[go: up one dir, main page]

JP5571711B2 - Corrosion sensor - Google Patents

Corrosion sensor Download PDF

Info

Publication number
JP5571711B2
JP5571711B2 JP2012020462A JP2012020462A JP5571711B2 JP 5571711 B2 JP5571711 B2 JP 5571711B2 JP 2012020462 A JP2012020462 A JP 2012020462A JP 2012020462 A JP2012020462 A JP 2012020462A JP 5571711 B2 JP5571711 B2 JP 5571711B2
Authority
JP
Japan
Prior art keywords
electrode
sample
unit
corrosion sensor
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012020462A
Other languages
Japanese (ja)
Other versions
JP2013160541A (en
Inventor
重信 貝沼
修二 石原
隆章 槙野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Kyushu University NUC
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Kyushu University NUC
Priority to JP2012020462A priority Critical patent/JP5571711B2/en
Publication of JP2013160541A publication Critical patent/JP2013160541A/en
Application granted granted Critical
Publication of JP5571711B2 publication Critical patent/JP5571711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

この発明は、周辺の腐食環境性を測定するための腐食センサに関する。   The present invention relates to a corrosion sensor for measuring a surrounding corrosion environment.

橋梁やプラント等の構造物では、長期間にわたって所定の耐久性を維持させるために、腐食状況を定期的に点検する必要がある。しかしながら、構造物の腐食は、その周辺に存在する酸素濃度、pHおよび温湿度などの腐食環境性の違いに応じて局所的に進行するため、その腐食箇所によっては点検で見落とされるおそれがある。
点検が困難な腐食として、例えば、外観から確認し難い構造物の基部、すなわち大気と地中との境界付近で発生する地際腐食が知られている。これは、腐食環境性が大気中と地中とにおいてそれぞれ異なるため、大気中から地中に至る構造物に地際を隔てて電位差が生じ、さらに雨水などの水分がその地際部分に滞水することで構造物の地際部分が電気的に短絡されてマクロセル腐食電流が発生し、電池作用により構造物の地際部分が腐食されるものである。このような、外観からの確認が困難な箇所で発生する腐食に対応するために、構造物周辺の腐食環境性を測定することが求められている。
In a structure such as a bridge or a plant, it is necessary to periodically check the corrosion state in order to maintain a predetermined durability over a long period of time. However, the corrosion of the structure proceeds locally according to the difference in corrosive environmental properties such as oxygen concentration, pH, temperature and humidity existing in the vicinity thereof, and there is a possibility that it may be overlooked by inspection depending on the corrosion location.
As corrosion that is difficult to check, for example, ground corrosion that occurs near the base of a structure that is difficult to check from the outside, that is, near the boundary between the atmosphere and the ground, is known. This is because the corrosive environment is different in the atmosphere and in the ground, so there is a potential difference across the ground between structures from the atmosphere to the ground, and water such as rainwater is stagnant in the ground. By doing so, the ground portion of the structure is electrically short-circuited to generate a macrocell corrosion current, and the ground portion of the structure is corroded by the battery action. In order to cope with such corrosion that occurs in places that are difficult to confirm from the appearance, it is required to measure the corrosive environment around the structure.

そこで、地中の腐食環境性を評価する技術として、例えば特許文献1に開示されているように、金属試験体を地中に挿入して金属試験体に生じるマクロセル腐食電流を測定することで、地中の腐食環境性を評価することが提案されている。   Therefore, as a technique for evaluating the corrosive environmental properties in the ground, for example, as disclosed in Patent Document 1, by inserting a metal specimen into the ground and measuring the macrocell corrosion current generated in the metal specimen, It has been proposed to evaluate the underground corrosive environment.

特開2008−298688号公報JP 2008-298688 A

しかしながら、マクロセル腐食電流は、腐食環境性が互いに異なる部分において発生するものであるが、その環境の変化が微小な領域で発生した場合の腐食環境性を正確に測定するのは困難である。   However, although the macrocell corrosion current is generated at portions where the corrosion environment properties are different from each other, it is difficult to accurately measure the corrosion environment property when the change in the environment occurs in a minute region.

そこで、この発明は、このような従来の問題点を解消し、地際および地中の腐食環境性を高精度に測定することができる腐食センサを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a corrosion sensor that can solve such conventional problems and can measure the corrosion environment at the ground and underground with high accuracy.

この発明に係る腐食センサは、絶縁枠と、前記絶縁枠に取りつけられると共にそれぞれ試料極とこの試料極に近接配置された対極とを含む複数の単位電極が一列に配置された電極部と、前記電極部の前記複数の単位電極にそれぞれ接続されると共に各単位電極における前記試料極と前記対極との間に流れる電流を測定する電流測定器と、前記絶縁枠の内部に配置され、それぞれの前記単位電極の前記試料極と前記対極を前記電流測定器に接続する電線とを備え、前記試料極と前記対極はそれぞれ平板状の形状を有すると共に前記試料極が前記対極よりも横幅が広く且つ前記試料極の中央部分に前記対極が絶縁材を介して接合され、前記電流測定器から前記試料極に延びる前記電線は、前記試料極の前記対極を挟んだ両側部に振り分けて接続されるものである。 The corrosion sensor according to the present invention includes an insulating frame, an electrode unit that is attached to the insulating frame and includes a plurality of unit electrodes each including a sample electrode and a counter electrode disposed in proximity to the sample electrode, A current measuring device connected to each of the plurality of unit electrodes of the electrode unit and measuring a current flowing between the sample electrode and the counter electrode in each unit electrode; and disposed inside the insulating frame, An electric wire connecting the sample electrode of the unit electrode and the counter electrode to the current measuring device, the sample electrode and the counter electrode each have a flat plate shape, and the sample electrode is wider in width than the counter electrode and The counter electrode is joined to a central portion of the sample electrode via an insulating material, and the electric wire extending from the current measuring device to the sample electrode is distributed and connected to both side portions of the sample electrode sandwiching the counter electrode. It is those that.

ここで、前記複数の単位電極に含まれる前記試料極は互いに同じ材料から構成されると共に、前記複数の単位電極に含まれる前記対極は互いに同じ材料から構成されることが好ましい。また、各単位電極において、前記試料極は金属材料から形成され、前記対極は前記試料極の金属材料より電位的に貴な金属材料から形成されるのが好ましい。また、前記試料極は鋼またはアルミ等から構成され、前記対極は銀、ニッケルまたは銅等から構成することもできる。 Here, it is preferable that the sample electrodes included in the plurality of unit electrodes are made of the same material, and the counter electrodes included in the plurality of unit electrodes are made of the same material. In each unit electrode, the sample electrode is preferably made of a metal material, and the counter electrode is preferably made of a metal material that is more noble than the metal material of the sample electrode . Also, the sample electrode is composed of steel or aluminum or the like, the counter electrode may be composed of silver, nickel or copper.

また、前記電流測定器は、無抵抗式の多チャンネル型電流計であるのが好ましい。
また、前記絶縁枠は一列に並ぶ複数の凹部を有し、前記複数の単位電極は、前記絶縁枠から外部に突出しないように前記凹部内にそれぞれ配置してもよい。
The current measuring device is preferably a non-resistance type multi-channel ammeter.
The insulating frame may have a plurality of recesses arranged in a row, and the plurality of unit electrodes may be arranged in the recesses so as not to protrude outside from the insulating frame.

また、前記複数の単位電極の一部が地中に入るように設置して使用することができる。
また、前記複数の単位電極の配列方向が金属を含む構造物に沿うように設置して使用することもできる。また、前記試料極は、前記構造物と同じ表面処理が施されているのが好ましい。
The plurality of unit electrodes may be installed and used so that a part of them enters the ground.
Further, the plurality of unit electrodes may be installed and used so that the arrangement direction of the unit electrodes is along a structure containing metal. The sample electrode is preferably subjected to the same surface treatment as the structure.

この発明によれば、一列に配列された複数の単位電極にそれぞれ接続された電流測定器が各単位電極において近接配置された試料極と対極との間に流れる電流をそれぞれ測定するため、大気中、地際および地中の腐食環境性を高精度に測定することが可能となる。   According to the present invention, each of the current measuring devices connected to the plurality of unit electrodes arranged in a row measures the current flowing between the sample electrode and the counter electrode arranged close to each other in each unit electrode. Moreover, it becomes possible to measure the corrosive environmental properties at the ground and underground with high accuracy.

この発明の一実施の形態に係る腐食センサの構成を示し、(A)は腐食センサの側面断面図、(B)は腐食センサの正面図である。The structure of the corrosion sensor which concerns on one embodiment of this invention is shown, (A) is side surface sectional drawing of a corrosion sensor, (B) is a front view of a corrosion sensor. 試料極と対極が水分により短絡された様子を示す図である。It is a figure which shows a mode that the sample electrode and the counter electrode were short-circuited with the water | moisture content. 複数の単位電極の一部が地中に入るように設置された腐食センサを示す図である。It is a figure which shows the corrosion sensor installed so that a part of several unit electrode may enter the ground. 本実施の形態に係る腐食センサの変形例を示す側面断面図である。It is side surface sectional drawing which shows the modification of the corrosion sensor which concerns on this Embodiment. 本実施の形態に係る腐食センサを用いて砂中における腐食電流を測定した実施例を示し、(A)は水分添加率100%における電流値、(B)は水分添加率80%における電流値を示す図である。The Example which measured the corrosion current in sand using the corrosion sensor which concerns on this Embodiment is shown, (A) is a current value in 100% of moisture addition rates, (B) is a current value in 80% of moisture addition rates. FIG.

以下、この発明の実施の形態を添付図面に基づいて説明する。
図1(A)および(B)に、この発明の一実施の形態に係る腐食センサの構成を示す。この腐食センサは、絶縁性材料からなる絶縁枠1と、絶縁枠1に取り付けられた電極部2と、電極部2に電気的に接続された電流測定器3とを有する。
絶縁枠1は、細長い平板状の形状を有し、その表面上には複数の凹部4が長手方向に一列に並ぶように形成されている。また、絶縁枠1には、長手方向に延びる接続路5が形成されると共に凹部4の底面から接続路5にそれぞれ延びて両者を連通する連通路6が形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1A and 1B show the configuration of a corrosion sensor according to an embodiment of the present invention. The corrosion sensor includes an insulating frame 1 made of an insulating material, an electrode portion 2 attached to the insulating frame 1, and a current measuring device 3 electrically connected to the electrode portion 2.
The insulating frame 1 has an elongated flat plate shape, and a plurality of recesses 4 are formed on the surface of the insulating frame 1 in a line in the longitudinal direction. The insulating frame 1 is formed with a connection path 5 extending in the longitudinal direction and a communication path 6 extending from the bottom surface of the recess 4 to the connection path 5 to communicate the both.

電極部2は、絶縁枠1の複数の凹部4に取り付けられることで絶縁枠1の長手方向に一列に配列した複数の単位電極7から構成される。単位電極7は、それぞれ絶縁枠1の長手方向に対して垂直方向に延びた平板状の形状を有すると共に金属材料からなる試料極8と対極9を、絶縁性の接着剤10を介して互いに平行に接合して形成されている。試料極8は対極9よりも横幅が広く且つ中央に貫通孔11が形成されており、対極9はこの貫通孔11を塞ぐように試料極8の中央部分に接合されている。このような単位電極7が、試料極8側を凹部4の底面に当接するようにして絶縁枠1に取り付けられることで、試料極8が絶縁枠1に形成された連通路6に露出される。また、連通路6が貫通孔11と連通し、対極9が連通路6に露出される。
このようにして、それぞれ試料極8と対極9を近接配置した単位電極7が絶縁枠1の表面上に取り付けられる。ここで、試料極8は鋼から構成され、対極9は試料極8よりも電位的に貴な金属材料から構成されているものとする。
The electrode part 2 is composed of a plurality of unit electrodes 7 arranged in a line in the longitudinal direction of the insulating frame 1 by being attached to the plurality of recesses 4 of the insulating frame 1. Each of the unit electrodes 7 has a flat plate shape extending in a direction perpendicular to the longitudinal direction of the insulating frame 1, and a sample electrode 8 and a counter electrode 9 made of a metal material are parallel to each other via an insulating adhesive 10. It is formed by joining. The sample electrode 8 is wider than the counter electrode 9 and has a through hole 11 formed in the center. The counter electrode 9 is joined to the central portion of the sample electrode 8 so as to close the through hole 11. By attaching such a unit electrode 7 to the insulating frame 1 so that the sample electrode 8 side is in contact with the bottom surface of the recess 4, the sample electrode 8 is exposed to the communication path 6 formed in the insulating frame 1. . Further, the communication path 6 communicates with the through hole 11 and the counter electrode 9 is exposed to the communication path 6.
In this way, the unit electrode 7 in which the sample electrode 8 and the counter electrode 9 are arranged close to each other is attached on the surface of the insulating frame 1. Here, it is assumed that the sample electrode 8 is made of steel, and the counter electrode 9 is made of a metal material that is more potential than the sample electrode 8.

電流測定器3は、絶縁枠1の接続路5を通して連通路6内に引き出された電線を介して単位電極7にそれぞれ接続されている。具体的には、電流測定器3は、図2に示すように、各単位電極7の試料極8と対極9とを電線を介して接続しており、周辺環境中の水分Wが互いに近接配置された試料極8と対極9を短絡することにより対極9から試料極8に流れる腐食電流Aの測定を行う。なお、電流測定器3は、無抵抗式の多チャンネル型無抵抗電流計を用いるのが好ましい。また、電流測定器3と各単位電極7の試料極8との接続は、図1(B)に示すように、複数の単位電極7の配列方向に向かって、対極9を挟んだ試料極8の両側部に交互に接続することで、電流測定器3と各試料極8とを接続する電線を左右に振り分け、電線が限られた空間に密に配置されるのを抑制するのが好ましい。   The current measuring devices 3 are respectively connected to the unit electrodes 7 through electric wires drawn into the communication passage 6 through the connection path 5 of the insulating frame 1. Specifically, as shown in FIG. 2, the current measuring device 3 connects the sample electrode 8 and the counter electrode 9 of each unit electrode 7 through an electric wire, and the water W in the surrounding environment is arranged close to each other. The corrosion current A flowing from the counter electrode 9 to the sample electrode 8 is measured by short-circuiting the sample electrode 8 and the counter electrode 9 that have been formed. The current measuring device 3 is preferably a non-resistance type multi-channel non-resistance ammeter. In addition, as shown in FIG. 1B, the connection between the current measuring device 3 and the sample electrode 8 of each unit electrode 7 is such that the sample electrode 8 sandwiches the counter electrode 9 in the arrangement direction of the plurality of unit electrodes 7. It is preferable that the electric wires connecting the current measuring device 3 and each sample electrode 8 are distributed to the left and right to prevent the electric wires from being densely arranged in a limited space.

次に、図1に示した腐食センサを使用して周辺環境の腐食性を測定する一例について説明する。
まず、複数の単位電極7の一部が地中に入るように腐食センサを設置することで、図3に示すように、一列に配列された複数の単位電極7は、大気中に位置する大気部12と、地際に位置する地際部13と、地中に位置する地中部14とに区分される。すなわち、大気部12は大気中の腐食環境に、地際部13は地際の腐食環境に、地中部14は地中の腐食環境にそれぞれ曝されることになる。それぞれの腐食環境に曝された各単位電極7では、図2に示されるように、腐食環境中の水分Wが互いに絶縁された試料極8と対極9に付着することで両者が短絡される。
Next, an example of measuring the corrosivity of the surrounding environment using the corrosion sensor shown in FIG. 1 will be described.
First, by installing a corrosion sensor so that a part of the plurality of unit electrodes 7 enters the ground, as shown in FIG. 3, the plurality of unit electrodes 7 arranged in a row are arranged in the atmosphere. It is divided into a part 12, a ground part 13 located on the ground, and a ground part 14 located in the ground. That is, the atmospheric part 12 is exposed to an atmospheric corrosive environment, the ground part 13 is exposed to an underground corrosive environment, and the underground part 14 is exposed to an underground corrosive environment. In each unit electrode 7 exposed to each corrosive environment, as shown in FIG. 2, the moisture W in the corrosive environment adheres to the sample electrode 8 and the counter electrode 9 that are insulated from each other, so that both are short-circuited.

その結果、電位的に卑な試料極8側では、例えば次式(1)のようなアノード反応(酸化反応)がおこり、鉄原子Feは、試料極8に電子eを放出し、第一鉄イオンFe2+の形で溶解し、水分W中に拡散する。
Fe→Fe2++2e (1)
一方、電位的に貴な対極9側では、試料極8で発生した電子eが供給されることで次式(2)のようなカソード反応(還元反応)がおこり、水HO、酸素O及び試料極8から供給された電子eが反応し水酸化物イオンOHを生じる。
O+O/2+2e→2OH (2)
As a result, the anode electrode (oxidation reaction) represented by, for example, the following formula (1) occurs on the sample electrode 8 side that is low in potential, and the iron atom Fe emits an electron e to the sample electrode 8, It dissolves in the form of iron ions Fe 2+ and diffuses into the water W.
Fe → Fe 2+ + 2e (1)
On the other hand, at the potential noble counter electrode 9 side, the electron e generated at the sample electrode 8 is supplied to cause a cathode reaction (reduction reaction) as shown in the following formula (2), and water H 2 O, oxygen O 2 and the electron e supplied from the sample electrode 8 react to generate a hydroxide ion OH .
H 2 O + O 2/2 + 2e - → 2OH - (2)

上記のように、アノード反応とカソード反応が試料極8と対極9においてそれぞれ生じることで、試料極8から対極9へ順次電子eが供給されると共に対極9から試料極8へ腐食電流Aが流れる。そして、この腐食電流は、アノード反応とカソード反応の反応速度に依存したものとなる。 As described above, the anodic reaction and the cathodic reaction occur at the sample electrode 8 and the counter electrode 9 respectively, whereby electrons e are sequentially supplied from the sample electrode 8 to the counter electrode 9 and the corrosion current A is generated from the counter electrode 9 to the sample electrode 8. Flowing. This corrosion current depends on the reaction rate of the anode reaction and the cathode reaction.

このため、各単位電極7ではそれぞれ周辺の酸素濃度および湿度などの腐食環境性に応じた腐食電流Aが流れ、例えば、酸素濃度が高く且つ湿度が低い大気中に曝された大気部12、および酸素濃度が低く且つ湿度が高い地中に曝された地中部14では、腐食電流Aは小さくなる。一方、酸素濃度および湿度が共に高い地際に曝された地際部13では、腐食電流Aは大きくなる。
このように、各単位電極7には、それぞれ周辺の腐食環境性に応じた腐食電流Aが流れ、この腐食電流Aが電流測定器3によりそれぞれ測定される。そして、大気部12の電流値に基づいて大気中の腐食環境性が、地際部13の電流値に基づいて地際の腐食環境性が、地中部14の電流値に基づいて地中の腐食環境性がそれぞれ評価されると共に大気、地際および地中にわたる腐食環境性の分布が評価される。
For this reason, each unit electrode 7 flows a corrosion current A according to the corrosive environmental properties such as the surrounding oxygen concentration and humidity. For example, the atmospheric part 12 exposed to the atmosphere having a high oxygen concentration and a low humidity, and In the underground part 14 exposed to the ground where the oxygen concentration is low and the humidity is high, the corrosion current A is small. On the other hand, the corrosion current A becomes large in the subsurface portion 13 exposed to the subsurface where both the oxygen concentration and the humidity are high.
Thus, the corrosion current A corresponding to the surrounding corrosive environment flows through each unit electrode 7, and this corrosion current A is measured by the current measuring device 3. Then, the corrosive environment in the atmosphere is based on the current value of the atmospheric portion 12, the corrosive environmental property is based on the current value of the underground portion 13, and the underground corrosion is based on the current value of the underground portion 14. Each environmental property is evaluated, and the distribution of corrosive environmental properties over the atmosphere, the ground, and the ground is evaluated.

本実施の形態によれば、それぞれ周辺の腐食環境性を検出可能な複数の単位電極7が一列に配列されているため、その配列方向における腐食環境性の分布を評価することができる。また、各単位電極7には、周辺の腐食環境性により電位差が生じなくとも、互いに自然電位の異なる試料極8と対極9を用いることで両者の間が水分で短絡されると腐食電流Aが流れるため、一様な腐食環境性からなる場合においても高い分解能でその腐食環境性を評価することが可能となる。さらに、自然電位が互いに異なる試料極8と対極9を用いることで、より大きな腐食電流Aが各単位電極7に流れ、腐食環境性を高感度に評価することができる。   According to the present embodiment, since the plurality of unit electrodes 7 each capable of detecting the surrounding corrosive environment property are arranged in a line, the distribution of the corrosive environment property in the arrangement direction can be evaluated. Further, each unit electrode 7 has a corrosion current A when the sample electrode 8 and the counter electrode 9 having different natural potentials are short-circuited with moisture by using a sample electrode 8 and a counter electrode 9 having different natural potentials, even if there is no potential difference due to the surrounding corrosive environment. Since it flows, it becomes possible to evaluate the corrosive environment property with high resolution even when the corrosive environment property is uniform. Further, by using the sample electrode 8 and the counter electrode 9 having different natural potentials, a larger corrosion current A flows to each unit electrode 7 and the corrosion environment can be evaluated with high sensitivity.

なお、上記の実施の形態では、試料極8は鋼から構成されたが、対極9よりも電位的に卑な金属材料であればこれに限るものではなく、例えば、試料極8をアルミなどから構成することもできる。また、対極9は、銀、ニッケルまたは銅などから構成することもできる。
また、各単位電極7の試料極8と対極9は、接着剤10により互いに平行に接合されたが、試料極8と対極9とが近接配置されて水分Wにより短絡できればこれに限るものではない。
In the above embodiment, the sample electrode 8 is made of steel. However, the sample electrode 8 is not limited to this as long as it is a lower-potential metal material than the counter electrode 9. For example, the sample electrode 8 is made of aluminum or the like. It can also be configured. The counter electrode 9 can also be composed of silver, nickel, copper, or the like.
Further, the sample electrode 8 and the counter electrode 9 of each unit electrode 7 are joined in parallel with each other by the adhesive 10. However, the unit electrode 7 is not limited to this as long as the sample electrode 8 and the counter electrode 9 are arranged close to each other and can be short-circuited by the moisture W. .

また、絶縁枠1の凹部4は、電極部3の各単位電極7が絶縁枠1から外部に突出しないような深さで形成することができ、これにより対極9の表面まで凹部4内に収まるようにして各単位電極7をそれぞれ絶縁枠1に取り付けることができる。例えば、図4に示すように、絶縁枠1に取り付けられた各単位電極7の対極9の表面が絶縁枠1の表面と同じ高さ位置となるように凹部4を形成することができる。また、対極9の表面が絶縁枠1の表面より下がるように凹部4を形成し、各単位電極7を絶縁枠1に埋設することもできる。
これにより、腐食センサを地中に挿入して設置する際に、各単位電極7が摩擦により損傷するのを抑制することができる。
In addition, the recess 4 of the insulating frame 1 can be formed to such a depth that each unit electrode 7 of the electrode portion 3 does not protrude outside from the insulating frame 1, so that the surface of the counter electrode 9 is accommodated in the recess 4. In this way, each unit electrode 7 can be attached to the insulating frame 1. For example, as shown in FIG. 4, the recess 4 can be formed such that the surface of the counter electrode 9 of each unit electrode 7 attached to the insulating frame 1 is at the same height as the surface of the insulating frame 1. Further, the recess 4 can be formed so that the surface of the counter electrode 9 is lower than the surface of the insulating frame 1, and each unit electrode 7 can be embedded in the insulating frame 1.
Thereby, when inserting and installing a corrosion sensor in the ground, it can suppress that each unit electrode 7 is damaged by friction.

また、腐食センサは、単位電極7の配列方向が金属を含む構造物に沿うように設置して使用することもできる。例えば、構造物の大気部分、地際部分および地中部分の近傍に複数の単位電極7の大気部12、地際部13および地中部14がそれぞれ存在するように腐食センサを設置する。各単位電極7では周辺の腐食環境性に応じた腐食電流Aがそれぞれ流れ、この腐食電流Aが電流測定器3によりそれぞれ測定される。   In addition, the corrosion sensor can be installed and used so that the arrangement direction of the unit electrodes 7 is along a structure containing metal. For example, the corrosion sensor is installed so that the atmospheric part 12, the ground part 13 and the underground part 14 of the plurality of unit electrodes 7 exist in the vicinity of the atmospheric part, the ground part and the underground part of the structure, respectively. In each unit electrode 7, a corrosion current A corresponding to the surrounding corrosive environment property flows, and this corrosion current A is measured by the current measuring device 3.

このようにして得られた複数の単位電極7からの電流値は構造物の各部分が曝された腐食環境性を表しており、大気部12からの電流値と地際部13からの電流値に基づいて、構造物の大気部分の腐食状態から地際部分の腐食状態を相対的に評価することができる。さらに、地中部14からの電流値を加えて比較することで、構造物の地際部分の腐食状態をさらに精度よく評価することができる。
このように、外観からは腐食の進行を確認することが困難な構造物の地際部分の腐食状態を精度よく評価することができる。また、構造物周辺の腐食環境性に基づいて、構造物の余寿命を推定することもできる。
なお、各単位電極7の試料極8に、構造物と同じ表面処理を施すことにより、構造物の腐食状態をさらに精度よく評価することができる。
また、腐食センサは、土壌に設置された構造物に限られず、例えばコンクリートに設置された標識支柱、照明用ポールおよび橋脚などの構造物に沿うように設置することができる。また、腐食センサは、各電極列が大気中から液体中に延びるように設置することもできる。例えば、海水中から大気中にかけて設置された海洋構造物、淡水中から大気中にかけて設置された河川構造物、または薬液などを収容したプラントタンクなどの構造物に沿うように設置することができる。さらに、腐食センサは、各電極列がコンクリートなどの固体中から液体中に延びるように設置することもできる。例えば、海水中に設置された海洋構造物の基礎部および淡水中に設置された河川構造物の基礎部などのコンクリート部分に設置し、コンクリート中から液体中に延びる鋼材の腐食状況を評価することができる。
The current values from the plurality of unit electrodes 7 thus obtained represent the corrosive environmental properties to which each part of the structure is exposed. The current value from the atmospheric part 12 and the current value from the ground part 13 Based on the above, it is possible to relatively evaluate the corrosion state of the ground portion from the corrosion state of the atmospheric portion of the structure. Furthermore, by adding and comparing the current value from the underground portion 14, the corrosion state of the ground portion of the structure can be evaluated with higher accuracy.
In this way, it is possible to accurately evaluate the corrosion state of the ground portion of the structure where it is difficult to confirm the progress of corrosion from the appearance. In addition, the remaining life of the structure can be estimated based on the corrosive environment around the structure.
In addition, by subjecting the sample electrode 8 of each unit electrode 7 to the same surface treatment as the structure, the corrosion state of the structure can be evaluated with higher accuracy.
The corrosion sensor is not limited to a structure installed on the soil, and can be installed along a structure such as a sign post, a lighting pole, and a bridge pier installed on concrete. The corrosion sensor can also be installed such that each electrode array extends from the atmosphere to the liquid. For example, it can be installed along a structure such as a marine structure installed from seawater to the atmosphere, a river structure installed from fresh water to the atmosphere, or a plant tank containing a chemical solution or the like. Furthermore, the corrosion sensor can be installed such that each electrode array extends from a solid such as concrete into a liquid. For example, install on concrete parts such as foundations of offshore structures installed in seawater and foundations of river structures installed in fresh water, and evaluate the corrosion status of steel materials extending from concrete into liquids. Can do.

次に、腐食センサを用いて実際に腐食環境性の分布を評価した実施例について説明する。所定量の砂を入れた容器に、複数の単位電極7の一部が砂の中に入るように腐食センサを設置すると共に0.1wt%NaCl水溶液を添加した。そして、水面が砂と大気の界面に到達した状態を水分添加率100%とした時に、水分添加率100%の状態で各単位電極7に流れた腐食電流Aを測定したものを図4(A)に示し、水分添加率80%の状態で各単位電極7に流れた腐食電流Aを測定したものを図4(B)に示した。
その結果、図4(A)では、センサ高さが砂と大気の界面付近、すなわち容器に添加した水分の上面位置において最も電流値が大きくなり、そこからセンサ高さが高くなる程またはセンサ高さが低くなる程電流値は小さくなった。また、図4(B)においても、センサ高さが砂の厚さに対して下から80%の位置付近、すなわち容器に添加した水分の上面位置で最も電流値が大きくなり、そこからセンサ高さが高くなる程またはセンサ高さが低くなる程電流値が小さくなった。
このように、水分と共に酸素が豊富な水分の上面位置において腐食電流Aが最も大きくなり、水分が少ない大気環境および酸素が少ない砂中環境では腐食電流Aがそれぞれ小さくなった。このことから、これらの測定値は、各単位電極7周辺の腐食環境性、すなわち大気中から砂中にわたる腐食環境性の分布を表していることが分かる。
Next, an embodiment in which the corrosion environment distribution is actually evaluated using a corrosion sensor will be described. A corrosion sensor was installed in a container containing a predetermined amount of sand so that a part of the plurality of unit electrodes 7 entered the sand, and a 0.1 wt% NaCl aqueous solution was added. Then, when the water surface reaches the interface between the sand and the atmosphere, the moisture addition rate is 100%, and the corrosion current A flowing through each unit electrode 7 in the state where the moisture addition rate is 100% is measured in FIG. ) And the corrosion current A flowing through each unit electrode 7 in a state where the water addition rate is 80% is shown in FIG. 4B.
As a result, in FIG. 4A, the sensor height is the highest near the interface between the sand and the atmosphere, that is, the upper surface position of the moisture added to the container, and the sensor height increases as the sensor height increases. The current value decreased as the value decreased. Also in FIG. 4B, the current value becomes the largest near the position where the sensor height is 80% from the bottom with respect to the thickness of the sand, that is, the upper surface position of the moisture added to the container. The current value decreased as the sensor height increased or the sensor height decreased.
Thus, the corrosion current A was the highest at the upper surface of the moisture rich in oxygen along with the moisture, and the corrosion current A was reduced in the atmospheric environment with little moisture and the sand environment with little oxygen. From this, it can be seen that these measured values represent the corrosion environment around each unit electrode 7, that is, the distribution of the corrosion environment from the atmosphere to the sand.

1 絶縁枠、2 電極部、3 電流測定器、4 凹部、5 接続路、6 連通路、7 単位電極、8 試料極、9 対極、10 接着剤、11 貫通孔、12 大気部、13 地際部、14 地中部、W 水分、A 腐食電流。   DESCRIPTION OF SYMBOLS 1 Insulation frame, 2 electrode part, 3 Current measuring device, 4 Recessed part, 5 Connection path, 6 Communication path, 7 Unit electrode, 8 Sample electrode, 9 Counter electrode, 10 Adhesive, 11 Through-hole, 12 Air | atmosphere part, 13 Ground Part, 14 Underground part, W moisture, A Corrosion current.

Claims (9)

絶縁枠と、
前記絶縁枠に取りつけられると共にそれぞれ試料極とこの試料極に近接配置された対極とを含む複数の単位電極が一列に配置された電極部と、
前記電極部の前記複数の単位電極にそれぞれ接続されると共に各単位電極における前記試料極と前記対極との間に流れる電流を測定する電流測定器と
前記絶縁枠の内部に配置され、それぞれの前記単位電極の前記試料極と前記対極を前記電流測定器に接続する電線と
を備え
前記試料極と前記対極はそれぞれ平板状の形状を有すると共に前記試料極が前記対極よりも横幅が広く且つ前記試料極の中央部分に前記対極が絶縁材を介して接合され、
前記電流測定器から前記試料極に延びる前記電線は、前記試料極の前記対極を挟んだ両側部に振り分けて接続されることを特徴とする腐食センサ。
An insulation frame;
An electrode portion in which a plurality of unit electrodes each including a sample electrode and a counter electrode disposed in proximity to the sample electrode are arranged in a row and are attached to the insulating frame;
A current measuring device that is connected to each of the plurality of unit electrodes of the electrode unit and measures a current flowing between the sample electrode and the counter electrode in each unit electrode ;
An electric wire disposed inside the insulating frame and connecting the sample electrode and the counter electrode of each unit electrode to the current measuring device ;
The sample electrode and the counter electrode each have a flat plate shape, and the sample electrode is wider in width than the counter electrode, and the counter electrode is joined to a central portion of the sample electrode via an insulating material,
The corrosion sensor , wherein the electric wire extending from the current measuring instrument to the sample electrode is distributed and connected to both side portions of the sample electrode sandwiching the counter electrode .
前記複数の単位電極に含まれる前記試料極は互いに同じ材料から構成されると共に、前記複数の単位電極に含まれる前記対極は互いに同じ材料から構成される請求項1に記載の腐食センサ。2. The corrosion sensor according to claim 1, wherein the sample electrodes included in the plurality of unit electrodes are made of the same material, and the counter electrodes included in the plurality of unit electrodes are made of the same material. 各単位電極において、前記試料極は金属材料から形成され、前記対極は前記試料極の金属材料より電位的に貴な金属材料から形成されている請求項1または2に記載の腐食センサ。 3. The corrosion sensor according to claim 1, wherein in each unit electrode, the sample electrode is formed of a metal material, and the counter electrode is formed of a metal material that is more potential than the metal material of the sample electrode. 前記試料極は鋼またはアルミから構成され、前記対極は銀、ニッケルまたは銅から構成される請求項1〜3のいずれか一項に記載の腐食センサ。   The corrosion sensor according to any one of claims 1 to 3, wherein the sample electrode is made of steel or aluminum, and the counter electrode is made of silver, nickel, or copper. 前記電流測定器は、無抵抗式の多チャンネル型電流計である請求項1〜4のいずれか一項に記載の腐食センサ。   The corrosion sensor according to any one of claims 1 to 4, wherein the current measuring instrument is a non-resistance type multi-channel ammeter. 前記絶縁枠は一列に並ぶ複数の凹部を有し、
前記複数の単位電極は、前記絶縁枠から外部に突出しないように前記凹部内にそれぞれ配置されている請求項1〜5のいずれか一項に記載の腐食センサ。
The insulating frame has a plurality of recesses arranged in a row,
The corrosion sensor according to any one of claims 1 to 5, wherein the plurality of unit electrodes are respectively disposed in the recesses so as not to protrude outward from the insulating frame.
前記複数の単位電極の一部が地中に入るように設置して使用される請求項1〜6のいずれか一項に記載の腐食センサ。   The corrosion sensor according to any one of claims 1 to 6, wherein the corrosion sensor is installed and used so that a part of the plurality of unit electrodes enters the ground. 前記複数の単位電極の配列方向が金属を含む構造物に沿うように設置して使用される請求項1〜7のいずれか一項に記載の腐食センサ。   The corrosion sensor according to any one of claims 1 to 7, wherein the corrosion sensor is installed and used so that an arrangement direction of the plurality of unit electrodes is along a structure including a metal. 前記試料極は、前記構造物と同じ表面処理が施されている請求項8に記載の腐食センサ。   The corrosion sensor according to claim 8, wherein the sample electrode is subjected to the same surface treatment as that of the structure.
JP2012020462A 2012-02-02 2012-02-02 Corrosion sensor Active JP5571711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020462A JP5571711B2 (en) 2012-02-02 2012-02-02 Corrosion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020462A JP5571711B2 (en) 2012-02-02 2012-02-02 Corrosion sensor

Publications (2)

Publication Number Publication Date
JP2013160541A JP2013160541A (en) 2013-08-19
JP5571711B2 true JP5571711B2 (en) 2014-08-13

Family

ID=49172920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020462A Active JP5571711B2 (en) 2012-02-02 2012-02-02 Corrosion sensor

Country Status (1)

Country Link
JP (1) JP5571711B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003376A (en) * 2015-06-09 2017-01-05 Jfeスチール株式会社 Corrosion sensor and measuring method of corrosion amount
CN106468651A (en) * 2016-09-22 2017-03-01 国网山东省电力公司电力科学研究院 A kind of atmospheric corrosiveness on-line monitoring system and its method
KR102111161B1 (en) * 2019-10-17 2020-06-08 기병호 Corrosion Probe System of Multifunction
PL440446A1 (en) 2022-02-23 2023-08-28 Politechnika Śląska Hybrid sensor and method of measuring corrosion rate of reinforcement, conductivity and temperature of concrete

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008209180A (en) * 2007-02-26 2008-09-11 Ihi Corp Measuring electrode, corrosion monitoring device, and corrosion monitoring method
JP4987574B2 (en) * 2007-06-01 2012-07-25 株式会社ベンチャー・アカデミア Corrosion assessment method for buried metal structures and creation method of corrosion risk map
JP2011033470A (en) * 2009-07-31 2011-02-17 Mitsubishi Heavy Ind Ltd Corrosion detection device, outdoor structure, and corrosion countermeasure method of the same

Also Published As

Publication number Publication date
JP2013160541A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
US11555249B2 (en) Apparatus for measuring a cathodic protection condition of a buried steel structure, and method
JP4141841B2 (en) Sensor array and method for electrochemical corrosion monitoring
US9354157B2 (en) Apparatus and method for assessing subgrade corrosion
JP5571710B2 (en) Corrosion sensor
US20150198518A1 (en) Cathodic protection reference cell article and method
JP5571711B2 (en) Corrosion sensor
US7678253B2 (en) Atmospheric corrosion sensor
US7459067B2 (en) Semi-permanent reference electrode
JP2007278843A (en) Device and method for diagnosing corrosion in underground buried steel structure
ES2276291T3 (en) MAGNETIC FLOW TRANSDUCER AND FLOW METER THAT INCLUDES THE SAME.
JP6623329B2 (en) Corrosion sensor
KR100592553B1 (en) Rebar corrosion monitoring sensor for concrete interior
KR100564879B1 (en) Corrosion Rate and Corrosion Environment Monitoring Sensor for Concrete Interior
CN210128928U (en) An experimental simulation device for detecting the difference of cathodic and anodic corrosion of steel bars in concrete
KR20180018291A (en) Friction detection system and sensor for external motion
Xiong et al. Fabrication of disposable gold macrodisc and platinum microband electrodes for use in room-temperature ionic liquids
RU152911U1 (en) TWO CHAMBER COPPER-SULPHATE COMPARISON NON-POLARIZING ELECTRODE
RU2480734C2 (en) Measuring device of polarisation potential of pipelines
CN210596268U (en) Electric potential measuring device
JP4654260B2 (en) Method for determining anode installation interval for cathodic protection and electrode device used therefor
JP2005227069A (en) Corrosion prediction device and corrosion prediction method for steel material in concrete
RU98588U1 (en) DISCRETE INDICATOR OF LOCAL CORROSION OF METAL STRUCTURES
CN207457033U (en) A kind of single electrode crossed array wire beam electrode system corroded under Test coverage object
JP2014066620A (en) Crevice corrosion sensor, and crevice corrosion evaluation device and method
WO2015108525A1 (en) Cathodic protection reference cell article and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350