに左右されるIR誤差を少なくするためには、貫通孔と防食電極用金属との間に介在する外部電解質を可能な限り少なくすることが好ましい。   In order to reduce the IR error that depends on the resistance of the external electrolyte, it is preferable to reduce the external electrolyte interposed between the through hole and the metal for the anticorrosion electrode as much as possible.

即ち、本発明に係る電極構造体の更なる特徴構成は、前記貫通孔は、前記防食電極用金属と電気的に絶縁された状態で、前記容器及び前記防食電極用金属を貫通して形成されている点にある。   That is, a further characteristic configuration of the electrode structure according to the present invention is that the through hole is formed through the container and the anticorrosion electrode metal in a state of being electrically insulated from the anticorrosion electrode metal. There is in point.

上記特徴構成によれば、貫通孔と防食電極用金属とが極めて接近した状態となるため、これらの間に介在する外部電解質の量を極めて少なくすることができ、IR誤差を非常に小さくすることができるため、防食電極用金属の電位をより高精度に測定することができる。   According to the above characteristic configuration, since the through hole and the metal for the anticorrosion electrode are in a very close state, the amount of the external electrolyte interposed between them can be extremely reduced, and the IR error can be extremely reduced. Therefore, the potential of the anticorrosion electrode metal can be measured with higher accuracy.

また、本発明に係る電極構造体の更なる特徴構成は、前記防食電極用金属と前記照合電極とが導線によって電気的に接続され、
前記導線は、前記容器を貫通して前記防食電極用金属に接続されるとともに、前記容器内を通って前記照合電極に接続されている点にある。
Moreover, the further characteristic configuration of the electrode structure according to the present invention is such that the anticorrosion electrode metal and the reference electrode are electrically connected by a conducting wire,
The conducting wire is in a point that it penetrates the container and is connected to the metal for the anticorrosion electrode and is connected to the reference electrode through the container.

上記特徴構成によれば、防食電極用金属と照合電極とを電気的に接続するための導線が容器内に収容された状態となるため、電極構造体自体をコンパクトにでき、また、導線が容器外に剥き出しになっている場合と比較して、電極構造体を地中に埋設する際などに導線の破断等も起こり難くなる。   According to the above characteristic configuration, since the conductive wire for electrically connecting the anticorrosion electrode metal and the reference electrode is housed in the container, the electrode structure itself can be made compact, and the conductive wire is used in the container. As compared with the case where the electrode structure is exposed to the outside, breakage or the like of the conductive wire is less likely to occur when the electrode structure is embedded in the ground.

また、本発明に係る電極構造体の更なる特徴構成は、前記防食電極用金属は、相互に電気的に絶縁された第1防食電極用金属と第2防食電極用金属とに分割されており、
前記第1及び第2防食電極用金属は、それぞれ前記照合電極と電気的に接続されるとともに、それぞれ前記外部電源が電気的に接続され、前記外部電解質に電気的に接触可能であり、
前記第1及び第2防食電極用金属には、当該2つの防食電極用金属のうちの何れか一方を試験極、他方を対極として交流インピーダンスを測定する交流インピーダンス測定手段が電気的に接続されている点にある。
The electrode structure according to the present invention is further characterized in that the anticorrosion electrode metal is divided into a first anticorrosion electrode metal and a second anticorrosion electrode metal that are electrically insulated from each other. ,
The first and second anticorrosion electrode metals are electrically connected to the reference electrode, respectively, the external power source is electrically connected, and can be in electrical contact with the external electrolyte,
The first and second anticorrosion electrode metals are electrically connected to AC impedance measuring means for measuring AC impedance using either one of the two anticorrosion electrode metals as a test electrode and the other as a counter electrode. There is in point.

ところで、鋼製埋設管の電気防食に電極構造体を長年使用した場合、防食電極用金属が劣化して抵抗値が増大してしまった場合や、防食電流が極めて大きいような場合には、IR誤差が無視することができないほど大きくなる可能性がある。   By the way, when the electrode structure is used for many years for the electric corrosion protection of steel buried pipes, the resistance value increases due to deterioration of the metal for the corrosion protection electrode, or when the corrosion protection current is extremely large, the IR The error can be so large that it cannot be ignored.

しかしながら、上記特徴構成によれば、第1及び第2防食電極用金属のうちの一方を試験極、他方を対極として接続された交流インピーダンス測定器により、各防食電極用金属の抵抗を測定して、当該抵抗と各防食電極用金属から流れる電流とからIR誤差を計算できる。よって、計算したIR誤差分を補正した正確な電位を測定することが可能となる。   However, according to the above characteristic configuration, the resistance of each metal for the anticorrosion electrode is measured by an AC impedance measuring instrument connected with one of the first and second anticorrosion electrode metals as the test electrode and the other as the counter electrode. The IR error can be calculated from the resistance and the current flowing from each anticorrosion electrode metal. Therefore, it is possible to measure an accurate potential obtained by correcting the calculated IR error.

第1実施形態に係る電極構造体の構造を示す断面図である。It is sectional drawing which shows the structure of the electrode structure which concerns on 1st Embodiment. 第1実施形態に係る電極構造体を用いた電気防食システムの概略的な構成図である。It is a schematic block diagram of the cathodic protection system using the electrode structure which concerns on 1st Embodiment.

〔第1実施形態〕
以下、図面を参照して第1実施形態に係る電極構造体1について説明する。図1は、電極構造体1の構造を示す断面図であり、図2は、電極構造体1を用いた電気防食システム100の概略的な構成図である。
[First Embodiment]
Hereinafter, the electrode structure 1 according to the first embodiment will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of the electrode structure 1, and FIG. 2 is a schematic configuration diagram of an cathodic protection system 100 using the electrode structure 1.

図1に示すように、第1実施形態に係る電極構造体1は、非導電性の容器2と、容器2内に収容された内部電解質7と、同じく容器2内に内部電解質7に電気的に接触する状態で配設された照合電極8と、照合電極8と電気的に接続されるとともに、外部電源20と電気的に接続され、容器2の外面に配設された第1及び第2防食電極用金属9a,9bと、容器2内に配設された測定ユニット15とを備えている。   As shown in FIG. 1, the electrode structure 1 according to the first embodiment includes a non-conductive container 2, an internal electrolyte 7 accommodated in the container 2, and an electrical connection to the internal electrolyte 7 in the container 2. The reference electrode 8 disposed in contact with the reference electrode 8 and the first and second electrodes electrically connected to the reference electrode 8 and electrically connected to the external power source 20 and disposed on the outer surface of the container 2. Corrosion-proof electrode metals 9 a and 9 b and a measurement unit 15 disposed in the container 2 are provided.

容器2は、頂部及び底部が閉塞され、軸方向における一部に細径部3を有する円筒状部材であり、非導電性を備えた樹脂からなる。以下の説明において、容器2における細径部3を挟んで軸方向上側を、内部空間に照合電極が設置される照合電極設置部2a、細径部3を挟んで軸方向下側を、外周面に第1及び第2防食電極用金属9a,9bが配設される防食電極設置部2bと称する。尚、照合電極設置部2aと防食電極設置部2bとは、細径部3を通して連通している。   The container 2 is a cylindrical member that is closed at the top and bottom, and has a small diameter portion 3 in a part in the axial direction, and is made of a resin having non-conductivity. In the following description, the upper side in the axial direction across the narrow diameter portion 3 in the container 2, the verification electrode installation portion 2 a in which the verification electrode is installed in the internal space, the lower side in the axial direction across the narrow diameter portion 3, the outer peripheral surface The first and second anticorrosion electrode metals 9a and 9b are referred to as anticorrosion electrode installation portions 2b. The verification electrode installation part 2 a and the anticorrosion electrode installation part 2 b communicate with each other through the small diameter part 3.

防食電極設置部2bには、その外周面に、容器2の軸方向に間隔を空けて周方向に沿って形成された2つの溝部4a,4bが形成されている。また、照合電極設置部2aには、特に図示はしないが、内部空間にアクセスするための開閉扉等が設けられている。   On the outer peripheral surface of the anticorrosion electrode installation portion 2b, two groove portions 4a and 4b formed along the circumferential direction with an interval in the axial direction of the container 2 are formed. In addition, the verification electrode installation portion 2a is provided with an open / close door or the like for accessing the internal space, although not particularly illustrated.

照合電極8は、内部電解質7に電気的に接触した状態、即ち、内部電解質7に少なくとも一部が浸漬した状態で、容器2の照合電極設置部2a内に配設されている。   The verification electrode 8 is disposed in the verification electrode installation portion 2 a of the container 2 in a state where it is in electrical contact with the internal electrolyte 7, that is, in a state where at least a part is immersed in the internal electrolyte 7.

また、第1及び第2防食電極用金属9a,9bは、それぞれ防食電極設置部2bの外周面に形成された2つの溝部4a,4b内に配設され、容器2の一部によって相互に電気的に絶縁された円筒状の金属体である。また、第1及び第2防食電極用金属9a,9bは、電極構造体1を地中に埋設した際に、当該電極構造体1の外側の外部電解質(土壌)Gに電気的に接続可能になっている。尚、第1及び第2防食電極用金属9a,9bは、例えば、Ti基材の表面にIr系金属酸化物を焼成したものである。   The first and second anti-corrosion electrode metals 9a and 9b are disposed in two grooves 4a and 4b formed on the outer peripheral surface of the anti-corrosion electrode installation portion 2b, respectively. Insulated cylindrical metal body. The first and second anticorrosive electrode metals 9a and 9b can be electrically connected to an external electrolyte (soil) G outside the electrode structure 1 when the electrode structure 1 is embedded in the ground. It has become. The first and second anticorrosive electrode metals 9a and 9b are obtained by firing an Ir-based metal oxide on the surface of a Ti base material, for example.

第1及び第2防食電極用金属9a,9bは、それぞれの裏面に容器2を貫通して接続され、防食電極設置部2b内及び細径部3内を通って照合電極設置部2a内の内部電解質7上に取り出されたリード線(被覆導線)10a,10bによって、それぞれ測定ユニット15に接続されている。また、照合電極8は、同じくリード線11によって測定ユニット15に接続されている。斯くして、第1及び第2防食電極用金属9a,9bと照合電極8とは測定ユニット15と電気的に接続されている。このように、第1及び第2防食電極用金属9a,9bと照合電極8とを電気的に接続するリード線10a,10b,11が容器2内を通るようにしているため、電極構造体1自体がコンパクトなものとなり、また、リード線10a,10b,11が容器2外に剥き出しになっている場合と比較して、電極構造体1を地中に埋設する際などにリード線10a,10b,11の破断等も起こり難くなっている。また、各リード線10a,10bはそれぞれ途中で分岐して外部電源20に接続されている。   The first and second anti-corrosion electrode metals 9a and 9b are connected to the respective back surfaces through the container 2, and pass through the anti-corrosion electrode installation portion 2b and the small-diameter portion 3 to inside the reference electrode installation portion 2a. The lead wires (covered conductive wires) 10a and 10b taken out on the electrolyte 7 are connected to the measuring unit 15, respectively. The verification electrode 8 is also connected to the measurement unit 15 by the lead wire 11. Thus, the first and second anticorrosion electrode metals 9 a and 9 b and the verification electrode 8 are electrically connected to the measurement unit 15. Thus, since the lead wires 10a, 10b, and 11 for electrically connecting the first and second anticorrosive electrode metals 9a and 9b and the reference electrode 8 pass through the container 2, the electrode structure 1 Compared with the case where the lead wires 10a, 10b, 11 are exposed to the outside of the container 2, the lead wires 10a, 10b are embedded when the electrode structure 1 is embedded in the ground. , 11 are less likely to break. Each lead wire 10a, 10b is branched in the middle and connected to the external power source 20.

また、防食電極設置部2bには、容器2並びに第1及び第2防食電極用金属9a,9bを貫通するように、内部空間と外部とを連通する複数の貫通孔5が、容器2の軸方向に沿って所定間隔を空けて形成されており、当該複数の貫通孔5には多孔質体からなる隔壁6がそれぞれ設置されている。また、各貫通孔5と第1及び第2防食電極用金属9a,9bとの間には、非導電性の容器2の一部を介在させるようにし、各貫通孔5と第1及び第2防食電極用金属9a,9bとを電気的に絶縁している。   The anti-corrosion electrode installation portion 2b has a plurality of through holes 5 that communicate the internal space with the outside so as to penetrate the container 2 and the first and second anti-corrosion electrode metals 9a and 9b. The plurality of through holes 5 are each provided with a partition wall 6 made of a porous material. Further, a part of the non-conductive container 2 is interposed between each through-hole 5 and the first and second anti-corrosion electrode metals 9a, 9b, and each through-hole 5 and each of the first and second anti-corrosion electrodes 9a, 9b are interposed. The metal for an anticorrosion electrode 9a, 9b is electrically insulated.

内部電解質7は、例えば、硫酸ナトリウム水溶液や、硫酸ナトリウム水溶液を含浸させた土壌などであり、各貫通孔5に内部電解質7が入り込むように、防食電極設置部2bから照合電極設置部2aの途中まで充填されており、照合電極設置部2a内の内部電解質7上には、当該内部電解質7中の水分の蒸発を防ぐための蓋(図示せず)が設けられている。斯くして、内部電解質7は、電極構造体1を地中に埋設した際に、各貫通孔5及び隔壁6を通して外部電解質Gと電気的に接続可能になっている。   The internal electrolyte 7 is, for example, a sodium sulfate aqueous solution or a soil impregnated with a sodium sulfate aqueous solution. The internal electrolyte 7 is in the middle of the anticorrosive electrode installation portion 2b and the reference electrode installation portion 2a so that the internal electrolyte 7 enters each through hole 5. A lid (not shown) for preventing the evaporation of moisture in the internal electrolyte 7 is provided on the internal electrolyte 7 in the verification electrode installation portion 2a. Thus, the internal electrolyte 7 can be electrically connected to the external electrolyte G through the through holes 5 and the partition walls 6 when the electrode structure 1 is embedded in the ground.

測定ユニット15は、照合電極8の電位を基準とした第1及び第2防食電極用金属9a,9bの電位を測定する電位計(電位測定手段)16と、第1防食電極用金属9aを試験極、第2防食電極用金属9bを対極として交流インピーダンスを測定する交流インピーダンス測定器(交流インピーダンス測定手段)17とからなる。尚、交流インピーダンス測定器17は、端子等で接続されるものであり、交流インピーダンスを測定する必要がない場合など、交流インピーダンス測定器17を使用しないような場合には、適宜取り外すことができるようになっている。   The measurement unit 15 tests an electrometer (potential measuring means) 16 for measuring the potentials of the first and second anticorrosion electrode metals 9a and 9b with reference to the potential of the reference electrode 8, and the first anticorrosion electrode metal 9a. The electrode comprises an AC impedance measuring device (AC impedance measuring means) 17 for measuring AC impedance using the second anticorrosive electrode metal 9b as a counter electrode. The AC impedance measuring device 17 is connected by a terminal or the like, and can be removed as appropriate when the AC impedance measuring device 17 is not used, such as when it is not necessary to measure the AC impedance. It has become.

この電極構造体1は、図2に示すように、外部電解質G中に埋設してある鋼製埋設管(防食対象物となる構造物の一例)22と同じ土壌中に、照合電極設置部2aが地表、防食電極設置部2bが地中に位置するように埋設して、外部電源20と鋼製埋設管22とをリード線によって電気的に接続した状態で、外部電源20によって第1及び第2防食電極用金属9a,9bから鋼製埋設管22に向けて防食電流を流すことができる。これにより、鋼製埋設管22は、外部電源法により防食される。   As shown in FIG. 2, the electrode structure 1 includes a reference electrode installation portion 2 a in the same soil as a steel buried pipe 22 (an example of a structure serving as an anticorrosion object) embedded in the external electrolyte G. Are buried so that the anticorrosion electrode installation part 2b is located in the ground, and the external power source 20 and the steel buried tube 22 are electrically connected by lead wires, and the first and (2) An anticorrosion current can flow from the metal 9a, 9b for the anticorrosion electrode toward the steel buried tube 22. Thereby, the steel buried pipe 22 is protected from corrosion by the external power supply method.

本実施形態に係る電極構造体1においては、照合電極8が電気的に接触した内部電解質7と外部電解質Gとが貫通孔5に設けられた隔壁6を通して電気的に接続され、加えて、複数の貫通孔5が第1及び第2防食電極用金属9a,9bに極めて近接した状態となっているため、照合電極8と第1及び第2防食電極用金属9a,9bとの間に介在する外部電解質Gの量が極めて少なくなる。よって、第1及び第2防食電極用金属9a,9bから鋼製埋設管22に向けて防食電流を流している場合であっても、外部電解質Gに基づく抵抗が極めて小さくなるため、IR誤差が極めて小さくなり、陽極たる第1及び第2防食電極用金属9a,9bの電位を精度良く測定することができる。   In the electrode structure 1 according to the present embodiment, the internal electrolyte 7 and the external electrolyte G in which the reference electrode 8 is in electrical contact are electrically connected through the partition wall 6 provided in the through hole 5, Since the through hole 5 is in a state of being very close to the first and second anticorrosion electrode metals 9a and 9b, the through hole 5 is interposed between the reference electrode 8 and the first and second anticorrosion electrode metals 9a and 9b. The amount of the external electrolyte G is extremely reduced. Therefore, even when the anticorrosive current is flowing from the first and second anticorrosive electrode metals 9a and 9b toward the steel buried tube 22, the resistance based on the external electrolyte G is extremely small, and therefore the IR error is small. The potential of the first and second anticorrosive electrode metals 9a and 9b, which are anodes, can be measured with high accuracy.

また、本実施形態に係る電極構造体1においては、第1及び第2防食電極用金属9a,9bが、複数個の貫通孔5を通じて内部電解質7と電気的に接触されるように設けているため、第1及び第2防食電極用金属9a,9bにおける電位のバラつきが抑制される。   Further, in the electrode structure 1 according to the present embodiment, the first and second anticorrosive electrode metals 9 a and 9 b are provided so as to be in electrical contact with the internal electrolyte 7 through the plurality of through holes 5. Therefore, the variation in potential in the first and second anticorrosion electrode metals 9a and 9b is suppressed.

ところで、電極構造体1を長年使用した場合、第1及び第2防食電極用金属9a,9bの劣化によってその抵抗値が増大することがあり、また、第1及び第2防食電極用金属9a,9bから鋼製埋設管22に向けて流れる防食電流が極めて大きいような場合には、IR誤差が無視できない大きさになる場合がある。   By the way, when the electrode structure 1 is used for many years, the resistance value may increase due to deterioration of the first and second anticorrosion electrode metals 9a and 9b, and the first and second anticorrosion electrode metals 9a and 9b When the anticorrosion current flowing from 9b toward the steel buried pipe 22 is extremely large, the IR error may be a magnitude that cannot be ignored.

しかしながら、本実施形態に係る電極構造体1においては、第1防食電極用金属9aを試験極、第2防食電極用金属9bを対極として交流インピーダンスを測定する交流インピーダンス測定器17を設けており、当該交流インピーダンス測定器17によって、各防食電極用金属9a,9bにおける抵抗を測定し、これら各防食電極用金属9a,9bから流出する電流との積を算出することで、IR誤差を求めることができる。よって、電位計16で測定した電位を、求めたIR誤差を基に補正して、第1及び第2防食電極用金属9a,9bの正確な電位を得ることができる。尚、各防食電極用金属9a,9bから流出する電流(即ち、防食電流)は、電流計21によって測定する。   However, in the electrode structure 1 according to the present embodiment, an AC impedance measuring device 17 that measures AC impedance using the first anticorrosion electrode metal 9a as a test electrode and the second anticorrosion electrode metal 9b as a counter electrode is provided, By measuring the resistance of each of the anticorrosion electrode metals 9a and 9b by the AC impedance measuring instrument 17, and calculating the product of the current flowing out of each of the anticorrosion electrode metals 9a and 9b, the IR error can be obtained. it can. Therefore, the potential measured by the electrometer 16 is corrected based on the obtained IR error, and the accurate potentials of the first and second anticorrosive electrode metals 9a and 9b can be obtained. In addition, the electric current (namely, anticorrosion current) which flows out from each metal 9a, 9b for anticorrosion electrodes is measured by the ammeter 21.

以上のように、本実施形態に係る電極構造体1によれば、照合電極8と第1及び第2防食電極用金属9a,9bとの間に介在する外部電解質Gの量を少なくして、外部電解質Gの抵抗の大きさに左右されるIR誤差を小さくできるため、第1及び第2防食電極用金属9a,9bの電位を精度良く測定することができる。即ち、第1及び第2防食電極用金属9a,9bから鋼製埋設管22に向けて防食電流が流れている場合であっても、外部電解質Gに基づく抵抗が小さくなるため、電流と抵抗との積に基づくIR誤差が小さくなり、陽極たる第1及び第2防食電極用金属9a,9bの電位を精度良く測定することができる。   As described above, according to the electrode structure 1 according to the present embodiment, the amount of the external electrolyte G interposed between the reference electrode 8 and the first and second anticorrosive electrode metals 9a and 9b is reduced, Since the IR error that depends on the resistance of the external electrolyte G can be reduced, the potentials of the first and second anticorrosion electrode metals 9a and 9b can be accurately measured. That is, even when the anticorrosion current flows from the first and second anticorrosion electrode metals 9a and 9b toward the steel buried tube 22, the resistance based on the external electrolyte G is reduced, so that the current and resistance The IR error based on the product of the above becomes small, and the potentials of the first and second anticorrosion electrode metals 9a and 9b serving as anodes can be measured with high accuracy.

また、本実施形態に係る電極構造体1において、第1及び第2防食電極用金属9a,9bが、複数個の貫通孔5を通じて内部電解質7に対して電気的に接触されるように設けているため、第1及び第2防食電極用金属9a,9bにおける電位のバラつきを抑制できる。   In the electrode structure 1 according to this embodiment, the first and second anticorrosive electrode metals 9 a and 9 b are provided so as to be in electrical contact with the internal electrolyte 7 through the plurality of through holes 5. Therefore, the potential variation in the first and second anticorrosive electrode metals 9a and 9b can be suppressed.

更に、交流インピーダンス測定器17によって、各防食電極用金属9a,9bにおける抵抗を測定することができるため、測定した抵抗と各防食電極用金属9a,9bから流出する電流との積を算出してIR誤差を求め、電位計16で測定した電位を、求めたIR誤差を基に補正することで、第1及び第2防食電極用金属9a,9bの正確な電位を得ることができる。   Furthermore, since the resistance in each of the anticorrosion electrode metals 9a and 9b can be measured by the AC impedance measuring instrument 17, the product of the measured resistance and the current flowing out of each of the anticorrosion electrode metals 9a and 9b is calculated. By obtaining the IR error and correcting the potential measured by the electrometer 16 based on the obtained IR error, the accurate potentials of the first and second anticorrosion electrode metals 9a and 9b can be obtained.

〔別実施形態〕
〔1〕上記実施形態では、電極構造体1の構成について具体例を挙げて説明したが、その構成は適宜変更可能である。例えば、上記実施形態では、容器2及び各防食電極用金属9a,9bを貫通する複数の貫通孔5を形成するようにしたが、貫通孔5の個数は特に限定されるものではなく1個であっても良い。また、貫通孔5を形成する位置も特に限定されるものではなく、各防食電極用金属9a,9bの近傍であれば、各防食電極用金属9a,9bを貫通しないような位置に形成しても良い。
[Another embodiment]
[1] In the above embodiment, the configuration of the electrode structure 1 has been described with a specific example, but the configuration can be changed as appropriate. For example, in the above embodiment, the plurality of through holes 5 penetrating the container 2 and each of the anticorrosion electrode metals 9a and 9b are formed. However, the number of the through holes 5 is not particularly limited and is one. There may be. Further, the position where the through hole 5 is formed is not particularly limited, and it is formed in a position not penetrating each of the anticorrosion electrode metals 9a, 9b as long as it is in the vicinity of each of the anticorrosion electrode metals 9a, 9b. Also good.

〔2〕また、上記実施形態では、電気的に絶縁された2つの防食電極用金属9a,9bを設けるようにしたが、これに限られるものではなく、防食電極用金属は1つであっても良い。 [2] In the above embodiment, the two electrically insulated anticorrosion electrode metals 9a and 9b are provided. However, the present invention is not limited to this, and there is only one anticorrosion electrode metal. Also good.

尚、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。   The configuration disclosed in the above embodiment (including another embodiment, the same shall apply hereinafter) can be applied in combination with the configuration disclosed in the other embodiment, as long as no contradiction occurs. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.

本発明は、陽極が地中に埋設されているような状況においても、陽極から防食電流を流したままで陽極の電位を高精度に測定することが可能な構造を備えた電極構造体に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for an electrode structure having a structure capable of measuring the potential of the anode with high accuracy while the anticorrosion current flows from the anode even in a situation where the anode is buried in the ground. .

1 電極構造体
2 容器
5 貫通孔
6 隔壁
7 内部電解質
8 照合電極
9a,9b 防食電極用金属
16 電位計
G 外部電解質
DESCRIPTION OF SYMBOLS 1 Electrode structure 2 Container 5 Through-hole 6 Partition 7 Internal electrolyte 8 Reference electrode 9a, 9b Metal for anticorrosion electrode 16 Electrometer G External electrolyte

Claims (4)

電気防食に用いられる電極構造体であって、
非導電性の容器と、
前記容器内に収容された内部電解質と、
前記容器内に、前記内部電解質に電気的に接触する状態で配設された照合電極と、
前記照合電極と電気的に接続されるとともに、外部電源が電気的に接続され、前記容器の外面に配設された防食電極用金属と、
前記照合電極の電位を基準とした前記防食電極用金属の電位を測定する電位測定手段とを備え、
前記防食電極用金属は、前記容器の外側の外部電解質に電気的に接触可能であり、
前記容器には、前記防食電極用金属と電気的に絶縁された少なくとも一つの貫通孔が該容器の内外を連通するように前記防食電極用金属の近傍に形成され、
前記貫通孔には、前記内部電解質が充填されるとともに、多孔質体からなる隔壁が設置されており、
前記隔壁を通して、前記内部電解質と前記外部電解質とが電気的に接続可能である電極構造体。
An electrode structure used for cathodic protection,
A non-conductive container;
An internal electrolyte housed in the container;
In the container, a reference electrode disposed in electrical contact with the internal electrolyte,
While being electrically connected to the reference electrode, an external power source is electrically connected, and the metal for the anticorrosion electrode disposed on the outer surface of the container,
A potential measuring means for measuring the potential of the metal for the anticorrosion electrode with respect to the potential of the reference electrode;
The metal for the anticorrosion electrode can be in electrical contact with an external electrolyte outside the container,
In the container, at least one through hole electrically insulated from the metal for the anticorrosion electrode is formed in the vicinity of the metal for the anticorrosion electrode so as to communicate with the inside and the outside of the container,
The through hole is filled with the internal electrolyte, and a partition wall made of a porous body is installed,
An electrode structure in which the internal electrolyte and the external electrolyte can be electrically connected through the partition wall.
前記貫通孔は、前記防食電極用金属と電気的に絶縁された状態で、前記容器及び前記防食電極用金属を貫通して形成されている請求項1に記載の電極構造体。   2. The electrode structure according to claim 1, wherein the through hole is formed so as to penetrate the container and the anticorrosion electrode metal while being electrically insulated from the anticorrosion electrode metal. 前記防食電極用金属と前記照合電極とが導線によって電気的に接続され、
前記導線は、前記容器を貫通して前記防食電極用金属に接続されるとともに、前記容器内を通って前記照合電極に接続されている請求項1又は2に記載の電極構造体。
The metal for the anticorrosive electrode and the reference electrode are electrically connected by a conducting wire,
3. The electrode structure according to claim 1, wherein the conductive wire passes through the container and is connected to the anticorrosion electrode metal, and is connected to the reference electrode through the container.
前記防食電極用金属は、相互に電気的に絶縁された第1防食電極用金属と第2防食電極用金属とに分割されており、
前記第1及び第2防食電極用金属は、それぞれ前記照合電極と電気的に接続されるとともに、それぞれ前記外部電源が電気的に接続され、前記外部電解質に電気的に接触可能であり、
前記第1及び第2防食電極用金属には、当該2つの防食電極用金属のうちの何れか一方を試験極、他方を対極として交流インピーダンスを測定する交流インピーダンス測定手段が電気的に接続されている請求項1〜3の何れか一項に記載の電極構造体。
The metal for the anti-corrosion electrode is divided into a first anti-corrosion electrode metal and a second anti-corrosion electrode metal that are electrically insulated from each other,
The first and second anticorrosion electrode metals are electrically connected to the reference electrode, respectively, the external power source is electrically connected, and can be in electrical contact with the external electrolyte,
The first and second anticorrosion electrode metals are electrically connected to AC impedance measuring means for measuring AC impedance using either one of the two anticorrosion electrode metals as a test electrode and the other as a counter electrode. The electrode structure according to any one of claims 1 to 3.
JP2018057680A 2018-03-26 2018-03-26 Electrode structure Pending JP2019168383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018057680A JP2019168383A (en) 2018-03-26 2018-03-26 Electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018057680A JP2019168383A (en) 2018-03-26 2018-03-26 Electrode structure

Publications (1)

Publication Number Publication Date
JP2019168383A true JP2019168383A (en) 2019-10-03

Family

ID=68106623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018057680A Pending JP2019168383A (en) 2018-03-26 2018-03-26 Electrode structure

Country Status (1)

Country Link
JP (1) JP2019168383A (en)

Similar Documents

Publication Publication Date Title
US11555249B2 (en) Apparatus for measuring a cathodic protection condition of a buried steel structure, and method
US20150198518A1 (en) Cathodic protection reference cell article and method
US6683463B2 (en) Sensor array for electrochemical corrosion monitoring
US7459067B2 (en) Semi-permanent reference electrode
JP4137058B2 (en) Corrosion / corrosion protection evaluation method
CN109358094A (en) A device and method for measuring the damage rate of the inner wall coating of the pipeline
EP2221601B1 (en) Pitting corrosion diagnostic method and apparatus for stainless steel and for seawater pump using stainless steel as a structural member
US6772622B2 (en) Disbonded coating cathodic protection monitoring coupon
US4208264A (en) Sensor for determination of the polarization potential and/or the interference of metal structures buried in an electrolyte in a current field
KR100592553B1 (en) Rebar corrosion monitoring sensor for concrete interior
RU2510496C2 (en) Device for control over local corrosion penetration into metal structures
EP3862465A1 (en) Copper/copper sulphate gel permanent reference electrode for the measurement of the true potential and current density of buried metal structures
JP2013160540A (en) Corrosion sensor
JP5571711B2 (en) Corrosion sensor
KR101518182B1 (en) A electrode unit for measuring anticorrosion potential of underground metal structure
JP2019168383A (en) Electrode structure
JP2010047814A (en) Current measurement method and current measurement device for sacrificial anode in electrically conductive liquid
KR20180018291A (en) Friction detection system and sensor for external motion
RU2480734C2 (en) Measuring device of polarisation potential of pipelines
JP5587724B2 (en) Coating deterioration evaluation method
JP2013076627A (en) Copper pitting corrosion evaluation method
KR200175220Y1 (en) Electrode assembly for measuring polarization potential of underground pipeline
WO2015108525A1 (en) Cathodic protection reference cell article and method
JP2014066620A (en) Crevice corrosion sensor, and crevice corrosion evaluation device and method
JP2594246B2 (en) Anticorrosion method and anticorrosion device