[go: up one dir, main page]

JP2019133241A - Vehicle detection device and vehicle detection system - Google Patents

Vehicle detection device and vehicle detection system Download PDF

Info

Publication number
JP2019133241A
JP2019133241A JP2018012490A JP2018012490A JP2019133241A JP 2019133241 A JP2019133241 A JP 2019133241A JP 2018012490 A JP2018012490 A JP 2018012490A JP 2018012490 A JP2018012490 A JP 2018012490A JP 2019133241 A JP2019133241 A JP 2019133241A
Authority
JP
Japan
Prior art keywords
vehicle
detection
laser scanner
detected
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018012490A
Other languages
Japanese (ja)
Inventor
守 古市
Mamoru Furuichi
守 古市
守 前田
Mamoru Maeda
守 前田
崇 宮▲崎▼
Takashi Miyazaki
崇 宮▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shutoko Etc Maintenance Co Ltd
Original Assignee
Shutoko Etc Maintenance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shutoko Etc Maintenance Co Ltd filed Critical Shutoko Etc Maintenance Co Ltd
Priority to JP2018012490A priority Critical patent/JP2019133241A/en
Publication of JP2019133241A publication Critical patent/JP2019133241A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

To provide a vehicle detection device capable of accurately detecting that a towing vehicle is integrated with an object to be towed when the vehicle towing the object to be towed passes.SOLUTION: A vehicle detection device 1 erected on one side of a lane through which a vehicle 2 passes is provided with a laser scanner covering a main part in the plane almost perpendicular to a traveling direction of the vehicle 2. When the vehicle 2 provided at the rear of a pseudo-connection part 5 simulating a connection body for towing an object to be towed passes through a scanning surface, the connection body detection area δ that is a region through which the pseudo-connection part 5 is likely to pass is preliminarily set, and a connection body detectable condition including a scanning frequency and an angular resolution determined according to an allowable upper limit speed of the vehicle 2 and an assumed shape of the connection body is set so that the pseudo-connection part 5 can be detected at one or more places in this connection body detection area δ, thereby detecting the presence or absence of the connection body from point group data obtained by operating the laser scanner so as to satisfy the connection body detectable condition.SELECTED DRAWING: Figure 10

Description

本発明は、有料道路の通行料金収受所や駐車場において、車両の進入から通過までを検知する車両検知器と、車両検知器からの検知情報を加工処理した有意情報を上位局へ提供する車両検知システムに関する。   The present invention relates to a vehicle detector that detects from entry to passage of a vehicle at a toll collection or parking lot on a toll road, and a vehicle that provides significant information obtained by processing detection information from the vehicle detector to an upper station. It relates to a detection system.

移動体である車両に移動局としての車載器を搭載して、有料道路に設置された基地局としての路側無線装置を介してデータのやりとりを行うことにより、通行料金の収受処理を行うETCシステム(有料道路自動料金収受システム)が利用されている。ETCシステムの運用においては、車両の端末装置と路側無線装置とで円滑な送受信を行えることがとても重要であり、料金収受処理の開始タイミングとなるETCレーンへの車両進入検知や、料金収受が終わった車両の通過検知等のために、車両検知器が用いられている。   An ETC system that collects tolls by mounting a vehicle-mounted device as a mobile station on a mobile vehicle and exchanging data via a roadside radio device as a base station installed on a toll road (Toll road automatic toll collection system) is used. In the operation of the ETC system, it is very important to be able to perform smooth transmission and reception between the vehicle terminal device and the roadside wireless device, and vehicle entry detection to the ETC lane, which is the start timing of toll collection processing, and toll collection is over A vehicle detector is used for detecting the passing of a vehicle.

現在のETC料金収受所においては、道路の両側にそれぞれ発光装置と受光装置を対向状に配置した透過式車両検知器が用いられている(例えば、特許文献1を参照)。これは、発光装置の発行器群から照射された検知光が受光装置の受光器群に検出されたか否かで、発光装置と受光装置との間に車両がいるか否か(障害物の有無)を検知する。すなわち、車両のいない状態から車両のいる状態に変われば、車両が進入したと判断でき、逆に、車両のいる状態から車両のいない状態に変われば、車両が通過したと判断できる。   In current ETC toll collection stations, transmission type vehicle detectors in which a light emitting device and a light receiving device are arranged opposite to each other on both sides of a road are used (see, for example, Patent Document 1). This is based on whether or not the detection light emitted from the light emitting device issuer group is detected by the light receiving device group of the light receiving device, and whether there is a vehicle between the light emitting device and the light receiving device (presence of an obstacle). Is detected. That is, it can be determined that the vehicle has entered when the vehicle is changed from the state without the vehicle, and conversely, when the vehicle is changed from the state with the vehicle to the state without the vehicle, it can be determined that the vehicle has passed.

このような透過式車両検知器は、料金収受処理開始に伴う電波発射タイミング判定のための車両進入検知箇所、料金収受処理終了に伴う通信完了判定のための車両通過検知箇所、料金所出口のバー開閉タイミング判定のための車両進入・通過検知箇所にそれぞれ設ける必要がある。すなわち、各検知箇所へ発光装置と受光装置の組み合わせを導入しなければならないので、全体として高コストになってしまう。また、アイランド上の各箇所に発光装置と受光装置が配置されていると、料金所ブースからの視認性が損なわれるという問題もある。   Such a transmission type vehicle detector has a vehicle entry detection point for radio wave emission timing determination at the start of toll collection processing, a vehicle passage detection point for communication completion determination at the end of toll collection processing, and a bar at the toll gate exit. It is necessary to provide each at a vehicle entry / passage detection location for opening / closing timing determination. That is, since a combination of a light emitting device and a light receiving device must be introduced at each detection location, the overall cost becomes high. In addition, when the light emitting device and the light receiving device are arranged at each location on the island, there is a problem that visibility from the toll booth is impaired.

上述した透過式車両検知器を用いない車両検知方法もある。たとえば、複数路線を跨ぐように設けられた陸橋構造物(ガントリー)の梁部にレーザセンサを設け、車両走行方向に直交するように上方から路面をスキャンすることで、路面の凹凸を検知し、路面からの突起物を通行車両として検出するようにした交通検知システムが提案されている(例えば、特許文献2を参照)。   There is also a vehicle detection method that does not use the transmission type vehicle detector described above. For example, by providing a laser sensor on the beam part of the overpass structure (gantry) provided to straddle multiple routes, scanning the road surface from above so as to be orthogonal to the vehicle traveling direction, the unevenness of the road surface is detected, A traffic detection system that detects protrusions from the road surface as a passing vehicle has been proposed (see, for example, Patent Document 2).

上記特許文献2に記載の交通検知システムによれば、透過式車両検知器のように発光装置と受光装置の組み合わせを多数必要としないし、料金所ブースからの視認性を損なうこともない。   According to the traffic detection system described in Patent Document 2, a large number of combinations of light emitting devices and light receiving devices are not required unlike a transmission type vehicle detector, and visibility from a toll booth is not impaired.

特開2015−125023号公報JP2015-125023 A 特開2013−190898号公報JP 2013-190898 A

しかしながら、特許文献2に記載の交通検知システムでは、大型車両の最頂部よりも更に高位置となるガントリーの梁部(およそ4〜5mの高さ)に設けたレーザセンサを用いるので、レーザセンサの設置箇所から遠距離となる路面近傍の検知精度は低くなってしまい、適正な車両検知を行えないという問題が生じる。   However, in the traffic detection system described in Patent Document 2, a laser sensor provided on a beam portion (approximately 4 to 5 m high) of the gantry that is higher than the top of the large vehicle is used. The detection accuracy in the vicinity of the road surface that is a long distance from the installation location is lowered, and there is a problem that proper vehicle detection cannot be performed.

例えば、積載トレーラーやカーゴトレーラーといった被牽引物を牽引する車両が通過するとき、車両と被牽引物を連結する連結体は、路面から数十センチ〜1メートル程度の高さにあるため、これをガントリーの梁部に設けたレーザセンサで確実に検知するためには、非常に高い角度分解能のレーザセンサを用いなければならない。しかし、引用文献2に記載の交通検知システムでは用いレーザセンサは、ガントリーの梁部から路面に向けて行うスキャンにより、比較的大きな車体の有無を判定するのに必要十分な角度分解能のものであるから、連結体を確実に検知できる検知性能は想定されていない。また、高速道路を走行する車両の走行速度に対して、レーザセンサのスキャン周期が十分に短く設定されていないと、車両進行方向に比較的短い連結体を確実に検知することはできない。   For example, when a vehicle towing a towed object such as a loading trailer or a cargo trailer passes, the connecting body that connects the vehicle and the towed object is at a height of about several tens of centimeters to 1 meter from the road surface. In order to detect with a laser sensor provided in the beam part of the gantry, a laser sensor with a very high angular resolution must be used. However, the laser sensor used in the traffic detection system described in the cited document 2 has an angular resolution necessary and sufficient to determine the presence or absence of a relatively large vehicle body by scanning from the beam part of the gantry toward the road surface. Therefore, the detection performance capable of reliably detecting the connected body is not assumed. Moreover, if the scanning period of the laser sensor is not set sufficiently short with respect to the traveling speed of the vehicle traveling on the highway, it is not possible to reliably detect a relatively short connector in the vehicle traveling direction.

このように、レーザセンサの角度分解能やスキャン周波数が連結体検知可能条件を満たしていないと、牽引車と被牽引物を連結する連結体を検知できず、牽引車と被牽引物の間に非検知空間が生じ、これらを別々の車両として検知してしまう可能性がある。かといって、高速道路の路面から4〜5mも離れた高位置に設置するレーザスキャナに、路面付近で数センチ以下の検知精度を実現できるものを採用するのは、コストおよび装置サイズ・重量から到底現実的ではない。   In this way, if the angular resolution and scan frequency of the laser sensor do not satisfy the condition for detecting the connected object, the connected object that connects the towed vehicle and the towed object cannot be detected, and there is no non-connection between the towed vehicle and the towed object. There is a possibility that detection spaces are generated and these are detected as separate vehicles. However, the laser scanner installed at a high position 4 to 5m away from the road surface of the expressway is one that can achieve detection accuracy of several centimeters or less near the road surface because of cost, equipment size and weight. Not at all realistic.

また、特許文献2に記載の交通検知システムでは、車両進行方向に距離Dを隔てて、第1の車両検知エリアと第2の車両検知エリアを形成し、第1の車両検知エリアから第2の車両検知エリアまでの車両通過時間と距離Dから車速Vを推定し、更に、車速Vと車両通過時間とから車長Lを推定し、車長Lから車両種別(軽自動車、普通車、中型車、大型車、特大車などの車種区分)を推定する。しかしながら、車両と被牽引物を連結する連結体を検知できなければ、牽引車両と被牽引物を別々の通過車両と推定することとなるので、この点からも適正な車両検知を期待できない。   Moreover, in the traffic detection system described in Patent Document 2, a first vehicle detection area and a second vehicle detection area are formed at a distance D in the vehicle traveling direction, and the second vehicle detection area is connected to the second vehicle detection area. The vehicle speed V is estimated from the vehicle passage time to the vehicle detection area and the distance D, and the vehicle length L is estimated from the vehicle speed V and the vehicle passage time. From the vehicle length L, the vehicle type (light vehicle, ordinary vehicle, medium size vehicle) is estimated. Vehicle types such as large vehicles, oversized vehicles). However, if a connecting body that connects the vehicle and the towed object cannot be detected, it is estimated that the towed vehicle and the towed object are different passing vehicles, and therefore, appropriate vehicle detection cannot be expected from this point.

そこで、本発明は、被牽引物を牽引する車両が通過したときには、牽引車両と被牽引物とが一体であることを的確に検知できる車両検知器と、車両検知器からの検知情報に基づいて通過車両の有意情報に加工処理できる車両検知システムの提供を目的とする。   Therefore, the present invention is based on a vehicle detector that can accurately detect that the towed vehicle and the towed object are integrated when the vehicle towing the towed object passes, and detection information from the vehicle detector. An object of the present invention is to provide a vehicle detection system that can process significant information of passing vehicles.

上記の課題を解決するために、請求項1に係る発明は、車両が通過可能な車両通過領域の一側方に設置されるハウジングと、前記ハウジング内に収納され、送受光部より照射するレーザ光による二次元面の走査・検知が可能なスキャン範囲が車両の進行方向と交差する平面内に設定され、前記スキャン範囲内にあるレーザ光反射物からの反射光を送受光部で検知した検知点からなる点群データをスキャン周期毎に取得するレーザスキャナと、前記ハウジングに形成され、前記レーザスキャナのスキャン範囲における照射光および反射光の光路を阻害しない光路保護部と、を備え、前記レーザスキャナのスキャン範囲内には、車両に被牽引物を連結する連結体が通過する可能性の高い領域として、連結体検知エリアを予め設定し、前記車両通過領域を通過する車両に連結体が設けられている場合、前記連結体検知エリアにて連結体を1箇所以上で検知可能なように、車両の許容上限速度および連結体の想定形状に応じて定めたスキャン周波数と角度分解能を含む連結体検知可能条件にて、前記レーザスキャナを稼動させるようにしたことを特徴とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is a housing installed on one side of a vehicle passage area through which a vehicle can pass, and a laser housed in the housing and irradiated from a light transmitting / receiving unit. Detection in which the scanning range that can scan and detect the two-dimensional surface with light is set in a plane that intersects the traveling direction of the vehicle, and the reflected light from the laser beam reflector within the scanning range is detected by the light transmitting and receiving unit A laser scanner that acquires point cloud data consisting of points for each scanning period, and an optical path protection unit that is formed in the housing and does not obstruct the optical paths of the irradiation light and the reflected light in the scanning range of the laser scanner, Within the scanning range of the scanner, a connected body detection area is set in advance as an area where a connected body that connects the towed object to the vehicle is likely to pass, and the vehicle passes When a connecting body is provided in a vehicle that passes through a zone, it is determined according to the allowable upper limit speed of the vehicle and the assumed shape of the connecting body so that the connecting body can be detected at one or more places in the connecting body detection area. The laser scanner is operated under the condition that the connected body can be detected including the scanning frequency and the angular resolution.

また、請求項2に係る発明は、前記請求項1に記載の車両検知器において、前記レーザスキャナのスキャン範囲内で常時は障害物を検知できない検知空間に障害物を検知していない障害物無検知状態から、前記検知空間に障害物を検知した障害物検知状態に変わったタイミングで、車両進入検知信号を出力するようにしたことを特徴とする。   According to a second aspect of the present invention, in the vehicle detector according to the first aspect of the present invention, there is no obstacle in which no obstacle is detected in a detection space where no obstacle can be detected at all times within the scanning range of the laser scanner. A vehicle approach detection signal is output at a timing when the detection state changes to an obstacle detection state in which an obstacle is detected in the detection space.

また、請求項3に係る発明は、前記請求項1又は請求項2に記載の車両検知器において、前記レーザスキャナのスキャン範囲内で常時は障害物を検知できない検知空間に障害物を検知している障害物検知状態から、前記検知空間に障害物を検知しなくなった障害物非検知状態に変わったタイミングで、車両通過検知信号を出力するようにしたことを特徴とする。   According to a third aspect of the present invention, in the vehicle detector according to the first or second aspect, the obstacle is detected in a detection space where the obstacle cannot be detected at all times within the scanning range of the laser scanner. A vehicle passage detection signal is output at a timing when the obstacle detection state changes to an obstacle non-detection state where no obstacle is detected in the detection space.

また、請求項4に係る発明は、前記請求項1〜請求項3の何れか1項に記載の車両検知器において、前記ハウジングは、設置面に垂直な方向へ延出する円筒部と、該円筒部の円形上縁に連なる半球頂部とで構成し、前記円筒部の周面適所から窪む凹室構造でレーザスキャナの送受光部を臨ませるスキャンガイド凹部を備えることを特徴とする。   According to a fourth aspect of the present invention, in the vehicle detector according to any one of the first to third aspects, the housing includes a cylindrical portion that extends in a direction perpendicular to the installation surface, It comprises a hemispherical apex that is continuous with the circular upper edge of the cylindrical part, and is provided with a scan guide concave part that faces the transmitting / receiving part of the laser scanner in a concave chamber structure that is recessed from an appropriate place on the peripheral surface of the cylindrical part.

また、請求項5に係る発明は、前記請求項1〜請求項4の何れか1項に記載の車両検知器において、前記レーザスキャナの送受光部は、前記車両通過領域近辺からの泥はね等が付着して汚損される可能性が高い範囲として予め定めた汚損警戒範囲よりも高位置へ設けるようにしたことを特徴とする。   According to a fifth aspect of the present invention, in the vehicle detector according to any one of the first to fourth aspects, the light transmitting / receiving portion of the laser scanner splashes mud from the vicinity of the vehicle passing area. It is characterized in that it is provided at a position higher than a predetermined contamination warning range as a range in which there is a high possibility of being attached and contaminated.

上記課題を解決するために、請求項6に係る発明は、前記請求項1〜請求項5の何れか1項に記載の車両検知器と、該車両検知器からの点群データを受信して加工処理する処理装置と、から成る車両検知システムであって、前記処理装置は、前記点群データを時系列に配置して3D画像を生成し、通過車種を特定すると共に、3D画像にて連結体を検知した場合には、連結体の前後を含めて一台の車両通過と判定するようにしたことを特徴とする。   In order to solve the above-mentioned problem, an invention according to claim 6 receives the vehicle detector according to any one of claims 1 to 5 and point cloud data from the vehicle detector. A vehicle detection system comprising: a processing device that performs processing, wherein the processing device arranges the point cloud data in time series to generate a 3D image, specifies a passing vehicle type, and connects the 3D images. When a body is detected, it is determined that one vehicle has passed including the front and rear of the connected body.

本発明に係る車両検知器によれば、車両通過領域の一側方から車両通過領域に対して、連結体検知可能条件にて稼動させたレーザスキャナによるスキャンを行うので、被牽引物を牽引する車両が車両通過領域を許容上限速度以下で通過していれば、連結体検知エリア内で連結体を的確に検知できる。よって、連結体によって連結された牽引車両と被牽引物を別の車両と誤検知してしまう不具合を抑制できる。   According to the vehicle detector according to the present invention, the to-be-towed object is pulled because the scanning by the laser scanner operated under the condition that the connected body can be detected is performed from one side of the vehicle-passing area to the vehicle-passing area. If the vehicle passes through the vehicle passage area at an allowable upper limit speed or less, the connected body can be accurately detected in the connected body detection area. Therefore, the malfunction which erroneously detects the tow vehicle and to-be-towed object connected with the coupling body as another vehicle can be suppressed.

また、本発明に係る車両検知システムによれば、処理装置は、車両検知器からの点群データを時系列に配置して3D画像を生成し、通過車種を特定すると共に、3D画像にて連結体を検知した場合には、連結体の前後を含めて一台の車両通過と判定するので、連結体によって連結された牽引車両と被牽引物を別の車両と誤検知してしまう不具合を抑制できる。   Further, according to the vehicle detection system of the present invention, the processing device arranges the point cloud data from the vehicle detector in time series to generate a 3D image, specifies the passing vehicle type, and connects with the 3D image. When a body is detected, it is determined that one vehicle has passed including the front and back of the connected body, so that the problem of erroneously detecting the tow vehicle and the to-be-towed object connected by the connected body as another vehicle is suppressed. it can.

本発明に係る車両検知器の実施形態を示し、(a)は車両検知器の正面図、(b)は車両検知器の側面図である。Embodiment of the vehicle detector which concerns on this invention is shown, (a) is a front view of a vehicle detector, (b) is a side view of a vehicle detector. レーザスキャナからステップ角毎に照射したレーザ光で被検知体を検知する場合の説明図である。It is explanatory drawing in the case of detecting a to-be-detected body with the laser beam irradiated for every step angle from the laser scanner. 第1連結体〜第5連結体よりなる疑似連結部を車体固定具により車両後部へ取り付けた状態の外観斜視図である。It is an external appearance perspective view of the state which attached the pseudo | simulation connection part which consists of a 1st connection body-a 5th connection body to the vehicle rear part with a vehicle body fixing tool. 疑似連結部を車体固定具により車両後部へ取り付けた状態の平面図である。It is a top view of the state which attached the pseudo | simulation connection part to the vehicle rear part with the vehicle body fixing tool. (a)は疑似連結部を車体固定具により車両後部へ取り付けた状態の側面図である。(b)は被牽引体と疑似連結部の拡大側面図である。(c)は第1〜第5連結体の縦断端面図である。(A) is a side view of the state which attached the pseudo | simulation connection part to the vehicle rear part with the vehicle body fixing tool. (B) is an expanded side view of a to-be-towed body and a pseudo | simulated connection part. (C) is a longitudinal end view of the first to fifth connectors. 2.5mの高さに設置したレーザスキャナにより諸条件で疑似連結部をスキャンした実測結果と演算結果との対比図である。It is a comparison figure with the measurement result and the calculation result which scanned the pseudo | simulation connection part on various conditions with the laser scanner installed in the height of 2.5 m. 1.5mの高さに設置したレーザスキャナにより諸条件で疑似連結部をスキャンした実測結果と演算結果との対比図である。It is a comparison figure with the measurement result and the calculation result which scanned the pseudo | simulation connection part on various conditions with the laser scanner installed in the height of 1.5 m. 1.0mの高さに設置したレーザスキャナにより諸条件で疑似連結部をスキャンした実測結果と演算結果との対比図である。It is a comparison figure of the measurement result and the calculation result which scanned the pseudo | simulation connection part on various conditions with the laser scanner installed in the height of 1.0 m. レーザスキャナにより諸条件で走行車両をスキャンした実測結果と演算結果との車速−車両進行方向分解精度の特性図である。It is a characteristic view of the vehicle speed-vehicle advancing direction resolution | decomposability of the actual measurement result and the calculation result which scanned the traveling vehicle with various conditions with the laser scanner. ETC車線に設置した車両検知器のスキャン範囲α内に設定する連結体検知エリアの説明図である。It is explanatory drawing of the connection body detection area set in the scanning range (alpha) of the vehicle detector installed in the ETC lane. 本実施形態に係る車両検知器をETCレーンで稼動させる場合の一設置例についての説明図である。It is explanatory drawing about the example of 1 installation in the case of operating the vehicle detector which concerns on this embodiment in an ETC lane. ETC車線に設置したトールタイプの車両検知器におけるスキャン範囲αと検知不能領域の説明図である。It is explanatory drawing of the scanning range (alpha) and undetectable area | region in the toll type vehicle detector installed in the ETC lane. 車両検知器と、該車両検知器からの点群データを受信して加工処理する処理装置と、から成る車両検知システムの概略構成図である。It is a schematic block diagram of the vehicle detection system which consists of a vehicle detector and the processing apparatus which receives and processes the point cloud data from this vehicle detector. 点群データより生成した通過車両の3D画像を示し、(a)は前方からの俯瞰斜視図、(b)は側面図である。The 3D image of the passing vehicle produced | generated from the point cloud data is shown, (a) is an overhead perspective view from the front, and (b) is a side view.

以下、本発明に係る車両検知器の実施形態を添付図面に基づいて詳細に説明する。なお、本発明に係る車両検知器1は、自動車に限らず、検知エリアを通過する移動車両(例えば、鉄道車両等)であれば、その進入および通過を検知することが可能である。但し、検知対象の車両に応じた連結体検知エリア(後に詳述)や連結体検知可能条件(後に詳述)を適切に設定しておく必要がある。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a vehicle detector according to the present invention will be described in detail with reference to the accompanying drawings. Note that the vehicle detector 1 according to the present invention is not limited to an automobile, and can detect entry and passage of a moving vehicle (for example, a railway vehicle) that passes through a detection area. However, it is necessary to appropriately set a connected body detection area (detailed later) and a connected body detectable condition (detailed later) according to the vehicle to be detected.

図1に示す車両検知器1は、自動車2が通過する道路や駐車場入出口といった車両通過領域の一側方(例えば、料金所内の車線と車線の間に設けられたアイランド)に設置され、車両通過領域を通過する車両を1台宛て検知可能なものである。このため、車両検知器1のハウジング11内の適所(例えば、頂部近傍)には、自動車2の進行方向と交差(本実施形態においては、ほぼ直交)する平面内でレーザ光LBをステップ角毎に照射する扇形のスキャン範囲αで走査可能なレーザスキャナ12を収納してある。   The vehicle detector 1 shown in FIG. 1 is installed on one side of a vehicle passage area such as a road through which a car 2 passes and a parking lot entrance / exit (for example, an island provided between lanes in a toll gate) A vehicle passing through the vehicle passage area can be detected by one vehicle. For this reason, the laser beam LB is applied to a suitable position (for example, near the top) of the vehicle detector 1 at a step angle within a plane that intersects the traveling direction of the automobile 2 (substantially orthogonal in the present embodiment). A laser scanner 12 that can be scanned in a fan-shaped scan range α is stored.

このレーザスキャナ12は、自動車2等の表面で反射されて戻ってきた反射光を受光すると、その時のレーザ光LBの照射方向とレーザ光LBの飛行時間(投光器でレーザパルスを照射して、受光器で反射光を検知するまでの経過時間)とから、スキャン平面における検知点の座標を特定できる。すなわち、車両検知器1は、レーザ光照射平面上のスキャン範囲における自動車2の検知点からなる点群データをスキャン周期毎に取得することができ、周期毎の点群データをスキャン周期に対応する自動車2の移動距離だけずらして空間上にプロットしてゆくと3次元点群データとなるので、3次元点群データの表面を平滑化処理することで、被検知物である自動車2の3D画像(遮るもの無くレーザ光LBを照射できた面の画像)を簡易的に再現できる。   When this laser scanner 12 receives the reflected light that has been reflected and returned from the surface of the automobile 2 or the like, the irradiation direction of the laser light LB at that time and the flight time of the laser light LB (irradiate a laser pulse with a projector to receive light). From the elapsed time until the reflected light is detected by the instrument, the coordinates of the detection point on the scan plane can be specified. That is, the vehicle detector 1 can acquire point cloud data composed of detection points of the automobile 2 in the scan range on the laser light irradiation plane for each scan cycle, and the point cloud data for each cycle corresponds to the scan cycle. If the movement distance of the automobile 2 is shifted and plotted on the space, it becomes three-dimensional point cloud data. Therefore, by smoothing the surface of the three-dimensional point cloud data, the 3D image of the automobile 2 that is the object to be detected. (An image of a surface that can be irradiated with the laser beam LB without obstruction) can be easily reproduced.

なお、レーザスキャナ12自体は、180[゜]を越えるスキャニング角度(例えば、190[゜])を備えているが、車両検知のためには、レーザスキャナ12の設置位置から車両通過領域の自動車2をスキャンするのに必要十分な角度範囲(例えば、スキャン範囲α=仰角73[゜]+俯角73[゜]=146[゜])を用いれば良い。また、車両検知器1によって走行中の自動車2をスキャンするとき、スキャン開始時刻からスキャン終了時刻までの間に、その走行速度に応じて自動車2も移動しているため、得られる点群データは本来のスキャン平面より斜め後方にずれた平面上に位置することとなり、自動車2の走行速度が速いと、点群データの取得位置のズレは、無視できないものとなってゆく。しかし、スキャン時における自動車2の走行速度を用いて、取得された点群データのズレを補正すれば、生成する3D画像の歪みを抑制できる。   The laser scanner 12 itself has a scanning angle exceeding 180 [°] (for example, 190 [°]), but for vehicle detection, the vehicle 2 in the vehicle passing area from the position where the laser scanner 12 is installed. An angle range necessary and sufficient for scanning (for example, scan range α = elevation angle 73 [°] + depression angle 73 [°] = 146 [°]) may be used. Further, when the vehicle 2 that is running is scanned by the vehicle detector 1, since the vehicle 2 is also moved according to the running speed between the scan start time and the scan end time, the obtained point cloud data is The position of the point cloud data acquisition position is not negligible when the vehicle 2 has a high traveling speed and is positioned on a plane that is obliquely rearward of the original scan plane. However, if the deviation of the acquired point cloud data is corrected using the traveling speed of the automobile 2 at the time of scanning, distortion of the generated 3D image can be suppressed.

また、レーザスキャナ12は、車両検知機能として、スキャン範囲α内で常時は障害物を検知できない検知空間に障害物を検知していない障害物無検知状態から、検知空間に障害物を検知した障害物検知状態に変わったタイミングで、車両進入検知信号(例えば、単パルスのトリガ信号)を出力する機能を備える。この車両進入検知信号を用いれば、車両が検知エリア内に進入したタイミングを速やかに知ることができるので、ETC通信の開始タイミング判定やゲート開放タイミング判定などに用いることができる。これとは逆に、スキャン範囲α内で常時は障害物を検知できない検知空間に障害物を検知している障害物検知状態から、前記検知空間に障害物を検知しなくなった障害物非検知状態に変わったタイミングで、車両通過検知信号(例えば、単パルスのトリガ信号)を出力する機能もレーザスキャナ12は備えている。この車両通過検知信号を用いれば、車両が検知エリアを通過したタイミングを速やかに知ることができるので、ETC通信の終了タイミング判定やゲート閉止タイミング判定などに用いることができる。   Further, as a vehicle detection function, the laser scanner 12 detects an obstacle in the detection space from an obstacle non-detection state in which no obstacle is detected in the detection space where the obstacle cannot be detected at all times within the scan range α. A function of outputting a vehicle entry detection signal (for example, a single pulse trigger signal) at the timing when the object detection state is changed is provided. By using this vehicle entry detection signal, it is possible to quickly know the timing at which the vehicle has entered the detection area, so that it can be used to determine the start timing of the ETC communication or the gate opening timing. Contrary to this, the obstacle non-detection state in which the obstacle is no longer detected in the detection space from the obstacle detection state in which the obstacle is detected in the detection space where the obstacle cannot be detected at all times within the scan range α. The laser scanner 12 also has a function of outputting a vehicle passage detection signal (for example, a single pulse trigger signal) at the timing changed to. By using this vehicle passage detection signal, it is possible to quickly know the timing at which the vehicle has passed through the detection area, so that it can be used to determine the end timing of the ETC communication or the gate closing timing.

すなわち、車両検知器1は、ETCレーンの車線に対して片側のアイランドのみに設ければ、自動車2の進入および通過を検知できるので、必要な車両検出位置毎に一対の車両検知器を配置する必要がなく、設置作業の簡易化や設置コストの低廉化に加え、料金所ブースからの視認性が損なわれ難いという利点もある。   That is, if the vehicle detector 1 is provided only on the island on one side with respect to the lane of the ETC lane, the entry and passage of the automobile 2 can be detected, so a pair of vehicle detectors are arranged for each necessary vehicle detection position. This is not necessary, and has the advantage that the visibility from the toll booth is not easily lost, in addition to simplifying the installation work and reducing the installation cost.

上記レーザスキャナ12を収納するハウジング11は、その外周面が滑らかな円筒形(例えば、円筒外表面の直径が約275[mm])である円筒部11aと、この円筒部11aの円形上縁に連なる滑らかな半球状の半球頂部11bと、ETCレーン脇のアイランド(例えば、高さ250[mm])上などに固定される設置体11cとからなる。車道と平行に設置されたアイランドへハウジング11の設置体11cを立設すると、ハウジング11の円筒部11aは設置面に垂直な方向(車線の路面が水平であれば、鉛直方向)へ延出するので、ハウジング11内に収納してあるレーザスキャナ12(例えば、設置体11cの基底部から高さ約1[m]の位置に、レーザスキャナ12の送受光部12a中心を配置)は、車道の路面からアイランドの高さ分だけ高い位置(例えば、1250[mm])に設置されることとなる。   The housing 11 for housing the laser scanner 12 has a cylindrical portion 11a having a smooth outer peripheral surface (for example, a diameter of the outer surface of the cylinder of about 275 [mm]) and a circular upper edge of the cylindrical portion 11a. It consists of a series of smooth hemispherical hemispherical top portions 11b and an installation body 11c fixed on an island (for example, a height of 250 [mm]) beside the ETC lane. When the installation body 11c of the housing 11 is erected on an island installed in parallel with the roadway, the cylindrical portion 11a of the housing 11 extends in a direction perpendicular to the installation surface (or a vertical direction if the road surface of the lane is horizontal). Therefore, the laser scanner 12 housed in the housing 11 (for example, the center of the light transmitting / receiving unit 12a of the laser scanner 12 is disposed at a height of about 1 [m] from the base of the installation body 11c) It is installed at a position (for example, 1250 [mm]) higher than the road surface by the height of the island.

上記設置体11cは、円筒部11aの下部開口に嵌挿し得る外径の円筒体で、固定部11c1と嵌挿部11c2との間に、環状凸部11c3を形成してある。これにより、円筒部11aの下部開口を設置体11cの嵌挿部11c2に嵌め入れると、ちょうど環状凸部11c3にて円筒部11aの下縁が位置決めされ、ハウジング11を所定高さ(例えば、1.5[m]の高さ)に組み立てることができる。なお、設置体11cを円筒部11aに嵌挿することで適所へ設置体11cを固定する構造とせず、円筒部11aの下部に適宜な固定構造を設けるようにしても構わない。   The installation body 11c is an outer diameter cylindrical body that can be fitted into the lower opening of the cylindrical portion 11a, and an annular convex portion 11c3 is formed between the fixed portion 11c1 and the fitted insertion portion 11c2. Thus, when the lower opening of the cylindrical portion 11a is fitted into the fitting insertion portion 11c2 of the installation body 11c, the lower edge of the cylindrical portion 11a is positioned just at the annular convex portion 11c3, and the housing 11 is moved to a predetermined height (for example, 1 .5 [m] high height). Note that the installation body 11c may be fitted into the cylindrical portion 11a so that the installation body 11c is not fixed in place, and an appropriate fixing structure may be provided below the cylindrical portion 11a.

また、本実施形態の車両検出器1は、比較的小型の副レーザスキャナ13を備えており、この副レーザスキャナ13は、上記レーザスキャナ12の検知面に直交する面、すなわち路面とほぼ平行な検知面でのスキャンを行えるものである。この副レーザスキャナ13によって、スキャン範囲内で移動体を検知すると、スキャン周期毎に検知される移動体の変移量から移動体の速度を求めることができる。なお、移動体の速度は、公知既存の速度検出装置を使って検出できるので、移動体の速度検知に副レーザスキャナ13を用いないでも構わない。   Further, the vehicle detector 1 of the present embodiment includes a relatively small secondary laser scanner 13, and the secondary laser scanner 13 is substantially parallel to a plane orthogonal to the detection surface of the laser scanner 12, that is, a road surface. It can perform scanning on the detection surface. When the sub laser scanner 13 detects a moving body within the scan range, the speed of the moving body can be obtained from the amount of movement of the moving body detected for each scan cycle. Note that the speed of the moving body can be detected using a known existing speed detection device, so the sub laser scanner 13 may not be used for speed detection of the moving body.

上述したレーザスキャナ12および副レーザスキャナ13は、光路保護部としてのスキャンガイド凹部14内に配置する。このスキャンガイド凹部14は、ハウジング11の円筒部11aにおける周面適所から内奥へ窪む凹室構造で、このスキャンガイド凹部14から、レーザスキャナ12の送受光部12aおよび副レーザスキャナ13の送受光部を車両検知空間へ臨ませる。   The laser scanner 12 and the auxiliary laser scanner 13 described above are arranged in a scan guide recess 14 as an optical path protection unit. The scan guide recess 14 has a concave chamber structure that is recessed inward from an appropriate position on the cylindrical surface 11 a of the housing 11. Make the light receiving part face the vehicle detection space.

光路保護部としてのスキャンガイド凹部14は、少なくとも、レーザスキャナ12によるレーザ光LBの照射範囲および反射光の受信範囲を確保できる縦長の開口面(例えば、高さが約708[mm]で幅が約95[mm]の開口面)を円筒部11aの周面に開設し、この開口面より円筒部11a内に窪む凹室である。具体的には、円筒部11aに開設した縦長スリット状の開口面における左右の両側縁より奥側へ配置した第1側壁部14aおよび第2側壁部14bと、第1,第2側壁部14a,14bの上縁に連なる上壁部14cと、第1,第2側壁部14a,14bの下縁に連なる下壁部14dとからなる四側壁を備え、これら各側壁部14a〜14dの後縁開口を上側奥壁部14eと下側奥壁部14fにより閉塞したものである。なお、上側奥壁部14eと下側奥壁部14fの間に生じる空隙には、レーザスキャナ12の送受光部12aを臨ませる。   The scan guide recess 14 as the optical path protection unit has a vertically long opening surface (for example, a height of about 708 [mm] and a width of at least, which can secure at least the irradiation range of the laser beam LB by the laser scanner 12 and the reception range of the reflected light). An opening surface of about 95 [mm] is provided on the peripheral surface of the cylindrical portion 11a, and is a concave chamber that is recessed from the opening surface into the cylindrical portion 11a. Specifically, the first side wall part 14a and the second side wall part 14b arranged on the back side from the left and right side edges of the vertically long slit-shaped opening surface opened in the cylindrical part 11a, the first and second side wall parts 14a, 14b, four side walls comprising an upper wall portion 14c continuous with the upper edge of the lower wall portion 14b and a lower wall portion 14d continuous with the lower edge of the first and second side wall portions 14a, 14b, and rear edge openings of the side wall portions 14a to 14d. Is closed by the upper back wall portion 14e and the lower back wall portion 14f. Note that the light transmission / reception unit 12a of the laser scanner 12 faces the gap formed between the upper back wall portion 14e and the lower back wall portion 14f.

スキャンガイド凹部14の奥において、レーザスキャナ12の上側を塞ぐ上側奥壁部14eには、機器設定などを行う操作パネルにアクセスする開閉蓋14e1や、車両検知器1の動作状態や設定状態などを表示するためのパイロットランプ群14e2が設けてある。また、レーザスキャナ12の下側を塞ぐ下側奥壁部14fは、レーザスキャナ12の下部に当着する第1平板部14f1と、この平板部14f1の下縁に連なり徐々に前方へ迫り出したテーパ状の庇部14f2と、庇部14f2の下部後縁と下壁部14dとに連なる第2平板部14f3とからなる。なお、下側奥壁部14fの庇部14f2が、副レーザスキャナ13の上方へ被さるように配置することで、副レーザスキャナ13の上側を雨や塵埃から保護できる。   In the back of the scan guide recess 14, the upper back wall portion 14 e that closes the upper side of the laser scanner 12 includes an opening / closing lid 14 e 1 that accesses an operation panel for device setting and the operation state and setting state of the vehicle detector 1. A pilot lamp group 14e2 for display is provided. Further, the lower back wall portion 14f that closes the lower side of the laser scanner 12 is connected to the lower portion of the laser scanner 12 and the lower edge of the flat plate portion 14f1, and gradually protrudes forward. It consists of a tapered flange portion 14f2 and a second flat plate portion 14f3 connected to the lower rear edge of the flange portion 14f2 and the lower wall portion 14d. In addition, the upper part of the sub laser scanner 13 can be protected from rain and dust by disposing the flange part 14f2 of the lower back wall part 14f so as to cover the sub laser scanner 13.

このように、ハウジング11のスキャンガイド凹部14内にレーザスキャナ21の送受光部12aおよび副レーザスキャナ13の送受光部をスキャン可能に臨ませることにより、レーザスキャナ12や副レーザスキャナ13をハウジング11の外表面から突出させないので、飛来物などがレーザスキャナ12や副レーザスキャナ13に当たって破損することを効果的に防げる。しかも、ハウジング11の外表面は、スキャンガイド凹部14を除き、概ね滑らかな曲面で構成されているので、人が触れてもケガをする危険性が低い。また、ハウジング11の半球頂部11bが滑らかな半球面であることから、雪や落ち葉などの堆積を困難にし、除雪や清掃の手間を軽減できる。また、スキャンガイド凹部14の開口面は縦長のスリット状に形成してあることから、風雪が吹き込み難く、ゴミや雪で送受光部12aが塞がれてスキャン不能となる事態を効果的に回避できる。更に、スキャンガイド凹部14の適所を加温する融雪用ヒータを設けておけば、降雪によるスキャン不能を回避する上で、一層効果的である。   In this way, by allowing the light transmitting / receiving unit 12a of the laser scanner 21 and the light transmitting / receiving unit of the sub laser scanner 13 to scan within the scan guide recess 14 of the housing 11, the laser scanner 12 and the sub laser scanner 13 are accommodated in the housing 11. Therefore, it is possible to effectively prevent flying objects and the like from hitting the laser scanner 12 and the auxiliary laser scanner 13 and damaging them. In addition, since the outer surface of the housing 11 is formed with a generally smooth curved surface except for the scan guide recess 14, there is a low risk of injury even if touched by a person. Further, since the hemispherical top portion 11b of the housing 11 is a smooth hemispherical surface, it is difficult to accumulate snow and fallen leaves and the like, and it is possible to reduce the trouble of snow removal and cleaning. In addition, since the opening surface of the scan guide recess 14 is formed in a vertically long slit shape, it is difficult for wind and snow to blow in, and effectively avoids a situation in which scanning cannot be performed because the transmitter / receiver 12a is blocked by dust or snow. it can. Furthermore, providing a snow melting heater that heats the appropriate position of the scan guide recess 14 is more effective in avoiding inability to scan due to snowfall.

なお、ハウジング11に設けるスキャンガイド凹部14の開口面を閉塞する透光性窓部(使用するレーザ光の波長に対して透明な硬質材料にて形成した遮蔽体)を設けて、円筒部11aが内空部と隔絶された完全な円筒体とすれば、レーザスキャナ12等の内部機器が保護されるので、スキャンガイド凹部14を設ける必要が無くなる。しかしながら、その場合、透過性窓部を経たレーザ光LBの出射強度が規定値以上に保たれ、検知対象物からの反射光を透過性窓部が規定値以上の透過率で入射させるなど、必要十分な検知機能が保持される必要がある。加えて、透過性窓部を透過するときに生じるレーザ光LBの屈折を考慮した検出位置の補正も必要となる。   In addition, a translucent window portion (a shield formed of a hard material transparent to the wavelength of the laser light to be used) that closes the opening surface of the scan guide recess 14 provided in the housing 11 is provided, and the cylindrical portion 11a is provided. If a complete cylindrical body isolated from the inner space is used, the internal devices such as the laser scanner 12 are protected, so that it is not necessary to provide the scan guide recess 14. However, in that case, it is necessary that the emission intensity of the laser beam LB that has passed through the transmissive window is maintained at a specified value or higher, and the reflected light from the detection target is incident on the transmissive window at a transmittance greater than the specified value. Sufficient detection function needs to be maintained. In addition, it is necessary to correct the detection position in consideration of the refraction of the laser beam LB generated when the light passes through the transmissive window.

また、車両検知器1が設置されるアイランド等は、降雨、降雪等で道路上にできた水たまりを自動車2が通過する際に泥水をかぶる危険性があり、車両検知器1に設けたレーザスキャナ12の送受光部12aや副レーザスキャナ13の送受光部が泥はね等で汚損されてレーザ光LBの透過が阻害されると、適正な車両検知を行えなくなってしまう。そこで、レーザスキャナ12の送受光部12aや副レーザスキャナ13の送受光部は、車両通過領域近辺からの泥はね等が付着して汚損される可能性が高い範囲として予め定めた汚損警戒範囲β(図1(b)を参照)よりも高位置となるように設定しておく。かくすれば、水たまりを自動車2のタイヤが通過することで、車両検知器1の設置側へ泥水が跳ね飛んだとしても、汚損警戒範囲よりも高位置にあるレーザスキャナ12の送受光部12aや副レーザスキャナ13の送受光部が汚損される可能性は極めて低くなり、車両検知器1の車両検知機能を良好に維持できる。   Further, the island where the vehicle detector 1 is installed has a risk of being covered with muddy water when the automobile 2 passes through a puddle formed on the road due to rain, snow, etc., and the laser scanner provided in the vehicle detector 1 If the 12 light transmitting / receiving units 12a and the light transmitting / receiving unit of the sub laser scanner 13 are soiled by mud splashing or the like and the transmission of the laser beam LB is inhibited, proper vehicle detection cannot be performed. Accordingly, the contamination warning range set in advance as a range in which mud splashes and the like from the vicinity of the vehicle passing region are highly likely to be contaminated by the light transmission / reception unit 12a of the laser scanner 12 and the sub laser scanner 13 It is set to be higher than β (see FIG. 1B). In this way, even if the muddy water jumps to the installation side of the vehicle detector 1 because the tire of the automobile 2 passes through the puddle, the transmission / reception unit 12a of the laser scanner 12 positioned higher than the contamination warning range, The possibility that the light transmitting / receiving unit of the sub laser scanner 13 is soiled is extremely low, and the vehicle detection function of the vehicle detector 1 can be maintained well.

次に、上記車両検知器1で用いるレーザスキャナ12の障害物検知機能について説明する。図2は、レーザスキャナ12のスキャン範囲内に第1〜第5被検知体3a〜3eを配置したとき、これらをレーザスキャナ12から照射したレーザ光LBによって検知する状態を示したものである。なお、第1〜第5被検知体3a〜3eは、道路面にほぼ平行な底面と上面および路面に垂直な二側面(例えば、レーザスキャナ12に近い側を第1側面、その反対を第2側面とする)を備える直方体とする。また、レーザスキャナ12からレーザ光LBを照射するステップ角は、スキャン周波数によっては0.2[゜]以下にすることも可能であるが、ここではレーザ光LBの照射間隔が視認できる程度に荒くして示してある。   Next, the obstacle detection function of the laser scanner 12 used in the vehicle detector 1 will be described. FIG. 2 shows a state in which, when the first to fifth detection objects 3a to 3e are arranged within the scan range of the laser scanner 12, they are detected by the laser light LB emitted from the laser scanner 12. The first to fifth detected bodies 3a to 3e have a bottom surface that is substantially parallel to the road surface, two upper surfaces that are perpendicular to the road surface (for example, a side closer to the laser scanner 12 is a first side surface, and the opposite is a second side surface. A rectangular parallelepiped with side surfaces). The step angle for irradiating the laser beam LB from the laser scanner 12 can be set to 0.2 [°] or less depending on the scan frequency, but here, the step angle is so rough that the irradiation interval of the laser beam LB is visible. It is shown.

レーザスキャナ12の設置高さ(例えば、2.5[m])とほぼ同じ高さで、2〜2.5[m]程度離隔させた第1被検知体3aは、第1側面にレーザ光LBの照射ポイントが3点生ずる。これら3点(図2中、黒丸で示す)は、いずれもレーザ光LBの入射角度が45゜以内なので、これら3つの照射ポイントで反射した反射光がレーザスキャナ12の送受光部12aへ戻って受光される可能性が高い。よって、第1被検知体3aがレーザスキャナ12によって検知されるサンプリングポイントは3ポイントとなる。なお、厳密に考えると、レーザ光LBの照射距離によってビーム幅(スポットサイズ)が変わるので、計算上はビーム中心が被検知体に当たっていなくても、ビーム中心から外れたレーザ光の一部が被検知体に照射される可能性はあるが、そのような場合の反射光が検知可能な光量としてレーザスキャナ12へ戻り検知される可能性は高くないと考えられるので、ここではビーム中心が当たっていないものは照射ポイントして除外する。以下も同様である。   The first detected object 3a, which is approximately the same height as the installation height (for example, 2.5 [m]) of the laser scanner 12 and separated by about 2 to 2.5 [m], has laser light on the first side surface. Three irradiation points of LB are generated. Since these three points (shown by black circles in FIG. 2) are all within 45 ° of the incident angle of the laser beam LB, the reflected light reflected at these three irradiation points returns to the light transmitting / receiving unit 12a of the laser scanner 12. There is a high possibility of receiving light. Therefore, the number of sampling points at which the first detected object 3a is detected by the laser scanner 12 is three points. Strictly speaking, since the beam width (spot size) changes depending on the irradiation distance of the laser beam LB, even if the beam center does not hit the object to be detected, a part of the laser beam deviating from the beam center is calculated. Although there is a possibility that the object is irradiated, the reflected light in such a case is not likely to be returned to the laser scanner 12 as a detectable amount of light, so the beam center is hit here. Items that are not exposed are excluded as irradiation points. The same applies to the following.

上記第1被検知体3aの直上方(例えば、3.5[m])に配置した第2被検知体3bは、底面にレーザ光LBの照射ポイントが4点生ずる。これらのうち後方の3点(図2中、白丸で示す)は、いずれもレーザ光LBの入射角度が45゜を越えているので、これら3つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性は殆ど無いが、最前の1点(図2中、黒丸で示す)だけは、レーザ光LBの入射角度が45゜以内なので、この照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性が高い。よって、第2被検知体3bの底面のサンプリングポイントは1ポイントとなる。一方、第2被検知体3bの第1側面にもレーザ光LBの照射ポイントが2点生ずる。これら2点(図2中、黒丸で示す)は、いずれもレーザ光LBの入射角度が45゜以内なので、これら2つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性が高い。よって、第2被検知体3bがレーザスキャナ12によって検知されるサンプリングポイントは、底面と第1側面を合わせて3ポイントとなる。   The second detected body 3b arranged just above the first detected body 3a (for example, 3.5 [m]) has four irradiation points of the laser beam LB on the bottom surface. Of these, the rear three points (indicated by white circles in FIG. 2) all have an incident angle of the laser beam LB exceeding 45 °, so that the reflected light reflected at these three irradiation points is transmitted to the laser scanner 12. Although there is almost no possibility of receiving light back, only the first point (indicated by a black circle in FIG. 2) has an incident angle of the laser beam LB within 45 °. There is a high possibility that light will be returned to the scanner 12. Therefore, the sampling point on the bottom surface of the second detected body 3b is one point. On the other hand, two irradiation points of the laser beam LB are also generated on the first side surface of the second detected body 3b. Since these two points (indicated by black circles in FIG. 2) both have an incident angle of the laser beam LB within 45 °, the reflected light reflected at these two irradiation points may be returned to the laser scanner 12 and received. Is expensive. Therefore, the sampling point at which the second detected body 3b is detected by the laser scanner 12 is 3 points in total including the bottom surface and the first side surface.

上記第1被検知体3aの適宜後方(レーザスキャナ12からの離隔距離が4〜4.5[m]程度)で若干高位置(例えば、3.0[m])に配置した第3被検知体3cは、底面にレーザ光LBの照射ポイントが1点生ずる。この1点(図2中、白丸で示す)は、レーザ光LBの入射角度が45゜を越えているので、この照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性は殆ど無い。よって、第3被検知体3cの底面にはサンプリングポイントはない。一方、第3被検知体3cの第1側面にもレーザ光LBの照射ポイントが2点生ずる。これら2点(図2中、黒丸で示す)は、いずれもレーザ光LBの入射角度が45゜以内なので、これら2つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性が高い。よって、第3被検知体3cがレーザスキャナ12によって検知されるサンプリングポイントは2ポイントとなる。   A third detected object arranged at a slightly higher position (for example, 3.0 [m]) behind the first detected object 3a as appropriate (the separation distance from the laser scanner 12 is about 4 to 4.5 [m]). The body 3c has one irradiation point of the laser beam LB on the bottom surface. At this one point (indicated by a white circle in FIG. 2), since the incident angle of the laser beam LB exceeds 45 °, there is a possibility that the reflected light reflected at this irradiation point returns to the laser scanner 12 and is received. Almost no. Therefore, there is no sampling point on the bottom surface of the third detected body 3c. On the other hand, two irradiation points of the laser beam LB are also generated on the first side surface of the third detected body 3c. Since these two points (indicated by black circles in FIG. 2) both have an incident angle of the laser beam LB within 45 °, the reflected light reflected at these two irradiation points may be returned to the laser scanner 12 and received. Is expensive. Therefore, the number of sampling points at which the third detected object 3c is detected by the laser scanner 12 is two points.

上記第3被検知体3cの直下方(例えば、1.7[m])に配置した第4被検知体3dは、第1側面にレーザ光LBの照射ポイントが2点生ずる。これら2点(図2中、黒丸で示す)は、いずれもレーザ光LBの入射角度が45゜以内なので、これら2つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性が高い。よって、第4被検知体3dがレーザスキャナ12によって検知されるサンプリングポイントは2ポイントとなる。   The fourth detected body 3d arranged immediately below the third detected body 3c (for example, 1.7 [m]) has two irradiation points of the laser beam LB on the first side surface. Since these two points (indicated by black circles in FIG. 2) both have an incident angle of the laser beam LB within 45 °, the reflected light reflected at these two irradiation points may be returned to the laser scanner 12 and received. Is expensive. Therefore, the sampling points at which the fourth detected body 3d is detected by the laser scanner 12 are two points.

レーザスキャナ12から近傍(水平方向の離隔距離が0.6[m]程度、設置高さが1.5[m]程度)に配置した第5被検知体3eは、第1側面にレーザ光LBの照射ポイントが3点生ずる。これら3点(図2中、白丸で示す)は、いずれもレーザ光LBの入射角度が45゜を越えているので、これら3つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性は殆ど無い。よって、第5被検知体3eの第1側面にはサンプリングポイントはない。一方、第5被検知体3eの上面にもレーザ光LBの照射ポイントが12点生ずる。これら12点のうち、第1側面に近い8点(図2中、黒丸で示す)はレーザ光LBの入射角度が45゜以内なので、これら8つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性が高い。しかし、それより後方(第2側面に近い側)の4点(図2中、白丸で示す)はレーザ光LBの入射角度が45゜を越えているので、これら4つの照射ポイントで反射した反射光がレーザスキャナ12へ戻って受光される可能性は殆ど無い。よって、第5被検知体3eがレーザスキャナ12によって検知されるサンプリングポイントは8ポイントとなる。   The fifth detected body 3e arranged in the vicinity of the laser scanner 12 (the horizontal separation distance is about 0.6 [m] and the installation height is about 1.5 [m]) has the laser beam LB on the first side surface. Three irradiation points are generated. Since these three points (indicated by white circles in FIG. 2) all have an incident angle of the laser beam LB exceeding 45 °, the reflected light reflected at these three irradiation points returns to the laser scanner 12 and is received. There is almost no possibility. Therefore, there is no sampling point on the first side surface of the fifth detected body 3e. On the other hand, 12 irradiation points of the laser beam LB are also generated on the upper surface of the fifth detected body 3e. Of these twelve points, eight points (indicated by black circles in FIG. 2) close to the first side face have an incident angle of the laser beam LB within 45 °, so that the reflected light reflected at these eight irradiation points is transmitted to the laser scanner 12. There is a high possibility of receiving light back. However, since the incident angle of the laser beam LB exceeds 45 ° at the four points (indicated by white circles in FIG. 2) behind it (side closer to the second side surface), the reflection reflected at these four irradiation points. There is almost no possibility that the light returns to the laser scanner 12 and is received. Therefore, the sampling points at which the fifth detected body 3e is detected by the laser scanner 12 are 8 points.

このように、自動車2を被検知体としてレーザスキャナ12で検知する場合、レーザスキャナ12からのレーザ光LBが入射角度45゜以内で照射されたポイントに限って、照射点の座標を取得できる。そして、車両検知器1に臨む自動車2の側面は、レーザスキャナ2に対向する面積が多いので、比較的多い点群データを得ることが可能である。よって、自動車2の側面は、点群データから多少の凹凸も含めて3Dデータに変換できる。また、レーザスキャナ12の設置位置がボンネットやルーフよりも高位置にある場合は、ボンネットやルーフの面も点群データとして得られるので、自動車2の横幅方向の奥行を3Dデータに変換できる。   As described above, when the automobile 2 is detected by the laser scanner 12 as the detection target, the coordinates of the irradiation point can be acquired only at the point where the laser beam LB from the laser scanner 12 is irradiated within an incident angle of 45 °. Since the side surface of the automobile 2 facing the vehicle detector 1 has a large area facing the laser scanner 2, relatively large point cloud data can be obtained. Therefore, the side surface of the automobile 2 can be converted into 3D data including some irregularities from the point cloud data. In addition, when the installation position of the laser scanner 12 is higher than the hood or roof, the surface of the hood or roof is also obtained as point cloud data, so that the depth in the width direction of the automobile 2 can be converted into 3D data.

しかしながら、積載トレーラーやカーゴトレーラーといった被牽引物を牽引する車両の場合、牽引車と被牽引物を連結する連結体は、径が15〜40[mm]程度の棒材や角材などで構成され、路面からせいぜい300〜700[mm]程度の高さにあるため、連結体のサンプリングポイントを1ポイント以上にするようなスキャン条件を整えておかないと、連結体を確実に検知することはできない。また、レーザスキャナ12の角度分解能が必要十分であっても、自動車2の走行速度に対してスキャン周波数が低いと、牽引車両を最後にスキャンした次のスキャンタイミングまでに、500[mm]程度の長さの連結体が通過してしまい、連結体をスキャンできない500[mm]以上の非検知空間を経た後に、後続の被牽引物がスキャンされる可能性がある。このような場合、牽引車と被牽引物の間に適宜な被検知空間があるために、牽引車と被牽引物を別々の車両と誤認してしまうことが懸念される。   However, in the case of a vehicle that pulls a towed object such as a loading trailer or a cargo trailer, the connecting body that connects the towed vehicle and the towed object is composed of a bar or a square having a diameter of about 15 to 40 [mm], Since the height is at most about 300 to 700 [mm] from the road surface, the connected body cannot be reliably detected unless scanning conditions are set so that the sampling point of the connected body is 1 point or more. Further, even if the angular resolution of the laser scanner 12 is necessary and sufficient, if the scan frequency is low with respect to the traveling speed of the automobile 2, it will be about 500 [mm] before the next scan timing when the tow vehicle is last scanned. There is a possibility that a subsequent to-be-drawn object is scanned after passing through a non-detection space of 500 [mm] or longer in which the connecting body of the length passes and the connecting body cannot be scanned. In such a case, since there is an appropriate detected space between the tow vehicle and the towed object, there is a concern that the towed vehicle and the towed object may be mistaken for different vehicles.

以上のように、被牽引物を牽引する車両をレーザスキャナ12で検知する場合、車両と被牽引物を連結する連結体を確実に検知できるようにするための適正な条件を整えておく必要がある。   As described above, when detecting the vehicle towing the towed object with the laser scanner 12, it is necessary to prepare appropriate conditions for reliably detecting the connecting body that connects the vehicle and the towed object. is there.

そこで、レーザスキャナ12の特性を踏まえて、連結体を検知できるスキャン条件を考えてみる。レーザスキャナ12の角度分解能が高ければ、それだけ遠距離にある小さな連結体から1点以上のサンプリングポイントを得ることができる。また、スキャン周波数が高ければ、自動車2の速度が速くても、車両走行方向の長さが短い連結体からサンプリングポイントを得ることができる。しかしながら、一般にレーザスキャナ12は、反射光の受光速度と角度分解能は反比例の関係になるため、スキャン周波数を低くして角度分解能を高めるか、角度分解能を低くしてスキャン周波数を高めるか、現実的な判断が必要である。すなわち、連結体を検知可能なように、車両の許容上限速度および連結体の想定形状に応じて定めたスキャン周波数と角度分解能を連結体検知可能条件として予め設定し、この連結体検知可能条件を満たす性能のレーザスキャナ12を搭載すれば、連結体を確実に検知できる車両検知器1を構成できる。   Therefore, based on the characteristics of the laser scanner 12, consider a scanning condition that can detect a connected body. If the angular resolution of the laser scanner 12 is high, it is possible to obtain one or more sampling points from a small connected body at a far distance. Further, if the scan frequency is high, the sampling point can be obtained from the connected body having a short length in the vehicle traveling direction even if the speed of the automobile 2 is high. However, in general, the laser scanner 12 has an inversely proportional relationship between the light receiving speed of reflected light and the angular resolution. Therefore, it is realistic to lower the scanning frequency to increase the angular resolution, or to lower the angular resolution to increase the scanning frequency. Judgment is necessary. That is, the scan frequency and the angular resolution determined according to the allowable upper limit speed of the vehicle and the assumed shape of the coupled body are set in advance as the coupled body detectable condition so that the coupled body can be detected. If the laser scanner 12 with sufficient performance is mounted, the vehicle detector 1 that can reliably detect the connected body can be configured.

上述した連結体検知可能条件を探るため、図3〜図5に示すように、自動車2に取り付ける車体固定具4に疑似連結部5を設け、この疑似連結部5を介して被牽引体6を取り付ける。そして、疑似連結部5を介して被牽引体6を牽引している自動車2を、諸条件のもとで車両検知器1にスキャンさせ、疑似連結部5を検出できるか否かを試験すれば、連結体検知可能条件を絞り込んでゆくことができる。なお、図3〜図5では、自動車2の車体後部のみ示してある。   In order to search for the above-described connected body detectable condition, as shown in FIG. 3 to FIG. Install. And if it is tested whether the vehicle detector 1 to which the towed body 6 is pulled through the pseudo-connecting part 5 is scanned by the vehicle detector 1 under various conditions and the pseudo-connecting part 5 can be detected. It is possible to narrow down the conditions for detecting the connected body. 3 to 5, only the rear part of the vehicle 2 is shown.

車体固定具4は、車両の後方中央へ縦方向に配置する連結体取付部41と、この連結体取付部41の上部に設けたルーフ側固定部42と、連結体取付部41の下部に設けた車底側固定部43と、からなり、長尺鋼材を組み合わせた構造である。そして、車体固定部4における連結体取付部41の下方部より後側へ延出するように、疑似連結部5を取り付け、疑似連結部5の後部に被牽引体6を取り付ける。なお、被牽引体6の保持強度を高めるために、連結体取付部41と被牽引体6を直接接続する梁材44を設けてある。この梁材44は車両検知器1によるスキャン範囲内において、疑似連結部5の上方に位置することとなるので、車両検知器1に検知された梁材44を、疑似連結部5の一部と誤認しないように配慮する。   The vehicle body fixture 4 is provided at a connecting body mounting portion 41 disposed vertically in the rear center of the vehicle, a roof-side fixing portion 42 provided above the connecting body mounting portion 41, and a lower portion of the connecting body mounting portion 41. The vehicle bottom side fixing portion 43 is a structure in which long steel materials are combined. And the pseudo | simulation connection part 5 is attached so that it may extend to the back side from the downward part of the connection body attachment part 41 in the vehicle body fixing | fixed part 4, and the to-be-to-be-towed body 6 is attached to the rear part of the pseudo | simulation connection part 5. In order to increase the holding strength of the towed body 6, a beam member 44 that directly connects the connecting body mounting portion 41 and the towed body 6 is provided. Since the beam member 44 is positioned above the pseudo-connecting portion 5 within the scanning range of the vehicle detector 1, the beam member 44 detected by the vehicle detector 1 is regarded as a part of the pseudo-connecting portion 5. Be careful not to misunderstand.

疑似連結部5は、横幅が同じで縦幅の異なる長尺な5種類の四角枠体から構成する。具体的には、最上部に第1連結体51(縦幅×横幅×長さ:40[mm]×50[mm]×660[mm])を、その下方に第2連結体52(縦幅×横幅×長さ:30[mm]×50[mm]×660[mm])を、その下方に第3連結体53(縦幅×横幅×長さ:20[mm]×50[mm]×660[mm])を、その下方に第4連結体54(縦幅×横幅×長さ:15[mm]×50[mm]×660[mm])を、その下方に第5連結体54(縦幅×横幅×長さ:10[mm]×50[mm]×660[mm])を、順次取り付けた構造である。   The quasi-connecting portion 5 is composed of five types of long rectangular frames having the same horizontal width but different vertical widths. Specifically, the first connecting body 51 (vertical width × horizontal width × length: 40 [mm] × 50 [mm] × 660 [mm]) is provided at the top, and the second connecting body 52 (vertical width) is provided therebelow. X width x length: 30 [mm] x 50 [mm] x 660 [mm]), and a third connector 53 (vertical width x width x length: 20 [mm] x 50 [mm] x) 660 [mm]) below the fourth connector 54 (vertical width × horizontal width × length: 15 [mm] × 50 [mm] × 660 [mm]), and below the fifth connector 54 ( Vertical width × horizontal width × length: 10 [mm] × 50 [mm] × 660 [mm]) are sequentially attached.

斯く構成した疑似連結部5の最下部(第5連結体55の下面)が路面から315[mm]の高さとなるように自動車2へ取り付けた場合、第1連結体51の上面は路面から約740[mm]の高さに、第2連結体52の上面は路面から約635[mm]の高さに、第3連結体53の上面は路面から約530[mm]の高さに、第4連結体54の上面は路面から約427.5[mm]の高さに、第5連結体55の上面は路面から約325[mm]の高さになる。   When the lowermost part (the lower surface of the fifth connecting body 55) of the pseudo connecting part 5 configured as described above is attached to the automobile 2 so as to have a height of 315 [mm] from the road surface, the upper surface of the first connecting body 51 is approximately about the road surface. The height of the second connecting body 52 is about 635 [mm] from the road surface, and the upper surface of the third connecting body 53 is about 530 [mm] from the road surface. The upper surface of the fourth connecting body 54 is about 427.5 [mm] from the road surface, and the upper surface of the fifth connecting body 55 is about 325 [mm] from the road surface.

牽引車と被牽引物を連結する連結体に明確な定義や法律上の制限は無いが、一般的と想定される連結体の既存構造として、路面からの高さ350[mm]〜500[mm]の範囲内に設けられ、被牽引物の重量負荷に耐えられるように連結体の断面は15[mm]×50[mm]以上に設定されていると仮定する。この仮定を満たすのは、疑似連結部5における第4連結体54であるから、第4連結体54を検出することができれば、一般的な連結体検知可能条件を満たしていると看做すことができるのである。但し、車両検知器1の稼動時における環境条件や連結体表面のレーザ光反射特性によっては、より厳しい連結体検知可能条件が必要になるかもしれないので、第5連結体55を検出できるように連結体検知可能条件を設定しておけば、車両検知器1による連結体の検知を一層確実なものとすることができる。   There is no clear definition or legal restriction on the connecting body that connects the towed vehicle and the towed object, but the existing structure of the connecting body that is assumed to be general is 350 [mm] to 500 [mm] above the road surface. It is assumed that the cross section of the coupling body is set to 15 [mm] × 50 [mm] or more so as to withstand the weight load of the towed object. Since it is the 4th connection body 54 in the pseudo | simulation connection part 5 that satisfies this assumption, if the 4th connection body 54 can be detected, it will be considered that the general connection body detectable condition is satisfy | filled. Can do it. However, depending on the environmental conditions during operation of the vehicle detector 1 and the laser light reflection characteristics of the surface of the connected body, more severe connected body detection conditions may be required, so that the fifth connected body 55 can be detected. If the connection body detectable condition is set, detection of the connection body by the vehicle detector 1 can be further ensured.

また、自動車2がETCレーンを通過するとき、車両検知器1が設置されたアイランドに近い部位を走行すれば、レーザスキャナ12の送受光部12aから疑似連結部5までの距離は短くなり、車両検知器1が設置されたアイランドから離れた部位を走行すれば、レーザスキャナ12の送受光部12aから疑似連結部5までの距離は長くなる。自動車2の側面から疑似連結部5までの距離は865[mm]と一定であるから、車両検知器1から自動車2の側面までの距離Xを調整することで、疑似連結部5までの離隔距離を任意に設定できる。例えば、X=約635[mm]とすれば離隔距離は約1.5[m]となり、X=約1135[mm]とすれば離隔距離は約2.0[m]、X=約1635[mm]とすれば離隔距離は約2.5[m]、X=約2135[mm]とすれば離隔距離は約3.0[m]、X=約2635[mm]とすれば離隔距離は約3.5[m]、X=約3135[mm]とすれば離隔距離は約4.0[m]、X=約3635[mm]とすれば離隔距離は約4.5[m]となる。   Further, when the vehicle 2 passes through the ETC lane, if the vehicle 2 travels near the island where the vehicle detector 1 is installed, the distance from the light transmitting / receiving unit 12a of the laser scanner 12 to the pseudo-connecting unit 5 is shortened. If the vehicle travels away from the island where the detector 1 is installed, the distance from the light transmitting / receiving unit 12a of the laser scanner 12 to the pseudo-connecting unit 5 increases. Since the distance from the side surface of the automobile 2 to the pseudo connection portion 5 is constant at 865 [mm], the separation distance to the pseudo connection portion 5 can be adjusted by adjusting the distance X from the vehicle detector 1 to the side surface of the automobile 2. Can be set arbitrarily. For example, when X = about 635 [mm], the separation distance is about 1.5 [m], and when X = about 1135 [mm], the separation distance is about 2.0 [m], and X = about 1635 [m]. mm], the separation distance is about 2.5 [m], X = about 2135 [mm], the separation distance is about 3.0 [m], and X = about 2635 [mm], the separation distance is If the distance is about 3.5 [m] and X = about 3135 [mm], the separation distance is about 4.0 [m], and if X = about 3635 [mm], the separation distance is about 4.5 [m]. Become.

図6〜図8は、レーザスキャナ12を諸条件で稼動させて疑似連結部5を検知できるか試験を行った実測結果と、シミュレーションソフトによる同条件での演算結果とを併せて示した図である。なお、全般的に、演算結果よりも実測結果の方が、高い連結体検知能力を発揮できる傾向となっているが、これは、レーザ光の拡がり角[rad]を考慮しない簡易な演算手法を用いたために、遠距離点でのスポット径が大きくなって検知可能性が高まることを除外したためと考えられる。いずれにしても、演算結果と実測結果の差異は、概ね誤差の範囲内であり、実測結果と演算結果には高い相関が認められる。よって、実測結果に基づく疑似連結部5の検出状況は、連結体検知可能条件を探る上で信頼できるものと考える。   FIGS. 6 to 8 are diagrams showing the results of actual measurements performed by operating the laser scanner 12 under various conditions to detect whether or not the pseudo-connection portion 5 can be detected, and the calculation results under the same conditions by simulation software. is there. In general, the actual measurement result tends to exhibit a higher connected body detection capability than the calculation result, but this is a simple calculation method that does not consider the laser beam spread angle [rad]. This is probably because the spot diameter at a long-distance point becomes larger and the detection possibility increases. In any case, the difference between the calculation result and the measurement result is generally within an error range, and a high correlation is recognized between the measurement result and the calculation result. Therefore, it is considered that the detection status of the pseudo-connecting unit 5 based on the actual measurement result is reliable in searching for the connected body detectable condition.

図6は、レーザスキャナ12の設置高さを2.5[m]に設定して、車両検知器1から疑似連結部5までの離隔距離を7段階(例えば、約1.5[m]、約2.0[m]、約2.5[m]、約3.0[m]、約3.5[m]、約4.0[m]、約4.5[m])に変化させ、それぞれ5種類のスキャン周波数(例えば、25[Hz]、35[Hz]、50[Hz]、75[Hz]、100[Hz])でスキャンした結果である。なお、実測に用いたレーザスキャナ12において、スキャン周波数25[Hz]でのステップ角は0.1667[゜]、スキャン周波数35[Hz]でのステップ角は0.25[゜]、スキャン周波数50[Hz]でのステップ角は0.3333[゜]、スキャン周波数75[Hz]でのステップ角は0.5[゜]、スキャン周波数100[Hz]でのステップ角は0.6667[゜]である。このように、レーザスキャナ12はスキャン周波数が低いほど角度分解能が高いので、精細なスキャンが可能となり、スキャン周波数が低いほど疑似連結部5より得られる検知ポイント数が多くなる。   In FIG. 6, the installation height of the laser scanner 12 is set to 2.5 [m], and the separation distance from the vehicle detector 1 to the pseudo-connecting portion 5 is set in seven stages (for example, about 1.5 [m], About 2.0 [m], about 2.5 [m], about 3.0 [m], about 3.5 [m], about 4.0 [m], about 4.5 [m]) These are the results of scanning at five different scan frequencies (for example, 25 [Hz], 35 [Hz], 50 [Hz], 75 [Hz], and 100 [Hz]). In the laser scanner 12 used for actual measurement, the step angle at a scan frequency of 25 [Hz] is 0.1667 [°], the step angle at a scan frequency of 35 [Hz] is 0.25 [°], and a scan frequency of 50 The step angle at [Hz] is 0.3333 [°], the step angle at scan frequency 75 [Hz] is 0.5 [°], and the step angle at scan frequency 100 [Hz] is 0.6667 [°]. It is. As described above, the laser scanner 12 has a higher angular resolution as the scanning frequency is lower, so that fine scanning is possible. The lower the scanning frequency, the larger the number of detection points obtained from the pseudo-connection unit 5.

高さ2.5[m]から疑似連結部5をスキャンした演算結果では、スキャン周波数50[Hz]で、約4[m]離した位置の第4連結体54を検知することが限界で、スキャン周波数75[Hz]および100[Hz]では、第4連結体54を検知できない。しかしながら、高さ2.5[m]から疑似連結部5をスキャンした実測結果では、スキャン周波数75[Hz]で、約3.5[m]離した位置の第4連結体54を検知している。いずれにしても、路面から320[mm]〜720[mm]辺りに配置されている疑似連結部5を検知するのに、レーザスキャナ12の設置高さとして2.5[m]は高すぎると考えられる。   In the calculation result obtained by scanning the pseudo-connection portion 5 from a height of 2.5 [m], it is a limit to detect the fourth connection body 54 at a position separated by about 4 [m] at a scan frequency of 50 [Hz]. The fourth connected body 54 cannot be detected at the scan frequencies 75 [Hz] and 100 [Hz]. However, in the actual measurement result of scanning the pseudo-connection portion 5 from the height of 2.5 [m], the fourth connection body 54 at a position separated by about 3.5 [m] is detected at the scan frequency of 75 [Hz]. Yes. In any case, if the installation height of the laser scanner 12 is 2.5 [m] too high to detect the pseudo-connecting portion 5 arranged around 320 [mm] to 720 [mm] from the road surface. Conceivable.

図7は、レーザスキャナ12の設置高さを1.5[m]にして、車両検知器1から疑似連結部5までの離隔距離を7段階に変化させ、それぞれ5種類のスキャン周波数でスキャンした結果である。高さ1.5[m]から疑似連結部5をスキャンした演算結果では、スキャン周波数75[Hz]で、約3[m]離した位置の第4連結体54を検知することが限界である。しかしながら、高さ1.5[m]から疑似連結部5をスキャンした実測結果では、スキャン周波数75[Hz]で、約3.5[m]離した位置の第4連結体54を検知している。加えて、スキャン周波数75[Hz]であれば、約3.0[m]離した位置の第5連結体55を検知している。したがって、スキャン周波数75[Hz]であれば、約3.0[m]離した位置の第4連結体54を検知できる確実性は一層高いものと考えられる。   In FIG. 7, the installation height of the laser scanner 12 is set to 1.5 [m], and the separation distance from the vehicle detector 1 to the pseudo-connecting portion 5 is changed in seven stages, and scanning is performed at five different scan frequencies. It is a result. In the calculation result obtained by scanning the pseudo-connection portion 5 from a height of 1.5 [m], it is limited to detect the fourth connection body 54 at a position separated by about 3 [m] at a scan frequency of 75 [Hz]. . However, in the actual measurement result of scanning the pseudo-connection portion 5 from the height of 1.5 [m], the fourth connection body 54 at a position separated by about 3.5 [m] is detected at the scan frequency of 75 [Hz]. Yes. In addition, when the scan frequency is 75 [Hz], the fifth connected body 55 at a position separated by about 3.0 [m] is detected. Therefore, if the scanning frequency is 75 [Hz], it is considered that the certainty that the fourth connected body 54 at a position separated by about 3.0 [m] can be detected is higher.

図8は、レーザスキャナ12の設置高さを1.0[m]にして、車両検知器1から疑似連結部5までの離隔距離を7段階に変化させ、それぞれ5種類のスキャン周波数でスキャンした結果である。高さ1.0[m]から疑似連結部5をスキャンした演算結果では、スキャン周波数75[Hz]で、約3[m]離した位置の第4連結体54を検知することが限界である。しかしながら、高さ1.0[m]から疑似連結部5をスキャンした実測結果では、スキャン周波数75[Hz]で、約3.5[m]離した位置の第4連結体54を検知している。加えて、スキャン周波数75[Hz]であれば、約3.0[m]離した位置の第5連結体55を検知している。したがって、スキャン周波数75[Hz]で、約3.0[m]離した位置の第4連結体54を検知できる確実性は一層高いものと考えられる。   In FIG. 8, the installation height of the laser scanner 12 is set to 1.0 [m], and the separation distance from the vehicle detector 1 to the pseudo-connecting portion 5 is changed in seven steps, and scanning is performed at five different scan frequencies. It is a result. In the calculation result obtained by scanning the pseudo-connection portion 5 from a height of 1.0 [m], it is a limit to detect the fourth connection body 54 at a position separated by about 3 [m] at a scan frequency of 75 [Hz]. . However, in the actual measurement result of scanning the pseudo-connection portion 5 from a height of 1.0 [m], the fourth connection body 54 at a position separated by about 3.5 [m] is detected at a scan frequency of 75 [Hz]. Yes. In addition, when the scan frequency is 75 [Hz], the fifth connected body 55 at a position separated by about 3.0 [m] is detected. Therefore, it is considered that the certainty that the fourth connected body 54 at a position separated by about 3.0 [m] can be detected at a scanning frequency of 75 [Hz] is higher.

以上の結果から、レーザスキャナ12の設置高さを1.5[m]〜1.0[m]の範囲で設定した場合は、スキャン周波数75[Hz]で、約3.0[m]離した位置の第1〜第5連結体51〜55(およそ、路面からの高さ300[mm]〜700[mm]の範囲)を検知可能である。   From the above results, when the installation height of the laser scanner 12 is set in the range of 1.5 [m] to 1.0 [m], the scan frequency is 75 [Hz] and the distance is about 3.0 [m]. It is possible to detect the first to fifth connected bodies 51 to 55 (approximately in the range of 300 [mm] to 700 [mm] in height from the road surface) at the positions.

図9は、レーザスキャナ12のスキャン周波数毎に演算および実測した車速[km/h]と車両進行方向分解精度[mm]との関係を示す特性図である。理論上は、スキャン周波数が一定であれば、レーザスキャナ12の設置高さに影響を受けず、車速と車両進行方向分解精度は正比例の関係にあり、車速が上がるほど車両進行方向の分解精度は荒くなる(検出可能な間隔が長くなる)。なお、図9に示す実測結果は、車速5[km/h]、10[km/h]、20[km/h]、30[km/h]、40[km/h]のみで測定を行い、車速0〜40[km/h]で得られた比例直線を車速100[km/h]まで延ばしたので、車速0〜40[km/h]範囲での誤差が強調されてしまい、車速100[km/h]での車両進行方向分解精度のバラツキが顕著になったものと考えられる。そこで、以下では、演算結果の特性線に基づいて考える。   FIG. 9 is a characteristic diagram showing the relationship between the vehicle speed [km / h] calculated and measured for each scan frequency of the laser scanner 12 and the vehicle traveling direction resolution accuracy [mm]. Theoretically, if the scan frequency is constant, the installation speed of the laser scanner 12 is not affected, and the vehicle speed and the vehicle traveling direction resolution accuracy are directly proportional, and the vehicle traveling direction resolution accuracy increases as the vehicle speed increases. It becomes rough (detectable interval becomes long). The actual measurement results shown in FIG. 9 are measured only at a vehicle speed of 5 [km / h], 10 [km / h], 20 [km / h], 30 [km / h], and 40 [km / h]. Since the proportional straight line obtained at the vehicle speed of 0 to 40 [km / h] is extended to the vehicle speed of 100 [km / h], the error in the range of the vehicle speed of 0 to 40 [km / h] is emphasized. It is considered that the variation in the vehicle traveling direction resolution accuracy at [km / h] has become significant. Therefore, in the following, consideration will be given based on the characteristic line of the calculation result.

ETCレーンを自動車2が通る場合、その進入速度は20[km/h]以下に規制されているので、スキャン周波数25[Hz]で稼動させたレーザスキャナ12(車両進行方向分解精度が230[mm]程度)でも、長さ660[mm]の疑似連結部5を検知する上で特に問題は無い。しかしながら、この規制速度を守らずに、40〜50[km/h]で自動車2がETCレーンに進入することもあるため、車速が40〜50[km/h]程度の場合を考えると、スキャン周波数25[Hz]でレーザスキャナ12を稼動させたときの車両進行方向分解精度は440〜560[mm]程度であるから、かろうじて疑似連結部5を1ポイント以上で検知できる可能性が高い。   When the automobile 2 passes through the ETC lane, the approach speed is regulated to 20 [km / h] or less, so the laser scanner 12 operated at a scan frequency of 25 [Hz] (vehicle traveling direction resolution accuracy is 230 [mm]. However, there is no particular problem in detecting the pseudo-connecting portion 5 having a length of 660 [mm]. However, since the automobile 2 may enter the ETC lane at 40 to 50 [km / h] without adhering to the regulated speed, scanning is considered when the vehicle speed is about 40 to 50 [km / h]. Since the vehicle traveling direction resolution accuracy when the laser scanner 12 is operated at a frequency of 25 [Hz] is about 440 to 560 [mm], there is a high possibility that the pseudo-connection portion 5 can barely be detected at one point or more.

一方、フリーフローETCのように、車速を落とさずにガントリーを自動車2が通過する場合、その速度は80〜100[km/h]であるから、スキャン周波数25[Hz]および35[Hz]の車両進行方向分解精度では疑似連結部5の検知は不確実である。しかしながら、スキャン周波数50[Hz]でレーザスキャナ12を稼動させたときの車両進行方向分解精度は450〜550[mm]程度であるから、かろうじて疑似連結部5の検知が可能である。さらに、スキャン周波数75[Hz]での車両進行方向分解精度は300〜370[mm]程度であるから、より確実に疑似連結部5の検知が可能である。なお、スキャン周波数100[Hz]での車両進行方向分解精度は220〜270[mm]程度に高められることから、疑似連結部5を2〜3ポイントで検知できる可能性があるものの、スキャン周波数100[Hz]でレーザスキャナ12を稼動させた場合のステップ角は0.7[゜]近くまで大きくなるため、十分な検知分解能が得られなくなる。   On the other hand, when the automobile 2 passes through the gantry without reducing the vehicle speed as in free flow ETC, the speed is 80 to 100 [km / h], so the scan frequencies of 25 [Hz] and 35 [Hz] The detection of the pseudo-connecting portion 5 is uncertain with respect to the vehicle traveling direction resolution accuracy. However, since the resolution in the vehicle traveling direction when the laser scanner 12 is operated at a scan frequency of 50 [Hz] is about 450 to 550 [mm], the pseudo-connecting portion 5 can be barely detected. Furthermore, since the vehicle traveling direction resolution accuracy at a scan frequency of 75 [Hz] is about 300 to 370 [mm], the pseudo-connecting portion 5 can be detected more reliably. In addition, since the vehicle traveling direction resolution accuracy at a scan frequency of 100 [Hz] is increased to about 220 to 270 [mm], the pseudo connection portion 5 may be detected at 2 to 3 points, but the scan frequency of 100 When the laser scanner 12 is operated at [Hz], the step angle increases to near 0.7 [°], so that sufficient detection resolution cannot be obtained.

以上の結果から、スキャン周波数75[Hz]でレーザスキャナ12を稼動させれば、レーザスキャナ12の設置高さを1000[mm]〜2500[mm]の範囲で任意に設定しても、時速100[km/h]で走行する自動車2に取り付けた第1〜第5連結体51〜55(およそ、路面からの高さ300[mm]〜700[mm]の範囲)を1〜2箇所でスキャン可能となる。   From the above results, if the laser scanner 12 is operated at a scan frequency of 75 [Hz], even if the installation height of the laser scanner 12 is arbitrarily set in the range of 1000 [mm] to 2500 [mm], the speed is 100 Scans 1 to 2 first to fifth connected bodies 51 to 55 (approximately 300 mm to 700 mm in height from the road surface) attached to the automobile 2 traveling at [km / h]. It becomes possible.

上記のような性能のレーザスキャナ12を用いて自動車2と被牽引物とを連結する連結体を検知するための連結体検知可能条件を設定するためには、自動車2がETCレーンへ進入する際の通過位置が変化しても、レーザスキャナ12のスキャン平面内で連結体が通過する可能性の高い範囲を予め設定しておく必要である。すなわち、自動車2と被牽引物を連結する連結体が通過する可能性の高い領域としての連結体検知エリアδを適切に設定しておけば、この連結体検知エリアδの全範囲で連結体を検知可能にする条件を絞り込むことができるからである。連結体検知エリアδの設定例を図10に基づいて説明する。   In order to set a connected body detectable condition for detecting a connected body that connects the automobile 2 and the towed object using the laser scanner 12 having the above-described performance, when the automobile 2 enters the ETC lane, Even if the passage position of the laser beam changes, it is necessary to set in advance a range in which the coupling body is highly likely to pass within the scan plane of the laser scanner 12. That is, if the connected body detection area δ is appropriately set as a region through which the connected body that connects the automobile 2 and the towed object is likely to pass, the connected body is set in the entire range of the connected body detection area δ. This is because the conditions for enabling detection can be narrowed down. A setting example of the connected body detection area δ will be described with reference to FIG.

料金徴収施設であるETCレーンにおいては、トールゲートの建築限界γが図10のように規定されており、この建築限界γに侵入することがないように諸設備が設けられている。例えば、車両検知器1が設置されて車両検知の基準となる基準アイランド31aから、車両検知器1によるスキャン方向(図10においては右側)に隣接する隣接アイランド31bまでの直線距離が約3.0[m]で、その間が車両通過領域となる。また、アイランド31a,31bは、それぞれ車道面から250[mm]の高さに設置することができ、各アイランド31a,31bの車線に臨む側縁から250[mm]まで建築限界γに含まれていることから、車両検知器1はアイランド31aの車線に臨む外側縁から250[mm]だけ内側に離れた位置に設ける。   In the ETC lane, which is a toll collection facility, the building limit γ of the toll gate is defined as shown in FIG. 10, and various facilities are provided so as not to enter the building limit γ. For example, the straight line distance from the reference island 31a, which is the vehicle detection reference when the vehicle detector 1 is installed, to the adjacent island 31b adjacent in the scanning direction (right side in FIG. 10) by the vehicle detector 1 is about 3.0. [M] is the vehicle passage area. The islands 31a and 31b can be installed at a height of 250 [mm] from the road surface, and are included in the construction limit γ from the side edge facing the lane of each island 31a and 31b to 250 [mm]. Therefore, the vehicle detector 1 is provided at a position separated by 250 [mm] from the outer edge facing the lane of the island 31a.

当該位置に設置した車両検知器1によれば、スキャン可能な検知面における建築限界γ内の殆どの領域がスキャン範囲に含まれ、ETC車線を通過する自動車2を確実に検知できる。但し、レーザスキャナ12のスキャン仰角は約73゜であるため、車両検知器1の直上方に検知不能領域が生じることとなる。レーザ光LBが照射されない17゜分の範囲は、建築限界γの上限水平面において約810[mm]となり、大型トラックの高位置にある積荷などがこの検知不能領域にあると、この部分の積荷などを検知することはできない。しかしながら、竿材のように長尺な積荷を3〜4[m]の高い位置に乗せた大型トラック等が通過するのは希なことであるし、積荷の一部が検知不能領域にあったとしても、ETCレーン内における自動車2の進入検知および通過検知に特別支障はないと考えられる。   According to the vehicle detector 1 installed at the position, most of the area within the building limit γ on the scanable detection surface is included in the scan range, and the automobile 2 passing through the ETC lane can be reliably detected. However, since the scan elevation angle of the laser scanner 12 is about 73 °, an undetectable region is formed immediately above the vehicle detector 1. The range of 17 ° where the laser beam LB is not irradiated is about 810 [mm] on the upper limit horizontal plane of the building limit γ, and if a load at a high position of a large truck is in this undetectable region, the load of this portion, etc. Cannot be detected. However, it is rare that a large truck or the like carrying a long load such as dredged material at a high position of 3 to 4 [m] passes, and a part of the load was in an undetectable region. However, it is considered that there is no special trouble in the entry detection and the passage detection of the automobile 2 in the ETC lane.

上述した建築限界γの縛りから、基準アイランド31aと隣接アイランド31bの間に形成される車線幅は約3000[mm]となるので、ほぼ水平な車線を通過する自動車2に取り付けた疑似連結部5は、概ね、路面から鉛直方向へ約315[mm]〜740[mm]の範囲に存在することとなる。したがって、連結体検知エリアδの縦方向範囲を、路面から約300[mm]〜800[mm]に設定すれば、疑似連結部5の下端から上端まで(第1〜第5連結体51〜55全て)を検知可能範囲に含めることができる。   Since the lane width formed between the reference island 31a and the adjacent island 31b is about 3000 [mm] due to the binding of the building limit γ described above, the pseudo-connecting portion 5 attached to the automobile 2 passing through the substantially horizontal lane. Generally exists in the range of about 315 [mm] to 740 [mm] in the vertical direction from the road surface. Accordingly, if the longitudinal range of the connected body detection area δ is set to about 300 [mm] to 800 [mm] from the road surface, the lower end to the upper end of the pseudo-connecting portion 5 (the first to fifth connected bodies 51 to 55). All) can be included in the detectable range.

また、ETCレーン内で、自動車2は車線中央を通過するとは限らず、基準アイランド31a側に寄ったり、隣接アイランド31b側に寄ったりしている可能性がある。そこで、基準アイランド31aに著しく近接して走行する自動車2′の疑似連結部5′と、隣接アイランド31bに著しく近接して走行する自動車2″の疑似連結部5″とを含ませられる連結体検知エリアδの横方向範囲は、車両検知器1から水平方向へ約1100[mm]〜2400[mm]の範囲(基準アイランド31aの外側縁から水平方向へ約850[mm]〜2150[mm]の範囲)に設定すれば十分である。   In the ETC lane, the automobile 2 does not necessarily pass through the center of the lane, and may be close to the reference island 31a side or close to the adjacent island 31b side. Therefore, a connected body detection including a pseudo-connecting portion 5 'of the automobile 2' traveling extremely close to the reference island 31a and a pseudo-connecting portion 5 "of the automobile 2" traveling extremely close to the adjacent island 31b. The horizontal range of the area δ ranges from about 1100 [mm] to 2400 [mm] in the horizontal direction from the vehicle detector 1 (from about 850 [mm] to 2150 [mm] in the horizontal direction from the outer edge of the reference island 31a. (Range) is sufficient.

すなわち、車両検知器1から水平方向へ約1100[mm]離れた鉛直線と、路面から約300[mm]離れた水平線とに接する高さ500[mm]×横幅1300[mm]の範囲を連結体検知エリアδに設定すれば、車線のどこを自動車2が走行していても、疑似連結部5は必ず連結体検知エリアδに含まれることとなる。なお、図10に例示した連結体検知エリアδは、自動車2が走行可能な車線範囲内で、尚且つ第1〜第4連結体51〜55の全てを検知できる範囲として設定した。しかし、実際のETCレーンにおいては、自動車2が極端に基準アイランド31aや隣接アイランド31bに寄って走行する可能性は極めて低いし、標準的な連結体の設置高さも更に絞り込めるので、もっと小さな範囲を連結体検知エリアδに設定しても、実用上は問題ない。   That is, a range of height 500 [mm] × width 1300 [mm] in contact with a vertical line about 1100 [mm] away from the vehicle detector 1 and a horizontal line about 300 [mm] away from the road surface is connected. If the body detection area δ is set, the pseudo-connection portion 5 is always included in the connection body detection area δ no matter where the vehicle 2 is traveling in the lane. 10 is set as a range in which all of the first to fourth connected bodies 51 to 55 can be detected within the lane range in which the automobile 2 can travel. However, in an actual ETC lane, the possibility that the car 2 will travel extremely close to the reference island 31a and the adjacent island 31b is extremely low, and the installation height of the standard connecting body can be further narrowed down. Is set to the connected body detection area δ, there is no practical problem.

次いで、上記のように設定した連結体検知エリアδの全範囲内で連結体(例えば、最も小さい第5連結体55)を検知可能なスキャン条件を設定する。   Next, a scan condition that can detect a connected body (for example, the smallest fifth connected body 55) within the entire range of the connected body detection area δ set as described above is set.

図10のように、アイランド31a上に設置された車両検知器1は、路面から1250[mm]の高さにレーザスキャナ12の送受光部12aを配置したもの(以下、単純に、設置高さ1250[mm]のレーザスキャナ12という)であるが、レーザスキャナ12の設置高さを1250[mm]としたときの検知性能は実測していない。しかしながら、レーザスキャナ12の設置高さを1250[mm]としたときの検知性能は、レーザスキャナ12の設置高さを1500[mm]にした特性(図7を参照)と、レーザスキャナ12の設置高さを1000[mm]にした特性(図8を参照)との中間になるものと推測できる。そこで、以下の説明では、連結体検知エリアδまでの離隔距離が長いために検知性能が劣る図7の実測結果(レーザスキャナ12の設置高さを1500[mm]にした特性)を、レーザスキャナ12の設置高さを1250[mm]としたときの検知性能と仮定して、スキャン条件を検討する。   As shown in FIG. 10, the vehicle detector 1 installed on the island 31 a is configured by arranging the light transmitting / receiving unit 12 a of the laser scanner 12 at a height of 1250 [mm] from the road surface (hereinafter simply referred to as installation height). However, the detection performance when the installation height of the laser scanner 12 is 1250 [mm] is not actually measured. However, the detection performance when the installation height of the laser scanner 12 is 1250 [mm] includes the characteristics (see FIG. 7) that the installation height of the laser scanner 12 is 1500 [mm], and the installation of the laser scanner 12. It can be estimated that the height is intermediate between the characteristic of 1000 [mm] (see FIG. 8). Therefore, in the following description, the actual measurement results (characteristics in which the installation height of the laser scanner 12 is set to 1500 [mm]) in which the detection performance is inferior due to the long separation distance to the connected body detection area δ are shown in FIG. Assuming the detection performance when the installation height of 12 is 1250 [mm], the scanning conditions are examined.

例えば、スキャン周波数を100[Hz]としたレーザスキャナ12の検知特性からすると、レーザスキャナ12の設置高さが1.5[m]の場合、疑似連結部5の中で最も小さい第5連結体55を安定的に検知できるのは、水平方向の距離が約2.5[m]の位置までで、隣接アイランド31bまでの約3.5[m]をカバーできる検知性能は期待できない。しかしながら、連結体検知エリアδの最遠部は、車両検知器1からの水平距離が約2.4[m]であり、スキャン周波数を100[Hz]とした設置高さ1.5[m]のレーザスキャナ12は、水平方向に約2500[mm]離隔させた第5連結体55を検知できるので、かろうじて、連結体検知エリアδの全範囲で連結体の検知が可能と判断できる。   For example, from the detection characteristics of the laser scanner 12 with a scan frequency of 100 [Hz], when the installation height of the laser scanner 12 is 1.5 [m], the fifth connected body that is the smallest among the pseudo-connecting portions 5. 55 can be detected stably up to the position where the distance in the horizontal direction is about 2.5 [m], and the detection performance that can cover about 3.5 [m] to the adjacent island 31b cannot be expected. However, the farthest part of the connected body detection area δ has a horizontal distance of about 2.4 [m] from the vehicle detector 1 and an installation height of 1.5 [m] with a scan frequency of 100 [Hz]. Since the laser scanner 12 can detect the fifth connecting body 55 separated by about 2500 [mm] in the horizontal direction, it can barely be determined that the connecting body can be detected in the entire range of the connecting body detection area δ.

また、スキャン周波数を100[Hz]よりも下げると、レーザ光を照射するステップ角が細かくなるので、スキャン周波数75[Hz],50[Hz],35[Hz],25[Hz]の何れに設定したレーザスキャナ12においても、水平方向に約2500[mm]離隔させた第5連結体55をほぼ確実に検知できる。すなわち、設置高さ1.5[m]のレーザスキャナ12は、スキャン周波数を100[Hz]以下(ステップ角は0.6667[゜]以下)にして動作させれば、連結体検知エリアδの全範囲で安定した連結体の検知が可能である。   Further, when the scan frequency is lowered below 100 [Hz], the step angle for irradiating the laser beam becomes fine, so that the scan frequency is set to 75 [Hz], 50 [Hz], 35 [Hz], or 25 [Hz]. Also in the set laser scanner 12, it is possible to almost certainly detect the fifth coupling body 55 separated by about 2500 [mm] in the horizontal direction. That is, if the laser scanner 12 having an installation height of 1.5 [m] is operated at a scan frequency of 100 [Hz] or less (step angle is 0.6667 [°] or less), the connected body detection area δ Stable connection can be detected in the entire range.

従って、設置高さ1.25[m]のレーザスキャナ12においては、連結体検知エリアδに対して、ステップ角が0.6667[゜]以下となる角度分解能に設定すれば、連結体検知可能条件の一部を満たすことができる。   Therefore, in the laser scanner 12 having an installation height of 1.25 [m], the connected body detection area δ can be detected if the step angle is set to 0.6667 [°] or less with respect to the connected body detection area δ. Some of the conditions can be met.

一方、ETCレーンに入った自動車2は、車線上をゲートに向かって走行してゆくので、自動車2と被牽引物とを連結する連結体がレーザスキャナ12のスキャン面(路面に垂直で自動車2の通過方向と交差する面)を通過する間に1箇所以上で検出される条件についても考慮する必要がある。自動車2がETCレーンを通過するときには、20[km/h]の速度制限があるものの、実際には30〜40[km/h]でETCレーンに進入する車両もあることから、40[km/h]での車両進行方向分解精度の特性(図9を参照)に着目すると、設置高さ1.5[m]のレーザスキャナ12における最も低いスキャン周波数25[Hz]で、380[mm]程度の車両進行方向分解精度がある。すなわち、設置高さ1.5[m]のレーザスキャナ12は、スキャン周波数を25[Hz]以上で動作させれば、長さが500〜600[mm]程度の連結体が40[km/h]以下で連結体検知エリアδを通過するとき、これを1〜2箇所で検知することができる。   On the other hand, since the automobile 2 entering the ETC lane travels on the lane toward the gate, the connecting body that connects the automobile 2 and the to-be-towed object is the scan plane of the laser scanner 12 (the automobile 2 is perpendicular to the road surface). It is also necessary to consider the conditions that are detected at one or more locations while passing through a plane that intersects the passing direction. When the automobile 2 passes through the ETC lane, although there is a speed limit of 20 [km / h], there are actually vehicles that enter the ETC lane at 30 to 40 [km / h]. h]] (see FIG. 9), the lowest scanning frequency of the laser scanner 12 with an installation height of 1.5 [m] is about 380 [mm]. The vehicle traveling direction resolution is accurate. That is, when the laser scanner 12 having an installation height of 1.5 [m] is operated at a scan frequency of 25 [Hz] or higher, a connected body having a length of about 500 to 600 [mm] is 40 [km / h]. In the following, when passing through the connected body detection area δ, this can be detected at one or two places.

従って、設置高さ1.25[m]のレーザスキャナ12においては、自動車2の走行速度40[km/h]以下に対して、スキャン周波数が25[Hz]以上となるように設定すれば、連結体検知可能条件の一部を満たすことができる。   Accordingly, in the laser scanner 12 having an installation height of 1.25 [m], if the scan frequency is set to 25 [Hz] or more with respect to the traveling speed of 40 [km / h] or less of the automobile 2, It is possible to satisfy a part of the connected body detectable condition.

以上の考察より、図6〜図9の諸特性を備えるレーザスキャナ12を設置高さ1.25[m]にして、自動車2の許容上限速度を40[km/h]以下、連結体の想定形状を最も小さく検知し難い第5連結体55(縦10[mm]×幅50[mm]×長さ660[mm])に設定した場合、連結体を連結体検知エリアδにて1箇所以上で検知するための連結体検知可能条件は、スキャン周波数が25[Hz]以上で角度分解能がステップ角0.6667[゜](実測に用いたレーザスキャナ12においては、スキャン周波数100[Hz]相当)以下となる。   From the above considerations, it is assumed that the laser scanner 12 having the characteristics shown in FIGS. 6 to 9 is installed at a height of 1.25 [m], and the allowable upper limit speed of the automobile 2 is 40 [km / h] or less. When the fifth connected body 55 (length 10 [mm] × width 50 [mm] × length 660 [mm]) is set to the smallest and difficult to detect shape, the connected body is one or more in the connected body detection area δ. As for the condition for detecting the connected body for detection, the scan frequency is 25 [Hz] or more and the angular resolution is a step angle of 0.6667 [°] (in the laser scanner 12 used for actual measurement, the scan frequency is equivalent to 100 [Hz]. )

すなわち、図10に示すように、ETCレーン内の基準アイランド31aに設置した車両検知器1と、そのスキャン範囲内にて予め設定した連結体検知エリアδに対しては、レーザスキャナ12を25[Hz]〜100[Hz]のスキャン周波数で稼動させることが連結体検知可能条件となる。また、連結体検知可能条件の中でも、スキャン周波数(車両走行方向のスキャン間隔)と角度分解能とのバランスを考慮すると、レーザスキャナ12のスキャン周波数を70[Hz]或いは50[Hz]とすることが望ましい。無論、図6〜図9の諸特性を備えるレーザスキャナ12よりも高性能のレーザスキャナを用いることができれば、より高い周波数で、より高い角度分解能を得られるので、連結体検知可能条件を満たすスキャン周波数を150[Hz]〜200[Hz]といった短周期での設定が可能となる。逆に、図6〜図9の諸特性を備えるレーザスキャナ12よりも低性能のレーザスキャナを用いなければならない場合、必要十分な角度分解能が得られる低い周波数でレーザスキャナを稼動させたり、自動車2の許容上限速度を低く設定したりすることで、連結体検知可能条件を満たすように調整すれば良い。   That is, as shown in FIG. 10, for the vehicle detector 1 installed on the reference island 31a in the ETC lane and the connected body detection area δ set in advance within the scan range, the laser scanner 12 is 25 [ Operating at a scan frequency of Hz] to 100 [Hz] is a condition for detecting a connected body. Also, considering the balance between the scan frequency (scan interval in the vehicle traveling direction) and the angular resolution among the connected body detectable conditions, the scan frequency of the laser scanner 12 may be set to 70 [Hz] or 50 [Hz]. desirable. Of course, if a higher-performance laser scanner than the laser scanner 12 having the characteristics shown in FIGS. 6 to 9 can be used, a higher angular resolution can be obtained at a higher frequency. The frequency can be set with a short period of 150 [Hz] to 200 [Hz]. On the other hand, when a laser scanner having a lower performance than the laser scanner 12 having the characteristics shown in FIGS. 6 to 9 must be used, the laser scanner is operated at a low frequency at which necessary and sufficient angular resolution can be obtained, It may be adjusted so as to satisfy the connected body detectable condition by setting the permissible upper limit speed to a low value.

上記のように構成した車両検知器1は、検知目的に応じて5台をETCレーンのアイランド31上に設ける。具体的には、図11に示すように、自動車2の進入方向に対して一番手前(上流側)に第1車両進入検知用の車両検知器1−1aを、その下流側に第2車両進入検知用の車両検知器1−1bを、その下流側に通信完了タイミング検知用の車両検知器1−2を、収受ブース32を挟んで更に下流側に第1車両退出検知用の車両検知器1−4aを、発進制御棒33を挟んで更に下流側に第2車両退出検知用の車両検知器1−4bを、それぞれ設けてある。なお、各車両検知器1−1a,1−1b,1−2,1−4a,1−4bから出力される車両進入検知信号および車両通過検知信号は、当該車線の制御を行う車線制御装置に送信される。   The vehicle detector 1 configured as described above is provided on the island 31 of the ETC lane according to the detection purpose. Specifically, as shown in FIG. 11, the vehicle detector 1-1a for detecting the first vehicle entry is located closest to the entry direction of the automobile 2 (upstream side), and the second vehicle is located downstream of the vehicle detector 1-1a. A vehicle detector 1-1b for detecting entry, a vehicle detector 1-2 for detecting communication completion timing on the downstream side, and a vehicle detector for detecting first vehicle exit on the further downstream side of the receiving booth 32. 1-4a is provided with a vehicle detector 1-4b for detecting a second vehicle exit on the further downstream side with the start control rod 33 interposed therebetween. The vehicle approach detection signal and the vehicle passage detection signal output from each of the vehicle detectors 1-1a, 1-1b, 1-2, 1-4a, 1-4b are transmitted to the lane control device that controls the lane. Sent.

自動車2が正規の進入方向より入ると、第1車両進入検知用の車両検知器1−1aのレーザスキャナ12による検知エリアDA1aを最先に通過し、その後、第2車両進入検知用の車両検知器1−1bのレーザスキャナ12による検知エリアDA1bを通過することとなる。従って、第1車両進入検知用の車両検知器1−1aより車両進入検知信号が出力された後に、第2車両進入検知用の車両検知器1−1bより車両進入検知信号が出力されると、車線制御装置では、自動車2が正規の進入方向から入って来たと判定できる。そして、進入車両に搭載されたETC装置との無線通信を開始するための指示を行う。なお、ETCレーン内の車線を自動車2が逆走あるいはバックしている場合、第2車両進入検知用の車両検知器1−1bより車両進入検知信号が出力された後に、第1車両進入検知用の車両検知器1−1aより車両進入検知信号が出力されるので、車線制御装置では、この不適正な走行状態を知ることができる。   When the automobile 2 enters from the normal approach direction, it passes through the detection area DA1a by the laser scanner 12 of the vehicle detector 1-1a for detecting the first vehicle entry first, and then detects the vehicle for detecting the second vehicle entry. It passes through the detection area DA1b by the laser scanner 12 of the device 1-1b. Therefore, after the vehicle entry detection signal is output from the vehicle detector 1-1a for detecting the first vehicle entry, the vehicle entry detection signal is output from the vehicle detector 1-1b for detecting the second vehicle entry. In the lane control device, it can be determined that the automobile 2 has entered from the normal approach direction. And the instruction | indication for starting radio | wireless communication with the ETC apparatus mounted in the approaching vehicle is performed. When the vehicle 2 runs backward or reverses the lane in the ETC lane, the first vehicle entry detection signal is output after the vehicle entry detection signal is output from the second vehicle entry detection vehicle detector 1-1b. Since the vehicle approach detection signal is output from the vehicle detector 1-1a, the lane control device can know the inappropriate traveling state.

また、最も上流側に位置する第1車両進入検知用の車両検知器1−1aのレーザスキャナ12からは、スキャン周期毎に得られる点群データを処理装置(後に詳述)へ送信するものとし、処理装置にて適宜加工することで、連結体の検知等の処理を行う。なお、スキャン周期毎にレーザスキャナ12より得られる点群データは、第1車両進入検知用の車両検知器1−1aから送信するものに限定されず、他の車両検知器1−1b,1−2,1−4a,1−4bから処理装置へ送信するようにしても良い。   The laser scanner 12 of the vehicle detector 1-1a for detecting the first vehicle entry located on the most upstream side transmits point cloud data obtained every scan cycle to a processing device (detailed later). Then, processing such as detection of a connected body is performed by appropriately processing with a processing device. Note that the point cloud data obtained from the laser scanner 12 for each scan cycle is not limited to the data transmitted from the vehicle detector 1-1a for detecting the first vehicle entry, and other vehicle detectors 1-1b, 1- 2, 1-4a, 1-4b may be transmitted to the processing device.

上記のように、自動車2が正規の進入方向からETC車線へ入って来ることで、車載ETC装置との無線通信が開始された後、当該自動車2が通信完了タイミング検知用の車両検知器1−2のレーザスキャナ12による検知エリアDA2を通過すると、車両進入検知信号が車線制御装置へ送信され、これによって、車載ETC装置との無線通信を終了するための指示を行う。そして、ETC車載装置との通信結果が正常であれば、車線制御装置は、通信網を介して上位装置へ料金引き落とし等の指示を行うと共に、発進制御棒33へ開信号を出力し、発進制御棒33を開かせる。なお、ETC車載装置との通信結果が異常であれば、処理装置は発進制御棒33を閉じたままとし、収受ブース32にて係員が対応することとなる。   As described above, after the automobile 2 enters the ETC lane from the normal approach direction, after the wireless communication with the in-vehicle ETC device is started, the automobile 2 detects the vehicle detector 1 for detecting the communication completion timing. When passing the detection area DA2 by the second laser scanner 12, a vehicle approach detection signal is transmitted to the lane control device, thereby giving an instruction to end wireless communication with the in-vehicle ETC device. If the communication result with the ETC in-vehicle device is normal, the lane control device instructs the host device via the communication network, such as a charge reduction, and outputs an open signal to the start control rod 33 to start control. Open the rod 33. If the communication result with the ETC in-vehicle device is abnormal, the processing device keeps the start control rod 33 closed, and an attendant will respond at the collection booth 32.

車線制御装置の指令によって発進制御棒33が開き、自動車2が料金所を出て行くとき、第1車両退出検知用の車両検知器1−4aのレーザスキャナ12による検知エリアDA4aを自動車2が先に通過し、その後、第2車両退出検知用の車両検知器1−4bのレーザスキャナ12による検知エリアDA4bを自動車2が通過することとなる。従って、第1車両退出検知用の車両検知器1−4aより車両進入検知信号が出力された後に、第2車両退出検知用の車両検知器1−4bより車両進入検知信号が出力されると、車線制御装置では、自動車2が正規の退出方向へ出て行ったと判定できる。そして、自動車2が完全にゲートを通過し、第2車両退出検知用の車両検知器1−4bより車両通過検知信号が出力されると、車線制御装置は、発進制御棒33へ閉信号を出力し、発進制御棒33を閉じさせる。   When the start control rod 33 is opened by a command from the lane control device and the automobile 2 leaves the toll gate, the automobile 2 first passes the detection area DA4a by the laser scanner 12 of the vehicle detector 1-4a for detecting the first vehicle exit. After that, the automobile 2 passes through the detection area DA4b by the laser scanner 12 of the vehicle detector 1-4b for detecting the second vehicle exit. Accordingly, after the vehicle entry detection signal is output from the vehicle detector 1-4a for detecting the first vehicle exit, the vehicle entry detection signal is output from the vehicle detector 1-4b for detecting the second vehicle exit. In the lane control device, it can be determined that the automobile 2 has left in the normal exit direction. When the vehicle 2 completely passes through the gate and a vehicle passage detection signal is output from the vehicle detector 1-4b for detecting the second vehicle exit, the lane control device outputs a closing signal to the start control rod 33. Then, the start control rod 33 is closed.

なお、第2車両退出検知用の車両検知器1−4bのレーザスキャナ12による検知エリアDA4bを通過するとき、当該自動車2が被牽引物と連結されていても、連結体検知可能条件を満たすスキャン周波数で稼動していれば、連結体および被牽引物が完全に通過するまで、車両検知器1−4bより車両通過検知信号が出力されることはないので、被牽引物が通過している途中で発進制御棒33が閉じてしまうような不具合を未然に防止できる。加えて、トラックなど自動車2が長尺な積載物を積んでいる場合でも、車体後部よりも後方に突き出ている積載物を車両検知器1−4bが検知していれば、車両通過検知信号が出力されることはないので、車体後部より突き出た長尺な積載物が通過している途中で発進制御棒33が閉じてしまうような不具合を未然に防止できる。   It should be noted that when passing through the detection area DA4b by the laser scanner 12 of the vehicle detector 1-4b for detecting the second vehicle leaving, even if the automobile 2 is connected to the towed object, a scan that satisfies the connected body detection condition is satisfied. If the vehicle is operating at a frequency, the vehicle detector 1-4b does not output a vehicle passage detection signal until the coupled body and the towed object have completely passed. Thus, it is possible to prevent a problem that the start control rod 33 is closed. In addition, even when the automobile 2 such as a truck is loaded with a long load, if the vehicle detector 1-4b detects a load protruding rearward from the rear part of the vehicle body, a vehicle passage detection signal is generated. Since it is not output, it is possible to prevent a problem that the start control rod 33 is closed while a long load projecting from the rear part of the vehicle body is passing.

しかしながら、建築限界γの側方境界縁に沿って、基準アイランド31a上に車両検知器1を設置したため、上述したように、レーザスキャナ12のレーザ光LBの照射範囲外となる検知不能領域が生じてしまう。この検知不能領域を長尺な積載物が通過するような場合、この積載物を車両検知器1では検知できないために、車体後部より突き出た長尺な積載物がゲートを通過している途中で、車両検知器1−4bより車両通過検知信号が出力され、発進制御棒33が閉じてしまう危険性がある。このような事態が起きると、通行車両の積荷を破損させてしまったり、発進制御棒33自体が破損したりする虞があり、大きな問題である。   However, since the vehicle detector 1 is installed on the reference island 31a along the side boundary edge of the building limit γ, as described above, an undetectable region outside the irradiation range of the laser beam LB of the laser scanner 12 occurs. End up. When a long load passes through this undetectable area, the load cannot be detected by the vehicle detector 1, so that the long load protruding from the rear of the vehicle body is passing through the gate. There is a risk that a vehicle passage detection signal is output from the vehicle detector 1-4b and the start control rod 33 is closed. When such a situation occurs, there is a possibility that the load of the passing vehicle may be damaged or the start control rod 33 itself may be damaged, which is a serious problem.

建築限界γ内に検知不能領域を生じさせない解決策として、建築限界γの境界側縁から更に810[mm]程度離隔させた位置に車両検知器1を設置し、検知不能領域を建築限界γの外側へシフトさせることが考えられる。しかしながら、車両検知器1をアイランド31の外側縁から遠ざけると、それだけ連結体検知エリアδにおける連結体検知性能が低下することとなり、連結体検知可能条件の設定に影響が及ぶこととなる。よって、このような解決策は現実的とは言えない。   As a solution not to cause an undetectable area within the building limit γ, the vehicle detector 1 is installed at a position further separated by about 810 [mm] from the boundary edge of the building limit γ, and the undetectable area is set to the building limit γ. It is conceivable to shift outward. However, when the vehicle detector 1 is moved away from the outer edge of the island 31, the connected body detection performance in the connected body detection area δ is lowered, and the setting of the connected body detection possible condition is affected. Thus, such a solution is not practical.

そこで、より現実的な解決策として、第2車両退出検知用の車両検知器1−4bには、全高が1500[mm]の車両検知器1ではなく、図12に示す全高1750[mm]の車両検知器1′を用い、建築限界γ内に生じる検知不能領域を実用上無視できる程度まで狭小化するものとした。すなわち、車両検知器1′は、レーザスキャナ12の送受光部12a中心から光路保護部14の上壁部14cまでの距離を603[mm]に延長して、スキャン範囲αの仰角を約80゜へ広げ、検知不能領域を低減させたのである。これにより、レーザ光LBが照射されない約10゜分の範囲は、建築限界γの上限水平面において約423[mm]に抑えられ、大型トラック等の自動車2が基準アイランド31a側へ極端に寄って進入してきたとしても、大型トラックの高位置にある積荷などがこの検知不能領域に入ってしまう可能性を、実質的に排除できる。   Therefore, as a more realistic solution, the vehicle detector 1-4b for detecting the second vehicle exit is not the vehicle detector 1 with an overall height of 1500 [mm] but an overall height of 1750 [mm] shown in FIG. Using the vehicle detector 1 ', the non-detectable region generated within the building limit γ is narrowed to a practically negligible level. That is, the vehicle detector 1 ′ extends the distance from the center of the light transmitting / receiving unit 12a of the laser scanner 12 to the upper wall portion 14c of the optical path protecting unit 14 to 603 [mm], and the elevation angle of the scanning range α is about 80 °. The undetectable area has been reduced. As a result, the range of about 10 ° where the laser beam LB is not irradiated is suppressed to about 423 [mm] on the upper horizontal plane of the building limit γ, and the automobile 2 such as a large truck approaches the reference island 31a side extremely. Even if it has been done, the possibility that a load at a high position of a large truck enters this undetectable region can be substantially eliminated.

従って、第2車両退出検知用の車両検知器1−4bとして車両検知器1′を用いれば、自動車2の高位置にある長尺な積載物がゲートを通過している途中で、車両検知器1−4bより車両通過検知信号が出力され、発進制御棒33が閉じてしまう危険性を効果的に回避できるのである。   Therefore, if the vehicle detector 1 ′ is used as the vehicle detector 1-4 b for detecting the second vehicle exit, the vehicle detector is in the middle of the long load at the high position of the automobile 2 passing through the gate. The risk that the vehicle passage detection signal is output from 1-4b and the start control rod 33 is closed can be effectively avoided.

なお、検知不能領域を狭小化できるトールタイプの車両検知器1′は、第2車両退出検知用の車両検知器1−4bだけでなく、第1車両進入検知用の車両検知器1−1a、第2車両進入検知用の車両検知器1−1b、通信完了タイミング検知用の車両検知器1−2、第1車両退出検知用の車両検知器1−4aに用いても良いが、トールタイプの車両検知器1′はノーマルタイプの車両検知器1よりも高コストになると共に、全長が1750[mm]もあることから、ETCレーン内の視認性を損なう可能性がある。よって、検知不能領域の狭小化が必要な第2車両退出検知用の車両検知器1−4bに対してのみトールタイプの車両検知器1′を用いることが現実的である。   The toll type vehicle detector 1 ′ that can narrow the undetectable area is not only the vehicle detector 1-4b for detecting the second vehicle exit, but also the vehicle detector 1-1a for detecting the first vehicle entry, Although it may be used for the vehicle detector 1-1b for detecting the second vehicle entry, the vehicle detector 1-2 for detecting the communication completion timing, and the vehicle detector 1-4a for detecting the first vehicle exit, The vehicle detector 1 'is more expensive than the normal type vehicle detector 1 and has a total length of 1750 [mm], which may impair visibility in the ETC lane. Therefore, it is practical to use the toll type vehicle detector 1 ′ only for the vehicle detector 1-4b for detecting the second vehicle exit that needs to narrow the undetectable region.

また、上述した車両検知器1′を更に改変して、レーザスキャナ12の送受光部12a中心から光路保護部14の上壁部14cまでの距離を603[mm]よりも更に延長すれば、スキャン範囲αの仰角を更に90゜へ近づけることができる、検知不能領域を更に低減させることができる。しかし、そのような構造にすると、ハウジング11の長大化によるコスト増と視認性低減という問題が生じるので、スキャン範囲αの仰角を80゜とした車両検知器1′は実用的に優れた構造と言える。   If the above-described vehicle detector 1 ′ is further modified so that the distance from the center of the light transmitting / receiving unit 12a of the laser scanner 12 to the upper wall portion 14c of the optical path protecting unit 14 is further extended from 603 [mm], scanning is performed. It is possible to further reduce the non-detectable region in which the elevation angle of the range α can be made closer to 90 °. However, if such a structure is used, the problem of increased cost and reduced visibility due to the lengthening of the housing 11 arises. Therefore, the vehicle detector 1 'having an elevation angle of the scan range α of 80 ° has a practically excellent structure. I can say that.

なお、車両検知器1における光路保護部14を半球頂部11bまで到達させれば、スキャン範囲αの仰角を90゜超にすることも可能となり、ハウジング11を長大化させることなく検知不能領域を削減できる。しかし、そのような構造にすると、レーザスキャナ12の送受光部12a上方側を上壁部14cで保護できなくなるために、レーザスキャナ12の送受光部12aが雨や雪に直接曝され、雨や雪が機器内部に入り込まないような房水対策が必要になる。加えて、半球頂部11bによって保護されなくなった光路保護部14へ雪や落ち葉等が入り込むため、レーザスキャナ12の送受光部21a上面側に雪や落ち葉等が積もって、レーザ光LBの送受光が阻害される危険性もある。よって、レーザスキャナ12より照射される送信光および検知対象に当たって戻ってくる反射光の光路を保護する光路保護部14に上壁部14cを備える車両検知器1,1′は実用的に優れた構造と言える。   If the optical path protection unit 14 in the vehicle detector 1 reaches the hemispherical apex 11b, the elevation angle of the scan range α can be increased to more than 90 °, and the undetectable area can be reduced without increasing the length of the housing 11. it can. However, with such a structure, the upper side of the light transmitting / receiving part 12a of the laser scanner 12 cannot be protected by the upper wall part 14c, so that the light transmitting / receiving part 12a of the laser scanner 12 is directly exposed to rain or snow. Measures for aqueous humor are necessary to prevent snow from entering the equipment. In addition, since snow, fallen leaves, and the like enter the optical path protection unit 14 that is no longer protected by the hemisphere top 11b, snow, fallen leaves, etc. accumulate on the upper surface side of the light transmission / reception unit 21a of the laser scanner 12 to transmit / receive the laser beam LB. There is also a risk of being disturbed. Therefore, the vehicle detectors 1 and 1 'having the upper wall portion 14c in the optical path protection unit 14 that protects the optical path of the transmitted light irradiated from the laser scanner 12 and the reflected light that returns to the detection target are practically excellent structures. It can be said.

次に、車両検知器1を用いて構築する車両検知システム100の概要を図13に基づき説明する。本実施形態における車両検知システム100は、レーザスキャナ12によって取得した点群データを送出可能な車両検知器1と、点群データを加工処理する処理装置110とで構成するものとした。   Next, an outline of the vehicle detection system 100 constructed using the vehicle detector 1 will be described with reference to FIG. The vehicle detection system 100 according to the present embodiment includes the vehicle detector 1 that can send the point cloud data acquired by the laser scanner 12 and the processing device 110 that processes the point cloud data.

なお、本実施形態における処理装置110は、第1車両進入検知用の車両検知器1−1aからの検知情報(車両検知信号S1aや点群データ)を加工処理するものとしたが、これに限らず、第2車両進入検知用の車両検知器1−1b、通信完了タイミング検知用の車両検知器1−2、第1車両退出検知用の車両検知器1−4a、第2車両退出検知用の車両検知器1−4bに対応させて処理装置110を設けるようにしても良い。或いは、複数の車両検知器1からそれぞれ出力される検知情報を1つの処理装置110が同時並行的に加工処理する構成としても良い。また、処理装置110は、収受ブース32内に設けるようにしても良いし、車線制御装置200と同様にアイランド31上の適所に設けておくようにしても良い。あるいは、車両検知器1のハウジング11内へ処理装置110を収納することで、車両検知システム100を一体構造となるようにしても構わない。   In addition, although the processing apparatus 110 in this embodiment processes the detection information (vehicle detection signal S1a and point cloud data) from the vehicle detector 1-1a for 1st vehicle approach detection, it does not restrict to this. The vehicle detector 1-1b for detecting the second vehicle entry, the vehicle detector 1-2 for detecting the communication completion timing, the vehicle detector 1-4a for detecting the first vehicle exit, and for detecting the second vehicle exit. You may make it provide the processing apparatus 110 corresponding to the vehicle detector 1-4b. Alternatively, the detection information output from each of the plurality of vehicle detectors 1 may be processed in parallel by one processing device 110. Further, the processing device 110 may be provided in the toll booth 32 or may be provided at an appropriate place on the island 31 like the lane control device 200. Alternatively, the processing device 110 may be housed in the housing 11 of the vehicle detector 1 so that the vehicle detection system 100 has an integrated structure.

車両検知器1−1aより出力される点群データは、処理装置110のフィルタ手段111に入力され、ノイズ等の除去処理が行われた後、3D画像生成手段112へ供給される。車両検知器1−1aのレーザスキャナ12よりスキャン周期毎に入力される点群データを時系列に並べてゆくと、レーザビームLBの照射面の三次元形状が得られる(例えば、図14(a)を参照)。   The point cloud data output from the vehicle detector 1-1a is input to the filter unit 111 of the processing device 110, and after noise is removed, the point cloud data is supplied to the 3D image generation unit 112. When the point cloud data input for each scan cycle from the laser scanner 12 of the vehicle detector 1-1a is arranged in time series, the three-dimensional shape of the irradiation surface of the laser beam LB is obtained (for example, FIG. 14 (a)). See).

また、3D画像生成手段112には、アイランド31の適所に設けた速度検知器120より自動車2の速度信号Svが入力されており、レーザスキャナ12のスキャン周期と自動車2の速度から、周期毎の車両移動距離を求めることができるので、3D画像生成手段112は歪みの少ない3D画像を生成できる。なお、車両検知器1に設けた副レーザスキャナ13によって検出した自動車2の速度信号Sv′(図13中、破線で示す)を3D画像生成手段12に供給して、3D画像の生成に用いるようにしても良い。或いは、第2車両進入検知用の車両検知器1−1bからの車両進入検知信号S1bを3D画像生成手段112へ供給し(図13中、破線で示す)、第1車両進入検知用の車両検知器1−1aからの車両検知信号S1aと第2車両進入検知用の車両検知器1−1bとの検知時間差、および車両検知器1−1aと車両検知器1−1bとの離隔距離に基づいて、3D画像生成手段112が自動車2の速度を求め、この簡易的な車両速度を用いて3D画像を生成するようにしても構わない。   Further, the speed signal Sv of the automobile 2 is input to the 3D image generation unit 112 from the speed detector 120 provided at an appropriate position on the island 31. From the scan cycle of the laser scanner 12 and the speed of the automobile 2, the 3D image generation unit 112 Since the vehicle movement distance can be obtained, the 3D image generation unit 112 can generate a 3D image with less distortion. The speed signal Sv ′ (shown by a broken line in FIG. 13) of the automobile 2 detected by the auxiliary laser scanner 13 provided in the vehicle detector 1 is supplied to the 3D image generating means 12 and used for generating a 3D image. Anyway. Alternatively, the vehicle detection signal S1b from the vehicle detector 1-1b for detecting the second vehicle entry is supplied to the 3D image generating means 112 (indicated by a broken line in FIG. 13), and the vehicle detection for detecting the first vehicle entry is performed. Based on the detection time difference between the vehicle detection signal S1a from the detector 1-1a and the vehicle detector 1-1b for detecting the second vehicle entry, and the separation distance between the vehicle detector 1-1a and the vehicle detector 1-1b. The 3D image generation means 112 may obtain the speed of the automobile 2 and generate a 3D image using this simple vehicle speed.

3D画像生成手段112によって得られた自動車2の3D画像は、車両検知手段113および連結体検知手段114に供給され、例えば画像認識技術により自動車2本体や連結体の検知が行われる。   The 3D image of the automobile 2 obtained by the 3D image generation means 112 is supplied to the vehicle detection means 113 and the connection body detection means 114, and for example, the body of the automobile 2 and the connection body are detected by image recognition technology.

車両検知手段113は、3D画像生成手段112より供給された3D画像から、例えば、図14(b)に示すような自動車2の側面を判定画像に設定することで、自動車2の検知を効率的に行うことができる。車両検知手段113では、検知面が連続する一塊の前後に約50[cm]以上の離隔空間(非検知領域)が存在しているとき、検知面が連続する一塊を一台の自動車2として検知できる。車両検知器1−1aによって連結体が点群データとして得られていた場合は勿論、自動車2に積載されて後方や前方に突き出た長尺な積載物が点群データとして得られていた場合でも、検知面が連続する一塊を一台の車両として検知することができる。   The vehicle detection unit 113 efficiently detects the vehicle 2 from the 3D image supplied from the 3D image generation unit 112, for example, by setting the side surface of the vehicle 2 as shown in FIG. Can be done. In the vehicle detection means 113, when a separation space (non-detection area) of about 50 [cm] or more exists before and after the lump with continuous detection surfaces, the lump with continuous detection surfaces is detected as one automobile 2. it can. Of course, even when a connected body is obtained as point cloud data by the vehicle detector 1-1a, even when a long load loaded on the automobile 2 and protruding rearward or forward is obtained as point cloud data. A lump with continuous detection surfaces can be detected as a single vehicle.

図14(b)においては、50[cm]以上の非検知状態が続いた後に自動車2を検知した検知先端P1から、自動車2本体および車体固定具4および疑似連結部5を経て被牽引体6の最後縁である検知後端P2迄を一台の車両として検知することとなる。なお、検知後端P2の後方にも50[cm]以上の非検知状態が続くことで、後方より続く自動車2と明確に区分けできる。また、車両検知手段113は、自動車2を一台検知する毎に、車両検知信号を通過車両特定手段115へ出力する。このとき、車両検知信号として、検知車両の長さ情報を含ませておいても良い。   In FIG. 14B, the to-be-to-be-towed object 6 passes from the detection front end P1 that detects the automobile 2 after the non-detection state of 50 [cm] or more continues, through the automobile 2 body, the vehicle body fixture 4 and the pseudo-connecting portion 5. Up to the detection rear end P2, which is the last edge of the vehicle, is detected as one vehicle. In addition, since the non-detection state of 50 [cm] or more continues behind the detection rear end P2, it can be clearly distinguished from the automobile 2 continuing from the rear. Further, the vehicle detection unit 113 outputs a vehicle detection signal to the passing vehicle specifying unit 115 every time one vehicle 2 is detected. At this time, the length information of the detected vehicle may be included as the vehicle detection signal.

一方、連結体検知手段114は、3D画像生成手段112より供給された3D画像の連結体検知エリアδにて連結体の検知を行うものである。連結体検知エリアδは、連結体検知手段114に予め設定しておく情報であり、検知対象とする連結体の最大サイズから最小サイズについても、連結体検知手段114に予め設定しておく。従って、連結体検知手段114では、連結体検知エリアδ内に、連結体と考えられるサイズの検知物があるか否かを判断することで、連結体の検知が可能となる。連結体検知手段114は、連結体を検知したとき、連結体検知信号を通過車両特定手段115へ出力する。このとき、連結体検知信号として、連結体を検出した位置である連結体検出位置情報(例えば、検知先端P1から連結体検出位置までの長さ)を含ませておいても良い。   On the other hand, the connected body detection means 114 detects the connected body in the connected body detection area δ of the 3D image supplied from the 3D image generation means 112. The connected body detection area δ is information set in advance in the connected body detection unit 114, and the maximum size to the minimum size of the connected body to be detected are also set in the connected body detection unit 114 in advance. Therefore, the connected body detection means 114 can detect the connected body by determining whether or not there is a detected object of a size considered to be a connected body in the connected body detection area δ. The connected body detection means 114 outputs a connected body detection signal to the passing vehicle specifying means 115 when detecting the connected body. At this time, the connection body detection position information (for example, the length from the detection tip P1 to the connection body detection position) may be included as the connection body detection signal.

なお、竿材のような長尺の積載物がたまたま連結体検知エリアδ内にあると、連結体検知手段114は、これを連結体として誤検知してしまう可能性がある。しかしながら、通過車両特定手段115において、車両検知信号に含まれる検知車両の長さと、連結体検知信号に含まれる連結体検出位置情報とから、連結体の後方に被牽引物と思われる大きさの非検知物が存在するか、そのような非検知物は存在しないかで、牽引車と被牽引物から成る車両か、長尺な積載物のある単一車両かを判別するようにすれば、適切な通過車両の特定が可能である。   Note that if a long load such as a saddle material happens to be in the connected body detection area δ, the connected body detecting means 114 may erroneously detect this as a connected body. However, in the passing vehicle specifying means 115, the length of the detected vehicle included in the vehicle detection signal and the connection body detection position information included in the connection body detection signal have a size that is considered to be a towed object behind the connection body. If there is a non-detected object or no such non-detected object, it can be determined whether the vehicle consists of a tow vehicle and a towed object, or a single vehicle with a long load. Appropriate passing vehicles can be identified.

或いは、連結体検知手段114が、連結体と考えられるサイズの検知物の後方に、連結体検知エリアδを超える大きな検知物(被牽引物)が存在するか否か判断し、連結体と考えられる検知物の後方に大きな検知物が存在する場合に限って、連結体の検知と判断するようにしても良い。かくすれば、竿材のように後方へ延びている積載物の後方には被牽引物が無いことから、連結体検知手段114が、後方に延びる長尺な積載物を連結体と誤検知してしまう不具合を低減でき、連結体検知手段114の検知機能に対する信頼性を高めることができる。   Alternatively, the connected body detection means 114 determines whether there is a large detected object (towed object) exceeding the connected body detection area δ behind the detected object of a size considered to be a connected body, and considers it as a connected body. Only when a large detected object is present behind the detected object, it may be determined that a connected body is detected. In this way, since there is no towed object behind the load that extends rearward like the dredged material, the connected body detection means 114 erroneously detects a long load extending rearward as a connected body. Can be reduced, and the reliability of the detection function of the connected body detection means 114 can be improved.

上記のように、車両検知手段113より出力される車両検知信号と、連結体検知手段114より出力される連結体検知信号を受け取る通過車両特定手段115は、ETCレーンを通過する自動車2に対して、単独の車両か、牽引車と被牽引物から成る車両かを特定し、その通過車両情報を車線制御装置200へ送信する。   As described above, the passing vehicle specifying means 115 that receives the vehicle detection signal output from the vehicle detection means 113 and the connection body detection signal output from the connection body detection means 114 is for the automobile 2 that passes through the ETC lane. Then, it is specified whether the vehicle is a single vehicle or a vehicle composed of a tow vehicle and a towed object, and the passing vehicle information is transmitted to the lane control device 200.

車線制御装置200は、ETC車線を通過する自動車2に搭載されたETC装置との通信制御を行う装置であるから、要所における自動車2の進入タイミングおよび通過タイミングを知るため、第1車両進入検知用の車両検知器1−1aから出力される検知信号S1a、第2車両進入検知用の車両検知器1−1bから出力される検知信号S1b、通信完了タイミング検知用の車両検知器1−2から出力される検知信号S2、第1車両退出検知用の車両検知器1−4aから出力される検知信号S4a、第2車両退出検知用の車両検知器1−4bから出力される検知信号S4bを受け取る。   Since the lane control device 200 is a device that performs communication control with the ETC device mounted on the automobile 2 that passes through the ETC lane, in order to know the entry timing and the passage timing of the automobile 2 at key points, the first vehicle entry detection is performed. From the detection signal S1a output from the vehicle detector 1-1a for detection, the detection signal S1b output from the vehicle detector 1-1b for detection of the second vehicle entry, and from the vehicle detector 1-2 for detection of communication completion timing The detection signal S2 output, the detection signal S4a output from the vehicle detector 1-4a for detecting the first vehicle exit, and the detection signal S4b output from the vehicle detector 1-4b for the second vehicle exit detection are received. .

なお、本実施形態の車両検知システム100においては、第1車両進入検知用の車両検知器1−1aからの検知信号S1aを車両制御装置200へ直接入力させず、処理装置110を介して供給するものとした。すなわち、処理装置110に検知出力切替手段116を設けておくことで、生の検知信号S1a、フィルタ手段111によってノイズ除去された信頼性の高い検知信号、車両検知手段113から出力される車両検知信号の何れかを、任意に切り替えて車両制御装置200へ供給できる。このように、どの検知信号を車線制御装置200へ供給するかを検知出力切替手段116に予め設定しておくことで、目的に応じた検知信号を処理装置110から車線制御装置200へ出力できるので、自由度の高いものとなる。   In the vehicle detection system 100 of the present embodiment, the detection signal S1a from the vehicle detector 1-1a for detecting the first vehicle entry is not directly input to the vehicle control device 200 but supplied via the processing device 110. It was supposed to be. That is, by providing the detection output switching means 116 in the processing device 110, the raw detection signal S1a, the highly reliable detection signal from which noise is removed by the filter means 111, and the vehicle detection signal output from the vehicle detection means 113 are provided. Any of these can be switched arbitrarily and supplied to the vehicle control device 200. In this way, by setting in advance the detection output switching means 116 which detection signal is supplied to the lane control device 200, a detection signal according to the purpose can be output from the processing device 110 to the lane control device 200. , It will be highly flexible.

また、車両検知手段113からの車両検知信号および連結体検知手段114からの連結体検知信号を受け取った通過車両特定手段115では、通過車両が単独の車両か、牽引車と被連結物から成る車両かを特定することができるものの、通過車両の車種区分(軽自動車等、普通車、中型車、大型車、特大型車)や軸数といった詳細情報までは特定できない。通過車両のより詳細な情報を処理装置110内で得られるようにするため、処理装置110に、特徴点抽出手段117と、車種特定手段118と、車種判別情報記憶手段119を設けておいても良い(図13中、破線で示す)。   In the passing vehicle specifying means 115 that has received the vehicle detection signal from the vehicle detection means 113 and the connection body detection signal from the connection body detection means 114, the passing vehicle is a single vehicle or a vehicle composed of a tow vehicle and a connected object. However, detailed information such as the vehicle type classification of the passing vehicle (light cars, ordinary cars, medium-sized cars, large-sized cars, extra-large-sized cars) and the number of axles cannot be specified. In order to obtain more detailed information on the passing vehicle in the processing device 110, the processing device 110 may be provided with a feature point extraction means 117, a vehicle type identification means 118, and a vehicle type discrimination information storage means 119. Good (indicated by a broken line in FIG. 13).

例えば、3D画像生成手段112により生成された車両の3D画像を特徴点抽出手段117へ送信するようにし、この特徴点抽出手段117では、車種を特定するために重要と思われる箇所から特徴点を抽出して車種特定手段118へ送信する。なお、特徴点抽出手段117が、連結体検知エリアδ内で車体後部より後方へ延出する棒状体の特徴点を抽出しておけば、車種特定手段118にて連結体の有無を特徴点から判断できる。   For example, a 3D image of the vehicle generated by the 3D image generation unit 112 is transmitted to the feature point extraction unit 117, and the feature point extraction unit 117 extracts a feature point from a place considered to be important for specifying the vehicle type. Extracted and transmitted to the vehicle type specifying means 118. If the feature point extracting means 117 extracts the feature point of the rod-like body extending backward from the rear part of the vehicle body in the connected body detection area δ, the vehicle type specifying means 118 determines whether the connected body exists from the feature point. I can judge.

車種特定手段118は、特徴点抽出手段117からの抽出特徴点に基づいて、連結体の有無から被牽引物の有無を判断し、単独の車両であれば、当該車両の特徴点群と、車種判別情報記憶手段119より読み出した車種判別情報として記憶されている特徴点群との類似性から、当該車両の車種を特定する。また、連結体が存在すると判断した場合、車種特定手段118は、連結体の前側にある牽引車の特徴点群と、車種判別情報記憶手段119より読み出した車種判別情報として記憶されている特徴点群との類似性から、当該牽引車の車種を特定できる。車種の特定に際しては、車体下部に丸く現れるタイヤの数によって、当該車両の軸数を特定することもできる。また、特定された車種の車体よりも後方あるいは前方に延出する積載物がある場合、これらも特徴点として抽出しておけば、長尺積載物のある車両として特定することができる。   Based on the feature points extracted from the feature point extraction unit 117, the vehicle type identification unit 118 determines the presence or absence of the towed object from the presence or absence of the connected body. From the similarity with the feature point group stored as the vehicle type discrimination information read from the discrimination information storage unit 119, the vehicle type of the vehicle is specified. Further, when it is determined that the connected body exists, the vehicle type specifying unit 118 stores the feature points of the towing vehicle on the front side of the connected body and the feature points stored as the vehicle type determination information read from the vehicle type determination information storage unit 119. The model of the tow vehicle can be identified from the similarity with the group. When specifying the vehicle type, the number of axles of the vehicle can also be specified by the number of tires that appear round in the lower part of the vehicle body. Further, if there is a load that extends rearward or forward from the vehicle body of the specified vehicle type, if these are extracted as feature points, it can be specified as a vehicle having a long load.

上記のようにして車種特定手段118が特定した通過車両の詳細情報は、通過車両特定手段115を介して車線制御装置200に送信される。例えば、通過車両に搭載されているETC端末装置より取得した情報と、処理装置110の車種特定手段118が特定した通過車両の詳細情報とを車線制御装置200が比較して、不一致であった場合には、ETC端末装置に設定されている車両情報が誤っている可能性があるので、ETCシステムによる通行料金の自動徴収を行わないと共に、発進制御棒33を開かないで自動車2を一旦停止させ、収受ブース32での係員による対応に切り替えることができる。すなわち、処理装置110によって通過車両の詳細情報を特定できるようにすれば、通過する自動車2に課せられる本来の料金と異なる料金をETCシステムで自動徴収してしまう不具合を低減でき、システムとしての信頼性を高めることができる。   The detailed information of the passing vehicle specified by the vehicle type specifying unit 118 as described above is transmitted to the lane control device 200 via the passing vehicle specifying unit 115. For example, when the lane control device 200 compares the information acquired from the ETC terminal device mounted on the passing vehicle with the detailed information of the passing vehicle specified by the vehicle type specifying means 118 of the processing device 110, and there is a mismatch. Since there is a possibility that the vehicle information set in the ETC terminal device is incorrect, the ETC system does not automatically collect tolls and stops the vehicle 2 without opening the start control rod 33. It is possible to switch to a response by a staff member at the collection booth 32. In other words, if the processing device 110 can specify the detailed information of the passing vehicle, it is possible to reduce the trouble that the ETC system automatically collects a charge different from the original charge imposed on the passing car 2 and the reliability as a system. Can increase the sex.

以上、本発明に係る車両検知器および車両検知システムの実施形態を添付図面に基づいて説明したが、本発明は、これらの実施形態に限定されるものではなく、特許請求の範囲に記載の構成を変更しない範囲で、公知既存の等価な技術手段を転用することにより実施しても構わない。   As mentioned above, although the embodiment of the vehicle detector and the vehicle detection system according to the present invention has been described based on the accompanying drawings, the present invention is not limited to these embodiments, and the configuration described in the claims As long as the above is not changed, it may be carried out by diverting known equivalent technical means.

1 車両検知器
11 ハウジング
12 レーザスキャナ
12a 送受光部
14 スキャンガイド凹部
2 自動車
100 車両検知システム
110 処理装置
DESCRIPTION OF SYMBOLS 1 Vehicle detector 11 Housing 12 Laser scanner 12a Transmission / reception part 14 Scan guide recessed part 2 Automobile 100 Vehicle detection system 110 Processing apparatus

Claims (6)

車両が通過可能な車両通過領域の一側方に設置されるハウジングと、
前記ハウジング内に収納され、送受光部より照射するレーザ光による二次元面の走査・検知が可能なスキャン範囲が車両の進行方向と交差する平面内に設定され、前記スキャン範囲内にあるレーザ光反射物からの反射光を送受光部で検知した検知点からなる点群データをスキャン周期毎に取得するレーザスキャナと、
前記ハウジングに形成され、前記レーザスキャナのスキャン範囲における照射光および反射光の光路を阻害しない光路保護部と、
を備え、
前記レーザスキャナのスキャン範囲内には、車両に被牽引物を連結する連結体が通過する可能性の高い領域として、連結体検知エリアを予め設定し、
前記車両通過領域を通過する車両に連結体が設けられている場合、前記連結体検知エリアにて連結体を1箇所以上で検知可能なように、車両の許容上限速度および連結体の想定形状に応じて定めたスキャン周波数と角度分解能を含む連結体検知可能条件にて、前記レーザスキャナを稼動させるようにしたことを特徴とする車両検知器。
A housing installed on one side of a vehicle passage area through which the vehicle can pass;
A laser beam housed in the housing and capable of scanning / detecting a two-dimensional surface with a laser beam emitted from a light transmitting / receiving unit is set in a plane intersecting the traveling direction of the vehicle, and the laser beam is within the scan range. A laser scanner for acquiring point cloud data consisting of detection points detected by the light transmitting / receiving unit at a scanning period, and reflected light from a reflecting object;
An optical path protection unit that is formed in the housing and does not obstruct an optical path of irradiation light and reflected light in a scanning range of the laser scanner;
With
Within the scan range of the laser scanner, a connected body detection area is set in advance as an area where a connected body that connects a to-be-drawn object to the vehicle is likely to pass through,
When a connecting body is provided in the vehicle passing through the vehicle passage region, the allowable upper limit speed of the vehicle and the assumed shape of the connecting body are set so that the connecting body can be detected at one or more places in the connecting body detection area. A vehicle detector characterized in that the laser scanner is operated under conditions that allow detection of a connected body including a scan frequency and an angular resolution determined accordingly.
前記レーザスキャナのスキャン範囲内で常時は障害物を検知できない検知空間に障害物を検知していない障害物無検知状態から、前記検知空間に障害物を検知した障害物検知状態に変わったタイミングで、車両進入検知信号を出力するようにしたことを特徴とする請求項1に記載の車両検知器。   At a timing when the obstacle detection state in which no obstacle is detected in the detection space in which the obstacle is not normally detected within the scanning range of the laser scanner changes to the obstacle detection state in which the obstacle is detected in the detection space. 2. The vehicle detector according to claim 1, wherein a vehicle approach detection signal is output. 前記レーザスキャナのスキャン範囲内で常時は障害物を検知できない検知空間に障害物を検知している障害物検知状態から、前記検知空間に障害物を検知しなくなった障害物非検知状態に変わったタイミングで、車両通過検知信号を出力するようにしたことを特徴とする請求項1又は請求項2に記載の車両検知器。   The obstacle detection state in which the obstacle is detected in the detection space where the obstacle cannot be detected at all times within the scanning range of the laser scanner has changed to the obstacle non-detection state in which the obstacle is no longer detected in the detection space. The vehicle detector according to claim 1 or 2, wherein a vehicle passage detection signal is output at a timing. 前記ハウジングは、設置面に垂直な方向へ延出する円筒部と、該円筒部の円形上縁に連なる半球頂部とで構成し、前記円筒部の周面適所から窪む凹室構造でレーザスキャナの送受光部を臨ませるスキャンガイド凹部を備えることを特徴とする請求項1〜請求項3の何れか1項に記載の車両検知器。   The housing includes a cylindrical portion extending in a direction perpendicular to the installation surface and a hemispherical top portion connected to a circular upper edge of the cylindrical portion, and a laser scanner having a concave chamber structure that is recessed from an appropriate place on the circumferential surface of the cylindrical portion. The vehicle detector according to any one of claims 1 to 3, further comprising a scan guide concave portion facing the light transmitting / receiving portion. 前記レーザスキャナの送受光部は、前記車両通過領域近辺からの泥はね等が付着して汚損される可能性が高い範囲として予め定めた汚損警戒範囲よりも高位置へ設けるようにしたことを特徴とする請求項1〜請求項4の何れか1項に記載の車両検知器。   The transmitter / receiver of the laser scanner is provided at a position higher than a predetermined contamination warning range as a range in which mud splashes from the vicinity of the vehicle passage region are likely to be adhered and contaminated. The vehicle detector according to any one of claims 1 to 4, characterized in that: 前記請求項1〜請求項5の何れか1項に記載の車両検知器と、該車両検知器からの点群データを受信して加工処理する処理装置と、から成る車両検知システムであって、
前記処理装置は、前記点群データを時系列に配置して3D画像を生成し、通過車種を特定すると共に、3D画像にて連結体を検知した場合には、連結体の前後を含めて一台の車両通過と判定するようにしたことを特徴とする車両検知システム。
A vehicle detection system comprising the vehicle detector according to any one of claims 1 to 5 and a processing device that receives and processes point cloud data from the vehicle detector,
The processing device generates a 3D image by arranging the point cloud data in time series, specifies a passing vehicle type, and when detecting a connected body in the 3D image, includes the front and back of the connected body. A vehicle detection system characterized in that it is determined that one vehicle has passed.
JP2018012490A 2018-01-29 2018-01-29 Vehicle detection device and vehicle detection system Pending JP2019133241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012490A JP2019133241A (en) 2018-01-29 2018-01-29 Vehicle detection device and vehicle detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012490A JP2019133241A (en) 2018-01-29 2018-01-29 Vehicle detection device and vehicle detection system

Publications (1)

Publication Number Publication Date
JP2019133241A true JP2019133241A (en) 2019-08-08

Family

ID=67547457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012490A Pending JP2019133241A (en) 2018-01-29 2018-01-29 Vehicle detection device and vehicle detection system

Country Status (1)

Country Link
JP (1) JP2019133241A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325730A (en) * 2021-11-17 2022-04-12 杭州宏景智驾科技有限公司 Large-field-of-view remote laser radar testing method
CN115042834A (en) * 2022-06-30 2022-09-13 株洲时代电子技术有限公司 Railway clearance detection device, line detection vehicle comprising same and operation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325730A (en) * 2021-11-17 2022-04-12 杭州宏景智驾科技有限公司 Large-field-of-view remote laser radar testing method
CN115042834A (en) * 2022-06-30 2022-09-13 株洲时代电子技术有限公司 Railway clearance detection device, line detection vehicle comprising same and operation method

Similar Documents

Publication Publication Date Title
CN108490447B (en) Anti-pinch system and method for platform door and train
RU2396512C2 (en) Method and system for inspecting moving object through radiation imaging
CN109298415A (en) A kind of track and road barricade object detecting method
US10151712B2 (en) Vehicle-carried quick inspection system
US8547530B2 (en) System and method to detect foreign objects on a surface
US10823844B2 (en) Method and apparatus for analysis of a vehicle environment, and vehicle equipped with such a device
JP7478157B2 (en) Airport parking equipment
US20230260393A1 (en) Traffic management device, traffic management system, traffic information system, starting module that can be retrofitted and method for managing traffic
KR20100111662A (en) Device for detecting a vehicle on an airport runway
US5446291A (en) Method for classifying vehicles passing a predetermined waypoint
CN108482427A (en) A kind of contactless rail vehicle obstacle detection system and method for controlling security
CN110471085A (en) A kind of rail detection system
CN108313088A (en) A kind of contactless rail vehicle obstacle detection system
JPH11328595A (en) Vehicle having object detector
JP4544698B2 (en) Vehicle type identification method and apparatus
CN109910955A (en) Rail transit tunnel obstacle detection system and method based on transponder information transmission
AU2017442202A1 (en) Rain filtering techniques for autonomous vehicle
AU2010257278B2 (en) Method and arrangement for the detection of traffic infringements in a traffic light zone
JP2019133241A (en) Vehicle detection device and vehicle detection system
JPH1063991A (en) Vehicle tracking device and traffic control system using the device
CN108922245A (en) A kind of bad section method for early warning of highway sighting distance and system
CN106772419B (en) Vehicle positioning method and device
CN101401138A (en) Improved aircraft docking system
JP5901301B2 (en) Vehicle type identification system
JP6777515B2 (en) Vehicle type discrimination device, vehicle type discrimination method and program