[go: up one dir, main page]

JP2019086208A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2019086208A
JP2019086208A JP2017214410A JP2017214410A JP2019086208A JP 2019086208 A JP2019086208 A JP 2019086208A JP 2017214410 A JP2017214410 A JP 2017214410A JP 2017214410 A JP2017214410 A JP 2017214410A JP 2019086208 A JP2019086208 A JP 2019086208A
Authority
JP
Japan
Prior art keywords
pressure side
low pressure
side pipe
high pressure
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017214410A
Other languages
Japanese (ja)
Inventor
一貴 小石原
Kazutaka Koishihara
一貴 小石原
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
季セン 徐
Ji Sen Xu
季セン 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017214410A priority Critical patent/JP2019086208A/en
Publication of JP2019086208A publication Critical patent/JP2019086208A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a refrigeration cycle device which improves heat exchange efficiency of an internal heat exchanger during a heating operation while suppressing power consumption during a defrosting operation by reducing pressure loss of a high pressure side refrigerant, and which can perform an operation with high energy saving properties.SOLUTION: A refrigeration cycle device includes an internal heat exchanger 13 in which a high pressure side refrigerant supplied to decompression means 14 from a heat radiator 12 and a low pressure side refrigerant which has absorbed heat in an evaporator 15 exchange heat. A high pressure side pipe 1 in which the high pressure side refrigerant flows and a low pressure side pipe 2 in which the low pressure side refrigerant flows are closely attached with each other, and the refrigeration cycle device includes at least one or more bent parts in which the relationship between a bending radius RH of the high pressure side pipe 1 and a bending radius RL of the low pressure side pipe is RH<RL. Thereby, the heat exchange amount in the internal heat exchanger 13 is improved, energy consumption efficiency during a heating operation is improved, and compressor power during a defrosting operation can be suppressed. Thus, energy saving properties of the refrigeration cycle device can be improved.SELECTED DRAWING: Figure 1

Description

本発明は、内部熱交換器を備えた冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus provided with an internal heat exchanger.

従来、この種の冷凍サイクル装置に内部熱交換器が設けられている(例えば、特許文献1参照)。   Conventionally, an internal heat exchanger is provided in this type of refrigeration cycle apparatus (see, for example, Patent Document 1).

図8(a)(b)に示すように、蒸発器から流出した低圧側冷媒が流れる低圧側配管102と、放熱器から流出した高圧側冷媒が流れる高圧側配管101とを備え、前記低圧側冷媒と前記高圧側冷媒とが熱交換できるよう一体化したことを特徴としている。   As shown in FIGS. 8 (a) and 8 (b), the low pressure side pipe 102 in which the low pressure side refrigerant flowing out of the evaporator flows and the high pressure side pipe 101 in which the high pressure side refrigerant flowing out of the radiator flows It is characterized in that the refrigerant and the high pressure side refrigerant are integrated so as to be able to exchange heat.

特開2014−181870号公報JP, 2014-181870, A

しかしながら、特許文献1の内部熱交換器100では、高圧側配管101の内径を低圧側配管102の内径よりも小さくするとともに、高圧側配管101を内面溝付き管とすることで、内部熱交換器100の熱交換効率を高めているものの、前記構成のため、高圧側流路での圧力損失が大きくなりやすい。   However, in the internal heat exchanger 100 of Patent Document 1, the internal heat exchanger is configured by making the internal diameter of the high pressure side pipe 101 smaller than the internal diameter of the low pressure side pipe 102 and making the high pressure side pipe 101 an internally grooved pipe. Although the heat exchange efficiency of 100 is enhanced, the pressure loss in the high pressure side flow path tends to be large due to the above configuration.

特に、冷媒を圧縮機11、放熱器12、減圧手段14、蒸発器15の順で環状に流し、蒸発器15の霜を溶かす順サイクルでの除霜運転においては、高圧側配管101での圧力損失が大きくなると、高圧側と低圧側との差圧が拡大し、圧縮機11の消費電力が大きくなるうえ、蒸発圧力も低下するので、除霜運転時間の増加を招き、除霜運転時の省エネルギー性が低下するという課題を有していた。   In particular, in the defrosting operation in a forward cycle in which the refrigerant is annularly flowed in the order of the compressor 11, the radiator 12, the pressure reducing means 14, and the evaporator 15, the pressure in the high pressure side pipe 101 As the loss increases, the differential pressure between the high pressure side and the low pressure side increases, and the power consumption of the compressor 11 increases, and the evaporation pressure also decreases, leading to an increase in the defrosting operation time, and the defrosting operation time It had the subject that energy saving performance fell.

また、内部熱交換器100の低圧側配管102には、蒸発器15で吸熱し、ガス化した冷媒と潤滑油が流入する。ここで、潤滑油として難溶性オイルを用いると、低圧側領域では二酸化炭素の溶解度が低下し、冷媒と潤滑油が分離する現象が生じる。   Further, refrigerant and lubricating oil, which are absorbed by the evaporator 15 and gasified, flow into the low pressure side pipe 102 of the internal heat exchanger 100. Here, when a poorly soluble oil is used as the lubricating oil, the solubility of carbon dioxide decreases in the low pressure side region, and a phenomenon occurs in which the refrigerant and the lubricating oil are separated.

これにより、従来の内部熱交換器100の構成では、低圧側配管101の伝熱面に潤滑油が付着してしまうので、潤滑油が熱交換を阻害し、熱交換効率が低下してしまうという課題を有していた。   Thereby, in the configuration of the conventional internal heat exchanger 100, since the lubricating oil adheres to the heat transfer surface of the low pressure side pipe 101, the lubricating oil inhibits the heat exchange and the heat exchange efficiency is lowered. I had a problem.

本発明は、上記従来の課題を解決するものであり、高圧側冷媒の圧力損失低減による除霜運転時消費電力を抑制しつつ、加熱運転中の内部熱交換器の熱交換効率を向上させ、省エネルギー性の高い運転を行うことができる冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems and improves the heat exchange efficiency of the internal heat exchanger during heating operation while suppressing power consumption during defrosting operation by reducing the pressure loss of the high-pressure side refrigerant, An object of the present invention is to provide a refrigeration cycle apparatus capable of performing an operation with high energy saving performance.

上記目的を達成するために、本発明の冷凍サイクルは、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とが熱交換する内部熱交換器と、を備え、前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に冷媒を流して、前記蒸発器の霜を融かす除霜運転モードを有し、前記内部熱交換器は、高圧側冷媒が流れる高圧側配管と低圧側冷媒が流れる低圧側配管とが互いに密着しており、前記高圧側配管および前記低圧側配管には、少なくとも一か所以上の曲げ部が設けられており、高圧側配管の曲げ半径をRH、低圧側配管の曲げ半径をRLとしたとき、RH<RLであることを特徴とするものである。   In order to achieve the above object, the refrigeration cycle of the present invention comprises a compressor, a radiator, a pressure reducing means, an evaporator, and a high pressure side refrigerant supplied from the radiator to the pressure reducing means and the evaporator And an internal heat exchanger that exchanges heat with the low pressure side refrigerant absorbed in the heat source, and the refrigerant is allowed to flow in the order of the compressor, the radiator, the pressure reducing means, and the evaporator to melt the frost of the evaporator In the internal heat exchanger, the high pressure side pipe in which the high pressure side refrigerant flows and the low pressure side pipe in which the low pressure side refrigerant flows are in close contact with each other, and the high pressure side pipe and the low pressure side pipe Is characterized in that at least one or more bent portions are provided, and RH <RL when the bending radius of the high pressure side piping is RH and the bending radius of the low pressure side piping is RL. is there.

これによって、高圧側冷媒の圧力損失が減少し、除霜時の高圧側と低圧側との差圧が縮小するので、圧縮機動力を低減できる。そのうえ、蒸発圧力が上昇し、除霜時間が短縮できるので、除霜運転時の機器の省エネルギー性が向上する。   As a result, the pressure loss of the high pressure side refrigerant is reduced, and the differential pressure between the high pressure side and the low pressure side at the time of defrosting is reduced, so that the compressor power can be reduced. Moreover, the evaporation pressure is increased, and the defrosting time can be shortened, so that the energy saving property of the equipment at the time of the defrosting operation is improved.

加えて、低圧側配管の伝熱面に付着する潤滑油の量が減少するので、曲げ部での熱交換量が増加し、運転時の機器の省エネルギー性が向上する。   In addition, since the amount of lubricating oil adhering to the heat transfer surface of the low-pressure side pipe decreases, the amount of heat exchange at the bending portion increases, and the energy saving property of the equipment at the time of operation is improved.

本発明によれば、の冷凍サイクル装置は、高圧側冷媒の圧力損失低減による除霜運転時消費電力を抑制しつつ、加熱運転中の内部熱交換器の熱交換効率を向上させ、省エネルギー性の高い運転を行うことができる冷凍サイクル装置を提供できる。   According to the present invention, the refrigeration cycle apparatus improves the heat exchange efficiency of the internal heat exchanger during the heating operation while suppressing the power consumption during the defrosting operation by reducing the pressure loss of the high pressure side refrigerant, thereby saving energy It is possible to provide a refrigeration cycle apparatus capable of performing high operation.

本発明の実施の形態1における内部熱交換器の斜視図A perspective view of an internal heat exchanger according to Embodiment 1 of the present invention 図1に示す内部熱交換器の上面図Top view of the internal heat exchanger shown in FIG. 1 (a)図2のA−A断面図(b)図3(a)のA部拡大図(A) A-A sectional view of FIG. 2 (b) An enlarged view of a portion A of FIG. 3 (a) 本発明の実施の形態1における他の内部熱交換器の上面図Top view of another internal heat exchanger according to Embodiment 1 of the present invention 本発明の実施の形態1における冷凍サイクル装置の回路構成図Circuit configuration of the refrigeration cycle apparatus according to the first embodiment of the present invention (a)本発明実施の形態1における他の内部熱交換器の斜視図(b)図6(a)に示す内部熱交換器の上面図(A) Perspective view of another internal heat exchanger according to the first embodiment of the present invention (b) Top view of the internal heat exchanger shown in FIG. 6 (a) (a)図6(b)のB−B断面図(b)図7(a)のB部拡大図(A) BB sectional drawing of FIG.6 (b) (b) The B section enlarged view of FIG. 7 (a) (a)従来の内部熱交換器の概要図(b)図8(a)のX−X断面図(A) A schematic view of a conventional internal heat exchanger (b) XX cross-sectional view of FIG. 8 (a)

第1の発明は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とが熱交換する内部熱交換器と、を備え、前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に冷媒を流して、前記蒸発器の霜を融かす除霜運転モードを有し、前記内部熱交換器は、高圧側冷媒が流れる高圧側配管と低圧側冷媒が流れる低圧側配管とが互いに密着しており、前記高圧側配管および前記低圧側配管には、少なくとも一か所以上の曲げ部が設けられており、高圧側配管の曲げ半径をRH、低圧側配管の曲げ半径をRLとしたとき、RH<RLであることを特徴とする冷凍サイクル装置である。   According to a first aspect of the present invention, there is provided a compressor, a radiator, a pressure reducing means, an evaporator, a high pressure side refrigerant supplied from the radiator to the pressure reducing means, and a low pressure side refrigerant absorbed by the evaporator. An internal heat exchanger for exchanging heat, and having a defrosting operation mode for melting the frost of the evaporator by flowing a refrigerant in the order of the compressor, the radiator, the pressure reducing means, and the evaporator; In the internal heat exchanger, the high pressure side pipe in which the high pressure side refrigerant flows and the low pressure side pipe in which the low pressure side refrigerant flows are in close contact with each other, and the high pressure side pipe and the low pressure side pipe are in at least one place. It is a refrigeration cycle apparatus characterized in that a bent portion is provided, and RH <RL, where the bending radius of the high pressure side pipe is RH and the bending radius of the low pressure side pipe is RL.

これにより、高圧側配管と低圧側配管の曲げRが同一している場合に比べて、高圧側配管の流路長が短くなり、高圧側冷媒の圧力損失が減少する。そのため、除霜時の高低圧差が縮小し、圧縮機動力を低減できる。そのうえ、蒸発圧力が上昇し、除霜時間が短縮されるので、機器の省エネルギー性が向上するという効果を奏する。   As a result, the flow path length of the high pressure side pipe is shortened and the pressure loss of the high pressure side refrigerant is reduced, as compared with the case where the bending R of the high pressure side pipe and the bending R of the low pressure side pipe are the same. Therefore, the high and low pressure difference at the time of defrosting is reduced, and the compressor power can be reduced. Moreover, since the evaporation pressure is increased and the defrosting time is shortened, the energy saving property of the apparatus is improved.

加えて、内部熱交換器の曲げ部において、低圧側配管に流入したガス冷媒と、潤滑油には遠心力が作用するが、ガス冷媒に比べて密度の大きい潤滑油にはより大きな遠心力が作用するので、伝熱を阻害する潤滑油は低圧側配管の外周側に押しやられる。これにより、低圧側の伝熱面における潤滑油の量が減少するので曲げ部での熱交換量が増加し、機器の省エネルギー性が向上することができる。   In addition, in the bending portion of the internal heat exchanger, centrifugal force acts on the gas refrigerant flowing into the low pressure side piping and the lubricating oil, but larger centrifugal force is generated on the lubricating oil having a higher density than the gas refrigerant. Since it acts, the lubricating oil which inhibits heat transfer is pushed to the outer peripheral side of the low pressure side piping. As a result, the amount of lubricating oil on the heat transfer surface on the low pressure side decreases, so the amount of heat exchange at the bending portion increases, and the energy saving property of the device can be improved.

第2の発明は、特に第1の発明において、前記低圧側配管は少なくとも一部が略円形状に形成されており、水平方向において、前記高圧側配管は、前記低圧側配管の軸中心より内方側で、前記低圧側配管に密着していることを特徴とする冷凍サイクル装置である。   In the second invention, particularly in the first invention, at least a part of the low pressure side pipe is formed in a substantially circular shape, and in the horizontal direction, the high pressure side pipe is located inward from the axial center of the low pressure side pipe The refrigeration cycle apparatus is characterized in that it is in close contact with the low pressure side pipe on the side.

これにより、低圧側配管内を流れる低温・低圧のガス冷媒、及び、潤滑油には遠心効果が作用し、ガス冷媒よりも密度の大きい潤滑油は管内の外周側を流れる。   Thereby, the centrifugal effect acts on the low-temperature low-pressure gas refrigerant flowing in the low-pressure side pipe and the lubricating oil, and the lubricating oil having a density higher than that of the gas refrigerant flows on the outer peripheral side in the pipe.

したがって、前記低圧側配管は少なくとも一部が略円形状に形成されており、水平方向において、前記高圧側配管は、前記低圧側配管の軸中心より内方側で、前記低圧側配管に密着している構成により、低圧側の伝熱面に付着する潤滑油の量が減り、熱交換が促進されるため、内部熱交換量が増加し、機器の省エネルギー性が更に向上するという効果を奏する。   Therefore, at least a part of the low pressure side pipe is formed in a substantially circular shape, and in the horizontal direction, the high pressure side pipe is in close contact with the low pressure side pipe on the inner side with respect to the axial center of the low pressure side pipe With this configuration, the amount of lubricating oil adhering to the heat transfer surface on the low pressure side is reduced, and heat exchange is promoted, so that the amount of internal heat exchange is increased, and the energy saving property of the device is further improved.

第3の発明は、特に第1の発明において、前記高圧側配管は、鉛直方向において、前記低圧側配管の軸中心より下方側で、前記低圧側配管に密着していることを特徴とする冷凍サイクル装置である。   According to a third aspect of the invention, in the refrigeration system according to the first aspect of the invention, particularly, the high pressure side pipe is in close contact with the low pressure side pipe at a lower side than the axial center of the low pressure side pipe in the vertical direction. It is a cycle device.

これにより、低圧側配管の鉛直下方側の内面が冷媒の伝熱面となる。ここで、冷媒には重力が作用し、低圧側配管の鉛直下方側に冷媒の液成分が滞留しやすくなる。よって、冷媒の液成分がより加熱されやすくなり、内部熱交換量が増加し、機器の省エネルギー性が向上するという効果を奏する。   Thereby, the inner surface on the vertically lower side of the low pressure side pipe becomes the heat transfer surface of the refrigerant. Here, gravity acts on the refrigerant, and the liquid component of the refrigerant tends to stagnate vertically below the low pressure side pipe. Therefore, the liquid component of the refrigerant is more easily heated, the amount of internal heat exchange is increased, and the energy saving property of the device is improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiment.

(実施の形態1)
図5は、本発明の実施の形態1における冷凍サイクル装置10を備えた給湯装置の回路構成を示すものである。
Embodiment 1
FIG. 5 shows a circuit configuration of a hot water supply apparatus including the refrigeration cycle apparatus 10 according to the first embodiment of the present invention.

図5において、冷凍サイクル装置10は、圧縮機11、放熱器12、減圧手段14、蒸発器15が順に冷媒配管で環状に接続して構成されている。内部熱交換器13は、高圧側配管1と、低圧側配管2とから成り、高圧側配管1は放熱器12と減圧手段14との間に接続され、低圧側配管2は蒸発器15と圧縮機11との間に接続されて、冷凍サイクル装置10の一部を成す。   In FIG. 5, the refrigeration cycle apparatus 10 is configured such that a compressor 11, a radiator 12, a pressure reducing means 14, and an evaporator 15 are annularly connected by refrigerant pipes in order. The internal heat exchanger 13 comprises a high pressure side pipe 1 and a low pressure side pipe 2, the high pressure side pipe 1 is connected between the radiator 12 and the pressure reducing means 14, and the low pressure side pipe 2 is compressed with the evaporator 15 It is connected between the machine 11 and forms a part of the refrigeration cycle apparatus 10.

なお、冷凍サイクル装置10には、冷媒として二酸化炭素が、圧縮機11の潤滑油として難溶性オイルであるポリアルキレングリコール油(PAG油)が封入されている。PAG油は31℃以下の温度範囲で、二酸化炭素と相溶しない領域をもち、特に低圧になるにつれPAG油への二酸化炭素溶解度が減少することが知られている。なお、PAG油の粘度は40℃において、5〜300cSTのものが適している。   In the refrigeration cycle apparatus 10, carbon dioxide as a refrigerant and polyalkylene glycol oil (PAG oil) which is a sparingly soluble oil as a lubricating oil for the compressor 11 are enclosed. It is known that PAG oil has an area incompatible with carbon dioxide in a temperature range of 31 ° C. or less, and the carbon dioxide solubility in PAG oil decreases especially as the pressure becomes low. The viscosity of PAG oil at 40 ° C. is preferably 5 to 300 cST.

図1〜図3(a)(b)に、本発明の実施の形態1における内部熱交換器13の構成を示す。内部熱交換器13は、高圧側配管1と低圧側配管2が管外周面で密着しており、管密着部は伝熱を促進するため、ロウ材、または、はんだにより接合(接合部3)されている。ここで、内部熱交換器13は、高圧側配管1の曲げ半径RHと低圧側配管2の曲げ半径RLの関係が、RH<RLとなるように、略全域にわたって螺旋状に曲げられて形成されている。   The structure of the internal heat exchanger 13 in Embodiment 1 of this invention is shown in FIG. 1-FIG. 3 (a) (b). In the internal heat exchanger 13, the high pressure side pipe 1 and the low pressure side pipe 2 are in close contact with each other at the pipe outer peripheral surface, and the pipe contact portion is joined by brazing material or solder to promote heat transfer. It is done. Here, the internal heat exchanger 13 is formed by being helically bent over substantially the entire area such that the relationship between the bending radius RH of the high pressure side pipe 1 and the bending radius RL of the low pressure side pipe 2 becomes RH <RL. ing.

また、図5において、貯湯装置20は、冷凍サイクル装置10によって沸き上げた湯を貯湯する貯湯タンク21と、シャワーなどの給湯端末(図示せず)に湯を温度調節して供給する給湯混合弁24とを備える構成となっている。   Further, in FIG. 5, the hot water storage apparatus 20 controls the hot water mixing valve that supplies hot water to the hot water storage tank 21 for storing hot water boiled by the refrigeration cycle apparatus 10 and the hot water supply terminal (not shown) such as a shower. And 24. FIG.

以上のように構成された冷凍サイクル措置を備えた給湯装置について、以下その動作、作用について説明する。   The operation and action of the water heater provided with the refrigeration cycle device configured as described above will be described below.

まず、放熱器12において温水を加熱する加熱運転時の動作について説明する。   First, an operation at the time of heating operation for heating warm water in the radiator 12 will be described.

加熱運転時において、圧縮機11より吐出された高温・高圧の冷媒は、放熱器12において水と熱交換器して放熱する。加熱された水は、貯湯タンク21へ供給され、シャワーなどに利用される。放熱器12を出た高圧冷媒は、内部熱交換器13の高圧側配管1へと流入し、低圧側配管2を流れる低圧側冷媒へと放熱する。   During the heating operation, the high temperature and high pressure refrigerant discharged from the compressor 11 exchanges heat with water in the radiator 12 and radiates heat. The heated water is supplied to the hot water storage tank 21 and used for a shower or the like. The high pressure refrigerant leaving the radiator 12 flows into the high pressure side pipe 1 of the internal heat exchanger 13 and radiates heat to the low pressure side refrigerant flowing through the low pressure side pipe 2.

内部熱交換器13の高圧側配管1を出た冷媒は、減圧手段14において減圧され、低温・低圧の気液二相状態となる。低温・低圧となった冷媒は、蒸発器15において大気より吸熱し、ガス化して低圧側配管2に流入し、内部熱交換器13の低圧側配管2において、高圧側配管1を流れる高圧側冷媒より吸熱して過熱状態となって、圧縮機11へと吸入される。   The refrigerant leaving the high pressure side pipe 1 of the internal heat exchanger 13 is depressurized by the depressurizing means 14 to be a low temperature / low pressure gas-liquid two-phase state. The low-temperature and low-pressure refrigerant absorbs heat from the atmosphere in the evaporator 15 and is gasified to flow into the low-pressure pipe 2, and the high-pressure refrigerant flowing in the high-pressure pipe 1 in the low-pressure pipe 2 of the internal heat exchanger 13. The heat is absorbed further to be in the superheated state, and it is sucked into the compressor 11.

この動作を繰り返すことにより、冷凍サイクル装置10は水の加熱運転を行う。なお、運転中は冷凍サイクル装置10内を冷媒とともに圧縮機11より流出した潤滑油が循環しており、低圧側配管2に流入する低圧冷媒と潤滑油は、冷媒リッチ層と油リッチ層に分離して流れている。   By repeating this operation, the refrigeration cycle apparatus 10 performs a heating operation of water. During operation, the lubricating oil flowing out of the compressor 11 together with the refrigerant is circulating in the refrigeration cycle apparatus 10, and the low pressure refrigerant and the lubricating oil flowing into the low pressure side pipe 2 are separated into the refrigerant rich layer and the oil rich layer. It is flowing.

次に、上記加熱運転により蒸発器15に霜が付着した場合に、これを融かして除去するための除霜運転の動作について説明する。   Next, when frost adheres to the evaporator 15 by the heating operation, an operation of the defrosting operation for melting and removing the frost will be described.

外気温が低い状態で加熱運転を行うと、蒸発器15に霜が付き、蒸発器15の吸熱能力が大幅に低下してしまう。そこで、蒸発器15に付着した霜を融かして除去するために冷媒を循環させて、除霜運転を行う。除霜運転時における冷媒の流れる順序は、加熱運転時と同じであるので省略する。   If the heating operation is performed in a state where the outside air temperature is low, the evaporator 15 is frosted, and the heat absorption capacity of the evaporator 15 is significantly reduced. Then, in order to melt and remove the frost adhering to the evaporator 15, a refrigerant | coolant is circulated and defrost operation is performed. The order in which the refrigerant flows at the time of the defrosting operation is the same as at the time of the heating operation, and is therefore omitted.

除霜運転時においては、減圧手段14における減圧量を小さくし、圧縮機11より吐出される冷媒の圧力を抑制する。さらに、放熱器12においては、冷媒からの放熱量を極力抑制し、減圧手段14を経て蒸発器15へと中温・中圧の冷媒を供給する。こうして蒸発器15を流れる冷媒の温度を高くすることによって、蒸発器15に付着した霜を融かす。霜を融かすために蒸発器15において放熱した冷媒は、圧縮機11へと吸入される。この動作を繰り返すことによって、蒸発器15に付着した霜が融けるまで除霜運転を行う。   During the defrosting operation, the pressure reduction amount in the pressure reducing means 14 is reduced, and the pressure of the refrigerant discharged from the compressor 11 is suppressed. Furthermore, in the radiator 12, the amount of heat released from the refrigerant is suppressed as much as possible, and the medium temperature / medium pressure refrigerant is supplied to the evaporator 15 through the pressure reducing means 14. Thus, by raising the temperature of the refrigerant flowing through the evaporator 15, the frost adhering to the evaporator 15 is melted. The refrigerant that has dissipated heat in the evaporator 15 to melt the frost is drawn into the compressor 11. By repeating this operation, the defrosting operation is performed until the frost adhering to the evaporator 15 is melted.

ここで、本発明の実施の形態1によれば、図2に示すように、内部熱交換器13が、高圧側配管1の曲げ半径RHと低圧側配管2の曲げ半径RLの関係が、RH<RLとなるように、略全域にわたって螺旋状に曲げ加工されている。これにより、高圧側配管1と低圧側配管2の曲げRが同期している場合に比べて、高圧側配管1の流路長が短くなり、高圧側冷媒の圧力損失が減少する。そのため、除霜時の高低圧差が縮小し、圧縮機動力を低減できるうえ、蒸発圧力が上昇し、除霜時間が短縮されるので、機器の省エネルギー性が向上するという効果を奏する。   Here, according to the first embodiment of the present invention, as shown in FIG. 2, the internal heat exchanger 13 has the relationship between the bending radius RH of the high pressure side pipe 1 and the bending radius RL of the low pressure side pipe 2 as RH. In order to achieve <RL, a helical shape is formed over substantially the entire area. As a result, the flow path length of the high pressure side pipe 1 becomes short, and the pressure loss of the high pressure side refrigerant decreases, as compared with the case where the bending R of the high pressure side pipe 1 and the low pressure side pipe 2 are synchronized. Therefore, the difference in high and low pressure at the time of defrosting is reduced, and the power of the compressor can be reduced. Further, the evaporation pressure is increased and the defrosting time is shortened.

加えて、内部熱交換器13の曲げ部において、低圧側配管2に流入したガス冷媒と、潤滑油には式(1)に示す通りの遠心力が作用する。   In addition, in the bent portion of the internal heat exchanger 13, the centrifugal force as shown in the equation (1) acts on the gas refrigerant flowing into the low pressure side pipe 2 and the lubricating oil.


Figure 2019086208

Figure 2019086208

式(1)において、mは質量、vは速度、rは回転半径である。   In equation (1), m is mass, v is velocity, and r is radius of gyration.

ここで、低圧側配管2の冷媒の密度は、例えば圧力4MPaの飽和ガスで流入したとすると、115.7kg/m3である。一方、潤滑油の密度は、添加物により若干異なるが、温度280Kにおいて、1015kg/m3である。低圧側配管において、低圧、低温の冷媒と潤滑油は冷媒リッチ層と油リッチ層に分かれて流れる。   Here, the density of the refrigerant in the low pressure side pipe 2 is, for example, 115.7 kg / m 3 when flowing in with a saturated gas at a pressure of 4 MPa. On the other hand, the density of the lubricating oil is 1015 kg / m 3 at a temperature of 280 K, although it slightly varies depending on the additives. In the low pressure side piping, the low pressure, low temperature refrigerant and lubricating oil flow separately into the refrigerant rich layer and the oil rich layer.

図3(a)(b)に示すように、高圧側配管1は水平方向において、低圧側配管2の軸中心より内方側で、低圧側配管2に密着するように、高圧側配管1および低圧側配管2の略全域が螺旋状に曲げ加工されている。   As shown in FIGS. 3A and 3B, the high pressure side pipe 1 is in close contact with the low pressure side pipe 2 inward in the horizontal direction from the axial center of the low pressure side pipe 2. The substantially whole area of the low pressure side pipe 2 is bent in a spiral shape.

曲げ加工部においては、冷媒に比べて密度の大きい潤滑油により大きな遠心効果が作用するので、伝熱を阻害する潤滑油は低圧側配管2の外周側を流れる。これにより、低圧側の伝熱面における潤滑油の付着量が減少するので曲げ部での熱交換量が増加し、機器の省エネルギー性が向上するという効果を奏する。なお、略全域でなくとも、少なくとも一部の高圧側配管1および低圧側配管2が、略円形状に形成されていれば、その部位においては、その効果を有する。   In the bending portion, a large centrifugal effect acts on the lubricating oil having a larger density than the refrigerant, so the lubricating oil that inhibits the heat transfer flows on the outer peripheral side of the low pressure side pipe 2. As a result, the amount of adhesion of the lubricating oil on the heat transfer surface on the low pressure side is reduced, so the amount of heat exchange in the bending portion is increased, and the energy saving property of the device is improved. In addition, if at least a part of the high-pressure side pipe 1 and the low-pressure side pipe 2 is formed in a substantially circular shape even if it is not substantially the entire area, the effect is obtained at that portion.

以上のように、本実施例における内部熱交換器を搭載した冷凍サイクル装置は、加熱運転、除霜運転の双方において、冷凍サイクル装置の運転に係るエネルギー消費効率を向上させることができる。   As described above, the refrigeration cycle apparatus equipped with the internal heat exchanger in the present embodiment can improve the energy consumption efficiency related to the operation of the refrigeration cycle apparatus in both the heating operation and the defrosting operation.

なお、実施の形態では略全域が螺旋状に曲げ加工された内部熱交換器を、例に挙げて説明したが、図4に示すように、少なくとも1カ所以上が曲げ加工された内部熱交換器であれば、同様の効果を得ることができる。   In the embodiment, the internal heat exchanger in which substantially the entire area is bent in a spiral shape is described as an example, but as shown in FIG. 4, the internal heat exchanger in which at least one or more points are bent The same effect can be obtained.

さらに、この曲げ加工を、図6(a)(b)及び図7(a)(b)に示すように、略全域にわたって螺旋状に曲げ加工された内部熱交換器13の中心軸と、鉛直方向が略一致しており、高圧側配管1が低圧側配管2の中心軸よりも鉛直下方側で、低圧側配管2に密着している点である。なお、略全域でなくとも、少なくとも一部の高圧側配管1が、鉛直方向において、低圧側配管2の軸中心より下方側で、低圧側配管2に密着していれていれば、その部位においては、その効果を有する。   Furthermore, as shown in FIGS. 6 (a) and 6 (b) and FIGS. 7 (a) and 7 (b), this bending process is vertical to the central axis of the internal heat exchanger 13 helically bent over substantially the entire area, and The directions are substantially the same, and the high pressure side pipe 1 is in close contact with the low pressure side pipe 2 on the vertically lower side than the central axis of the low pressure side pipe 2. In addition, if at least a part of the high-pressure side pipe 1 is in close contact with the low-pressure side pipe 2 at the lower side of the axial center of the low-pressure side pipe 2 in the vertical direction Has its effect.

極低外気温での冷凍サイクル装置10の加熱運転時には、蒸発器の能力不足のため、蒸発器15で吸熱した二相冷媒が完全にガス化しきれずに、二相状態で内部熱交換器13の低圧側配管2に流入することがある。   During heating operation of the refrigeration cycle apparatus 10 at extremely low outside air temperature, the two-phase refrigerant absorbed by the evaporator 15 can not be completely gasified due to the insufficient capacity of the evaporator, and the internal heat exchanger 13 in two-phase state. May flow into the low pressure side piping 2 of the

配管全域にわたって曲げ加工することによれば、図7に示すように、低圧側配管の鉛直下方側の内面が冷媒の伝熱面となる。ここで、冷媒には重力が作用するため、低圧側配管の鉛直下方側に冷媒の液成分が滞留しやすくなる。よって、冷媒の液成分がより加熱されやすくなるので、内部熱交換量が増加し、機器の省エネルギー性が向上するという効果を奏する。   According to the bending process over the entire area of the pipe, as shown in FIG. 7, the inner surface on the vertically lower side of the low pressure side pipe becomes the heat transfer surface of the refrigerant. Here, since the gravity acts on the refrigerant, the liquid component of the refrigerant tends to stagnate vertically below the low pressure side pipe. Therefore, the liquid component of the refrigerant is more easily heated, so the amount of internal heat exchange is increased, and the energy saving property of the device is improved.

以上のように、本実施例における内部熱交換器を搭載した冷凍サイクル装置は、加熱運転時の冷凍サイクル装置の係るエネルギー消費効率を更に向上させることができる。   As described above, the refrigeration cycle apparatus equipped with the internal heat exchanger in the present embodiment can further improve the energy consumption efficiency of the refrigeration cycle apparatus during heating operation.

以上のように、本発明にかかる冷凍サイクル装置は、エネルギー消費効率を向上させることができるので、空気調和装置やヒートポンプ式給湯機・暖房機などの省エネルギー性向上の用途に適用できる。   As mentioned above, since the refrigeration cycle apparatus concerning this invention can improve energy consumption efficiency, it can be applied to the use of energy saving improvement improvement, such as an air conditioning apparatus, a heat pump type hot water heater, and a heater.

1 高圧側配管
2 低圧側配管
10 冷凍サイクル装置
11 圧縮機
12 放熱器
13 内部熱交換器
14 減圧手段
15 蒸発器
20 貯湯装置
21 貯湯タンク
24 給湯混合弁
DESCRIPTION OF SYMBOLS 1 High pressure side piping 2 Low pressure side piping 10 Refrigerating cycle device 11 Compressor 12 Radiator 13 Internal heat exchanger 14 Decompression means 15 Evaporator 20 Hot water storage device 21 Hot water storage tank 24 Hot water supply mixing valve

Claims (3)

圧縮機と、放熱器と、減圧手段と、蒸発器と、
前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とが熱交換する内部熱交換器と、を備え
前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に冷媒を流して、前記蒸発器の霜を融かす除霜運転モードを有し、
前記内部熱交換器は、高圧側冷媒が流れる高圧側配管と低圧側冷媒が流れる低圧側配管とが互いに密着しており、
前記高圧側配管および前記低圧側配管には、少なくとも一か所以上の曲げ部が設けられており、
高圧側配管の曲げ半径をRH、低圧側配管の曲げ半径をRLとしたとき、
RH<RLであることを特徴とする冷凍サイクル装置。
A compressor, a radiator, pressure reducing means, an evaporator,
Said compressor, said radiator, said pressure reducing means, comprising: an internal heat exchanger for exchanging heat between the high pressure side refrigerant supplied from the radiator to the pressure reducing means and the low pressure side refrigerant absorbed by the evaporator And a defrosting operation mode for flowing the refrigerant in the order of the evaporator to melt the frost of the evaporator;
In the internal heat exchanger, the high pressure side pipe in which the high pressure side refrigerant flows and the low pressure side pipe in which the low pressure side refrigerant flows are in close contact with each other,
The high pressure side pipe and the low pressure side pipe are provided with at least one bent portion,
Assuming that the bending radius of the high pressure side piping is RH and the bending radius of the low pressure side piping is RL,
A refrigeration cycle apparatus characterized in that RH <RL.
前記低圧側配管は少なくとも一部が略円形状に形成されており、水平方向において、前記高圧側配管は、前記低圧側配管の軸中心より内方側で、前記低圧側配管に密着していることを特徴とする請求項1に記載の冷凍サイクル装置。 The low pressure side piping is at least partially formed in a substantially circular shape, and the high pressure side piping is in close contact with the low pressure side piping inward in the horizontal direction from the axial center of the low pressure side piping. The refrigeration cycle apparatus according to claim 1, wherein 前記高圧側配管は、鉛直方向において、前記低圧側配管の軸中心より下方側で、前記低圧側配管に密着していることを特徴とする請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, wherein the high pressure side pipe is in close contact with the low pressure side pipe at a lower side than an axial center of the low pressure side pipe in the vertical direction.
JP2017214410A 2017-11-07 2017-11-07 Refrigeration cycle device Pending JP2019086208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017214410A JP2019086208A (en) 2017-11-07 2017-11-07 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017214410A JP2019086208A (en) 2017-11-07 2017-11-07 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2019086208A true JP2019086208A (en) 2019-06-06

Family

ID=66762687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017214410A Pending JP2019086208A (en) 2017-11-07 2017-11-07 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2019086208A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947263A (en) * 2020-09-15 2020-11-17 浙江希尔富电气股份有限公司 Spiral evaporation fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947263A (en) * 2020-09-15 2020-11-17 浙江希尔富电气股份有限公司 Spiral evaporation fan

Similar Documents

Publication Publication Date Title
JP4738401B2 (en) Air conditioner
CN1854647B (en) Refrigeration cycle device
JP2011144989A (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle device and air conditioner
JP5744219B2 (en) Outdoor unit
JP6889541B2 (en) Internal heat exchanger integrated accumulator and refrigeration cycle using it
JP2008164245A (en) Heat exchanger
JP2011106770A (en) Heat exchanger and refrigerating cycle device
EP2770277B1 (en) Water heater
EP2770278A1 (en) Water heater
JP2005133999A (en) Heat pump water heater
JP2007271122A (en) Heat exchanger
JP2019086208A (en) Refrigeration cycle device
JP2008309443A (en) Heat transfer tube connection structure
JP7418551B2 (en) Heat exchangers, outdoor units, and air conditioners
JP2016200368A (en) Heat pump device and hot water supply device
JP2014181870A (en) Refrigeration cycle device
JP2008122059A (en) Heat exchanger and refrigeration equipment
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
EP3124890A1 (en) Heat-generating unit
JP2013134024A (en) Refrigeration cycle device
JP2003314927A (en) Heat exchanger and refrigerating cycle device using the same
JP2008164254A (en) Refrigerant piping structure
JP2010230256A (en) Refrigerant-to-refrigerant heat exchanger
JP2010249484A (en) Heat exchanger and refrigerating cycle device
JP2006300487A (en) Heat pump hot water feeder

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121