JP2019166450A - Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst - Google Patents
Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst Download PDFInfo
- Publication number
- JP2019166450A JP2019166450A JP2018055049A JP2018055049A JP2019166450A JP 2019166450 A JP2019166450 A JP 2019166450A JP 2018055049 A JP2018055049 A JP 2018055049A JP 2018055049 A JP2018055049 A JP 2018055049A JP 2019166450 A JP2019166450 A JP 2019166450A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- gas purification
- srfeo
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 244
- 238000000746 purification Methods 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title abstract description 35
- 239000007789 gas Substances 0.000 claims abstract description 130
- 239000002245 particle Substances 0.000 claims abstract description 102
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 87
- 239000000463 material Substances 0.000 claims abstract description 54
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 42
- 239000006104 solid solution Substances 0.000 claims abstract description 36
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 25
- 206010021143 Hypoxia Diseases 0.000 claims abstract description 15
- 239000011246 composite particle Substances 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 70
- 239000007864 aqueous solution Substances 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 15
- -1 iron ions Chemical class 0.000 claims description 15
- 229910000510 noble metal Inorganic materials 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- 229910052684 Cerium Inorganic materials 0.000 claims description 10
- 229910052723 transition metal Inorganic materials 0.000 claims description 10
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 9
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 229910001427 strontium ion Inorganic materials 0.000 claims description 5
- 239000010970 precious metal Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 21
- 239000002585 base Substances 0.000 description 43
- 239000000843 powder Substances 0.000 description 27
- 238000010304 firing Methods 0.000 description 22
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 20
- 239000010410 layer Substances 0.000 description 17
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 15
- 229910002091 carbon monoxide Inorganic materials 0.000 description 15
- 238000001035 drying Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 12
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 229910052712 strontium Inorganic materials 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- QZRHHEURPZONJU-UHFFFAOYSA-N iron(2+) dinitrate nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QZRHHEURPZONJU-UHFFFAOYSA-N 0.000 description 7
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910017771 LaFeO Inorganic materials 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 239000003426 co-catalyst Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052692 Dysprosium Inorganic materials 0.000 description 3
- 229910052691 Erbium Inorganic materials 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- 229910052689 Holmium Inorganic materials 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- 229910052765 Lutetium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 229910052773 Promethium Inorganic materials 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- 229910052775 Thulium Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 3
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical class C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- INNSZZHSFSFSGS-UHFFFAOYSA-N acetic acid;titanium Chemical compound [Ti].CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O INNSZZHSFSFSGS-UHFFFAOYSA-N 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 150000001553 barium compounds Chemical class 0.000 description 1
- XDFCIPNJCBUZJN-UHFFFAOYSA-N barium(2+) Chemical compound [Ba+2] XDFCIPNJCBUZJN-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000009924 canning Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- HHFAWKCIHAUFRX-UHFFFAOYSA-N ethoxide Chemical compound CC[O-] HHFAWKCIHAUFRX-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- GJKFIJKSBFYMQK-UHFFFAOYSA-N lanthanum(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GJKFIJKSBFYMQK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- NBTOZLQBSIZIKS-UHFFFAOYSA-N methoxide Chemical compound [O-]C NBTOZLQBSIZIKS-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003746 yttrium Chemical class 0.000 description 1
- 150000003754 zirconium Chemical class 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、母材粒子上にペロブスカイト型触媒活性粒子が担持された排ガス浄化用触媒、及びその製造方法、並びに排ガス浄化用触媒コンバータに関する。 The present invention relates to an exhaust gas purification catalyst in which perovskite-type catalytically active particles are supported on base material particles, a manufacturing method thereof, and an exhaust gas purification catalyst converter.
自動車等の内燃機関から排出される炭化水素(HC)、一酸化炭素(CO)、及び窒素酸化物(NOx)の浄化において、プラチナ、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等の白金族元素(PGM:Platinum Group Metal)を触媒活性成分として用いた三元触媒(TWC:Three-Way Catalyst)が広く用いられている。しかしながら、PGMは比較的に高価であり、また中長期的な安定供給の確保に懸念がある。そのため、PGMを必須としない新たな触媒材料の開発が検討されている。 Platinum group elements such as platinum, palladium, rhodium, iridium, ruthenium, and osmium in the purification of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) emitted from internal combustion engines such as automobiles A three-way catalyst (TWC) using PGM (Platinum Group Metal) as a catalytically active component is widely used. However, PGM is relatively expensive and there are concerns about securing a stable supply over the medium to long term. Therefore, development of a new catalyst material that does not require PGM is being studied.
例えば、特許文献1(特開2005−125317号公報)には、特定の細孔径及び細孔容積を有するセリア−ジルコニア固溶体を含む担体と、該担体に混合又は担持された活性種としての酸化鉄と、よりなることを特徴とする酸素貯蔵放出材が開示されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2005-125317) discloses a carrier containing a ceria-zirconia solid solution having a specific pore diameter and pore volume, and iron oxide as an active species mixed or supported on the carrier. And an oxygen storage / release material characterized by comprising:
また、特許文献2(特開平10−216509号公報)には、Y固溶セリア−ジルコニアCe0.6 Zr0.30 Y0.10 O1.95のセリウム系複合酸化物と、このセリウム系複合酸化物に担持されたFeとを有する、酸素吸蔵性セリウム系複合酸化物が開示されている。 Patent Document 2 (Japanese Patent Laid-Open No. 10-216509) discloses a cerium-based composite oxide of Y solid solution ceria-zirconia Ce 0.6 Zr 0.30 Y 0.10 O 1.95 and Fe supported on the cerium-based composite oxide. An oxygen storage cerium-based composite oxide is disclosed.
一方、特許文献3(特開2010−069451号公報)には、ペロブスカイト型構造を有する酸化物焼成体からなる球状粒子であって、該粒子の平均粒子径が10〜50μmの範囲、比表面積が10m2/g〜40m2/gの範囲にあることを特徴とするペロブスカイト型酸化触媒が開示されている。 On the other hand, Patent Document 3 (Japanese Patent Application Laid-Open No. 2010-069451) discloses spherical particles made of an oxide fired body having a perovskite structure, the average particle diameter of which is in the range of 10 to 50 μm, and the specific surface area. perovskite oxide catalyst lies in the range of 10m 2 / g~40m 2 / g are disclosed.
さらに、ペロブスカイト型複合酸化物に、アルカリ土類金属酸化物やアルカリ金属を併用した排ガス浄化触媒が検討されている。例えば、特許文献4(特開2010−194487号公報)には、欠陥ペロブスカイト型複合酸化物(BaY2-xScxO4又はBaY2-xInxO4)とアルカリ土類金属酸化物(BaO)とを含み、粉末X線回折において、実質的に上記欠陥ペロブスカイト型複合酸化物の回折パターンのみが検出される、NOx浄化触媒が開示されている。 Furthermore, exhaust gas purification catalysts in which alkaline earth metal oxides or alkali metals are used in combination with perovskite complex oxides have been studied. For example, Patent Document 4 (JP 2010-194487), a defect perovskite-type composite oxide (BaY 2-x Sc x O 4 or BaY 2-x In x O 4 ) and alkaline earth metal oxides ( NOO purification catalyst is disclosed in which, in powder X-ray diffraction, substantially only the diffraction pattern of the defect perovskite complex oxide is detected in powder X-ray diffraction.
一方、特許文献5(WO2014/038294)には、酸素吸放出能を有する所定粒子径の酸化物に、所定粒子径のLaSrFeO3複合酸化物を担持させた第1触媒と貴金属を含む第2触媒とを含有させ排気ガス浄化触媒が開示されている。 On the other hand, Patent Document 5 (WO2014 / 038294) discloses a second catalyst comprising a first catalyst in which a LaSrFeO 3 composite oxide having a predetermined particle diameter is supported on an oxide having a predetermined particle diameter having oxygen absorption / release capacity and a noble metal. And an exhaust gas purifying catalyst is disclosed.
近年、内燃機関の排ガス浄化においては、世界的な排ガス規制の強化にともない、触媒の浄化性能のさらなる向上が求められている。また、エンジン始動直後の所謂コールドスタート時の浄化性能を向上させるため、或いは寒冷地での使用時の浄化性能を向上させるため、排ガス温度が高いエキゾーストマニホールド直下に触媒コンバータを配置する、直下型の触媒コンバータ等の採用が進展している。これにともない、排ガス浄化触媒には、耐熱性のさらなる向上も求められてきている。 In recent years, in exhaust gas purification of internal combustion engines, further improvement in catalyst purification performance has been demanded as global exhaust gas regulations are strengthened. In order to improve the purification performance at the time of so-called cold start immediately after the engine is started or to improve the purification performance at the time of use in a cold region, a catalytic converter is disposed directly under the exhaust manifold where the exhaust gas temperature is high. Adoption of catalytic converters is progressing. Along with this, further improvement in heat resistance has been required for exhaust gas purification catalysts.
さらに、排ガス規制や燃費向上に対応するための空燃比(A/F)制御の高度化にともない、リーン環境(酸化性雰囲気)、ストイキ環境(理論空燃比)、及びリッチ環境(還元性雰囲気)の処理雰囲気の切り替えが精密に行われるようになってきている。ここで、特許文献1の触媒系では、リッチ環境において、酸化鉄(Fe2O3)から鉄(Fe)が還元生成され、これが高活性な活性種として機能している。しかしながら実際は、特許文献1の触媒系は、高温環境に曝されると担体上の粒子同士がシンタリングにより300nm以上の大粒径に粒成長して、触媒活性サイト(担体上の活性種の粒子)の数が著しく減少してしまい、高温曝露後に触媒性能が大きく劣化するという問題があった。すなわち、特許文献1の酸素貯蔵放出材は、合成直後の性能(初期性能)と高温曝露後の性能(ランニング性能)との乖離が大きく、また高温曝露後の触媒活性サイトの数が少ないという点で、改善の余地が大きく、高温環境下で使用する排ガス浄化触媒として実用性に乏しかった。これらの問題は、特許文献2の触媒系においても、同様に当てはまる。 Furthermore, with the advancement of air-fuel ratio (A / F) control to meet exhaust gas regulations and fuel efficiency improvements, the lean environment (oxidizing atmosphere), stoichiometric environment (theoretical air-fuel ratio), and rich environment (reducing atmosphere) The switching of the processing atmosphere has become more precise. Here, in the catalyst system of Patent Document 1, iron (Fe) is reduced and produced from iron oxide (Fe 2 O 3 ) in a rich environment, and this functions as a highly active active species. However, in actuality, when the catalyst system of Patent Document 1 is exposed to a high temperature environment, the particles on the support grow to a large particle size of 300 nm or more by sintering, and the catalyst active site (active species particles on the support). ) Was significantly reduced, and the catalyst performance was greatly deteriorated after high temperature exposure. That is, the oxygen storage / release material of Patent Document 1 has a large difference between the performance immediately after synthesis (initial performance) and the performance after high temperature exposure (running performance), and the number of catalytically active sites after high temperature exposure is small. Therefore, there is a lot of room for improvement, and it was poor in practicality as an exhaust gas purification catalyst used in a high temperature environment. These problems also apply to the catalyst system of Patent Document 2.
一方、ペロブスカイト型酸化触媒は、表面積が小さく、所望の活性が得られにくいという問題がある。これを解決するために、特許文献3の触媒系では、CaMnO3触媒を数十μmオーダーに造粒し、所定の比表面積を確保することで、プロピレンの酸化触媒性能を高めている。しかしながら、特許文献3の触媒系は、数十μmオーダーの球状粒子からなるため、依然として触媒活性サイトが十分ではなく、ガス接触効率に劣り、また、これを高温環境に曝される排ガス浄化触媒として用いた場合、高温曝露後においてもその比表面積を維持することが難しく、高温環境下で使用する排ガス浄化触媒として実用性に乏しかった。さらに、特許文献4の触媒系では、アルカリ土類金属酸化物やアルカリ金属を併用することで、触媒活性、特に低温活性を向上させているものの、これらは耐熱性が不十分であり、高温環境下で使用する排ガス浄化触媒として実用性に乏しかった。 On the other hand, the perovskite type oxidation catalyst has a problem that it has a small surface area and it is difficult to obtain a desired activity. In order to solve this, in the catalyst system of Patent Document 3, the CaMnO 3 catalyst is granulated to the order of several tens of μm, and a predetermined specific surface area is ensured to improve the oxidation catalyst performance of propylene. However, since the catalyst system of Patent Document 3 is composed of spherical particles of the order of several tens of μm, the catalytically active site is still insufficient, the gas contact efficiency is inferior, and this is used as an exhaust gas purification catalyst that is exposed to a high temperature environment. When used, it was difficult to maintain its specific surface area even after high temperature exposure, and it was poor in practicality as an exhaust gas purification catalyst used in a high temperature environment. Furthermore, in the catalyst system of Patent Document 4, although the catalytic activity, particularly the low-temperature activity is improved by using an alkaline earth metal oxide or an alkali metal in combination, these have insufficient heat resistance and are in a high temperature environment. As an exhaust gas purification catalyst used below, it was not practical.
さらに、特許文献5に記載の排気ガス浄化触媒は、依然として性能が不十分であり、また、触媒活性種として貴金属を必須としているため比較的に高コストなものであった。 Furthermore, the exhaust gas purifying catalyst described in Patent Document 5 still has insufficient performance, and is relatively expensive because it requires noble metal as a catalytically active species.
本発明は、上記課題に鑑みてなされたものである。すなわち本発明の目的は、優れた耐熱性を有するのみならず、高温曝露後にも優れた触媒性能を有する、排ガス浄化用触媒及びその製造方法、並びに排ガス浄化用触媒等を提供することにある。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide an exhaust gas purifying catalyst, a manufacturing method thereof, an exhaust gas purifying catalyst, and the like that have not only excellent heat resistance but also excellent catalytic performance even after high temperature exposure.
なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。 Note that the present invention is not limited to the purpose described here, and is an operational effect derived from each configuration shown in the embodiment for carrying out the invention described later, and can also exhibit an operational effect that cannot be obtained by the conventional technology. It can be positioned as another purpose.
本発明者らは、上記課題を解決すべく鋭意検討した。その結果、所定の母材粒子上に所定のペロブスカイト型触媒活性粒子が担持された排ガス浄化用触媒が、優れた耐熱性を有するのみならず高温曝露後にも優れた触媒性能を有することを見出し、本発明を完成するに至った。 The present inventors diligently studied to solve the above problems. As a result, it has been found that an exhaust gas purification catalyst in which predetermined perovskite-type catalytically active particles are supported on predetermined base material particles has not only excellent heat resistance but also excellent catalytic performance even after high temperature exposure, The present invention has been completed.
すなわち、本発明は、以下に示す種々の具体的態様を提供する。
<1>希土類固溶ジルコニア系酸化物を含有し1μm以上30μm以下の平均粒子径D50を有する母材粒子と、前記母材粒子の表面に担持された、ペロブスカイト型触媒活性粒子であるSrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。)と、を少なくとも有する複合粒子を含有することを特徴とする、排ガス浄化用触媒。
<2>粉末X線回折測定において、2θ=32.6±0.5°にSrFeO3の回折ピークを発現する上記<1>に記載の排ガス浄化用触媒。
<3>SrFeO3-δの平均粒子径が、1〜90nmである上記<1>又は<2>に記載の排ガス浄化用触媒。
<4>SrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。)の含有割合が、前記複合粒子の総質量に対して、1〜60質量%である上記<1>〜<3>のいずれか一項に記載の排ガス浄化用触媒。
That is, the present invention provides various specific modes shown below.
<1> Base material particles containing a rare earth solid solution zirconia-based oxide and having an average particle diameter D 50 of 1 μm or more and 30 μm or less, and SrFeO 3 which is perovskite type catalytically active particles supported on the surface of the base material particles -δ (wherein δ represents the amount of oxygen deficiency and is a number satisfying 0 ≦ δ ≦ 0.5).
<2> The exhaust gas purification catalyst according to <1>, wherein a diffraction peak of SrFeO 3 is expressed at 2θ = 32.6 ± 0.5 ° in powder X-ray diffraction measurement.
<3> The exhaust gas-purifying catalyst according to <1> or <2>, wherein the average particle diameter of SrFeO 3-δ is 1 to 90 nm.
<4> SrFeO 3−δ (where δ represents an oxygen deficiency and is a number satisfying 0 ≦ δ ≦ 0.5) is 1 to The exhaust gas-purifying catalyst according to any one of <1> to <3>, which is 60% by mass.
<5>前記母材粒子の表面に担持された、Fe2O3-δ(但し、δは、酸素欠損量を示し、0≦δ≦1を満たす数である。)をさらに含有する上記<1>〜<4>のいずれか一項に記載の排ガス浄化用触媒。
<6>前記希土類固溶ジルコニア系酸化物は、Y、Ce、Nd、及びNdよりなる群から選択される少なくとも1以上の希土類元素が固溶したジルコニア系酸化物である上記<1>〜<5>のいずれか一項に記載の排ガス浄化用触媒。
<7>前記複合粒子が、貴金属元素を実質的に含有しない上記<1>〜<6>のいずれか一項に記載の排ガス浄化用触媒。
<5> The supported on the surface of the base particles, Fe 2 O 3-δ (where, [delta] represents the amount of oxygen deficiency is a number satisfying 0 ≦ δ ≦ 1.) Further above containing < The catalyst for exhaust gas purification according to any one of 1> to <4>.
<6> The above-mentioned <1> to <1>, wherein the rare earth solid solution zirconia oxide is a zirconia oxide in which at least one rare earth element selected from the group consisting of Y, Ce, Nd, and Nd is solid solution. The exhaust gas purifying catalyst according to any one of 5>.
<7> The exhaust gas-purifying catalyst according to any one of <1> to <6>, wherein the composite particle does not substantially contain a noble metal element.
<8>触媒担体と、前記触媒担体の少なくとも一方の面側に設けられた触媒層と、を少なくとも備え、前記触媒層は、上記<1>〜<7>のいずれか一項に記載の排ガス浄化用触媒を少なくとも含有することを特徴とする、一体構造型排ガス浄化用触媒。
<9>前記排ガス浄化用触媒の担持量が、前記触媒担体の単位体積あたり3〜450g/Lである上記<8>に記載の一体構造型排ガス浄化用触媒。
<8> A catalyst carrier and a catalyst layer provided on at least one surface side of the catalyst carrier, and the catalyst layer includes the exhaust gas according to any one of the above items <1> to <7>. A monolithic exhaust gas purification catalyst comprising at least a purification catalyst.
<9> The integral structure exhaust gas purification catalyst according to <8>, wherein the amount of the exhaust gas purification catalyst supported is 3 to 450 g / L per unit volume of the catalyst carrier.
<10>希土類固溶ジルコニア系酸化物を含有し1μm以上30μm以下の平均粒子径D50を有する母材粒子の表面に、ストロンチウムイオン及び鉄イオンを少なくとも含有する水溶液を付与する工程、並びに処理後の前記母材粒子を500℃以上1490℃以下で熱処理して、希土類固溶ジルコニア系酸化物を含有する母材粒子と前記母材粒子の表面に担持されたペロブスカイト型触媒活性粒子であるSrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。)とを有する複合粒子を得る工程を少なくとも備えることを特徴とする、排ガス浄化用触媒の製造方法。
<11>前記水溶液中、Srに対するFeの含有比率(Fe/Sr)が、モル比で、0.5以上1.5以下である上記<10>に記載の排ガス浄化用触媒の製造方法。
<12>前記水溶液が、水溶液が、Sr以外の希土類金属元素、及び、Fe以外の遷移金属元素を実質的に含有しない上記<10>又は<11>に記載の排ガス浄化用触媒の製造方法。
<13>前記複合粒子が、貴金属元素を実質的に含有しない上記<10>〜<12>のいずれか一項に記載の排ガス浄化用触媒の製造方法。
<10> on the surface of the base particles having an average particle diameter D 50 of 1μm or 30μm or less and containing a rare earth solid solution of zirconia-based oxide, applying a solution containing at least strontium ions and iron ions, and after treatment wherein the base particles 500 ° C. or higher 1490 ° C. and heat-treated below, SrFeO 3 is a perovskite type catalyst activity particles supported on the surface of the base particles and the base particles containing a rare earth solid solution of zirconia-based oxide -δ (where δ represents the amount of oxygen deficiency, and is a number satisfying 0 ≦ δ ≦ 0.5). Production method.
<11> The method for producing an exhaust gas purifying catalyst according to <10>, wherein a content ratio of Fe to Sr (Fe / Sr) is 0.5 or more and 1.5 or less in the aqueous solution.
<12> The method for producing an exhaust gas purifying catalyst according to <10> or <11>, wherein the aqueous solution does not substantially contain a rare earth metal element other than Sr and a transition metal element other than Fe.
<13> The method for producing an exhaust gas purifying catalyst according to any one of the above <10> to <12>, wherein the composite particle does not substantially contain a noble metal element.
本発明によれば、優れた耐熱性を有し、高温曝露後にも優れた触媒性能を有する、排ガス浄化用触媒及びその製造方法、並びに排ガス浄化用触媒等を実現することができる。本発明の排ガス浄化用触媒は、母材粒子上に微小な触媒活性点が担持された複合構造の触媒粒子であり、その組成及び構造に基づいて、排ガス中のNOx、CO、HC等を削減する三元触媒(TWC:Three-Way Catalyst)として、特に好適に用いることができる。また、本発明の排ガス浄化用触媒は、貴金属元素(PM)を必須成分として用いる必要がないので、経済性も優れる。しかも、耐熱性に劣る従来のゼオライト等を用いた触媒とは異なり、本発明の排ガス浄化用触媒は、エンジン直下型触媒コンバータやタンデム配置の直下型触媒コンバータ等に搭載することができ、これにより、キャニングコストの削減などを図ることができる。 According to the present invention, it is possible to realize an exhaust gas purifying catalyst, a manufacturing method thereof, an exhaust gas purifying catalyst, and the like that have excellent heat resistance and excellent catalytic performance even after high temperature exposure. The exhaust gas purifying catalyst of the present invention is a catalyst particle having a composite structure in which minute catalytically active sites are supported on base material particles, and NOx, CO, HC, etc. in exhaust gas are reduced based on the composition and structure. As a three-way catalyst (TWC), it can be particularly preferably used. Moreover, since the exhaust gas purifying catalyst of the present invention does not need to use a noble metal element (PM) as an essential component, it is excellent in economic efficiency. Moreover, unlike conventional catalysts using inferior heat resistance such as zeolite, the exhaust gas purifying catalyst of the present invention can be mounted on an engine direct catalytic converter or a tandem direct catalytic converter. Reduction of canning cost can be achieved.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。但し、以下の実施の形態は、本発明を説明するための例示であり、本発明はこれらに限定されるものではない。すなわち本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、例えば「1〜100」との数値範囲の表記は、その上限値「100」及び下限値「1」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. However, the following embodiments are examples for explaining the present invention, and the present invention is not limited to these. In other words, the present invention can be implemented with any modifications without departing from the scope of the invention. In this specification, for example, the description of a numerical range of “1 to 100” includes both the upper limit value “100” and the lower limit value “1”. This also applies to other numerical range notations.
図1は、本発明の一実施形態の排ガス浄化用触媒100の概略構成を示す模式図である。この排ガス浄化用触媒100は、希土類固溶ジルコニア系酸化物を含有し1μm以上30μm以下の平均粒子径D50を有する母材粒子11と、この母材粒子11の表面11aに担持されたペロブスカイト型触媒活性粒子21であるSrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。以降において、単に「SrFeO3-δと称する場合がある。)と、を少なくとも有する複合粒子を含有することを特徴とする。 FIG. 1 is a schematic diagram showing a schematic configuration of an exhaust gas purifying catalyst 100 according to an embodiment of the present invention. The exhaust gas-purifying catalyst 100 includes a base material particle 11 containing a rare earth solid solution zirconia-based oxide and having an average particle diameter D 50 of 1 μm or more and 30 μm or less, and a perovskite type supported on the surface 11 a of the base material particle 11. SrFeO 3-δ that is the catalytically active particles 21 (where δ represents the amount of oxygen deficiency and is a number that satisfies 0 ≦ δ ≦ 0.5. Hereinafter, it may be simply referred to as “SrFeO 3-δ ”. ) And at least composite particles.
母材粒子11は、表面11aにペロブスカイト型触媒活性粒子21を高分散に担持するコア粒子である。この母材粒子11としては、担体効果を付与して触媒活性を向上させる観点から、希土類固溶ジルコニア系酸化物が好ましく用いられる。ここで、本明細書において、「希土類固溶ジルコニア系酸化物」とは、希土類元素が固溶したジルコニア系の複合酸化物を意味し、具体的には、希土類元素が固溶したジルコニア、及び、これに遷移元素等の他元素がドープされた複合酸化物或いは固溶体を包含する概念として用いている。なお、本明細書において、ジルコニア系酸化物とは、総量に対して、酸化物(ZrO2)換算でジルコニウムを50質量%以上含有するものを意味する。ジルコニア系酸化物としては、Zrの質量割合が、総量に対して、酸化物(ZrO2)換算で50質量%以上80質量%以下のものが好ましく用いられる。 The base material particles 11 are core particles that carry perovskite-type catalytically active particles 21 on the surface 11a in a highly dispersed manner. As the base material particle 11, a rare earth solid solution zirconia-based oxide is preferably used from the viewpoint of imparting a carrier effect and improving the catalytic activity. Here, in the present specification, the “rare earth solid solution zirconia oxide” means a zirconia composite oxide in which a rare earth element is dissolved, specifically, zirconia in which a rare earth element is dissolved, and It is used as a concept including a complex oxide or a solid solution doped with other elements such as transition elements. In this specification, the zirconia-based oxide, the total amount is one which contains an oxide (ZrO 2) of zirconium in terms of more than 50 wt%. As the zirconia-based oxide, those having a mass ratio of Zr of 50% by mass or more and 80% by mass or less in terms of oxide (ZrO 2 ) based on the total amount are preferably used.
希土類元素としては、セリウム、スカンジウム、イットリウム、ランタン、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウム等の、ジルコニウム以外の希土類元素(以降において、「他の希土類元素」と称する場合がある。)が挙げられる。これらの希土類元素は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。これらの中でも、結晶構造の安定性や耐熱性等の観点から、希土類元素としては、イットリウム、セリウム、プラセオジム、ネオジムが好ましく、イットリウム、セリウム、ネオジムがより好ましく、イットリウム、ネオジムがさらに好ましい。表面に担持されるペロブスカイト型触媒活性粒子21との副生物の生成を抑制するとともに、耐熱性の観点等から、イットリウム及び/又はネオジムが固溶したジルコニア系複合酸化物が特に好ましく用いられる。 Rare earth elements include cerium, scandium, yttrium, lanthanum, praseodymium, neodymium, promethium, samarium, eurobium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. , Sometimes referred to as “other rare earth elements”). These rare earth elements can be used individually by 1 type or in combination of 2 or more types as appropriate. Among these, yttrium, cerium, praseodymium, and neodymium are preferable, yttrium, cerium, and neodymium are more preferable, and yttrium and neodymium are more preferable from the viewpoints of crystal structure stability, heat resistance, and the like. A zirconia-based composite oxide in which yttrium and / or neodymium is dissolved is particularly preferably used from the viewpoint of heat resistance and the like while suppressing the formation of by-products with the perovskite-type catalytically active particles 21 supported on the surface.
希土類固溶ジルコニア系酸化物の中でも、Y固溶ジルコニア系酸化物は、耐熱性に優れているため、高温環境下で使用する排ガス浄化触媒の母材として特に適している。また、Y固溶ジルコニア系酸化物は、600℃以上の高温での表面酸素のモビリティーが比較的に速く、排ガスの処理雰囲気の切り替えの応答性に優れている。そのため、Y固溶ジルコニア系酸化物を母材粒子11に用いることで、母材粒子11の表面11aの酸素が活性化されやすく、結果として触媒反応が促進されて、高い排ガス浄化性能が得られる。さらに、本触媒系においては、Y固溶ジルコニア系酸化物を用いることで、例えばアルミナに比して、SrやFeの固溶が抑制されるというメリットもある。なお、Y固溶ジルコニア系酸化物は、Y以外の希土類元素がさらに固溶したものであってもよい。他の希土類元素がさらに固溶したY固溶ジルコニア系酸化物は、格子酸素欠損(δ)の調整が容易であり、これを用いることで、例えば排ガス浄化性能や耐熱性を向上させたり、担持されるペロブスカイト型触媒活性粒子21の分散性を向上させたりすることができる。 Among rare earth solid solution zirconia-based oxides, Y solid solution zirconia-based oxides are particularly suitable as a base material for exhaust gas purification catalysts used in high-temperature environments because of their excellent heat resistance. In addition, the Y solid solution zirconia-based oxide has relatively fast mobility of surface oxygen at a high temperature of 600 ° C. or higher, and is excellent in response to switching of the exhaust gas treatment atmosphere. Therefore, by using the Y solid solution zirconia-based oxide for the base material particle 11, oxygen on the surface 11a of the base material particle 11 is easily activated, and as a result, the catalytic reaction is promoted and high exhaust gas purification performance is obtained. . Further, in the present catalyst system, there is an advantage that the solid solution of Sr or Fe is suppressed by using the Y solid solution zirconia oxide, compared with alumina, for example. The Y solid solution zirconia oxide may be a solid solution of rare earth elements other than Y. Y solid solution zirconia oxide in which other rare earth elements are further dissolved is easy to adjust lattice oxygen vacancies (δ). By using this, for example, exhaust gas purification performance and heat resistance can be improved or supported. The dispersibility of the perovskite-type catalytically active particles 21 can be improved.
希土類固溶ジルコニア系酸化物において、希土類元素の含有割合は、特に限定されないが、希土類固溶ジルコニア系酸化物の総量に対する上述した希土類元素の酸化物換算の総量(例えばY2O3、CeO2、Nd2O3、Pr5O11等の総和)で、0.01質量%以上50質量%以下が好ましく、より好ましくは0.1質量%以上20質量%以下である。 In the rare earth solid solution zirconia-based oxide, the content ratio of the rare earth element is not particularly limited, but the total amount of the rare earth element in terms of oxide relative to the total amount of the rare earth solid solution zirconia oxide (for example, Y 2 O 3 , CeO 2). , Nd 2 O 3 , Pr 5 O 11, etc.) is preferably 0.01% by mass or more and 50% by mass or less, and more preferably 0.1% by mass or more and 20% by mass or less.
なお、希土類固溶ジルコニア系酸化物は、クロム、コバルト、鉄、ニッケル、チタン、マンガン及び銅等の遷移元素を含んでいてもよい。遷移元素は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。遷移元素が含まれる場合、その含有割合は、特に限定されないが、希土類固溶ジルコニア系酸化物の総量に対して、上述した遷移元素の酸化物換算の総量(例えばFe2O3、TiO2等の総和)で、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。 In addition, the rare earth solid solution zirconia oxide may contain transition elements such as chromium, cobalt, iron, nickel, titanium, manganese, and copper. A transition element can be used individually by 1 type or in combination of 2 or more types as appropriate. When the transition element is contained, the content ratio is not particularly limited, but the total amount of the transition element described above in terms of oxide of the transition element (for example, Fe 2 O 3 , TiO 2, etc.) is not limited. Is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, further preferably 0.5% by mass or more, more preferably 10% by mass or less, and even more preferably 5% by mass or less. A mass% or less is more preferable.
また、上記の希土類固溶ジルコニア系酸化物において、ジルコニウムや希土類元素の一部が、リチウム、ナトリウム、カリウム等のアルカリ金属元素、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属元素等で置換されていてもよい。アルカリ金属元素及びアルカリ土類金属元素は、それぞれ1種を単独で、又は2種以上の任意の組み合わせ及び割合で用いることができる。また、上記の希土類固溶ジルコニア系酸化物は、ジルコニア鉱石中に通常1〜2質量%程度含まれているハフニウム(Hf)を不可避不純物として含有していても構わない。また、ハフニウムを除く不可避不純物の総量は、0.3質量%以下であることが好ましい In addition, in the above rare earth solid solution zirconia oxide, a part of zirconium and rare earth elements are alkali metal elements such as lithium, sodium and potassium, alkaline earth metal elements such as beryllium, magnesium, calcium, strontium and barium. May be substituted. Each of the alkali metal element and the alkaline earth metal element can be used alone or in any combination and proportion of two or more. The rare earth solid-solution zirconia oxide may contain hafnium (Hf), which is usually contained in the zirconia ore in an amount of about 1 to 2% by mass, as an inevitable impurity. The total amount of inevitable impurities excluding hafnium is preferably 0.3% by mass or less.
Y固溶ジルコニア系酸化物の好ましい例としては、Y−Zr−Ox、Y−Nd−Zr−Ox、Y−La−Zr−Ox、Y−Pr−Zr−Ox、Y−Nd−La−Zr−Ox、Y−Nd−Pr−Zr−Ox、Y−La−Pr−Zr−Ox、Y−Zr−Ce−Ox、Y−Nd−Zr−Ce−Ox、Y−La−Zr−Ce−Ox、Y−Pr−Zr−Ce−Ox、Y−Nd−La−Zr−Ce−Ox、Y−Nd−Pr−Zr−Ce−Ox、Y−La−Pr−Zr−Ce−Ox等のY固溶ジルコニアが挙げられるが、これらに特に限定されない。Y固溶ジルコニア系酸化物は、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。なお、これらの例示においては、それぞれの酸化物に含まれる構成元素の組み合わせに着目して表示したものであり、各構成元素の化学量論比を表示するものではない。すなわち、各構成元素の化学量論比は、任意に調整可能である。 Preferred examples of the Y solid solution zirconia-based oxide include Y-Zr-Ox, Y-Nd-Zr-Ox, Y-La-Zr-Ox, Y-Pr-Zr-Ox, Y-Nd-La-Zr. -Ox, Y-Nd-Pr-Zr-Ox, Y-La-Pr-Zr-Ox, Y-Zr-Ce-Ox, Y-Nd-Zr-Ce-Ox, Y-La-Zr-Ce-Ox Y-Pr-Zr-Ce-Ox, Y-Nd-La-Zr-Ce-Ox, Y-Nd-Pr-Zr-Ce-Ox, Y-La-Pr-Zr-Ce-Ox, etc. Although melted zirconia is mentioned, it is not specifically limited to these. Y solid solution zirconia type oxide can be used individually by 1 type or in combination of 2 or more types as appropriate. In these exemplifications, the display is focused on the combination of constituent elements contained in each oxide, and the stoichiometric ratio of each constituent element is not displayed. That is, the stoichiometric ratio of each constituent element can be arbitrarily adjusted.
ここで、大きな比表面積を保持させて、ペロブスカイト型触媒活性粒子21の担持量を増大させるとともに、耐熱性を高めて自身の触媒活性サイトの数を増大させる等の観点から、母材粒子11は1μm以上30μm以下の平均粒子径D50を有することが好ましく、より好ましくは1μm以上15μm以下であり、さらに好ましくは1μm以上10μm以下である。なお、本明細書において、平均粒子径D50は、レーザー回折式粒度分布測定装置(例えば、島津製作所社製、レーザー回折式粒度分布測定装置SALD−3100等)で測定されるメディアン径を意味する。 Here, from the viewpoint of maintaining a large specific surface area and increasing the amount of the perovskite-type catalytically active particles 21 supported, and increasing the number of the catalytically active sites by increasing the heat resistance, the base material particles 11 are: The average particle diameter D 50 is preferably 1 μm or more and 30 μm or less, more preferably 1 μm or more and 15 μm or less, and still more preferably 1 μm or more and 10 μm or less. In the present specification, the average particle diameter D 50 means the median size measured by a laser diffraction type particle size distribution measuring device (for example, manufactured by Shimadzu Corporation, a laser diffraction type particle size distribution measuring apparatus SALD-3100 etc.) .
母材粒子11は、各種グレードの市販品を用いることができる。また、上述した各種組成のY固溶ジルコニア系酸化物からなる母材粒子11は、当業界で公知の方法で製造することもできる。Y固溶ジルコニア系酸化物の製造方法は、特に限定されないが、共沈法やアルコキシド法が好ましい。 As the base material particles 11, commercially available products of various grades can be used. Moreover, the base material particle 11 which consists of Y solid solution zirconia-type oxide of the various composition mentioned above can also be manufactured by a well-known method in this industry. Although the manufacturing method of Y solid solution zirconia-type oxide is not specifically limited, A coprecipitation method and an alkoxide method are preferable.
共沈法としては、例えば、ジルコニウム塩、イットリウム塩、及び必要に応じて配合する希土類金属元素や遷移金属元素の塩を所定の化学量論比で混合した水溶液に、アルカリ物質を添加して加水分解させ或いは前駆体を共沈させ、その加水分解生成物或いは共沈物を焼成する製法が好ましい。ここで用いる各種塩の種類は、特に限定されない。一般的には、塩酸塩、オキシ塩酸塩、硝酸塩、オキシ硝酸塩、炭酸塩、リン酸塩、酢酸塩、シュウ酸塩、クエン酸塩等が好ましい。また、アルカリ性物質の種類も、特に限定されない。一般的には、アンモニア水溶液が好ましい。アルコキシド法としては、例えば、ジルコニウムアルコキシド、イットリウム、及び必要に応じて配合する希土類金属元素を所定の化学量論比で混合した混合物を加水分解し、その後に焼成する製法が好ましい。ここで用いるアルコキシドの種類は、特に限定されない。一般的には、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシドや、これらのエチレンオキサイド付加物等が好ましい。また、希土類金属元素は、金属アルコキシドとして配合しても、上述した各種塩として配合してもよい。 As the coprecipitation method, for example, an alkali substance is added to an aqueous solution in which a zirconium salt, an yttrium salt, and a rare earth metal element or a transition metal element salt to be blended as necessary are mixed at a predetermined stoichiometric ratio, and then added with water. A production method in which decomposition or coprecipitation of the precursor is performed and the hydrolysis product or coprecipitate is fired is preferable. The kind of various salt used here is not specifically limited. In general, hydrochloride, oxyhydrochloride, nitrate, oxynitrate, carbonate, phosphate, acetate, oxalate, citrate and the like are preferable. Moreover, the kind of alkaline substance is not particularly limited. In general, an aqueous ammonia solution is preferred. As the alkoxide method, for example, a production method is preferred in which a mixture obtained by mixing zirconium alkoxide, yttrium, and a rare earth metal element to be blended as necessary at a predetermined stoichiometric ratio is hydrolyzed and then fired. The kind of alkoxide used here is not particularly limited. In general, methoxide, ethoxide, propoxide, isopropoxide, butoxide, and these ethylene oxide adducts are preferable. Further, the rare earth metal element may be blended as a metal alkoxide or as the various salts described above.
焼成条件は、常法にしたがえばよく、特に限定されない。焼成雰囲気は、酸化性雰囲気、還元性雰囲気、大気雰囲気のいずれの雰囲気でもよい。焼成温度及び処理時間は、所望するY固溶ジルコニア系酸化物の組成及びその化学量論比によって変動するが、生産性等の観点からは、一般的には、150℃以上1300℃以下で1〜12時間が好ましく、より好ましくは350℃以上800℃以下で2〜4時間である。なお、高温焼成に先立って、真空乾燥機等を用いて減圧乾燥を行い、50℃以上200℃以下で約1〜48時間程度の乾燥処理を行うことが好ましい。 The firing conditions may be in accordance with conventional methods and are not particularly limited. The firing atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, and an air atmosphere. The firing temperature and treatment time vary depending on the desired composition of the Y-solute zirconia oxide and its stoichiometric ratio. However, from the viewpoint of productivity and the like, the firing temperature and the treatment time are generally from 150 ° C. to 1300 ° C. -12 hours are preferred, more preferably 350 ° C or higher and 800 ° C or lower for 2 to 4 hours. Prior to the high temperature firing, it is preferable to perform drying under reduced pressure using a vacuum dryer or the like, and to perform a drying treatment at about 50 ° C. to 200 ° C. for about 1 to 48 hours.
本実施形態の排ガス浄化用触媒100においては、上述した母材粒子11の表面11aに、ペロブスカイト型触媒活性粒子21としてSrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。)が担持されている複合粒子の粒子構造を有する点に、1つの特徴を有する。典型的には、排気ガス浄化用触媒100は、平均粒子径が1〜90nm程度、好ましくは10〜80nmのSrFeO3-δの微粒子が、母材粒子11の表面11aに高分散に付着した複合構造を有する。このような複合粒子構造を採用することにより、この排ガス浄化用触媒100においては、高温曝露後の触媒性能の劣化が大幅に抑制されている。その理由は定かではないが、ペロブスカイト型の結晶構造を有するSrFeO3-δは、比較的に耐熱性に優れ、また、母材粒子11の表面11aにおいて、SrFeO3-δや母材粒子11に含まれる元素から生じる種々の誘導体(例えばSrZrO3-δ、酸化鉄(FeOやFe2O3)、鉄単体(Fe)等の還元生成物)の微粒子を生じさせ、これらの微粒子がSrFeO3-δの微粒子間に分散されて、SrFeO3-δ同士の接触機会が減じさせられること等により、高温曝露によるSrFeO3-δのシンタリング及び粒成長が阻害されているためと推察される。したがって、本実施形態の排ガス浄化用触媒100は、SrFeO3-δや母材粒子11に含まれる元素から生じる種々の誘導体(例えばSrZrO3-δ、酸化鉄(FeOやFe2O3)、鉄単体(Fe)等の還元生成物)を含んでいてもよい。 In the exhaust gas purifying catalyst 100 of the present embodiment, SrFeO 3−δ (where δ represents the amount of oxygen deficiency and 0 ≦ δ ≦) is formed on the surface 11a of the base material particle 11 as the perovskite-type catalytic active particles 21. It is a number satisfying 0.5.) It has one feature in that it has a particle structure of composite particles on which is supported. Typically, the exhaust gas purification catalyst 100 is a composite in which fine particles of SrFeO 3 -δ having an average particle diameter of about 1 to 90 nm, preferably 10 to 80 nm, adhere to the surface 11 a of the base material particle 11 in a highly dispersed manner. It has a structure. By adopting such a composite particle structure, in this exhaust gas purifying catalyst 100, the deterioration of the catalyst performance after high temperature exposure is greatly suppressed. The reason for this is not clear, but SrFeO 3-δ having a perovskite crystal structure is relatively excellent in heat resistance, and on the surface 11 a of the base material particle 11, SrFeO 3-δ and the base material particle 11 Fine particles of various derivatives (for example, reduced products such as SrZrO 3-δ , iron oxide (FeO or Fe 2 O 3 ), and simple iron (Fe)) generated from contained elements are generated, and these fine particles are formed into SrFeO 3- distributed between [delta] of the particulate, such as by contact opportunities between SrFeO 3-[delta] is allowed reduced, sintering and grain growth of SrFeO 3-[delta] due to high temperature exposure is presumably because it is inhibited. Therefore, the exhaust gas purifying catalyst 100 of the present embodiment has various derivatives (for example, SrZrO 3-δ , iron oxide (FeO or Fe 2 O 3 ), iron, etc. generated from elements contained in SrFeO 3-δ and base material particles 11. A reduction product such as simple substance (Fe) may be included.
ここで、SrFeO3-δのペロブスカイト構造としては、brownmillerite, cubic,tetragonal,orthorhombic等が知られており、これらの化学量論比としては、SrFeO3、SrFeO2.875、SrFeO2.75、SrFeO2.5等が知られている。本実施形態の排ガス浄化用触媒100においては、ペロブスカイト型触媒活性粒子21として、これらのいずれかが含まれていればよい。なお、母材粒子11上のSrFeO3-δの存在は、走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscope)による観察、粉末X線回折(XRD:X‐ray Diffraction、例えば2θ=32.6±0.5°のSrFeO3のピーク、電子プローブマイクロアナライザ(EPMA:Electron Probe Micro Analyzer)、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy、又はESCA:Electron Spectroscopy for Chemical Analysis)等の各種測定方法により把握することができる。また、母材粒子11上のSrFeO3-δの平均粒子径は、通常は10〜150nm程度であり、好ましくは10〜120nm、より好ましくは20〜110nmである。 Here, the perovskite structure of SrFeO 3-δ, brownmillerite, cubic , tetragonal, and orthorhombic like are known, as these stoichiometric ratio, SrFeO 3, SrFeO 2.875, SrFeO 2.75, SrFeO 2.5 Hitoshigachi It has been. In the exhaust gas purifying catalyst 100 of the present embodiment, any of these may be included as the perovskite-type catalytically active particles 21. The presence of SrFeO 3-δ on the base material particle 11 is observed by a scanning transmission electron microscope (STEM), powder X-ray diffraction (XRD), for example, 2θ = 32.6. ± 0.5 ° SrFeO 3 peak, various types of electron probe microanalyzer (EPMA), X-ray photoelectron spectroscopy (XPS), or ESCA (electron spectroscopy for chemical analysis) The average particle diameter of SrFeO 3 -δ on the base material particle 11 is usually about 10 to 150 nm, preferably 10 to 120 nm, more preferably 20 to 110 nm. .
また、SrFeO3-δによる排ガス浄化の触媒作用は、リーン環境〜ストイキ環境〜リッチ環境の全域にわたって触媒活性を呈する。その理由は定かではないが、SrFeO3-δは、そのものの自身が触媒活性成分として機能するのみならず、上述した種々の誘導体も触媒活性成分として機能し、例えば酸化鉄や鉄単体等の高活性な活性種が存在することにより、ストイキ環境〜リッチ環境において特に強い触媒活性を呈していると推察される。理由はいずれにせよ、本実施形態の排ガス浄化用触媒100は、リーン環境〜ストイキ環境〜リッチ環境の全域にわたって排ガス浄化の触媒作用が補強され、その結果、貴金属元素(PM)や白金族元素(PGM)を必須成分として用いていないにも関わらず、優れた排ガス浄化性能が呈する。 Further, the catalytic action of exhaust gas purification by SrFeO 3 -δ exhibits catalytic activity over the entire range from lean environment to stoichiometric environment to rich environment. The reason for this is not clear, but SrFeO 3-δ itself not only functions as a catalytically active component, but the various derivatives described above also function as a catalytically active component. The presence of active active species is presumed to exhibit particularly strong catalytic activity in stoichiometric to rich environments. Whatever the reason, the exhaust gas purifying catalyst 100 of the present embodiment has the exhaust gas purifying catalytic action reinforced over the entire range of lean environment, stoichiometric environment, and rich environment. As a result, noble metal elements (PM) and platinum group elements ( Even though PGM) is not used as an essential component, excellent exhaust gas purification performance is exhibited.
ここで、触媒活性をより高めるとともにシンタリング及び粒成長を阻害する観点から、SrFeO3-δは、1nm以上80nm以下の平均結晶子径を有することが好ましく、より好ましくは10nm以上70nm以下、さらに好ましくは20nm以上65nm以下である。SrFeO3-δの平均結晶子は、例えば耐久処理後の排ガス浄化用触媒100のXRD回折パターンから算出することができる。このような微粒子サイズのSrFeO3-δを母材粒子11の表面11aに存在させることで、表面積がより高く維持され易く、また、触媒活性サイトがより多く維持され易い傾向にある。 Here, from the viewpoint of further enhancing the catalytic activity and inhibiting sintering and grain growth, SrFeO 3-δ preferably has an average crystallite diameter of 1 nm to 80 nm, more preferably 10 nm to 70 nm, Preferably they are 20 nm or more and 65 nm or less. The average crystallite of SrFeO 3-δ can be calculated from, for example, the XRD diffraction pattern of the exhaust gas purifying catalyst 100 after the endurance treatment. By making SrFeO 3-δ having such a fine particle size present on the surface 11a of the base material particle 11, the surface area tends to be maintained higher and more catalytically active sites tend to be maintained.
なお、結晶子とは、一般に単結晶とみなせる最大の集まりのことをいい、その結晶子の大きさのことを結晶子径という。また、本明細書において、平均結晶子径は、X線回折装置を用いて回折パターンを測定し、その測定結果に基づいて下記式(1)で表されるScherrerの式より算出した値を意味する。
結晶子径 D(Å)=K・λ/(β・cosθ) ・・・(1)
式(1)中、KはScherrer定数であり、ここではK=0.9とする。また、λは使用したX線管球の波長、βは半値幅、θは回折角(rad)である。
The crystallite means the largest group that can generally be regarded as a single crystal, and the size of the crystallite is called the crystallite diameter. Further, in this specification, the average crystallite diameter means a value calculated from a Scherrer equation represented by the following equation (1) based on a measurement result obtained by measuring a diffraction pattern using an X-ray diffractometer. To do.
Crystallite diameter D (Å) = K · λ / (β · cos θ) (1)
In Equation (1), K is a Scherrer constant, and here, K = 0.9. Also, λ is the wavelength of the X-ray tube used, β is the half width, and θ is the diffraction angle (rad).
また、排ガス浄化用触媒100中のSrFeO3-δの含有量(担持量)は、特に限定されないが、リーン環境〜ストイキ環境〜リッチ環境の全域にわたる触媒性能を向上させる等の観点から、上述した複合粒子の総質量に対して、1質量%以上60質量%以下が好ましく、より好ましくは2質量%以上55質量%以下、さらに好ましくは3質量%以上50質量%以下である。 Further, the content (supported amount) of SrFeO 3-δ in the exhaust gas purification catalyst 100 is not particularly limited, but it has been described above from the viewpoint of improving the catalyst performance over the entire range of lean environment, stoichiometric environment, and rich environment. 1 mass% or more and 60 mass% or less are preferable with respect to the total mass of a composite particle, More preferably, they are 2 mass% or more and 55 mass% or less, More preferably, they are 3 mass% or more and 50 mass% or less.
なお、本実施形態の排ガス浄化用触媒100においては、上述した(FeOやFe2O3)や上述した種々の誘導体以外に、Sr及びFe以外の希土類元素或いは遷移金属元素(以降において、「他の希土類元素」或いは「他の遷移金属元素」」と称する場合がある。)の酸化物等が母材粒子11上に存在していてもよい。他の希土類元素としては、セリウム、スカンジウム、ネオジム、プロメチウム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウム等が挙げられるが、これらに特に限定されない。また、他の遷移金属元素としては、クロム、コバルト、ニッケル、チタン、マンガン、タングステン及び銅等が挙げられるが、これらに特に限定されない。 In the exhaust gas purifying catalyst 100 of the present embodiment, in addition to the above-described (FeO and Fe 2 O 3 ) and the various derivatives described above, rare earth elements or transition metal elements other than Sr and Fe (hereinafter referred to as “others”). May be referred to as “rare earth element” or “other transition metal element”)) or the like. Examples of other rare earth elements include, but are not limited to, cerium, scandium, neodymium, promethium, samarium, eurobium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Other transition metal elements include, but are not limited to, chromium, cobalt, nickel, titanium, manganese, tungsten, and copper.
一方、本実施形態の排ガス浄化用触媒100が酸化鉄を含む場合、酸化鉄の含有量は、特に限定されないが、触媒性能及び低温活性を向上させる等の観点から、排ガス浄化用触媒100の総量に対して、Fe2O3、Fe3O4及びFeOの3種の合計のFe2O3換算で、0.001質量%以上3質量%以下が好ましく、より好ましくは0.01質量%以上2質量%以下である。 On the other hand, when the exhaust gas purifying catalyst 100 of the present embodiment contains iron oxide, the content of iron oxide is not particularly limited, but the total amount of the exhaust gas purifying catalyst 100 is from the viewpoint of improving the catalyst performance and low temperature activity. On the other hand, it is preferably 0.001% by mass or more and 3% by mass or less, more preferably 0.01% by mass or more in terms of the total of Fe 2 O 3 of Fe 2 O 3 , Fe 3 O 4 and FeO. 2% by mass or less.
本実施形態の排ガス浄化用触媒100は、金(Au)、銀(Ag)、プラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等の貴金属元素(PM)や白金族元素(PGM)を必須成分として用いなくとも、優れた耐熱性を有し、高温曝露後にも優れた触媒性能を有する。したがって、経済性及び安定供給等の観点からは、一つの好適態様として、貴金属元素(PM)及び白金族元素(PGM)を実質的に含有しない排ガス浄化用触媒100が挙げられる。ここで、実質的に含有しないとは、貴金属元素(PM)及び白金族元素(PGM)の総量が、排ガス浄化用触媒100の全量に対して、0質量%以上1.0質量%未満の範囲内にあることを意味し、より好ましくは0質量%以上0.5質量%未満、さらに好ましくは0質量%以上0.3質量%未満である。 The exhaust gas purifying catalyst 100 of this embodiment includes gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os). Even if noble metal element (PM) such as platinum or platinum group element (PGM) is not used as an essential component, it has excellent heat resistance and excellent catalytic performance even after high temperature exposure. Therefore, from the viewpoint of economy and stable supply, one preferred embodiment is an exhaust gas purifying catalyst 100 that substantially does not contain a noble metal element (PM) and a platinum group element (PGM). Here, “substantially not contained” means that the total amount of the noble metal element (PM) and the platinum group element (PGM) is in the range of 0% by mass or more and less than 1.0% by mass with respect to the total amount of the exhaust gas purification catalyst 100. More preferably, it is 0 mass% or more and less than 0.5 mass%, More preferably, it is 0 mass% or more and less than 0.3 mass%.
なお、排ガス浄化用触媒100の形状は、特に限定されない。母材粒子11上にSrFeO3-δが担持された触媒粒子の集合体である触媒粉末のまま用いることができる。また、例えば、この触媒粉末を任意の形状に成形して、粒状やペレット状の成形触媒とすることができる。さらに、この排ガス浄化用触媒100を触媒担体に保持(担持)させて、一体構造型排ガス浄化用触媒として使用することもできる。ここで用いる触媒担体としては、当業界で公知のものを適宜選択することができる。代表的には、コージェライト、シリコンカーバイド、窒化珪素等のセラミックモノリス担体、ステンレス製等のメタルハニカム担体、ステンレス製等のワイヤメッシュ担体、スチールウール状のニットワイヤ担体等が挙げられるが、これらに特に限定されない。なお、また、その形状も、特に限定されず、例えば角柱状、円筒状、球状、ハニカム状、シート状等の任意の形状のものが選択可能である。これらは、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。 The shape of the exhaust gas purifying catalyst 100 is not particularly limited. The catalyst powder, which is an aggregate of catalyst particles in which SrFeO 3-δ is supported on the base material particles 11, can be used as it is. Also, for example, the catalyst powder can be formed into an arbitrary shape to form a granular or pellet shaped catalyst. Further, the exhaust gas purification catalyst 100 can be held (supported) on a catalyst carrier and used as an integral structure type exhaust gas purification catalyst. As the catalyst carrier used here, those known in the art can be appropriately selected. Typical examples include ceramic monolith carriers such as cordierite, silicon carbide, silicon nitride, metal honeycomb carriers such as stainless steel, wire mesh carriers such as stainless steel, and steel wool knit wire carriers. There is no particular limitation. In addition, the shape is not particularly limited, and any shape such as a prismatic shape, a cylindrical shape, a spherical shape, a honeycomb shape, or a sheet shape can be selected. These can be used individually by 1 type or in combination of 2 or more types as appropriate.
上述した排ガス浄化用触媒100は、ディーゼルエンジン、ガソリンエンジン、ジェットエンジン、ボイラー、ガスタービン等の排ガスを浄化するための触媒として用いることができ、例えば内燃機関の排ガス浄化用触媒、とりわけ自動車の排ガス浄化用触媒として有用である。 The exhaust gas purification catalyst 100 described above can be used as a catalyst for purifying exhaust gas from diesel engines, gasoline engines, jet engines, boilers, gas turbines, etc., for example, exhaust gas purification catalysts for internal combustion engines, especially automobile exhaust gas. It is useful as a purification catalyst.
本実施形態の排ガス浄化用触媒100の製造方法は、上述したとおり母材粒子11上にSrFeO3-δが担持された構成のものが得られる限り、特に限定されない。上述した構成の排ガス浄化用触媒100を再現性よく簡易且つ低コストで製造する観点からは、蒸発乾固法(含浸法)等が好ましい。 The method for producing the exhaust gas purifying catalyst 100 of the present embodiment is not particularly limited as long as a method in which SrFeO 3-δ is supported on the base material particles 11 as described above can be obtained. From the viewpoint of manufacturing the exhaust gas-purifying catalyst 100 having the above-described structure with good reproducibility and at low cost, the evaporation to dry method (impregnation method) or the like is preferable.
蒸発乾固法としては、上述した母材粒子11に、ストロンチウムイオン及び鉄イオンを少なくとも含有する水溶液を含浸させ、その後に焼成する製法が好ましい。この含浸処理により、ストロンチウムイオン及び鉄イオンが、母材粒子11の表面11aにそれぞれ高分散状態で吸着(付着)される。ここで、ストロンチウムイオン及び鉄イオンは、各種塩として水溶液に配合することができる。ここで用いる各種塩の種類は、特に限定されない。一般的には、硫酸塩、塩酸塩、オキシ塩酸塩、硝酸塩、オキシ硝酸塩、炭酸塩、リン酸塩、塩化物、酸化物、複合酸化物、錯塩、酢酸塩、シュウ酸塩、クエン酸塩等が好ましい。 As the evaporation to dryness method, a manufacturing method in which the base material particle 11 described above is impregnated with an aqueous solution containing at least strontium ions and iron ions and then fired is preferable. By this impregnation treatment, strontium ions and iron ions are adsorbed (attached) to the surfaces 11a of the base material particles 11 in a highly dispersed state. Here, strontium ions and iron ions can be blended in the aqueous solution as various salts. The kind of various salt used here is not specifically limited. In general, sulfate, hydrochloride, oxyhydrochloride, nitrate, oxynitrate, carbonate, phosphate, chloride, oxide, complex oxide, complex salt, acetate, oxalate, citrate, etc. Is preferred.
含浸処理後、必要に応じて、固液分離処理、水洗処理、例えば大気中50℃以上200℃以下程度の温度で水分を除去する乾燥処理等を常法にしたがって行うことができる。乾燥処理は、自然乾燥でもよいし、ドラム式乾燥機、減圧乾燥機、スプレードライ等の乾燥装置を使用してもよい。また、乾燥処理の際の雰囲気は、大気中、真空中、窒素ガス等の不活性ガス雰囲気中のいずれでもよい。なお、乾燥の前後に、さらに必要に応じて粉砕処理や分級処理等を行ってもよい。 After the impregnation treatment, a solid-liquid separation treatment, a water washing treatment, for example, a drying treatment for removing moisture at a temperature of about 50 ° C. or more and 200 ° C. or less in the atmosphere can be performed according to a conventional method. The drying treatment may be natural drying, or a drying apparatus such as a drum dryer, a vacuum dryer, or spray drying may be used. The atmosphere during the drying treatment may be any of air, vacuum, and inert gas atmosphere such as nitrogen gas. In addition, you may perform a grinding | pulverization process, a classification process, etc. further before and after drying as needed.
焼成条件は、常法にしたがえばよく、特に限定されない。加熱手段は、特に限定されず、例えば電気炉やガス炉等の公知の機器を用いることができる。焼成雰囲気は、酸化性雰囲気、大気雰囲気が好ましい。焼成温度及び処理時間は、所望する組成及びその化学量論比によって変動するが、SrFeO3-δの生成及び生産性等の観点からは、一般的には、500℃以上1490℃以下で0.1〜12時間が好ましく、より好ましくは550℃以上800℃以下で0.5〜6時間である。なお、高温焼成に先立って、真空乾燥機等を用いて減圧乾燥を行い、50℃以上200℃以下で約1〜48時間程度の乾燥処理を行ってもよい。この焼成処理により、ナノオーダーサイズに高分散したSrFeO3-δが、また処理条件によってはさらに上述した各種誘導体の微粒子等が、母材粒子11の表面11a上に生成(合成)される。 The firing conditions may be in accordance with conventional methods and are not particularly limited. A heating means is not specifically limited, For example, well-known apparatuses, such as an electric furnace and a gas furnace, can be used. The firing atmosphere is preferably an oxidizing atmosphere or an air atmosphere. The firing temperature and treatment time vary depending on the desired composition and the stoichiometric ratio, but from the viewpoint of the production and productivity of SrFeO 3 -δ , the firing temperature and treatment time are generally from 0.5 to 1490 ° C. 1-12 hours are preferable, More preferably, it is 550 degreeC or more and 800 degrees C or less for 0.5 to 6 hours. Prior to high-temperature firing, drying under reduced pressure using a vacuum dryer or the like may be performed, and a drying treatment may be performed at 50 ° C. or higher and 200 ° C. or lower for about 1 to 48 hours. By this firing treatment, SrFeO 3 -δ highly dispersed in a nano-order size and, depending on the treatment conditions, fine particles of various derivatives described above are generated (synthesized) on the surface 11 a of the base material particle 11.
前記水溶液中のSrに対するFeの含有比率(Fe/Sr)は、適宜調整でき、特に限定されないが、得られる排ガス浄化用触媒100の触媒活性の観点から、Fe及びSrのモル比換算で、0.5以上1.5以下が好ましく、SrFeO3-δ及びFe2O3-δ以外の生成を抑制する観点から、より好ましくは0.9以上1.5以下であり、さらに好ましくは1.0以上1.45以下である。 The content ratio of Fe to Sr in the aqueous solution (Fe / Sr) can be adjusted as appropriate and is not particularly limited. However, from the viewpoint of the catalytic activity of the obtained exhaust gas purification catalyst 100, the molar ratio of Fe and Sr is 0. 0.5 or more and 1.5 or less is preferable, and from the viewpoint of suppressing generation other than SrFeO 3-δ and Fe 2 O 3-δ , more preferably 0.9 or more and 1.5 or less, and even more preferably 1.0. It is 1.45 or less.
なお、前記水溶液は、必要に応じて、セリウム、スカンジウム、ランタン、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウム等の希土類元素、リチウム、ナトリウム、カリウム等のアルカリ金属元素、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属元素、コバルト、ニッケル、チタン、銅等の遷移金属元素を含有していてもよい。なお、これらは、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。これらの希土類元素、アルカリ金属元素、アルカリ土類金属元素及び遷移金属元素は、無機酸塩、例えば硫酸塩、硝酸塩、酢酸塩、塩化物、酸化物、複合酸化物、及び錯塩等として水溶液に供給することができる。このとき、SrFeO3-δ以外の複合酸化物の副生を抑制する観点から、前記水溶液は、ストロンチウム以外の希土類金属元素及び鉄以外の遷移金属元素を、実質的に含有しないことが好ましい。ここで、実質的に含有しないとは、ストロンチウム以外の希土類金属元素及び鉄以外の遷移金属元素の総モル量が、水溶液中のSr及びFeの総モル量に対して、1/20以下であることを意味し、より好ましくは1/40以下、さらに好ましくは1/50以下、特に好ましくは1/100以下である。例えばLaを実質的に含まない水溶液とすることで、SrFeO3-δ及びFe2O3-δ以外の誘導体、例えばLaFeO3やLaSrFeO3等の意図しない副生を抑制できる。 In addition, the aqueous solution, if necessary, rare earth elements such as cerium, scandium, lanthanum, praseodymium, neodymium, promethium, samarium, eurobium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, lithium, Alkali metal elements such as sodium and potassium, alkaline earth metal elements such as beryllium, magnesium, calcium, strontium and barium, and transition metal elements such as cobalt, nickel, titanium and copper may be contained. In addition, these can be used individually by 1 type or in combination of 2 or more types as appropriate. These rare earth elements, alkali metal elements, alkaline earth metal elements, and transition metal elements are supplied to aqueous solutions as inorganic acid salts, such as sulfates, nitrates, acetates, chlorides, oxides, complex oxides, and complex salts. can do. At this time, it is preferable that the aqueous solution does not substantially contain a rare earth metal element other than strontium and a transition metal element other than iron from the viewpoint of suppressing the by-production of complex oxides other than SrFeO 3 -δ . Here, “substantially not contained” means that the total molar amount of the rare earth metal element other than strontium and the transition metal element other than iron is 1/20 or less with respect to the total molar amount of Sr and Fe in the aqueous solution. More preferably, it is 1/40 or less, more preferably 1/50 or less, and particularly preferably 1/100 or less. For example, by making an aqueous solution substantially free of La, unintentional by-products such as derivatives other than SrFeO 3-δ and Fe 2 O 3-δ , such as LaFeO 3 and LaSrFeO 3, can be suppressed.
かくして得られる排ガス浄化用触媒100は、触媒粒子の集合体である粉末のまま使用することができ、また、当業界で公知の触媒や助触媒や触媒担体、当業界で公知の添加剤と混合して使用することができる。このとき、他の触媒(主触媒)とともに助触媒として排ガス浄化用触媒100を用いたり、排ガス浄化用触媒100に他の触媒(助触媒)を併用したりすることができる。さらに、排ガス浄化用触媒100は、これを含む組成物を予め調製し、これを任意の所定形状に成形して、粒状やペレット状の成形体(成形触媒)として使用することもできる。なお、成形体の作製時には、各種公知の分散装置、混練装置、成形装置を用いることができる。ここで成形体として用いる場合、成形体中の排ガス浄化用触媒100の含有量は、特に限定されないが、総量に対して10質量%以上99質量%以下が好ましく、より好ましく20質量%以上99質量%以下、さらに好ましくは30質量%以上99質量%以下である。 The exhaust gas-purifying catalyst 100 thus obtained can be used as a powder that is an aggregate of catalyst particles, and is mixed with a catalyst, a co-catalyst, a catalyst carrier, and an additive known in the art. Can be used. At this time, the exhaust gas-purifying catalyst 100 can be used as a co-catalyst with another catalyst (main catalyst), or another catalyst (co-catalyst) can be used in combination with the exhaust gas-purifying catalyst 100. Furthermore, the exhaust gas-purifying catalyst 100 can be prepared as a granular or pellet shaped body (molded catalyst) by preparing a composition containing the catalyst in advance and molding the composition into an arbitrary predetermined shape. Various known dispersing devices, kneading devices, and molding devices can be used for producing the molded body. When used as a molded body, the content of the exhaust gas-purifying catalyst 100 in the molded body is not particularly limited, but is preferably 10% by mass or more and 99% by mass or less, more preferably 20% by mass or more and 99% by mass with respect to the total amount. % Or less, more preferably 30% by mass or more and 99% by mass or less.
併用可能な公知の触媒や助触媒や触媒担体としては、例えば、シリカ、アルミナ、セリア、ジルコニア、セリア−ジルコニア、酸化ランタン、酸化ネオジム、酸化プラセオジム等の金属酸化物乃至は金属複合酸化物;希土類元素及び/又は遷移元素がドープされたジルコニアやセリア−ジルコニア等の複合酸化物;SrFeO3-δ以外のペロブスカイト型酸化物;シリカ−アルミナ、シリカ−アルミナ−ジルコニア、シリカ−アルミナ−ボリア等のアルミナを含む複合酸化物;バリウム化合物、ゼオライト等が挙げられるが、これらに特に限定されない。なお、併用する触媒や助触媒や触媒担体の使用割合は、要求性能などに応じて適宜設定でき、特に限定されないが、総量に対して合計で0.01質量%以上50質量%以下が好ましく、合計で0.05質量%以上20質量%以下がより好ましく、合計で0.1質量%以上8質量%以下がさらに好ましい。 Examples of known catalysts, cocatalysts, and catalyst carriers that can be used in combination include metal oxides or metal composite oxides such as silica, alumina, ceria, zirconia, ceria-zirconia, lanthanum oxide, neodymium oxide, praseodymium oxide; Complex oxides such as zirconia and ceria-zirconia doped with elements and / or transition elements; perovskite oxides other than SrFeO 3-δ ; alumina such as silica-alumina, silica-alumina-zirconia, silica-alumina-boria Complex oxides containing: barium compounds, zeolites and the like, but not limited thereto. The ratio of the catalyst, cocatalyst and catalyst carrier used in combination can be appropriately set according to the required performance and the like, and is not particularly limited, but is preferably 0.01% by mass or more and 50% by mass or less in total with respect to the total amount, The total is more preferably 0.05% by mass or more and 20% by mass or less, and the total is more preferably 0.1% by mass or more and 8% by mass or less.
また、併用可能な添加剤としては、各種バインダー、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。バインダーとしては、アルミナゾル、チタニアゾル、シリカゾル、ジルコニアゾル等の種々のゾルが挙げられるが、これらに特に限定されない。また、硝酸アルミニウム、酢酸アルミニウム、硝酸チタン、酢酸チタン、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩もバインダーとして使用することができる。その他、酢酸、硝酸、塩酸、硫酸等の酸も、バインダーとして使用することができる。なお、バインダーの使用量は、特に限定されず、成形体の維持に必要な程度の量であれば構わない。なお、上述した添加剤の使用割合は、要求性能などに応じて適宜設定でき、特に限定されないが、総量に対して合計で0.01〜20質量%が好ましく、合計で0.05〜10質量%がより好ましく、合計で0.1〜8質量%がさらに好ましい。 Examples of additives that can be used in combination include various binders, dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, viscosity adjusters, and the like, but are not particularly limited thereto. . Examples of the binder include various sols such as alumina sol, titania sol, silica sol, and zirconia sol, but are not particularly limited thereto. Soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate, and zirconium acetate can also be used as the binder. In addition, acids such as acetic acid, nitric acid, hydrochloric acid, and sulfuric acid can also be used as the binder. In addition, the usage-amount of a binder is not specifically limited, What is necessary is just a quantity required for maintenance of a molded object. In addition, although the usage-amount of the additive mentioned above can be suitably set according to required performance etc., it is not specifically limited, 0.01-20 mass% in total is preferable with respect to the total amount, and 0.05-10 mass in total % Is more preferable, and 0.1 to 8% by mass in total is more preferable.
上記のようにして得られる排ガス浄化用触媒100に、必要に応じて、貴金属元素や白金族元素をさらに担持させてもよい。貴金属元素や白金族元素の担持方法は、公知の手法を適用でき、特に限定されない。例えば、貴金属元素や白金族元素を含む塩の溶液を調製し、排ガス浄化用触媒100にこの含塩溶液を含浸させ、その後に焼成することにより、貴金属元素や白金族元素の担持を行うことができる。含塩溶液としては、特に限定されないが、硝酸塩水溶液、ジニトロジアンミン硝酸塩溶液、塩化物水溶液等が好ましい。また、焼成処理も、特に限定されないが、350℃以上1000℃以下で約1〜12時間が好ましい。なお、高温焼成に先立って、真空乾燥機等を用いて減圧乾燥を行い、50℃以上200℃以下で約1〜48時間程度の乾燥処理を行うことが好ましい。 The exhaust gas purifying catalyst 100 obtained as described above may further carry a noble metal element or a platinum group element as necessary. The method for supporting the noble metal element or the platinum group element is not particularly limited, and a known method can be applied. For example, a noble metal element or a platinum group element can be supported by preparing a solution of a salt containing a noble metal element or a platinum group element, impregnating the exhaust gas-purifying catalyst 100 with the salt-containing solution, and then firing the solution. it can. The salt-containing solution is not particularly limited, but an aqueous nitrate solution, dinitrodiammine nitrate solution, aqueous chloride solution and the like are preferable. Also, the baking treatment is not particularly limited, but is preferably 350 ° C. or more and 1000 ° C. or less for about 1 to 12 hours. Prior to the high temperature firing, it is preferable to perform drying under reduced pressure using a vacuum dryer or the like, and to perform a drying treatment at about 50 ° C. to 200 ° C. for about 1 to 48 hours.
上述した一体型構造型触媒は、触媒担体とこの触媒担体の少なくとも一方の面側に設けられた触媒層とを少なくとも備える積層構造の触媒部材(積層触媒部材)である。このような構成を採用することで、装置への組み込みが容易となる等、種々の用途への適用可能性が増大する。例えば排ガス浄化用途においては、触媒担体としてハニカム構造担体等を用い、ガス流が通過する流路内にこの一体型構造型触媒を設置し、ハニカム構造担体のセル内にガス流を通過させることで、高効率に排ガス浄化を行うことができる。 The monolithic structure type catalyst described above is a catalyst member (laminated catalyst member) having a laminated structure including at least a catalyst carrier and a catalyst layer provided on at least one surface side of the catalyst carrier. By adopting such a configuration, the applicability to various uses such as easy incorporation into the apparatus increases. For example, in an exhaust gas purification application, a honeycomb structure carrier or the like is used as a catalyst carrier, the integrated structure type catalyst is installed in a flow path through which the gas flow passes, and the gas flow is passed through the cells of the honeycomb structure carrier. The exhaust gas purification can be performed with high efficiency.
ここで、本明細書において、「触媒担体の少なくとも一方の面側に設けられた」とは、触媒担体の一方の面と触媒層との間に任意の他の層(例えばプライマー層、接着層等)が介在した態様を包含する意味である。すなわち、本明細書において、「一方の面側に設ける」とは、触媒担体と触媒層とが直接載置された態様、触媒担体と触媒層とが任意の他の層を介して離間して配置された態様の双方を含む意味で用いている。また、触媒層は、触媒担体の一面のみに設けられていても、複数の面(例えば、一方の主面及び他方の主面等)に設けられていてもよいことを意味する。 Here, in this specification, “provided on at least one surface side of the catalyst carrier” means any other layer (for example, primer layer, adhesive layer) between the one surface of the catalyst carrier and the catalyst layer. Etc.) is included. That is, in this specification, “provided on one side” means an aspect in which the catalyst carrier and the catalyst layer are directly placed, and the catalyst carrier and the catalyst layer are separated via any other layer. It is used in the meaning including both arranged modes. In addition, the catalyst layer may be provided on only one surface of the catalyst carrier, or may be provided on a plurality of surfaces (for example, one main surface and the other main surface).
上述した層構成を有する一体型構造型触媒は、常法にしたがい製造することができる。例えば、上述した排ガス浄化用触媒を触媒担体の表面に被覆(担持)させることで得ることができる。具体的には、上述した排ガス浄化用触媒と水系媒体と必要に応じて当業界で公知のバインダー、他の触媒、助触媒、OSC材、母材粒子、添加剤等とを所望の配合割合で混合してスラリー状混合物を調製し、得られたスラリー状混合物をハニカム構造担体等の触媒担体の表面に付与し、乾燥、焼成する方法が好ましく用いられる。このとき、上述した排ガス浄化用触媒を強固に支持体に付着させ或いは結合させるために、上述したバインダー等を用いることが好ましい。 The monolithic structure type catalyst having the above-described layer structure can be manufactured according to a conventional method. For example, it can be obtained by coating (supporting) the above-described exhaust gas-purifying catalyst on the surface of the catalyst carrier. Specifically, the above-described exhaust gas-purifying catalyst, an aqueous medium, and a binder, other catalyst, co-catalyst, OSC material, base material particle, additive, and the like known in the art as required at a desired blending ratio. A method of preparing a slurry mixture by mixing, applying the obtained slurry mixture to the surface of a catalyst carrier such as a honeycomb structure carrier, drying and firing is preferably used. At this time, it is preferable to use the above-described binder or the like in order to firmly attach or bind the above-described exhaust gas purification catalyst to the support.
スラリー状混合物の調製時に用いる水系媒体は、スラリー中で排ガス浄化用触媒が均一に分散できる量を用いればよい。このとき、必要に応じてpH調整のための酸や塩基を配合したり、粘性の調整やスラリー分散性向上のための界面活性剤や分散用樹脂等を配合したりすることができる。スラリーの混合方法としては、ボールミル等による粉砕混合等、公知の粉砕方法又は混合方法を適用することができる。触媒担体上にスラリー状混合物を付与する際には、常法にしたがって、各種公知のコーティング法、ウォッシュコート法、ゾーンコート法を適用することができる。 What is necessary is just to use the quantity which the catalyst for exhaust gas purification can disperse | distribute uniformly in a slurry for the aqueous medium used at the time of preparation of a slurry-like mixture. At this time, if necessary, an acid or a base for adjusting the pH can be blended, or a surfactant, a dispersing resin or the like can be blended for adjusting the viscosity or improving the slurry dispersibility. As a method for mixing the slurry, a known pulverization method or mixing method such as pulverization and mixing using a ball mill or the like can be applied. When the slurry-like mixture is applied on the catalyst support, various known coating methods, wash coat methods, and zone coat methods can be applied according to conventional methods.
触媒担体上にスラリー状混合物を付与した後においては、常法にしたがい乾燥や焼成を行うことにより、本実施形態の一体型構造型触媒を得ることができる。なお、乾燥温度は、特に限定されないが、例えば70〜200℃が好ましく、80〜150℃がより好ましい。また、焼成温度は、特に限定されないが、例えば300〜650℃が好ましく、400〜600℃がより好ましい。このとき用いる加熱手段については、例えば電気炉やガス炉等の公知の加熱手段によって行うことができる。 After the slurry-like mixture is applied on the catalyst carrier, the integral structure-type catalyst of the present embodiment can be obtained by drying and firing according to a conventional method. In addition, although drying temperature is not specifically limited, For example, 70-200 degreeC is preferable and 80-150 degreeC is more preferable. Moreover, although a calcination temperature is not specifically limited, For example, 300-650 degreeC is preferable and 400-600 degreeC is more preferable. About the heating means used at this time, it can carry out by well-known heating means, such as an electric furnace and a gas furnace, for example.
なお、上述した一体型構造型触媒において、触媒層の層構成は、単層、複層のいずれでもよいが、自動車排ガス用途の場合には、排気ガス規制の強化の趨勢等を考慮し触媒性能を高める観点からは、二層以上の積層構造が好ましい。このとき、上述した排ガス浄化用触媒の総被覆量は、特に限定されないが、触媒性能や圧損のバランス等の観点から、3〜450g/Lが好ましく、50〜350g/Lがより好ましい。 In the above-mentioned integrated structure type catalyst, the layer structure of the catalyst layer may be either a single layer or multiple layers. However, in the case of automotive exhaust gas applications, the catalyst performance is considered in consideration of the trend of stricter exhaust gas regulations. From the viewpoint of increasing the thickness, a laminated structure of two or more layers is preferable. At this time, the total coating amount of the exhaust gas purifying catalyst described above is not particularly limited, but is preferably 3 to 450 g / L, and more preferably 50 to 350 g / L, from the viewpoint of catalyst performance and pressure loss balance.
自動車排ガス用途において、上述した排ガス浄化用触媒や一体型構造型触媒は、各種エンジンの排気系に配置することができる。その設置個数及び設置箇所は、排ガス規制に応じて適宜設計できる。例えば、排ガスの規制が厳しい場合には、設置箇所を2以上とし、設置箇所は排気系の直下触媒の後方の床下位置に配置することができる。 In automotive exhaust gas applications, the exhaust gas purifying catalyst and the integral structure type catalyst described above can be arranged in exhaust systems of various engines. The number and location of the installation can be appropriately designed according to the exhaust gas regulations. For example, when exhaust gas regulations are strict, the number of installation locations can be two or more, and the installation location can be arranged at the lower floor position behind the catalyst directly under the exhaust system.
以下に試験例、実施例と比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the features of the present invention will be described more specifically with reference to test examples, examples and comparative examples, but the present invention is not limited thereto. That is, the materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. In addition, various production conditions and evaluation result values in the following examples have a meaning as a preferable upper limit value or a preferable lower limit value in the embodiment of the present invention, and a preferable range is the above-described upper limit or lower limit value. And a range defined by a combination of values of the following examples or values of the examples.
(実施例1)
母材粒子として、Y固溶ジルコニア系酸化物(Y−ZrO2と記載,Y2O3:35質量%、ZrO2:65質量%、D50=6.4μm、BET比表面積:72m2/g)を用いた。なお、本明細書において、BET比表面積は、比表面積/細孔分布測定装置(商品名:BELSORP-mini II、マイクロトラック・ベル株式会社製)及び解析用ソフトウェア(商品名:BEL_Master、マイクロトラック・ベル株式会社製)を用い、BET一点法により求めた値を意味する。
次に、硝酸ストロンチウム、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(SrO、Fe2O3)のモル比換算で、0.094mol/LのSr、及び0.047mol/LのFeを含有する水溶液1を調製した。
上記母材粒子にこの水溶液1を含浸させ、700℃で1時間の焼成処理を行うことにより、Y−ZrO2母材粒子の表面上に平均粒子径D50が20nmのSrFeO3-δが担持された、焼成処理後の実施例1のパウダー触媒(SrFeO3-δが11.95質量%担持されたY−ZrO2パウダー触媒、SrO換算のSr含有量:6.47質量%、Fe2O3換算のFe含有量:5.00質量%)を得た。
得られた実施例1のパウダー触媒を水に分散させ、ポットミルでミリングを行い、D50=4.1μmとなるまで粉砕して、触媒スラリーを得た。この触媒スラリーを、ウォッシュコート法により600cpsi,3.5milのコージェライトハニカム担体上にコーティングした後に乾燥させて触媒層を設けることで、ハニカム担体の容積1Lあたり150gの触媒が担持された、実施例1のハニカム触媒(排ガス浄化用触媒、一体型構造型触媒)を得た。
その後、得られたハニカム触媒を耐久炉内で高温曝露処理(耐久処理)を行った。なお、高温曝露処理としては、外部雰囲気をA/F=12.8、及び酸素雰囲気に順次切り替えを繰り返しながら、980℃で6時間の熱処理を行った。
Example 1
As a base material particle, Y solid solution zirconia-based oxide (described as Y-ZrO 2 , Y 2 O 3 : 35 mass%, ZrO 2 : 65 mass%, D 50 = 6.4 μm, BET specific surface area: 72 m 2 / g) was used. In this specification, the BET specific surface area refers to a specific surface area / pore distribution measuring device (trade name: BELSORP-mini II, manufactured by Microtrack Bell Co., Ltd.) and analysis software (trade name: BEL_Master, Microtrack Means a value determined by the BET single point method.
Next, strontium nitrate and iron nitrate nonahydrate are dissolved in water, and 0.094 mol / L Sr and 0.047 mol / L in terms of the molar ratio of each oxide (SrO, Fe 2 O 3 ). An aqueous solution 1 containing L Fe was prepared.
By impregnating the base material particles with the aqueous solution 1 and performing a baking treatment at 700 ° C. for 1 hour, SrFeO 3-δ having an average particle diameter D 50 of 20 nm is supported on the surface of the Y-ZrO 2 base material particles. The powder catalyst of Example 1 after the calcination treatment (Yr-ZrO 2 powder catalyst supporting 11.95% by mass of SrFeO 3 -δ , Sr content in terms of SrO: 6.47% by mass, Fe 2 O 3 conversion Fe content: 5.00 mass%) was obtained.
The obtained powder catalyst of Example 1 was dispersed in water, milled with a pot mill, and pulverized until D 50 = 4.1 μm to obtain a catalyst slurry. The catalyst slurry was coated on a 600 cpsi, 3.5 mil cordierite honeycomb carrier by a wash coat method and then dried to provide a catalyst layer, thereby supporting 150 g of catalyst per liter of honeycomb carrier. 1 honeycomb catalyst (exhaust gas purification catalyst, integral structure type catalyst) was obtained.
Thereafter, the obtained honeycomb catalyst was subjected to high-temperature exposure treatment (endurance treatment) in an endurance furnace. Note that as the high temperature exposure treatment, heat treatment was performed at 980 ° C. for 6 hours while sequentially switching the external atmosphere to A / F = 12.8 and an oxygen atmosphere.
(比較例1)
硝酸ランタン六水和物、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(La2O3、Fe2O3)のモル比換算で、0.033mol/LのLa、及び0.047mol/LのFeを含有する水溶液2を調製した。
水溶液1に代えて、この水溶液2を用いる以外は、実施例1と同様に行い、比較例1のパウダー触媒及び排ガス浄化用触媒(LaFeO3-δが10.63質量%担持されたY−ZrO2パウダー触媒、La2O3換算のLa含有量:7.13質量%、Fe2O3換算のFe含有量:5.00質量%)を得た。
(Comparative Example 1)
Lanthanum nitrate hexahydrate and iron nitrate nonahydrate are dissolved in water, 0.033 mol / L La in terms of molar ratio of each oxide (La 2 O 3 , Fe 2 O 3 ), and An aqueous solution 2 containing 0.047 mol / L Fe was prepared.
The same procedure as in Example 1 was conducted except that this aqueous solution 2 was used instead of the aqueous solution 1, and the powder catalyst and exhaust gas purification catalyst of Comparative Example 1 (Y-ZrO on which 10.63% by mass of LaFeO 3-δ was supported). 2 powder catalyst, La 2 O 3 equivalent La content: 7.13 mass%, Fe 2 O 3 equivalent Fe content: 5.00 mass%).
(比較例2)
母材粒子として、γ−アルミナ(D50=28.1μm、BET比表面積:141m2/g)を用いた。
上記のY−ZrO2に代えて、このγ−アルミナを用いる以外は、実施例1と同様に行い、比較例2のパウダー触媒及び排ガス浄化用触媒(SrFeO3-δが11.95質量%担持されたγ−アルミナパウダー触媒、SrO換算のSr含有量:6.47質量%、Fe2O3換算のFe含有量:5.00質量%)を得た。
(Comparative Example 2)
As base material particles, γ-alumina (D 50 = 28.1 μm, BET specific surface area: 141 m 2 / g) was used.
The same procedure as in Example 1 was performed except that this γ-alumina was used in place of the above Y—ZrO 2 , and the powder catalyst and exhaust gas purification catalyst of Comparative Example 2 (supporting 11.95% by mass of SrFeO 3 -δ) Γ-alumina powder catalyst, Sr content in terms of SrO: 6.47% by mass, Fe content in terms of Fe 2 O 3 : 5.00% by mass) were obtained.
(比較例3)
上記の水溶液1に代えて、上記の水溶液2を用いる以外は、比較例2と同様に行い、比較例3のパウダー触媒及び排ガス浄化用触媒(LaFeO3-δが10.63質量%担持されたγ−アルミナパウダー触媒、La2O3換算のLa含有量:7.13質量%、Fe2O3換算のFe含有量:5.00質量%)を得た。
(Comparative Example 3)
The same procedure as in Comparative Example 2 was performed except that the above aqueous solution 2 was used in place of the above aqueous solution 1, and the powder catalyst and exhaust gas purifying catalyst of Comparative Example 3 (LaFeO 3-δ was supported at 10.63% by mass). A γ-alumina powder catalyst, La content in terms of La 2 O 3 : 7.13 mass%, Fe content in terms of Fe 2 O 3 : 5.00 mass%) were obtained.
<排ガス浄化用触媒サンプル(一体型構造型触媒)の作製>
得られた焼成処理後の実施例及び比較例1〜3のパウダー触媒を、ウォッシュコート法によりハニカム担体上にそれぞれ塗布し乾燥させて触媒層を設けた後、耐久炉内で高温曝露処理(耐久処理)を行い、排ガス浄化用触媒サンプル(一体型構造型触媒)をそれぞれ作製した。なお、高温曝露処理としては、外部雰囲気をA/F=12.8、及び酸素雰囲気に順次切り替えを繰り返しながら、980℃で6時間の熱処理を行った。
〔作製条件〕
ハニカム担体:コーニングインターナショナル社製、φ1 inch x 50 mmL (25 cc), 600 cpsi/3.5mil
触媒担持量 :150 g/L
<Preparation of exhaust gas purification catalyst sample (integrated structure type catalyst)>
The obtained powder catalysts of Examples and Comparative Examples 1 to 3 after the firing treatment were each coated on a honeycomb carrier by a wash coat method and dried to provide a catalyst layer, and then subjected to a high temperature exposure treatment (durability) in a durability furnace. The exhaust gas purification catalyst sample (integrated structure type catalyst) was produced. Note that as the high temperature exposure treatment, heat treatment was performed at 980 ° C. for 6 hours while sequentially switching the external atmosphere to A / F = 12.8 and an oxygen atmosphere.
[Production conditions]
Honeycomb carrier: Corning International, φ1 inch x 50 mmL (25 cc), 600 cpsi / 3.5mil
Catalyst loading: 150 g / L
<粉末X線回折測定>
焼成処理後の実施例1のパウダー触媒について、X線回折装置(商品名:X’Pert PRO MPD,ヤマト科学株式会社製)を用いて、下記条件で粉末X線回折測定を行ったところ、2θ=32.6°付近にSrFeO3-δ結晶の固有ピーク(221)が確認された。図2に、粉末X線回折測定の測定結果を示す。
ターゲット:Cu
K−Alpha1[A]:1.5406
X線出力設定:40mA,45kV
<Powder X-ray diffraction measurement>
The powder catalyst of Example 1 after the firing treatment was subjected to powder X-ray diffraction measurement under the following conditions using an X-ray diffractometer (trade name: X'Pert PRO MPD, manufactured by Yamato Scientific Co., Ltd.). = Inherent peak (221) of SrFeO 3-δ crystal was confirmed around 32.6 °. FIG. 2 shows the measurement result of the powder X-ray diffraction measurement.
Target: Cu
K-Alpha1 [A]: 1.5406
X-ray output setting: 40 mA, 45 kV
<平均結晶子径の測定>
さらに、上記式(1)に基づきSrFeO3-δ 粒子の平均結晶子径を算出したところ、実施例1のパウダー触媒のSrFeO3-δ 粒子の平均結晶子径は20nmであった。なお、このシェラー法による計算は、上述した2θ=32.6°付近の強いピーク(221)に基づいて、市販のソフトウェア(スペクトリス社製、PANalytical X'Pert High Score Plus 3.0)を用いて行った。
<Measurement of average crystallite size>
Furthermore, when the average crystallite size of the SrFeO 3-δ particles was calculated based on the above formula (1), the average crystallite size of the SrFeO 3-δ particles of the powder catalyst of Example 1 was 20 nm. Note that the calculation by the Scherrer method was performed using commercially available software (Spectres, PANalytical X'Pert High Score Plus 3.0) based on the strong peak (221) near 2θ = 32.6 ° described above. .
<排ガス浄化率の測定(HC、CO、NOx)>
得られた実施例1及び比較例1〜3の排ガス浄化用触媒サンプルをモデルガス反応装置にセットした。排ガス浄化率は、下記組成のモデルガスを用いて、触媒出口側のガスを分析し、「浄化率(%)=100*(INLETガス濃度−触媒OUTガス濃度)÷ INLETガス濃度」の計算式に基づいて算出した。
[モデルガス評価条件]
モデルガス装置: SIGU4012 HORIBA社製
分析計 : MEXA-7100 HORIBA社製
触媒入り口温度: 600℃
ガス組成 : CO2=14.00%, O2=0.49%, NO=0.05%, CO=0.50%,
H2=0.17%, iso-C5H12=0.01%, C3H6=0.02%,
H2O=10.00%, N2 balance
A/Fパータベーション = 14.7±0.6, 1Hz(Rich=CO, Lean=O2で調整)
<Measurement of exhaust gas purification rate (HC, CO, NOx)>
The obtained exhaust gas purification catalyst samples of Example 1 and Comparative Examples 1 to 3 were set in a model gas reactor. The exhaust gas purification rate is calculated by analyzing the gas at the catalyst outlet side using a model gas with the following composition, and the formula “Purification rate (%) = 100 * (INLET gas concentration−catalyst OUT gas concentration) ÷ INLET gas concentration” Calculated based on
[Model gas evaluation conditions]
Model gas equipment: SIGU4012 HORIBA analyzer Analyzer: MEXA-7100 HORIBA catalyst inlet temperature: 600 ℃
Gas composition: CO 2 = 14.00%, O 2 = 0.49%, NO = 0.05%, CO = 0.50%,
H 2 = 0.17%, iso-C 5 H 12 = 0.01%, C 3 H 6 = 0.02%,
H 2 O = 10.00%, N 2 balance
A / F perturbation = 14.7 ± 0.6, 1Hz (Adjusted with Rich = CO, Lean = O 2 )
表1に、排ガス浄化率の測定結果を示す。本発明に相当する実施例1の一体型構造型触媒は、LaFeO3よりも酸素欠損が生じ易いSrFeO3をペロブスカイト型触媒活性粒子として用いたものであり、比較例1の一体型構造型触媒に比して、CO浄化率、HC浄化率、及びNOx浄化率のいずれにおいても高い浄化性能を示すことが確認された。このことから、ペロブスカイト型触媒活性粒子を用いる場合、酸素欠損が生じやすい化合物の種類及びその酸素欠損量に応じて、触媒活性が高くなることが示唆される。また、比較例2〜3の一体型構造型触媒では、比較例1の一体型構造型触媒に比して、CO浄化率及びHC浄化率の向上効果が認められたが、NOx浄化率において改善効果が乏しく、また、実施例1の一体型構造型触媒との対比から、CO浄化率において未だ改善余地があることがわかる。 Table 1 shows the measurement results of the exhaust gas purification rate. The monolithic structure type catalyst of Example 1 corresponding to the present invention uses SrFeO 3, which is more susceptible to oxygen deficiency than LaFeO 3, as the perovskite type catalyst active particles. In comparison, it was confirmed that the CO purification rate, the HC purification rate, and the NOx purification rate showed high purification performance. This suggests that when perovskite-type catalytically active particles are used, the catalytic activity increases depending on the type of compound in which oxygen deficiency is likely to occur and the amount of oxygen deficiency. Further, in the integrated structure type catalysts of Comparative Examples 2 to 3, the improvement effect of the CO purification rate and the HC purification rate was recognized as compared with the integrated structure type catalyst of Comparative Example 1, but the NOx purification rate was improved. From the comparison with the integrated structure type catalyst of Example 1, it is understood that there is still room for improvement in the CO purification rate.
(実施例2)
母材粒子として、Y固溶ジルコニア系酸化物(Y−ZrO2と記載,Y2O3:35質量%、ZrO2:65質量%、D50=6.4μm、BET比表面積:72m2/g)を用いた。なお、本明細書において、BET比表面積は、比表面積/細孔分布測定装置(商品名:BELSORP-mini II、マイクロトラック・ベル株式会社製)及び解析用ソフトウェア(商品名:BEL_Master、マイクロトラック・ベル株式会社製)を用い、BET一点法により求めた値を意味する。
次に、硝酸ストロンチウム、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(SrO、Fe2O3)のモル比換算で、0.047mol/LのSr、及び0.023mol/LのFeを含有する水溶液Aを調製した。
上記母材粒子にこの水溶液Aを含浸させ、700℃で1時間の焼成処理を行うことにより、Y−ZrO2母材粒子の表面上に平均粒子径D50が20nmのSrFeO3-δが担持された、焼成処理後の実施例2のパウダー触媒(SrFeO3-δが5.73質量%及びFe2O3-δが0.01質量%担持されたY−ZrO2パウダー触媒)を得た。
(Example 2)
As a base material particle, Y solid solution zirconia-based oxide (described as Y-ZrO 2 , Y 2 O 3 : 35 mass%, ZrO 2 : 65 mass%, D 50 = 6.4 μm, BET specific surface area: 72 m 2 / g) was used. In this specification, the BET specific surface area refers to a specific surface area / pore distribution measuring device (trade name: BELSORP-mini II, manufactured by Microtrack Bell Co., Ltd.) and analysis software (trade name: BEL_Master, Microtrack Means a value determined by the BET single point method.
Next, strontium nitrate and iron nitrate nonahydrate are dissolved in water, and 0.047 mol / L Sr and 0.023 mol / L in terms of molar ratio of each oxide (SrO, Fe 2 O 3 ). An aqueous solution A containing L Fe was prepared.
By impregnating the base material particles with the aqueous solution A and firing at 700 ° C. for 1 hour, SrFeO 3-δ having an average particle diameter D 50 of 20 nm is supported on the surface of the Y-ZrO 2 base material particles. Thus, the powder catalyst of Example 2 after firing was obtained (Y-ZrO 2 powder catalyst supporting 5.73% by mass of SrFeO 3-δ and 0.01% by mass of Fe 2 O 3-δ ). .
(実施例3)
硝酸ストロンチウム、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(SrO、Fe2O3)のモル比換算で、0.094mol/LのSr、及び0.047mol/LのFeを含有する水溶液Bを調製した。
上記水溶液Aに代えて、この水溶液Bを用いる以外は、実施例2と同様に行うことにより、Y−ZrO2母材粒子の表面上に平均粒子径D50が20nmのSrFeO3-δが担持された、焼成処理後の実施例3のパウダー触媒(SrFeO3-δが11.95質量%及びFe2O3-δが0.02質量%担持されたY−ZrO2パウダー触媒)を得た。
Example 3
Strontium nitrate and iron nitrate nonahydrate are dissolved in water, and 0.094 mol / L of Sr and 0.047 mol / L of Fe in terms of molar ratio of each oxide (SrO, Fe 2 O 3 ). An aqueous solution B containing was prepared.
Except that this aqueous solution B is used in place of the aqueous solution A, the same procedure as in Example 2 is carried, whereby SrFeO 3-δ having an average particle diameter D 50 of 20 nm is supported on the surface of the Y-ZrO 2 base material particles. Thus, the powder catalyst of Example 3 after the firing treatment (Y-ZrO 2 powder catalyst carrying 11.95% by mass of SrFeO 3-δ and 0.02% by mass of Fe 2 O 3-δ ) was obtained. .
(実施例4)
硝酸ストロンチウム、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(SrO、Fe2O3)のモル比換算で、0.187mol/LのSr、及び0.094mol/LのFeを含有する水溶液Cを調製した。
上記水溶液Aに代えて、この水溶液Cを用いる以外は、実施例2と同様に行うことにより、Y−ZrO2母材粒子の表面上に平均粒子径D50が20nmのSrFeO3-δが担持された、焼成処理後の実施例4のパウダー触媒(SrFeO3-δが23.90質量%及びFe2O3-δが0.03質量%担持されたY−ZrO2パウダー触媒)を得た。
Example 4
Strontium nitrate and iron nitrate nonahydrate are dissolved in water, and 0.187 mol / L Sr and 0.094 mol / L Fe in terms of molar ratio of each oxide (SrO, Fe 2 O 3 ). An aqueous solution C containing was prepared.
Except that this aqueous solution C is used in place of the aqueous solution A, the same procedure as in Example 2 is performed, so that SrFeO 3-δ having an average particle diameter D 50 of 20 nm is supported on the surface of the Y-ZrO 2 base material particles. Thus, a powder catalyst of Example 4 (Y-ZrO 2 powder catalyst on which 23.90% by mass of SrFeO 3-δ and 0.03% by mass of Fe 2 O 3-δ were supported) after firing was obtained. .
(実施例5)
硝酸ストロンチウム、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(SrO、Fe2O3)のモル比換算で、0.374mol/LのSr、及び0.188mol/LのFeを含有する水溶液Dを調製した。
上記水溶液Aに代えて、この水溶液Dを用いる以外は、実施例2と同様に行うことにより、Y−ZrO2母材粒子の表面上に平均粒子径D50が20nmのSrFeO3-δが担持された、焼成処理後の実施例5のパウダー触媒(SrFeO3-δが47.80質量%及びFe2O3-δが0.07質量%担持されたY−ZrO2パウダー触媒)を得た。
(Example 5)
Strontium nitrate and iron nitrate nonahydrate are dissolved in water and converted into a molar ratio of each oxide (SrO, Fe 2 O 3 ), 0.374 mol / L Sr, and 0.188 mol / L Fe. An aqueous solution D containing was prepared.
Except for using this aqueous solution D in place of the aqueous solution A, the same procedure as in Example 2 was carried out to support SrFeO 3-δ having an average particle diameter D 50 of 20 nm on the surface of the Y-ZrO 2 base material particles. Thus, the powder catalyst of Example 5 after firing was obtained (Y-ZrO 2 powder catalyst carrying 47.80 mass% of SrFeO 3-δ and 0.07 mass% of Fe 2 O 3-δ ). .
(実施例6)
硝酸ストロンチウム、硝酸鉄九水和物を水に溶解して、それぞれの酸化物(SrO、Fe2O3)のモル比換算で、0.066mol/LのSr、及び0.047mol/LのFeを含有する水溶液Eを調製した。
上記水溶液Aに代えて、この水溶液Eを用いる以外は、実施例2と同様に行うことにより、Y−ZrO2母材粒子の表面上に平均粒子径D50が20nmのSrFeO3-δ及びFe2O3-δが担持された、焼成処理後の実施例6のパウダー触媒(SrFeO3-δが8.38質量%及びFe2O3-δが1.51質量%担持されたY−ZrO2パウダー触媒)を得た。
(Example 6)
Strontium nitrate and iron nitrate nonahydrate are dissolved in water, and 0.066 mol / L of Sr and 0.047 mol / L of Fe in terms of molar ratio of each oxide (SrO, Fe 2 O 3 ) are converted. An aqueous solution E containing was prepared.
Except for using the aqueous solution E instead of the aqueous solution A, the same procedure as in Example 2 was carried out, whereby SrFeO 3-δ and Fe having an average particle diameter D 50 of 20 nm on the surface of the Y-ZrO 2 base material particles. The powder catalyst of Example 6 after the calcination treatment on which 2 O 3-δ was supported (Y-ZrO on which 8.38 mass% of SrFeO 3-δ and 1.51 mass% of Fe 2 O 3-δ were supported) 2 powder catalysts) were obtained.
得られた実施例2〜6のパウダー触媒を水に分散させ、ポットミルでミリングを行い、D50=4.1μmとなるまで粉砕して、触媒スラリーを得た。この触媒スラリーを、ウォッシュコート法により600cpsi,3.5milの上述したコージェライトハニカム担体上にコーティングした後に乾燥させて触媒層を設けることで、ハニカム担体の容積1Lあたり150gの触媒が担持された、実施例2〜6のハニカム触媒(排ガス浄化用触媒、一体型構造型触媒)を得た。その後、得られたハニカム触媒を耐久炉内で高温曝露処理(耐久処理)を行った。なお、高温曝露処理としては、外部雰囲気をA/F=12.8、及び酸素雰囲気に順次切り替えを繰り返しながら、980℃で6時間の熱処理を行った。 The obtained powder catalysts of Examples 2 to 6 were dispersed in water, milled with a pot mill, and pulverized until D 50 = 4.1 μm to obtain a catalyst slurry. The catalyst slurry was coated on the above cordierite honeycomb carrier of 600 cpsi, 3.5 mil by the wash coat method and then dried to provide a catalyst layer, thereby supporting 150 g of catalyst per liter of the honeycomb carrier. The honeycomb catalysts of Examples 2 to 6 (exhaust gas purification catalyst, integral structure type catalyst) were obtained. Thereafter, the obtained honeycomb catalyst was subjected to high-temperature exposure treatment (endurance treatment) in an endurance furnace. Note that as the high temperature exposure treatment, heat treatment was performed at 980 ° C. for 6 hours while sequentially switching the external atmosphere to A / F = 12.8 and an oxygen atmosphere.
<排ガス浄化率の測定(HC、CO、NOx)>
得られた実施例1及び比較例1〜3の排ガス浄化用触媒サンプルをモデルガス反応装置にセットした。排ガス浄化率は、下記組成のモデルガスを用いて、触媒出口側のガスを分析し、「浄化率(%)=100*(INLETガス濃度−触媒OUTガス濃度)÷ INLETガス濃度」の計算式に基づいて算出した。
[モデルガス評価条件]
モデルガス装置: SIGU4012 HORIBA社製
分析計 : MEXA-7100 HORIBA社製
触媒入り口温度: 600℃
ガス組成 : CO2=14.00%, O2=0.47%, NO=0.05%, CO=0.50%,
H2=0.17%, C3H6=0.04%,
H2O=10.00%, N2 balance
A/Fパータベーションなし
A/Fパータベーションあり:14.7±0.6, 1Hz, (Rich=CO, Lean=O2で調整)
<Measurement of exhaust gas purification rate (HC, CO, NOx)>
The obtained exhaust gas purification catalyst samples of Example 1 and Comparative Examples 1 to 3 were set in a model gas reactor. The exhaust gas purification rate is calculated by analyzing the gas at the catalyst outlet side using a model gas with the following composition, and the formula “Purification rate (%) = 100 * (INLET gas concentration−catalyst OUT gas concentration) ÷ INLET gas concentration” Calculated based on
[Model gas evaluation conditions]
Model gas equipment: SIGU4012 HORIBA analyzer Analyzer: MEXA-7100 HORIBA catalyst inlet temperature: 600 ℃
Gas composition: CO 2 = 14.00%, O 2 = 0.47%, NO = 0.05%, CO = 0.50%,
H 2 = 0.17%, C 3 H 6 = 0.04%,
H 2 O = 10.00%, N 2 balance
No A / F perturbation
With A / F perturbation: 14.7 ± 0.6, 1Hz (Adjusted with Rich = CO, Lean = O 2 )
表2に、排ガス浄化率の測定結果を示す。本発明に相当する実施例2〜6の一体型構造型触媒は、いずれも高い浄化性能を示すことが確認された。 Table 2 shows the measurement results of the exhaust gas purification rate. It was confirmed that all of the integrated structure type catalysts of Examples 2 to 6 corresponding to the present invention showed high purification performance.
本発明は、排ガス中のNOx、CO、HC等を削減する触媒として広く且つ有効に利用することができ、特に耐熱性が要求されるエンジン直下型触媒コンバータやタンデム配置の直下型触媒コンバータ等の三元触媒(TWC: Three-Way Catalyst)として殊に有効に利用することができる。 The present invention can be widely and effectively used as a catalyst for reducing NOx, CO, HC, and the like in exhaust gas, such as an engine direct type catalytic converter in which heat resistance is particularly required, and a direct type catalytic converter in a tandem arrangement. It can be used particularly effectively as a three-way catalyst (TWC).
11 ・・・母材粒子
11a・・・表面
21 ・・・SrFeO3-δ
31 ・・・誘導体(例えばFe2O3)
100 ・・・排ガス浄化用触媒
11: Base material particles 11a: Surface 21: SrFeO 3-δ
31... Derivative (eg Fe 2 O 3 )
100 ... Catalyst for exhaust gas purification
Claims (13)
前記母材粒子の表面に担持された、ペロブスカイト型触媒活性粒子であるSrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。)と、
を少なくとも有する複合粒子を含有することを特徴とする、
排ガス浄化用触媒。 Base material particles containing a rare earth solid solution zirconia-based oxide and having an average particle diameter D 50 of 1 μm or more and 30 μm or less;
SrFeO 3−δ (where δ represents the amount of oxygen deficiency and satisfies 0 ≦ δ ≦ 0.5), which is a perovskite-type catalytically active particle supported on the surface of the base material particle.
Containing composite particles having at least
Exhaust gas purification catalyst.
請求項1に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1, wherein a diffraction peak of SrFeO 3 is expressed at 2θ = 32.6 ± 0.5 ° in powder X-ray diffraction measurement.
請求項1又は2に記載の排ガス浄化用触媒。 The average particle diameter of SrFeO 3-[delta] is the catalyst for purification of exhaust gas according to claim 1 or 2 is 1~90Nm.
請求項1〜3のいずれか一項に記載の排ガス浄化用触媒。 The content ratio of SrFeO 3−δ (where δ represents the amount of oxygen deficiency and satisfies 0 ≦ δ ≦ 0.5) is 1 to 60% by mass with respect to the total mass of the composite particles. The exhaust gas-purifying catalyst according to any one of claims 1 to 3.
請求項1〜4のいずれか一項に記載の排ガス浄化用触媒。 5. The composition further contains Fe 2 O 3−δ (where δ represents an oxygen deficiency and is a number satisfying 0 ≦ δ ≦ 1) supported on the surface of the base material particles. The exhaust gas-purifying catalyst according to any one of the above.
請求項1〜5のいずれか一項に記載の排ガス浄化用触媒。 6. The rare earth solid solution zirconia oxide is a zirconia oxide in which at least one rare earth element selected from the group consisting of Y, Ce, Nd, and Nd is dissolved. The exhaust gas-purifying catalyst according to Item.
請求項1〜6のいずれか一項に記載の排ガス浄化用触媒。 The exhaust gas-purifying catalyst according to any one of claims 1 to 6, wherein the composite particles do not substantially contain a noble metal element.
前記触媒担体の少なくとも一方の面側に設けられた触媒層と、を少なくとも備え、
前記触媒層は、請求項1〜7のいずれか一項に記載の排ガス浄化用触媒を少なくとも含有することを特徴とする、
一体構造型排ガス浄化用触媒。 A catalyst support;
A catalyst layer provided on at least one surface side of the catalyst carrier,
The catalyst layer contains at least the exhaust gas-purifying catalyst according to any one of claims 1 to 7,
Monolithic exhaust gas purification catalyst.
請求項8に記載の一体構造型排ガス浄化用触媒。 The monolithic exhaust gas purification catalyst according to claim 8, wherein an amount of the exhaust gas purification catalyst supported is 3 to 450 g / L per unit volume of the catalyst carrier.
処理後の前記母材粒子を500℃以上1490℃以下で熱処理して、希土類固溶ジルコニア系酸化物を含有する母材粒子と前記母材粒子の表面に担持されたペロブスカイト型触媒活性粒子であるSrFeO3-δ(但し、δは、酸素欠損量を示し、0≦δ≦0.5を満たす数である。)とを有する複合粒子を得る工程
を少なくとも備えることを特徴とする、
排ガス浄化用触媒の製造方法。 On the surface of the base particles having an average particle diameter D 50 of 1μm or 30μm or less and containing a rare earth solid solution of zirconia-based oxide, applying a solution containing at least strontium ions and iron ions, and the mother after the treatment The base material particles are heat-treated at 500 ° C. or higher and 1490 ° C. or lower, and SrFeO 3-δ (perovskite-type catalytically active particles supported on the surface of the base material particles containing the rare earth solid solution zirconia-based oxide). However, δ represents the amount of oxygen deficiency, and is a number satisfying 0 ≦ δ ≦ 0.5.)
A method for producing an exhaust gas purifying catalyst.
請求項10に記載の排ガス浄化用触媒の製造方法。 The method for producing an exhaust gas purifying catalyst according to claim 10, wherein a content ratio of Fe to Sr (Fe / Sr) in the aqueous solution is 0.5 to 1.5 in terms of molar ratio.
請求項10又は11に記載の排ガス浄化用触媒の製造方法。 The method for producing an exhaust gas purifying catalyst according to claim 10 or 11, wherein the aqueous solution does not substantially contain a rare earth metal element other than Sr and a transition metal element other than Fe.
請求項10〜12のいずれか一項に記載の排ガス浄化用触媒の製造方法。 The method for producing an exhaust gas purifying catalyst according to any one of claims 10 to 12, wherein the composite particles contain substantially no precious metal element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018055049A JP2019166450A (en) | 2018-03-22 | 2018-03-22 | Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018055049A JP2019166450A (en) | 2018-03-22 | 2018-03-22 | Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2019166450A true JP2019166450A (en) | 2019-10-03 |
Family
ID=68107005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018055049A Pending JP2019166450A (en) | 2018-03-22 | 2018-03-22 | Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2019166450A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3932542A1 (en) * | 2020-07-03 | 2022-01-05 | BASF Corporation | Catalyst for particulate combustion in gasoline emission treatment systems |
WO2022050356A1 (en) * | 2020-09-02 | 2022-03-10 | 三菱ケミカル株式会社 | Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method |
KR20230071460A (en) * | 2021-11-16 | 2023-05-23 | (주)리포마 | Perovskite-based catalyst, catalyst for reducing carbon monoxide comprising the same, and mehtode of preparing the same |
-
2018
- 2018-03-22 JP JP2018055049A patent/JP2019166450A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3932542A1 (en) * | 2020-07-03 | 2022-01-05 | BASF Corporation | Catalyst for particulate combustion in gasoline emission treatment systems |
WO2022006223A1 (en) * | 2020-07-03 | 2022-01-06 | Basf Corporation | Catalyst for particulate combustion in gasoline emission treatment systems |
CN115697550A (en) * | 2020-07-03 | 2023-02-03 | 巴斯夫公司 | Catalyst for combustion of particulate matter in gasoline emission treatment system |
JP2023532837A (en) * | 2020-07-03 | 2023-08-01 | ビーエーエスエフ コーポレーション | Particulate Combustion Catalyst in Gasoline Emission Treatment System |
JP7490086B2 (en) | 2020-07-03 | 2024-05-24 | ビーエーエスエフ コーポレーション | Catalysts for particulate combustion in gasoline emission treatment systems. |
WO2022050356A1 (en) * | 2020-09-02 | 2022-03-10 | 三菱ケミカル株式会社 | Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method |
KR20230071460A (en) * | 2021-11-16 | 2023-05-23 | (주)리포마 | Perovskite-based catalyst, catalyst for reducing carbon monoxide comprising the same, and mehtode of preparing the same |
KR102671680B1 (en) | 2021-11-16 | 2024-06-04 | (주)리포마 | Perovskite-based catalyst, catalyst for reducing carbon monoxide comprising the same, and mehtode of preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5290572B2 (en) | Exhaust gas purification catalyst | |
EP2683467B1 (en) | Exhaust gas purification catalyst | |
US20070191220A1 (en) | Oxygen storage material, process for its preparation and its application in a catalyst | |
WO2004004899A1 (en) | Method for producing catalyst for clarifying exhaust gas | |
JP2012106245A (en) | Exhaust gas purification catalyst and its production method | |
US11376568B2 (en) | Exhaust gas-purifying three-way catalyst | |
CA2562556C (en) | Process for producing metal oxide particle and exhaust gas purifying catalyst | |
JP2004243305A (en) | Exhaust gas purifying catalyst | |
JP7187654B2 (en) | Exhaust gas purification catalyst composition and automobile exhaust gas purification catalyst | |
US20070197373A1 (en) | Zirconia core particles coated with ceria particles, production process thereof and exhaust gas purifying catalyst | |
JP2019166450A (en) | Exhaust gas purification catalyst, method for manufacturing the same and integral structure type exhaust gas purification catalyst | |
CN111565837B (en) | Ternary catalyst for purifying exhaust gas, method for producing same, and integrated exhaust gas purifying catalyst | |
JP6985913B2 (en) | Exhaust gas purification catalyst, its manufacturing method, and integrated structure exhaust gas purification catalyst | |
WO2018088201A1 (en) | Exhaust gas purifying three-way catalyst, method for manufacturing same, and exhaust gas purifying catalyst converter | |
JP4969496B2 (en) | Exhaust gas purification catalyst | |
JP2019171277A (en) | Diesel oxidation catalyst powder, production method thereof, and integrated structure type exhaust gas purification catalyst | |
JP7226943B2 (en) | Exhaust gas purification catalyst | |
JP2018075550A (en) | Three-dimensional catalyst for exhaust gas purification and manufacturing method therefor, and catalyst converter for exhaust gas solidification | |
JP6889012B2 (en) | Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this | |
JP6714470B2 (en) | Exhaust gas purifying catalyst, manufacturing method thereof, and exhaust gas purifying catalytic converter | |
JP2020032306A (en) | Exhaust gas purifying catalyst | |
JP3309711B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
WO2022131244A1 (en) | Exhaust gas purification catalyst for saddle riding-type vehicle | |
US20240399343A1 (en) | Exhaust gas purification catalyst, and exhaust gas purification catalyst apparatus for vehicles, using same | |
JP2011036741A (en) | Catalyst for cleaning exhaust |