[go: up one dir, main page]

JP2018116267A - Focus detection device and method, and imaging device - Google Patents

Focus detection device and method, and imaging device Download PDF

Info

Publication number
JP2018116267A
JP2018116267A JP2017236295A JP2017236295A JP2018116267A JP 2018116267 A JP2018116267 A JP 2018116267A JP 2017236295 A JP2017236295 A JP 2017236295A JP 2017236295 A JP2017236295 A JP 2017236295A JP 2018116267 A JP2018116267 A JP 2018116267A
Authority
JP
Japan
Prior art keywords
focus detection
optical system
imaging optical
addition coefficient
chromatic aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017236295A
Other languages
Japanese (ja)
Other versions
JP2018116267A5 (en
JP7022575B2 (en
Inventor
信貴 水野
Nobutaka Mizuno
信貴 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/862,813 priority Critical patent/US10326926B2/en
Publication of JP2018116267A publication Critical patent/JP2018116267A/en
Publication of JP2018116267A5 publication Critical patent/JP2018116267A5/ja
Application granted granted Critical
Publication of JP7022575B2 publication Critical patent/JP7022575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress influence for magnification aberration of an image formation optical system to give to a focus detection result, and to perform accurate focus detection in an imaging device performing automatic focus detection by means of a phase difference detection method on the basis of a signal obtained from a plurality of focus detection pixels having different spectral sensitivities to each other.SOLUTION: A focus detection device that comprises a plurality of photo-electric conversion units for each of a plurality of microlenses, that performs photo-electric conversion of injected light through an image formation optical system to output an electric signal, and that performs focus detection by means of a phase difference detection method on the basis of a signal having a plurality of colors obtained from an imaging element covered by a color filter having a plurality of colors comprises: acquisition means that acquires an addition coefficient set indicating weighting applied to the signal having the plurality of colors, according to a characteristic of chromatic aberration of magnification of the image formation optical system; generation means that generates a pair of focus detection signals by performing weighting addition of the signal having the plurality of colors using the addition coefficient set; and detection means that detects an image deviation amount between the pair of focus detection signals.SELECTED DRAWING: Figure 1

Description

本発明は、焦点検出装置および方法、および撮像装置に関するものである。   The present invention relates to a focus detection apparatus and method, and an imaging apparatus.

撮像装置で用いられる自動焦点検出(AF)方式として、位相差焦点検出方式(位相差AF)が知られている。位相差AFは、デジタルスチルカメラで多く用いられるAFであり、撮像素子が焦点検出用センサとして用いられるものも存在する。特許文献1には、瞳分割方式の焦点検出を行うために、撮像素子を構成する各画素の光電変換部が複数に分割されており、分割された光電変換部がマイクロレンズを介して撮影レンズの瞳の異なる領域を通過した光束を受光するように構成されている。   A phase difference focus detection method (phase difference AF) is known as an automatic focus detection (AF) method used in an imaging apparatus. Phase difference AF is AF that is often used in digital still cameras, and there are some in which an image sensor is used as a focus detection sensor. In Patent Document 1, in order to perform focus detection of the pupil division method, the photoelectric conversion unit of each pixel constituting the imaging device is divided into a plurality of parts, and the divided photoelectric conversion unit is a photographic lens via a microlens. Are configured to receive light beams that have passed through different regions of the pupil.

位相差AFは、撮像素子に形成された焦点検出画素から得られた対の信号に基づいて、焦点検出方向と焦点検出量を同時に検出することが可能であり、高速に焦点調節を行うことができる。一方、位相差AFは光学像の位相差を利用して焦点検出を行うため、光学像を結像する光学系の収差が焦点検出結果に誤差を与える場合があり、このような誤差を低減するための方法が提案されている。   The phase difference AF can simultaneously detect the focus detection direction and the focus detection amount based on a pair of signals obtained from focus detection pixels formed on the image sensor, and can perform focus adjustment at high speed. it can. On the other hand, since the phase difference AF performs focus detection using the phase difference of the optical image, the aberration of the optical system that forms the optical image may give an error to the focus detection result, and this error is reduced. A method for this has been proposed.

特許文献2には、合焦状態において一対の焦点検出用の光束が形成する一対の光学像の形状が、光学系の収差に起因して一致しなくなることによる焦点検出誤差を補正する方法が開示されている。   Patent Document 2 discloses a method for correcting a focus detection error caused by a shape of a pair of optical images formed by a pair of focus detection light beams in an in-focus state being not matched due to an aberration of an optical system. Has been.

また、特許文献3には焦点検出誤差を補正する方法として、撮影レンズの状態に関する情報と、撮像素子の状態に関する情報と、像高との組み合わせに応じた補正値で補正することが開示されている。   Patent Document 3 discloses a method for correcting a focus detection error by correcting with a correction value corresponding to a combination of information relating to the state of the photographing lens, information relating to the state of the image sensor, and image height. Yes.

特開2008−52009号公報JP 2008-52009 A 特開2013−171251公報JP 2013-171251 A 特開2014−222291公報JP 2014-222291 A

しかしながら、位相差AFにおいて、倍率色収差が及ぼす焦点検出誤差は、結像光学系の色収差と、撮像素子の色シェーディングが絡む複雑なメカニズムからなっており、製造ばらつきも含め、適切な補正を行うのが難しい場合がある。   However, in phase difference AF, the focus detection error caused by chromatic aberration of magnification consists of a complicated mechanism involving chromatic aberration of the imaging optical system and color shading of the image sensor, and appropriate correction including manufacturing variations is performed. May be difficult.

本発明は上記問題点を鑑みてなされたものであり、互いに分光感度の異なる複数の焦点検出画素から得られる信号に基づいて位相差検出方式による自動焦点検出を行う撮像装置において、倍率色収差が及ぼす焦点検出誤差を抑制し、高精度な焦点検出を行うことを目的とする。   The present invention has been made in view of the above-described problems. In an imaging apparatus that performs automatic focus detection by a phase difference detection method based on signals obtained from a plurality of focus detection pixels having different spectral sensitivities, lateral chromatic aberration exerts an effect. It is an object to suppress focus detection error and perform highly accurate focus detection.

上記目的を達成するために、複数のマイクロレンズそれぞれに対して複数の光電変換部を備え、結像光学系を介して入射する光を光電変換して電気信号を出力する、複数色のカラーフィルタに覆われた撮像素子から得られる複数色の信号に基づいて、位相差検出方式による焦点検出を行う本発明の焦点検出装置は、前記結像光学系の倍率色収差の特性に応じて、前記複数色の信号に適用する重み付けを示す加算係数セットを取得する取得手段と、前記加算係数セットを用いて、前記複数色の信号の重み付け加算を行って、一対の焦点検出信号を生成する生成手段と、前記一対の焦点検出信号間の像ずれ量を検出する検出手段とを有する。   To achieve the above object, a plurality of color filters that include a plurality of photoelectric conversion units for each of a plurality of microlenses, photoelectrically convert light incident through an imaging optical system, and output an electrical signal. The focus detection apparatus of the present invention that performs focus detection by a phase difference detection method based on signals of a plurality of colors obtained from an image sensor covered with an image sensor includes the plurality of colors according to the chromatic aberration of magnification of the imaging optical system. Obtaining means for obtaining an addition coefficient set indicating weighting to be applied to a color signal; and generating means for performing weighted addition of the signals of the plurality of colors using the addition coefficient set to generate a pair of focus detection signals; Detecting means for detecting an image shift amount between the pair of focus detection signals.

本発明によれば、互いに分光感度の異なる複数の焦点検出画素から得られる信号に基づいて位相差検出方式による自動焦点検出を行う撮像装置において、結像光学系の倍率収差が焦点検出結果に与える影響を抑制し、高精度な焦点検出を行うことができる。   According to the present invention, in an imaging apparatus that performs automatic focus detection by a phase difference detection method based on signals obtained from a plurality of focus detection pixels having different spectral sensitivities, the magnification aberration of the imaging optical system gives the focus detection result. The influence can be suppressed and high-precision focus detection can be performed.

本発明の実施の形態に係る撮像装置の概略構成図。1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention. 実施形態における画素配列の概略図。Schematic of the pixel arrangement in the embodiment. 実施形態における画素の概略平面図と概略断面図。The schematic plan view and schematic sectional drawing of the pixel in embodiment. 実施形態における画素構造と瞳分割の概略説明図。Schematic explanatory drawing of the pixel structure and pupil division in the embodiment. 実施形態における撮像素子と瞳分割の概略説明図。Schematic explanatory drawing of an image sensor and pupil division in an embodiment. 実施形態における第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量との概略関係図。FIG. 5 is a schematic relationship diagram between a defocus amount and an image shift amount of a first focus detection signal and a second focus detection signal in the embodiment. 実施形態における合焦時の第1焦点検出画素の受光信号および第2焦点検出画素の受光信号による各色線像を示す図。The figure which shows each color line image by the light reception signal of the 1st focus detection pixel at the time of focusing in embodiment, and the light reception signal of a 2nd focus detection pixel. 第1の実施形態における焦点検出処理と撮像処理の流れを示すフローチャート。6 is a flowchart showing a flow of focus detection processing and imaging processing in the first embodiment. 第3の実施形態における加算係数セットを変えた場合の、設定デフォーカス量と検出デフォーカス量との関係の一例を示す図。The figure which shows an example of the relationship between setting defocus amount and detection defocus amount at the time of changing the addition coefficient set in 3rd Embodiment.

以下、添付図面を参照して本発明を実施するための形態を詳細に説明する。なお、実施形態は発明の理解と説明を容易にするため、具体的かつ特定の構成を有するが、本発明はそのような特定の構成に限定されない。例えば、以下では本発明をレンズ交換可能な一眼レフタイプのデジタルカメラに適用した実施形態について説明するが、本発明はレンズ交換できないタイプのデジタルカメラや、ビデオカメラに対しても適用可能である。また、カメラを備えた任意の電子機器、例えば携帯電話機、パーソナルコンピュータ(ラップトップ、タブレット、デスクトップ型など)、ゲーム機などで実施することもできる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. The embodiments have specific and specific configurations to facilitate understanding and explanation of the invention, but the present invention is not limited to such specific configurations. For example, an embodiment in which the present invention is applied to a single-lens reflex digital camera capable of exchanging lenses will be described below, but the present invention can also be applied to a digital camera and video camera in which lenses cannot be interchanged. In addition, the present invention can be implemented with any electronic device equipped with a camera, such as a mobile phone, a personal computer (laptop, tablet, desktop type, etc.), a game machine, and the like.

<第1の実施形態>
[全体構成]
図1は本発明の実施の形態における撮像素子を有する撮像装置であるカメラの概略構成を示したものである。図1において、第1レンズ群101は結像光学系の先端に配置され、光軸方向に進退可能に保持される。絞り兼用シャッタ102は、その開口径を調節することで撮影時の光量調節を行うほか、静止画撮影時には露光秒時調節用シャッタとしての機能も備える。第2レンズ群103は、絞り兼用シャッタ102と一体となって光軸方向に進退し、第1レンズ群101の進退動作との連動により、変倍作用(ズーム機能)を実現することができる。
<First Embodiment>
[overall structure]
FIG. 1 shows a schematic configuration of a camera which is an image pickup apparatus having an image pickup device according to an embodiment of the present invention. In FIG. 1, the first lens group 101 is disposed at the tip of the imaging optical system and is held so as to be able to advance and retract in the optical axis direction. The aperture / shutter 102 adjusts the aperture diameter to adjust the amount of light at the time of shooting, and also has a function as an exposure time adjustment shutter at the time of still image shooting. The second lens group 103 moves forward and backward in the optical axis direction integrally with the diaphragm / shutter 102, and a zooming function (zoom function) can be realized in conjunction with the forward / backward movement of the first lens group 101.

第3レンズ群105(フォーカスレンズ)は、光軸方向の進退により焦点調節を行う。光学的ローパスフィルタ106は、撮影画像の偽色やモアレを軽減するための光学素子である。撮像素子107は2次元CMOSフォトセンサとその周辺回路からなり、結像光学系の結像面に配置され、結像光学系を介して入射する光を光電変換して、電気信号を出力する。   The third lens group 105 (focus lens) performs focus adjustment by advancing and retreating in the optical axis direction. The optical low-pass filter 106 is an optical element for reducing false colors and moire in the captured image. The image sensor 107 includes a two-dimensional CMOS photosensor and its peripheral circuit. The image sensor 107 is disposed on the image forming surface of the image forming optical system, photoelectrically converts light incident through the image forming optical system, and outputs an electrical signal.

ズームアクチュエータ111は、不図示のカム筒を回動することで、第1レンズ群101ないし第2レンズ群103を光軸方向に進退駆動し、変倍操作を行う。絞りシャッタアクチュエータ112は、絞り兼用シャッタ102の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行う。フォーカスアクチュエータ114は、第3レンズ群105を光軸方向に進退駆動して焦点調節を行う。   The zoom actuator 111 rotates a cam cylinder (not shown) to drive the first lens group 101 or the second lens group 103 forward and backward in the optical axis direction, and performs a zooming operation. The aperture shutter actuator 112 controls the aperture diameter of the aperture / shutter 102 to adjust the amount of photographing light, and controls the exposure time during still image photographing. The focus actuator 114 adjusts the focus by driving the third lens group 105 back and forth in the optical axis direction.

撮影時の被写体照明用電子フラッシュ115は、キセノン管を用いた閃光照明装置が好適だが、連続発光するLEDを備えた照明装置を用いても良い。AF補助光発光部116は、所定の開口パターンを有したマスクの像を、投光レンズを介して被写界に投影し、暗い被写体あるいは低コントラスト被写体に対する焦点検出能力を向上させる。   The electronic flash 115 for illuminating the subject is preferably a flash illumination device using a xenon tube, but an illumination device including an LED that emits light continuously may be used. The AF auxiliary light emitting unit 116 projects a mask image having a predetermined opening pattern onto the object field via the projection lens, and improves the focus detection capability for a dark subject or a low-contrast subject.

カメラ内CPU121は、カメラ本体の種々の制御を司り、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を有する。CPU121は、ROMに記憶された所定のプログラムに基づいて、カメラが有する各種回路を駆動し、AF、撮影、画像処理と記録等の一連の動作を実行する。   The in-camera CPU 121 manages various controls of the camera body, and includes a calculation unit, ROM, RAM, A / D converter, D / A converter, communication interface circuit, and the like. The CPU 121 drives various circuits included in the camera based on a predetermined program stored in the ROM, and executes a series of operations such as AF, photographing, image processing, and recording.

また、CPU121には、撮像素子107の出力信号を用いた焦点調節で必要となる、補正値算出係数が記憶されている。この補正値算出係数は、第3レンズ群105の位置に対応したフォーカス状態、第1レンズ群101ないし第2レンズ群103の位置に対応したズーム状態、結像光学系のF値、撮像素子107の設定瞳距離、画素サイズ毎に複数用意されている。焦点調節を行う際は、結像光学系の焦点調節状態(フォーカス状態、ズーム状態)と絞り値、撮像素子107の設定瞳距離、画素サイズの組み合わせに応じて最適な補正値算出係数が選択される。そして、選択された補正値算出係数と撮像素子107の像高から、補正値が算出される構成となっている。   Further, the CPU 121 stores a correction value calculation coefficient necessary for focus adjustment using the output signal of the image sensor 107. The correction value calculation coefficient includes a focus state corresponding to the position of the third lens group 105, a zoom state corresponding to the positions of the first lens group 101 and the second lens group 103, the F value of the imaging optical system, and the image sensor 107. A plurality are prepared for each set pupil distance and pixel size. When performing focus adjustment, an optimum correction value calculation coefficient is selected according to the combination of the focus adjustment state (focus state, zoom state) and aperture value of the imaging optical system, the set pupil distance of the image sensor 107, and the pixel size. The The correction value is calculated from the selected correction value calculation coefficient and the image height of the image sensor 107.

また、補正値算出係数は、RGB信号を重み付け加算するための加算係数セットを含む。この加算係数セットは、第1の実施形態においては、結像光学系のレンズID(レンズ識別情報)に応じて選択可能に記憶されている。そして、選択された加算係数セットを用いて、焦点検出信号を生成する。なお、加算係数セットおよび焦点検出信号の生成方法については、詳細に後述する。   The correction value calculation coefficient includes an addition coefficient set for weighted addition of RGB signals. In the first embodiment, this set of addition coefficients is stored so as to be selectable according to the lens ID (lens identification information) of the imaging optical system. Then, a focus detection signal is generated using the selected addition coefficient set. The addition coefficient set and the focus detection signal generation method will be described later in detail.

また、本実施形態では、補正値算出係数をCPU121に記憶するものとして説明するが、記憶する場所はこれに限らない。例えば、交換レンズ式の撮像装置においては、結像光学系を有する交換レンズが不揮発性メモリを有し、そのメモリに補正値算出係数を記憶してもよい。この場合には、例えば、交換レンズが撮像装置に装着されたときや、撮像装置からのリクエストに応じて、補正値算出係数を撮像装置に送信すればよい。   In the present embodiment, the correction value calculation coefficient is described as being stored in the CPU 121, but the storage location is not limited thereto. For example, in an interchangeable lens type imaging apparatus, an interchangeable lens having an imaging optical system may have a nonvolatile memory, and a correction value calculation coefficient may be stored in the memory. In this case, for example, the correction value calculation coefficient may be transmitted to the imaging device when the interchangeable lens is attached to the imaging device or in response to a request from the imaging device.

電子フラッシュ制御回路122は、撮影動作に同期して電子フラッシュ115を点灯制御する。補助光回路123は、焦点検出動作に同期してAF補助光発光部116を点灯制御する。撮像素子駆動回路124は、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してCPU121に送信する。画像処理回路125は、撮像素子107が取得した画像のγ変換、カラー補間、JPEG圧縮等の処理を行う。   The electronic flash control circuit 122 controls lighting of the electronic flash 115 in synchronization with the photographing operation. The auxiliary light circuit 123 controls lighting of the AF auxiliary light emitting unit 116 in synchronization with the focus detection operation. The image sensor driving circuit 124 controls the image capturing operation of the image sensor 107, A / D converts the acquired image signal, and transmits it to the CPU 121. The image processing circuit 125 performs processing such as γ conversion, color interpolation, and JPEG compression of the image acquired by the image sensor 107.

フォーカス駆動回路126は、焦点検出結果に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に進退駆動して焦点調節を行う。絞りシャッタ駆動回路128は、絞りシャッタアクチュエータ112を駆動制御して絞り兼用シャッタ102の開口を制御する。ズーム駆動回路129は、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。   The focus drive circuit 126 controls the focus actuator 114 based on the focus detection result, and adjusts the focus by driving the third lens group 105 back and forth in the optical axis direction. The aperture shutter drive circuit 128 controls the aperture of the aperture / shutter 102 by drivingly controlling the aperture shutter actuator 112. The zoom drive circuit 129 drives the zoom actuator 111 according to the zoom operation of the photographer.

LCD等の表示器131は、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の焦点検出領域の枠や合焦状態表示画像等を表示する。操作スイッチ群132は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。着脱可能なフラッシュメモリ133は、撮影済み画像を記録する。   A display 131 such as an LCD displays information related to the shooting mode of the camera, a preview image before shooting and a confirmation image after shooting, a frame of a focus detection area at the time of focus detection, a focus state display image, and the like. The operation switch group 132 includes a power switch, a release (shooting trigger) switch, a zoom operation switch, a shooting mode selection switch, and the like. The detachable flash memory 133 records captured images.

[撮像素子]
次に、本実施形態における撮像素子107の撮像画素と焦点検出画素の配列の概略を図2参照して説明する。図2は、本実施形態の2次元CMOSセンサー(撮像素子)の画素(撮像画素)配列を4列×4行の範囲で、焦点検出画素配列を8列×4行の範囲で示したものである。
[Image sensor]
Next, an outline of the arrangement of the imaging pixels and focus detection pixels of the imaging element 107 in the present embodiment will be described with reference to FIG. FIG. 2 shows the pixel (imaging pixel) array of the two-dimensional CMOS sensor (imaging device) of this embodiment in a range of 4 columns × 4 rows and the focus detection pixel array in a range of 8 columns × 4 rows. is there.

画素群200は、複数色のカラーフィルタに覆われた2行×2列の画素からなり、R(赤)の分光感度を有する画素200Rが左上に、G(緑)の分光感度を有する画素200Gが右上と左下に、B(青)の分光感度を有する画素200Bが右下に配置されている。さらに、各画素は2列×1行に配列された第1焦点検出画素201と第2焦点検出画素202により構成されている。   The pixel group 200 includes pixels of 2 rows × 2 columns covered with color filters of a plurality of colors, and a pixel 200R having a spectral sensitivity of R (red) is a pixel 200G having a spectral sensitivity of G (green) on the upper left. Are arranged in the upper right and lower left, and a pixel 200B having a spectral sensitivity of B (blue) is arranged in the lower right. Further, each pixel includes a first focus detection pixel 201 and a second focus detection pixel 202 arranged in 2 columns × 1 row.

図2に示した4列×4行の画素(8列×4行の焦点検出画素)を面上に多数配置し、撮像画像(焦点検出信号)の取得を可能としている。   A large number of 4 columns × 4 rows of pixels (8 columns × 4 rows of focus detection pixels) shown in FIG. 2 are arranged on the surface to enable acquisition of a captured image (focus detection signal).

図2に示した撮像素子107の1つの画素200Gを、撮像素子107の受光面側(+z側)から見た平面図を図3(a)に示し、図3(a)のa−a断面を−y側から見た断面図を図3(b)に示す。図3に示すように、本実施形態の画素200Gでは、各画素の受光側に入射光を集光するためのマイクロレンズ305が形成され、x方向にNH分割(2分割)、y方向にNV分割(1分割)された光電変換部301と光電変換部302が形成される。光電変換部301および302が、それぞれ、第1焦点検出画素201と第2焦点検出画素202に対応する。   A plan view of one pixel 200G of the image sensor 107 shown in FIG. 2 as viewed from the light receiving surface side (+ z side) of the image sensor 107 is shown in FIG. 3A, and a cross section taken along the line aa in FIG. FIG. 3B shows a cross-sectional view as seen from the −y side. As shown in FIG. 3, in the pixel 200G of the present embodiment, a microlens 305 for condensing incident light is formed on the light receiving side of each pixel, and NH division (two divisions) is performed in the x direction and NV is performed in the y direction. A divided (one-divided) photoelectric conversion unit 301 and a photoelectric conversion unit 302 are formed. The photoelectric conversion units 301 and 302 correspond to the first focus detection pixel 201 and the second focus detection pixel 202, respectively.

光電変換部301および302は、p型層とn型層の間にイントリンシック層を挟んだpin構造フォトダイオードとしても良いし、必要に応じて、イントリンシック層を省略し、pn接合フォトダイオードとしても良い。   The photoelectric conversion units 301 and 302 may be a pin structure photodiode in which an intrinsic layer is sandwiched between a p-type layer and an n-type layer, or an intrinsic layer may be omitted as necessary to serve as a pn junction photodiode. Also good.

各画素には、マイクロレンズ305と、光電変換部301および302との間に、カラーフィルタ306が形成される。本実施形態においては上述したR(赤)の分光感度を有するカラーフィルタ、G(緑)の分光感度を有するカラーフィルタ、B(青)の分光感度を有するカラーフィルタのいずれかが配置される。ただし、カラーフィルタの分光感度特性はRGBに限定されるものではない。   In each pixel, a color filter 306 is formed between the microlens 305 and the photoelectric conversion units 301 and 302. In the present embodiment, any of the color filter having the spectral sensitivity of R (red), the color filter having the spectral sensitivity of G (green), and the color filter having the spectral sensitivity of B (blue) is arranged. However, the spectral sensitivity characteristic of the color filter is not limited to RGB.

図3に示した画素200Gに入射した光は、マイクロレンズ305により集光され、カラーフィルタ306で分光されたのち、光電変換部301および302で受光される。光電変換部301および302では、受光量に応じて電子とホールが対生成し、空乏層で分離された後、負電荷の電子はn型層(不図示)に蓄積され、一方、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子107の外部へ排出される。光電変換部301および302のn型層(不図示)に蓄積された電子は、転送ゲートを介して、静電容量部(FD)に転送され、電圧信号に変換されて出力される。   Light incident on the pixel 200 </ b> G illustrated in FIG. 3 is collected by the microlens 305, dispersed by the color filter 306, and then received by the photoelectric conversion units 301 and 302. In the photoelectric conversion units 301 and 302, electrons and holes are generated in pairs according to the amount of received light and separated by a depletion layer. Then, negatively charged electrons are accumulated in an n-type layer (not shown), while holes are constant. The light is discharged outside the image sensor 107 through a p-type layer connected to a voltage source (not shown). Electrons accumulated in n-type layers (not shown) of the photoelectric conversion units 301 and 302 are transferred to a capacitance unit (FD) via a transfer gate, converted into a voltage signal, and output.

なお、図2に示す画素200R,200Bも、画素200Gと同様の構成を有し、画素200Gと同様にして、カラーフィルタ306により各色に分光された光に応じた電圧信号を出力する。   Note that the pixels 200R and 200B illustrated in FIG. 2 also have a configuration similar to that of the pixel 200G, and output voltage signals corresponding to light separated into colors by the color filter 306 in the same manner as the pixel 200G.

図3に示した本実施形態における画素構造と瞳分割との対応関係を図4を参照して説明する。図4は、図3(a)に示した本実施形態の画素構造のa−a断面を+y側から見た断面図と結像光学系の射出瞳面をに示す図である。なお、図4では、射出瞳面の座標軸と対応を取るために、断面図のx軸とy軸を図3に対して反転させている。   The correspondence between the pixel structure and pupil division in this embodiment shown in FIG. 3 will be described with reference to FIG. FIG. 4 is a cross-sectional view of the pixel structure of the present embodiment shown in FIG. 3A taken along the line aa from the + y side and a view showing the exit pupil plane of the imaging optical system. In FIG. 4, the x-axis and y-axis of the cross-sectional view are inverted with respect to FIG. 3 in order to correspond to the coordinate axis of the exit pupil plane.

第1瞳部分領域501は光電変換部301に対応し、重心が−x方向に偏心している光電変換部301の受光面と、マイクロレンズ305によって概ね共役関係になっており、光電変換部301で受光可能な瞳領域を表している。第1瞳部分領域501は、瞳面上で+X側に重心が偏心している。   The first pupil partial region 501 corresponds to the photoelectric conversion unit 301 and is substantially conjugated by the microlens 305 and the light receiving surface of the photoelectric conversion unit 301 whose center of gravity is decentered in the −x direction. It represents a pupil region that can receive light. The center of gravity of the first pupil partial region 501 is eccentric to the + X side on the pupil plane.

また、第2瞳部分領域502は光電変換部302に対応し、重心が+x方向に偏心している光電変換部302の受光面と、マイクロレンズ305によって概ね共役関係になっており、光電変換部302で受光可能な瞳領域を表している。第2瞳部分領域502は、瞳面上で−X側に重心が偏心している。   The second pupil partial region 502 corresponds to the photoelectric conversion unit 302, and is substantially conjugated with the light receiving surface of the photoelectric conversion unit 302 whose center of gravity is decentered in the + x direction by the microlens 305. The photoelectric conversion unit 302 Represents a pupil region capable of receiving light. The center of gravity of the second pupil partial region 502 is eccentric to the −X side on the pupil plane.

また、瞳領域500は、光電変換部301および302を全て合わせた際に画素200G全体で受光可能な瞳領域である。400は、絞り兼用シャッタ102の開口を表している。   The pupil region 500 is a pupil region that can receive light in the entire pixel 200G when all of the photoelectric conversion units 301 and 302 are combined. Reference numeral 400 denotes the aperture of the diaphragm / shutter 102.

撮像面位相差AFでは、撮像素子107のマイクロレンズ305を利用して瞳分割するため、回折の影響を受ける。射出瞳面までの瞳距離が数10mmであるのに対し、マイクロレンズの直径は数μmであるため、マイクロレンズ305の絞り値が数万となり、数10mmレベルの回折ボケが生じる。そのため、光電変換部301,302の受光面の像は、明瞭な瞳領域や瞳部分領域とはならずに、瞳強度分布(受光率の入射角分布)となる。   The imaging plane phase difference AF is affected by diffraction because pupil division is performed using the microlens 305 of the imaging element 107. While the pupil distance to the exit pupil plane is several tens of mm, the diameter of the microlens is several μm, so that the aperture value of the microlens 305 becomes several tens of thousands, resulting in diffraction blur of several tens of mm level. Therefore, the image of the light receiving surface of the photoelectric conversion units 301 and 302 does not become a clear pupil region or pupil partial region, but becomes a pupil intensity distribution (incidence angle distribution of light reception rate).

図5は、本実施の形態の撮像素子107と瞳分割との対応関係を示した概略図である。撮像素子の入射瞳距離Zsにおいて、撮像素子107の面上の各位置に配置された各画素の光電変換部301の受光領域に、対応する第1瞳部分領域501が、概ね、一致するように構成されている。同様に、光電変換部302の受光領域に、対応する第2瞳部分領域502が、概ね、一致するように構成されている。つまり、撮像素子107の入射瞳距離Zsにおいて、撮像素子107の各画素の分割位置と、第1瞳部分領域501と第2瞳部分領域502との瞳分割位置が、概ね、一致するように構成されている。第1瞳部分領域501と第2瞳部分領域502の結像光学系の異なる瞳部分領域を通過した一対の光束は、撮像素子107の各画素にそれぞれ異なる角度で入射し、2×1分割された光電変換部301,302で受光される。なお、本実施形態では、瞳領域が水平方向に2つに瞳分割されている例を示しているが、必要に応じて、垂直方向に瞳分割を行っても良い。 FIG. 5 is a schematic diagram illustrating a correspondence relationship between the image sensor 107 and pupil division according to the present embodiment. At the entrance pupil distance Z s of the image sensor, the first pupil partial region 501 corresponding to the light receiving region of the photoelectric conversion unit 301 of each pixel arranged at each position on the surface of the image sensor 107 substantially matches. It is configured. Similarly, the second pupil partial region 502 corresponding to the light receiving region of the photoelectric conversion unit 302 is configured to substantially match. In other words, at the entrance pupil distance Z s of the image sensor 107, the division position of each pixel of the image sensor 107 and the pupil division position of the first pupil partial area 501 and the second pupil partial area 502 are approximately the same. It is configured. A pair of light beams that have passed through different pupil partial regions of the imaging optical system of the first pupil partial region 501 and the second pupil partial region 502 are incident on each pixel of the image sensor 107 at different angles and are divided 2 × 1. The photoelectric conversion units 301 and 302 receive the light. In the present embodiment, an example is shown in which the pupil region is divided into two pupils in the horizontal direction, but pupil division may be performed in the vertical direction as necessary.

また、本実施形態の撮像素子107は、それぞれの撮像画素が第1焦点検出画素201と第2焦点検出画素202とから構成されているが、本発明はこれに限るものではない。必要に応じて、結像光学系の第1瞳部分領域501と第2瞳部分領域502とを合わせた瞳領域500を通過した光束を受光する撮像画素と、第1焦点検出画素201および第2焦点検出画素202を個別の画素構成としてもよい。その場合、撮像画素による配列の一部に、第1焦点検出画素201と第2焦点検出画素202を部分的に配置する構成としても良い。   In the imaging device 107 of the present embodiment, each imaging pixel includes the first focus detection pixel 201 and the second focus detection pixel 202, but the present invention is not limited to this. If necessary, an imaging pixel that receives a light beam that has passed through the pupil region 500 including the first pupil partial region 501 and the second pupil partial region 502 of the imaging optical system, and the first focus detection pixel 201 and the second focus detection pixel 201. The focus detection pixel 202 may have an individual pixel configuration. In that case, the first focus detection pixel 201 and the second focus detection pixel 202 may be partially arranged in a part of the array of imaging pixels.

上述した構成を有する撮像素子107の各画素の第1焦点検出画素201の受光信号を集めて第1焦点検出信号を生成し、各画素の第2焦点検出画素202の受光信号を集めて第2焦点検出信号を生成して焦点検出を行う。なお、本実施形態における各画素は、図2に示すように緑(G)、赤(R)、青(B)、緑(G)のいずれかの色のカラーフィルタにより覆われている。そのため、緑(G)、赤(R)、青(B)、緑(G)の4画素からなる画素群200毎に、第1焦点検出画素201の受光信号、第2焦点検出画素202の受光信号をそれぞれ加算して算出した信号Yを第1焦点検出信号、第2焦点検出信号として用いる。   The first focus detection signal 201 is collected by collecting the light reception signals of the first focus detection pixels 201 of the respective pixels of the image sensor 107 having the above-described configuration, and the second light detection signals of the second focus detection pixels 202 of the respective pixels are collected. A focus detection signal is generated to perform focus detection. Note that each pixel in this embodiment is covered with a color filter of any one of green (G), red (R), blue (B), and green (G) as shown in FIG. Therefore, the light reception signal of the first focus detection pixel 201 and the light reception of the second focus detection pixel 202 for each pixel group 200 including four pixels of green (G), red (R), blue (B), and green (G). The signal Y calculated by adding the signals is used as the first focus detection signal and the second focus detection signal.

また、撮像素子107の各マイクロレンズ305に対応する画素毎に、第1焦点検出画素201と第2焦点検出画素202の受光信号を加算することで、有効画素数Nの解像度の画像信号(加算信号)を生成することができる。   Further, by adding the light reception signals of the first focus detection pixel 201 and the second focus detection pixel 202 for each pixel corresponding to each microlens 305 of the image sensor 107, an image signal (addition) having a resolution of N effective pixels is added. Signal) can be generated.

[デフォーカス量と像ずれ量の関係]
次に、本実施形態の撮像素子107により取得される第1焦点検出信号と第2焦点検出信号の像ずれ量とデフォーカス量との関係について説明する。図6は、第1焦点検出信号と第2焦点検出信号のデフォーカス量と第1焦点検出信号と第2焦点検出信号間の像ずれ量との関係を示す図である。撮像面800に本実施形態の撮像素子107が配置され、図4、図5と同様に、結像光学系の瞳領域500が、第1瞳部分領域501と第2瞳部分領域502に2分割される。
[Relationship between defocus amount and image shift amount]
Next, the relationship between the image shift amount and the defocus amount of the first focus detection signal and the second focus detection signal acquired by the image sensor 107 of the present embodiment will be described. FIG. 6 is a diagram illustrating the relationship between the defocus amounts of the first focus detection signal and the second focus detection signal and the image shift amount between the first focus detection signal and the second focus detection signal. The imaging element 107 of the present embodiment is disposed on the imaging surface 800, and the pupil region 500 of the imaging optical system is divided into two parts, a first pupil partial region 501 and a second pupil partial region 502, as in FIGS. Is done.

デフォーカス量dは、被写体の結像位置から撮像面800までの距離を大きさ|d|としたとき、被写体の結像位置が撮像面より被写体側にある前ピン状態を負(d<0)、撮像面800より被写体の反対側にある後ピン状態を正(d>0)として定義される。被写体の結像位置が撮像面800(合焦位置)にある焦点状態はd=0である。図6で、被写体801は合焦状態(d=0)の例を示しており、被写体802は前ピン状態(d<0)の例を示している。前ピン状態(d<0)と後ピン状態(d>0)を合わせて、デフォーカス状態(|d|>0)と呼ぶ。   The defocus amount d is negative (d <0) when the distance from the imaging position of the subject to the imaging surface 800 is a magnitude | d |, where the imaging position of the subject is closer to the subject than the imaging surface. ), The rear pin state on the opposite side of the subject from the imaging surface 800 is defined as positive (d> 0). The focus state where the imaging position of the subject is on the imaging surface 800 (focus position) is d = 0. In FIG. 6, the subject 801 shows an example in a focused state (d = 0), and the subject 802 shows an example in a front pin state (d <0). The front pin state (d <0) and the rear pin state (d> 0) are collectively referred to as a defocus state (| d |> 0).

前ピン状態(d<0)では、被写体802からの光束のうち、第1瞳部分領域501を通過した被写体光は、一度、集光した後、光束の重心位置G1を中心として幅Γ1に広がり、撮像面800でボケた像となる。第2瞳部分領域502を通過した被写体光についても同様であり、重心位置G2を中心として幅Γ2に広がったボケた像を形成する。ボケた像は、撮像素子107に配列された各画素を構成する第1焦点検出画素201および第2焦点検出画素202により受光され、得られた受光信号から第1焦点検出信号および第2焦点検出信号が生成される。よって、第1焦点検出信号および第2焦点検出信号は、撮像面800上の重心位置G1およびG2に、被写体802が幅Γ1およびΓ2にボケた被写体像として記録される。被写体像のボケ幅Γ1,Γ2は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。同様に、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ量p(=光束の重心位置の差G1−G2)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。後ピン状態(d>0)でも、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。   In the front pin state (d <0), the subject light that has passed through the first pupil partial region 501 out of the luminous flux from the subject 802 is once condensed and then spreads to the width Γ1 with the center of gravity G1 of the luminous flux as the center. The image is blurred on the imaging surface 800. The same applies to the subject light that has passed through the second pupil partial region 502, and a blurred image having a width Γ2 centered on the gravity center position G2 is formed. The blurred image is received by the first focus detection pixel 201 and the second focus detection pixel 202 constituting each pixel arranged in the image sensor 107, and the first focus detection signal and the second focus detection are obtained from the obtained light reception signal. A signal is generated. Therefore, the first focus detection signal and the second focus detection signal are recorded as subject images in which the subject 802 is blurred by the widths Γ1 and Γ2 at the gravity center positions G1 and G2 on the imaging surface 800. The blur widths Γ1 and Γ2 of the subject image generally increase in proportion as the magnitude | d | of the defocus amount d increases. Similarly, the magnitude | p | of the object image displacement amount p (= difference G1-G2 in the center of gravity of the light beam) between the first focus detection signal and the second focus detection signal is also the size of the defocus amount d. As | d | increases, it generally increases in proportion. Even in the rear pin state (d> 0), the image shift direction of the subject image between the first focus detection signal and the second focus detection signal is opposite to that in the front pin state, but the same.

したがって、事前に求めておいた、像ずれ量pをデフォーカス量dへ換算するための換算係数Kと、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ量pとから、デフォーカス量dを算出することができる。   Therefore, based on the conversion coefficient K for converting the image shift amount p into the defocus amount d and the image shift amount p of the subject image between the first focus detection signal and the second focus detection signal, which are obtained in advance. The defocus amount d can be calculated.

[合焦精度]
上述した通常の位相差検出方式による自動焦点検出(位相差AF)で求められる合焦位置はデフォーカス量d=0となる位置である。しかしながら、結像光学系の収差により、本来の合焦位置においてデフォーカス量d=0とならない検出誤差が発生する。検出誤差の抑制方法としては補正値を組み込む手法がある。しかしながら、倍率色収差が及ぼす焦点検出誤差は、撮像素子107の色シェーディングが絡む複雑なメカニズムからなっており、製造ばらつきも含め、焦点検出誤差に対して適切な補正を行うのが難しいという場合がある。
[Focus accuracy]
The in-focus position obtained by automatic focus detection (phase difference AF) by the above-described normal phase difference detection method is a position where the defocus amount d = 0. However, due to the aberration of the imaging optical system, a detection error that does not result in the defocus amount d = 0 at the original in-focus position occurs. As a detection error suppression method, there is a method of incorporating a correction value. However, the focus detection error caused by the chromatic aberration of magnification has a complicated mechanism involving color shading of the image sensor 107, and it may be difficult to appropriately correct the focus detection error including manufacturing variations. .

ここで、倍率色収差が及ぼす焦点検出誤差に関して説明をする。位相差AFでは、第1焦点検出信号と第2焦点検出信号の像ずれ量pよりデフォーカス量dを検出する。つまり、位相差AFにおける合焦位置は、第1焦点検出信号の重心位置G1と第2焦点検出信号の重心位置G2が一致したときに合焦と判断することになる。   Here, a focus detection error caused by lateral chromatic aberration will be described. In the phase difference AF, the defocus amount d is detected from the image shift amount p between the first focus detection signal and the second focus detection signal. That is, the in-focus position in the phase difference AF is determined to be in focus when the centroid position G1 of the first focus detection signal and the centroid position G2 of the second focus detection signal match.

図7を用いて、第1および第2の焦点検出信号(信号Y)の重心位置G1,G2を算出する手順について説明する。図7は、フォーカスレンズ104が合焦位置にある場合における、第1焦点検出画素201の受光信号および第2焦点検出画素202の受光信号による各色線像の一例を示す図である。図7において、縦軸は信号強度で、第1焦点検出画素201の受光信号および第2焦点検出画素202の受光信号それぞれにおいて、G信号の信号強度で規格化してある。横軸は、焦点検出領域の水平方向の中央座標を0とした画素位置を表している。   A procedure for calculating the gravity center positions G1 and G2 of the first and second focus detection signals (signal Y) will be described with reference to FIG. FIG. 7 is a diagram illustrating an example of each color line image by the light reception signal of the first focus detection pixel 201 and the light reception signal of the second focus detection pixel 202 when the focus lens 104 is at the in-focus position. In FIG. 7, the vertical axis indicates the signal intensity, and the light reception signal of the first focus detection pixel 201 and the light reception signal of the second focus detection pixel 202 are normalized by the signal intensity of the G signal. The horizontal axis represents the pixel position where the horizontal central coordinate of the focus detection area is zero.

まず、図7の横軸におけるRGB各色線像の重心位置をそれぞれ、Xr、Xg、Xb[mm]とする。また、図7の縦軸おけるRGB各色の信号強度を、Sr、Sg、Sbとする。なお、第1焦点検出信号の値には(1)、第2焦点検出信号の値には(2)を付す。第1および第2の焦点検出信号の作成時のRGBの重み付けにより、重心算出時の各色の寄与率Pr、Pg、Pbは
Pr(1)=Sr(1)/(Sr(1)+2Sg(1)+Sb(1))
Pg(1)=2Sg(1)/(Sr(1)+2Sg(1)+Sb(1))
Pb(1)=Sb(1)/(Sr(1)+2Sg(1)+Sb(1))
Pr(2)=Sr(2)/(Sr(2)+2Sg(2)+Sb(2))
Pg(2)=2Sg(2)/(Sr(2)+2Sg(2)+Sb(2))
Pb(2)=Sb(2)/(Sr(2)+2Sg(2)+Sb(2))
となる。Sgの係数のみ2になっているのは、画素群200に緑(G)が2画素含まれるためである。ここで、RGB毎の線像の重心差は倍率色収差に相当し、各色寄与率は、第1焦点検出画素201と第2焦点検出画素202との色シェーディングの差に相当する。
First, the gravity center positions of the RGB color line images on the horizontal axis in FIG. 7 are Xr, Xg, and Xb [mm], respectively. Further, the signal intensities of RGB colors on the vertical axis in FIG. 7 are Sr, Sg, and Sb. The value of the first focus detection signal is denoted by (1), and the value of the second focus detection signal is denoted by (2). The contribution ratios Pr, Pg, and Pb of each color at the time of calculating the center of gravity are Pr (1) = Sr (1) / (Sr (1) + 2Sg (1) by RGB weighting when the first and second focus detection signals are generated. ) + Sb (1))
Pg (1) = 2Sg (1) / (Sr (1) + 2Sg (1) + Sb (1))
Pb (1) = Sb (1) / (Sr (1) + 2Sg (1) + Sb (1))
Pr (2) = Sr (2) / (Sr (2) + 2Sg (2) + Sb (2))
Pg (2) = 2Sg (2) / (Sr (2) + 2Sg (2) + Sb (2))
Pb (2) = Sb (2) / (Sr (2) + 2Sg (2) + Sb (2))
It becomes. The reason why only the coefficient of Sg is 2 is that the pixel group 200 includes two pixels of green (G). Here, the center-of-gravity difference of the line images for each RGB corresponds to the chromatic aberration of magnification, and each color contribution rate corresponds to the difference in color shading between the first focus detection pixel 201 and the second focus detection pixel 202.

ここで、重心位置G1と重心位置G2は、RGB各色線像の重心位置Xr、Xg、Xbと、各色寄与率Pr、Pg、Pbとの積和によって求められ、
G1=ΣXi(1)Pi(1),(i=r,g,b)
G2=ΣXi(2)Pi(2),(i=r,g,b)
ΔG=G1−G2 [mm]
となる。ΔGは、第1焦点検出信号と第2焦点検出信号を用いて位相差AFにより求めた焦点検出合焦位置における、第1焦点検出信号と第2焦点検出信号の重心差である。
Here, the centroid position G1 and the centroid position G2 are obtained by the product sum of the centroid positions Xr, Xg, and Xb of the RGB color line images and the respective color contribution ratios Pr, Pg, and Pb.
G1 = ΣXi (1) Pi (1), (i = r, g, b)
G2 = ΣXi (2) Pi (2), (i = r, g, b)
ΔG = G1-G2 [mm]
It becomes. ΔG is a centroid difference between the first focus detection signal and the second focus detection signal at the focus detection focus position obtained by the phase difference AF using the first focus detection signal and the second focus detection signal.

同一色における第1焦点検出画素201の受光信号および第2焦点検出画素202の受光信号の線像重心位置は、焦点検出合焦位置においてほぼ同等であるため、
Xi(1)=Xi(2) (i=r,g,b)
として考えられる。
Since the center positions of the line images of the light reception signal of the first focus detection pixel 201 and the light reception signal of the second focus detection pixel 202 in the same color are substantially equal at the focus detection focus position,
Xi (1) = Xi (2) (i = r, g, b)
Is considered.

従って、ΔG=0の場合、焦点検出合焦位置における第1焦点検出信号と第2焦点検出信号との重心が等しいことを意味するため、倍率色収差による焦点検出誤差は無いことになる。一方、倍率色収差が大きく、第1焦点検出画素201と第2焦点検出画素202との色シェーディングの差が大きいと、ΔGは大きくなるため、倍率色収差による焦点検出誤差も大きくなる。   Therefore, when ΔG = 0, it means that the centroids of the first focus detection signal and the second focus detection signal at the focus detection focus position are equal, and therefore there is no focus detection error due to lateral chromatic aberration. On the other hand, if the chromatic aberration of magnification is large and the difference in color shading between the first focus detection pixel 201 and the second focus detection pixel 202 is large, ΔG increases, so that the focus detection error due to the chromatic aberration of magnification also increases.

一般的に、結像光学系における倍率色収差は少なからず存在し、2つの焦点検出画素における色シェーディング差は中央像高から離れるほど大きくなる傾向にある。さらに、倍率色収差や色シェーディング差は製造ばらつきに影響されるため、適切な補正が難しい場合がある。   In general, there is a considerable amount of lateral chromatic aberration in the imaging optical system, and the color shading difference between the two focus detection pixels tends to increase as the distance from the central image height increases. Furthermore, since the chromatic aberration of magnification and the color shading difference are affected by manufacturing variations, it may be difficult to perform appropriate correction.

[重み付け]
そこで、本実施形態では、結像光学系のレンズ情報に基づき、互いに分光感度の異なる複数の焦点検出画素の受光信号から焦点検出信号を生成する際に、受光信号にかける重み付け(加算係数セット)を変更することで、倍率色収差が及ぼす焦点検出誤差を抑制する。本実施形態における結像光学系のレンズ情報は、結像光学系を構成するレンズIDとする。また、互いに分光感度の異なる複数の焦点検出画素は、本実施形態においては、赤(R)、緑(G)、青(B)の3種4画素である。通常、4画素の出力を加算して信号Y(焦点検出信号)を作成する際の受光信号の重み付けは、Gは2画素あることを考慮して、R:G:B=1:2:1である。これに対し、本実施形態においては、レンズIDに基づいて受光信号の重み付け(加算係数セット)を変更することを特徴とする。
[Weighting]
Therefore, in the present embodiment, weighting (addition coefficient set) applied to a light reception signal when generating a focus detection signal from light reception signals of a plurality of focus detection pixels having different spectral sensitivities based on lens information of the imaging optical system. By changing, the focus detection error caused by the chromatic aberration of magnification is suppressed. The lens information of the imaging optical system in the present embodiment is a lens ID that constitutes the imaging optical system. Further, in the present embodiment, the plurality of focus detection pixels having different spectral sensitivities are three types and four pixels of red (R), green (G), and blue (B). Normally, the weight of the received light signal when generating the signal Y (focus detection signal) by adding the outputs of the four pixels is determined by considering that G has two pixels, R: G: B = 1: 2: 1. It is. On the other hand, the present embodiment is characterized in that the weight of the received light signal (addition coefficient set) is changed based on the lens ID.

[焦点検出処理の流れ]
図8は、第1の実施形態における焦点検出処理の流れの概略を示すフローチャートである。なお、図8の動作は、CPU121によりカメラの各構成を制御することにより実行される。
[Flow of focus detection processing]
FIG. 8 is a flowchart showing an outline of the flow of focus detection processing in the first embodiment. Note that the operation in FIG. 8 is executed by the CPU 121 controlling each component of the camera.

まず、S10で、結像光学系を構成するレンズのレンズIDを取得する。次いで、S11で、撮像素子107の有効画素領域内に、焦点調節を行う焦点検出領域を設定する。そして、S12において、設定された焦点検出領域の第1焦点検出画素201および第2焦点検出画素202から、受光信号を取得する。   First, in S10, a lens ID of a lens constituting the imaging optical system is acquired. Next, in S <b> 11, a focus detection area for performing focus adjustment is set in the effective pixel area of the image sensor 107. In S12, a light reception signal is acquired from the first focus detection pixel 201 and the second focus detection pixel 202 in the set focus detection region.

S13において、S10で取得したレンズIDに基づき、第1焦点検出画素201および第2焦点検出画素202から取得したRGBからなる受光信号に対して、加算係数セットを用いて重み付け調整を実施する。レンズIDと受光信号の加算係数セットはCPU121に記憶されており、例えば表1のようにレンズID=Aの場合の加算係数セットはR:G:B=1:2:1であるが、レンズID=Bの場合の加算係数セットはR:G:B=0:2:0となる。レンズID=Bの場合は緑(G)の受光信号のみを用いて焦点検出を行うことになる。   In S13, based on the lens ID acquired in S10, weight adjustment is performed on the received light signals composed of RGB acquired from the first focus detection pixel 201 and the second focus detection pixel 202 using the addition coefficient set. The addition coefficient set of the lens ID and the received light signal is stored in the CPU 121. For example, as shown in Table 1, the addition coefficient set when the lens ID = A is R: G: B = 1: 2: 1. An addition coefficient set in the case of ID = B is R: G: B = 0: 2: 0. When the lens ID = B, focus detection is performed using only the green (G) light reception signal.

Figure 2018116267
Figure 2018116267

S14において、S13で重み付け調整された受光信号に対し、画素群200毎に加算処理を行って、第1焦点検出信号と第2焦点検出信号を生成する。なお、信号データ量を抑制するために、列方向に、例えば3つの画素群200ずつ加算処理を行ってもよい。   In S <b> 14, an addition process is performed for each pixel group 200 on the light reception signal weighted and adjusted in S <b> 13 to generate a first focus detection signal and a second focus detection signal. In order to suppress the amount of signal data, for example, addition processing may be performed for each of the three pixel groups 200 in the column direction.

S15では、第1焦点検出信号と第2焦点検出信号に、強度を揃えるための、シェーディング補正処理(光学補正処理)を行う。   In S15, a shading correction process (optical correction process) is performed for matching the intensities of the first focus detection signal and the second focus detection signal.

S16では、相関(信号の一致度)を良くして焦点検出精度を向上するために、第1焦点検出信号と第2焦点検出信号に、特定の通過周波数帯域を有するバンドパスフィルタ処理を行う。バンドパスフィルタの例としては、DC成分をカットしてエッジ抽出を行う{1、4、4、4、0、−4、−4、−4、−1}などの差分型フィルタや、高周波ノイズ成分を抑制する{1、2、1}などの加算型フィルタがある。   In S16, in order to improve the correlation (signal coincidence) and improve the focus detection accuracy, the first focus detection signal and the second focus detection signal are subjected to band pass filter processing having a specific pass frequency band. Examples of bandpass filters include differential filters such as {1, 4, 4, 4, 0, -4, -4, -4, -1} that perform edge extraction by cutting DC components, and high-frequency noise. There are additive filters such as {1, 2, 1} that suppress components.

次に、S17において、フィルタ処理後の第1焦点検出信号と第2焦点検出信号を相対的に瞳分割方向にシフトさせるシフト処理を行い、信号の一致度を表す相関量を算出する。   Next, in S17, a shift process for relatively shifting the first focus detection signal and the second focus detection signal after the filter process in the pupil division direction is performed, and a correlation amount representing the degree of coincidence of the signals is calculated.

フィルタ処理後のk番目の第1焦点検出信号をA(k)、第2焦点検出信号をB(k)、焦点検出領域に対応する番号kの範囲をWとする。シフト処理によるシフト量をs、シフト量sのシフト範囲をΓとすると、相関量CORは、式(1)により算出される。   The kth first focus detection signal after the filter processing is A (k), the second focus detection signal is B (k), and the range of the number k corresponding to the focus detection area is W. When the shift amount by the shift process is s and the shift range of the shift amount s is Γ, the correlation amount COR is calculated by the equation (1).

Figure 2018116267
シフト量sのシフト処理により、k番目の第1焦点検出信号A(k)とk−s番目の第2焦点検出信号B(k−s)を対応させて減算し、シフト減算信号を生成する。生成されたシフト減算信号の絶対値を計算し、焦点検出領域に対応する範囲W内で番号kの和を取り、相関量COR(s)を算出する。必要に応じて、各行毎に算出された相関量を、各シフト量毎に、複数行に渡って加算しても良い。
Figure 2018116267
By shift processing of the shift amount s, the kth first focus detection signal A (k) and the ksth second focus detection signal B (ks) are subtracted in correspondence to generate a shift subtraction signal. . The absolute value of the generated shift subtraction signal is calculated, the sum of the numbers k is calculated within the range W corresponding to the focus detection area, and the correlation amount COR (s) is calculated. If necessary, the correlation amount calculated for each row may be added over a plurality of rows for each shift amount.

S18では、相関量から、サブピクセル演算により、相関量が最小値となる実数値のシフト量を算出して像ずれ量pとする。そして、像ずれ量pに変換係数Kをかけて、デフォーカス量dを検出する。そして、S19において、検出したデフォーカス量dに基づいてレンズ駆動を行う。   In S18, a real-value shift amount at which the correlation amount is the minimum value is calculated from the correlation amount by sub-pixel calculation, and is set as an image shift amount p. The defocus amount d is detected by multiplying the image shift amount p by the conversion coefficient K. In S19, the lens is driven based on the detected defocus amount d.

倍率色収差が及ぼす焦点検出誤差は、倍率色収差が大きく、第1焦点検出画素と第2焦点検出画素との色シェーディングの差が大きい結像光学系において、互いに分光感度の異なる複数の焦点検出画素の検出信号を合算すると生じる課題である。したがって、倍率色収差が及ぼす焦点検出誤差が大きくなる結像光学系においては、例えば表1のレンズID=Bのように緑(G)のみで焦点検出を行えば、焦点検出誤差は抑制できる。また、B(青)の倍率色収差が特に大きいレンズの場合は、レンズID=Cのように赤(R)と緑(G)を加算した検出信号を用いてもよい。さらには、レンズID=Dのように赤(R)と青(B)の重み付けを半分にしたうえで、赤(R)緑(G)青(B)を加算した検出信号を用いてもよい。   The focus detection error caused by the chromatic aberration of magnification has a large chromatic aberration of magnification and a large difference in color shading between the first focus detection pixel and the second focus detection pixel. This is a problem that occurs when the detection signals are added together. Therefore, in the imaging optical system in which the focus detection error caused by the lateral chromatic aberration is large, the focus detection error can be suppressed by performing focus detection only with green (G) as in lens ID = B in Table 1, for example. Further, in the case of a lens having a particularly large lateral chromatic aberration of B (blue), a detection signal obtained by adding red (R) and green (G) as in lens ID = C may be used. Further, a detection signal obtained by adding red (R), green (G), and blue (B) after halving the weight of red (R) and blue (B) as in lens ID = D may be used. .

なお、第1の実施形態においてはレンズIDと加算係数セットとの関係を撮像装置側のCPU121が記憶しておく構成としたが、本発明はこれに限定されない。例えば、レンズIDの代わりに、加算係数セットを指定するグループ別IDを定義し、グループ別ID=Aのレンズの加算係数セットをR:G:B=1:2:1、グループ別ID=Bのレンズの加算係数セットをR:G:B=0:2:0といったように構成してもよい。交換レンズ式の撮像装置においては、結像光学系を有する交換レンズが、不揮発性メモリを有し、そのメモリに上述のグループ別IDを記憶させる。交換レンズ側からグループ別IDを撮像装置に送信し、受信したグループ別IDに対応した加算係数セットを用いて重み付けを行う構成としてもよい。   In the first embodiment, the CPU 121 on the imaging device side stores the relationship between the lens ID and the addition coefficient set. However, the present invention is not limited to this. For example, instead of a lens ID, an ID for each group that specifies an addition coefficient set is defined, and an addition coefficient set for a lens with a group ID = A is R: G: B = 1: 2: 1, and a group ID = B The addition coefficient set of the lenses may be configured as R: G: B = 0: 2: 0. In an interchangeable lens type imaging apparatus, an interchangeable lens having an imaging optical system has a nonvolatile memory, and the above-mentioned group ID is stored in the memory. A group ID may be transmitted from the interchangeable lens side to the imaging apparatus, and weighting may be performed using an addition coefficient set corresponding to the received group ID.

上記の通り第1の実施形態によれば、結像光学系の倍率収差が焦点検出結果に与える影響を抑制し、高精度な焦点検出を行うことが可能となる。   As described above, according to the first embodiment, the influence of the magnification aberration of the imaging optical system on the focus detection result can be suppressed, and highly accurate focus detection can be performed.

<第2の実施形態>
次に、本発明の第2の実施形態について説明する。第1の実施形態においては、結像光学系のレンズIDもしくはグループ別IDを結像光学系のレンズ情報とし、互いに分光感度の異なる複数の焦点検出画素から出力された信号を加算する際の重み付け(加算係数セット)をレンズ情報に応じて変更した。これに対し、第2の実施形態においては、結像光学系のレンズ情報として倍率色収差情報により、互いに分光感度の異なる複数の焦点検出画素の信号を加算する際の重み付け(加算係数セット)を変更する。なお、検出信号の重み付けを変更する点以外は第1の実施形態と同様であるため、相違点について説明し、カメラの構成等、共通点についての説明は省略する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. In the first embodiment, the lens ID of the imaging optical system or the group ID is used as lens information of the imaging optical system, and weighting is performed when signals output from a plurality of focus detection pixels having different spectral sensitivities are added. (Addition coefficient set) was changed according to lens information. On the other hand, in the second embodiment, the weighting (addition coefficient set) when adding signals of a plurality of focus detection pixels having different spectral sensitivities is changed based on the chromatic aberration magnification information as lens information of the imaging optical system. To do. In addition, since it is the same as that of 1st Embodiment except the point which changes the weighting of a detection signal, a different point is demonstrated and description about a common point, such as a structure of a camera, is abbreviate | omitted.

倍率色収差が及ぼす焦点検出誤差は、倍率色収差が大きいほど大きくなるため、倍率色収差が大きい焦点検出画素の受光信号の重みを低下させることで、検出誤差を抑制することができる。そこで第2の実施形態においては、倍率色収差情報と受光信号との関係を撮像装置側のCPU121に記憶しておく。Gを基準色として、RとG、BとGの倍率色収差量に応じて表2のように受光信号の加算係数セットを変更する。ここで、xRはRとGの倍率色収差の判断閾値であり、RとGの倍率色収差量がxR未満(閾値未満)であればRの検出信号を用い、xR以上(閾値以上)であればRの検出信号を用いない。同様に、xBはBとGの倍率色収差の判断閾値であり、BとGの倍率色収差量がxB未満であればBの検出信号を用い、xB以上であればBの検出信号を用いない。   Since the focus detection error caused by the chromatic aberration of magnification increases as the chromatic aberration of magnification increases, the detection error can be suppressed by reducing the weight of the light reception signal of the focus detection pixel having a large chromatic aberration of magnification. Therefore, in the second embodiment, the relationship between the chromatic aberration of magnification information and the light reception signal is stored in the CPU 121 on the imaging apparatus side. Using G as a reference color, the addition coefficient set of the received light signal is changed as shown in Table 2 according to the chromatic aberration amounts of R and G and B and G. Here, xR is a determination threshold for chromatic aberration of magnification of R and G. If the amount of chromatic aberration of magnification of R and G is less than xR (less than the threshold), the detection signal of R is used, and if xR or more (greater than the threshold) R detection signal is not used. Similarly, xB is a threshold for determining the lateral chromatic aberration of B and G. If the amount of lateral chromatic aberration of B and G is less than xB, the B detection signal is used, and if it is greater than xB, the B detection signal is not used.

Figure 2018116267
Figure 2018116267

結像光学系を有する交換レンズの不揮発性メモリにレンズ固有の倍率色収差情報を記憶させておく。そして、交換レンズ側から倍率色収差情報を撮像装置に送信し、受信した倍率色収差情報に対応した加算係数セットを用いて、重み付け加算を行う。なお、倍率色収差量は結像光学系の状態によって異なる値であるため、例えばズーム状態や焦点状態に応じた倍率色収差情報を交換レンズの不揮発性メモリに記憶してもよい。その場合、結像光学系の状態に応じた倍率色収差情報を撮像装置に送信し、受信した倍率色収差情報に対応した加算係数セットを用いて重み付けを行う構成となる。   The lens-specific magnification chromatic aberration information is stored in a non-volatile memory of an interchangeable lens having an imaging optical system. Then, the chromatic aberration of magnification information is transmitted from the interchangeable lens side to the imaging device, and weighted addition is performed using an addition coefficient set corresponding to the received chromatic aberration of magnification information. Since the amount of lateral chromatic aberration varies depending on the state of the imaging optical system, for example, lateral chromatic aberration information corresponding to the zoom state or focus state may be stored in the nonvolatile memory of the interchangeable lens. In that case, magnification chromatic aberration information corresponding to the state of the imaging optical system is transmitted to the imaging apparatus, and weighting is performed using an addition coefficient set corresponding to the received magnification chromatic aberration information.

第2の実施形態においては結像光学系のレンズ情報として倍率色収差情報を用いて、加算係数セットを変更する調整方法について説明した。結像光学系のレンズ情報としては、倍率色収差による検出誤差を見積もる変数を用いることが好適であり、倍率色収差量以外にも射出瞳距離や、像ずれ量pをデフォーカス量dへ換算するための換算係数Kを用いることができる。一般的に射出瞳距離が短い結像光学系は、第1焦点検出画素201と第2焦点検出画素202との色シェーディングの差が大きくなりやすいため、倍率色収差による検出誤差を見積もる際に有用である。また、換算係数Kが大きい結像光学系は、倍率色収差による検出誤差を拡大することになるため、換算係数Kを結像光学系の情報として用いて、加算係数セットを変更する調整方法も有効である。射出瞳距離や換算係数Kを用いる場合、Gを基準色として、例えば、基準色以外の色(R、B)の加算係数セットを小さくする。   In the second embodiment, the adjustment method for changing the addition coefficient set using the chromatic aberration of magnification information as the lens information of the imaging optical system has been described. As lens information of the imaging optical system, it is preferable to use a variable for estimating a detection error due to chromatic aberration of magnification, in order to convert the exit pupil distance and the image shift amount p to the defocus amount d in addition to the chromatic aberration of magnification. The conversion factor K can be used. In general, an imaging optical system with a short exit pupil distance is useful for estimating a detection error due to chromatic aberration of magnification because a difference in color shading between the first focus detection pixel 201 and the second focus detection pixel 202 tends to increase. is there. In addition, since an imaging optical system with a large conversion coefficient K increases detection error due to lateral chromatic aberration, an adjustment method for changing the addition coefficient set using the conversion coefficient K as information of the imaging optical system is also effective. It is. When the exit pupil distance and the conversion coefficient K are used, for example, the addition coefficient set for colors (R, B) other than the reference color is reduced with G as the reference color.

上記の通り第2の実施形態によれば、結像光学系の倍率収差が焦点検出結果に与える影響を抑制し、高精度な焦点検出を行うことが可能となる。   As described above, according to the second embodiment, the influence of the magnification aberration of the imaging optical system on the focus detection result can be suppressed, and high-precision focus detection can be performed.

<第3の実施形態>
次に、本発明の第3の実施形態について説明する。交換レンズ式の撮像装置において、交換レンズと撮像装置の組み合わせが決定した状態において校正を行うことが知られている。そこで、本第3の実施形態では、交換レンズと撮像装置の組み合わせが決定した状態において、校正時に適切な検出信号の重み付け(加算係数セット)を設定する。なお、検出信号の重み付けを変更する点以外は第1の実施形態と同様であるため、相違点について説明し、カメラの構成等、共通点についての説明は省略する。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. In an interchangeable lens type imaging apparatus, it is known to perform calibration in a state where a combination of an interchangeable lens and an imaging apparatus is determined. Therefore, in the third embodiment, in the state where the combination of the interchangeable lens and the imaging device is determined, an appropriate detection signal weight (addition coefficient set) is set at the time of calibration. In addition, since it is the same as that of 1st Embodiment except the point which changes the weighting of a detection signal, a different point is demonstrated and description about a common point, such as a structure of a camera, is abbreviate | omitted.

加算係数セットにはいくつかのパターンが考えられるが、第3の実施形態では、表3に示すようなパターンとする。また、第3の実施形態の撮像素子107の画素レイアウトは、図2に示すようにRGBからなるベイヤ配列であるが、本実施形態においてはR画素に隣接するG画素をGr、B画素に隣接するG画素をGbとして区別する。区別する理由としては、隣接画素からの光学的漏れこみを考慮すると、Gr画素とGb画素は分光感度が異なると考えられるためである。   Several patterns can be considered for the addition coefficient set. In the third embodiment, the patterns shown in Table 3 are used. The pixel layout of the image sensor 107 according to the third embodiment is a Bayer array composed of RGB as shown in FIG. 2, but in this embodiment, the G pixel adjacent to the R pixel is adjacent to the Gr and B pixels. G pixels to be distinguished are distinguished as Gb. The reason for distinguishing is that Gr pixels and Gb pixels are considered to have different spectral sensitivities in consideration of optical leakage from adjacent pixels.

Figure 2018116267
Figure 2018116267

図9は、第3の実施形態において、それぞれの加算係数セットを用いた場合の、設定デフォーカス量と検出デフォーカス量との関係の一例を示す図である。設定デフォーカス量は正しいデフォーカス量であり、検出デフォーカス量は、検出したデフォーカス量に、表3に示す組み合わせ1〜3のいずれかの加算係数セットを用いて重み付け加算して得られたデフォーカス量である。   FIG. 9 is a diagram illustrating an example of a relationship between the set defocus amount and the detected defocus amount when each addition coefficient set is used in the third embodiment. The set defocus amount is a correct defocus amount, and the detected defocus amount was obtained by weighting and adding the detected defocus amount using any one of the addition coefficient sets of combinations 1 to 3 shown in Table 3. Defocus amount.

設定デフォーカス量が0の時に検出デフォーカス量として0と返す場合が、最も合焦精度が高いと言える。したがって、図9より、最も合焦精度が高い加算係数セットは組み合わせ3となり、本実施形態の交換レンズと撮像装置の組み合わせでは、組み合わせ3の加算係数セットを用いて焦点検出を行うことが最適となる。したがって、この場合の交換レンズと撮像装置の組み合わせで焦点検出を行う場合は、組み合わせ3の加算係数セットを用いて焦点検出を行うように関連づけて撮像装置に記憶し、使用するとよい。   When the set defocus amount is 0, when the detection defocus amount is returned as 0, it can be said that the in-focus accuracy is the highest. Therefore, from FIG. 9, the addition coefficient set with the highest focusing accuracy is combination 3, and it is optimal to perform focus detection using the addition coefficient set of combination 3 in the combination of the interchangeable lens and the imaging apparatus of the present embodiment. Become. Therefore, when focus detection is performed using the combination of the interchangeable lens and the imaging device in this case, it is preferable to store and use in the imaging device in association with the focus detection using the combination coefficient set of combination 3.

なお、適切な加算係数セットを決定する方法としては、設定デフォーカス量と検出デフォーカス量とを比較する以外にも、コントラストが最も高くなるピント位置に対して、最も近い検出結果を返す加算係数セットを選択してもよい。また、最も検出精度が高いと考えられる単色における焦点検出結果を正解とし、他の加算係数セットの組み合わせを用いた場合と比較をしてもよい。ただし、単色での焦点検出結果は受光量が少ないためS/N比が悪くなるという課題が発生する。同等な結果が得られる加算係数セットの組み合わせ同士の比較においては、S/N比の観点から受光量が最も高くなる組み合わせがよい。   In addition to comparing the set defocus amount and the detected defocus amount, an addition coefficient that returns the closest detection result to the focus position where the contrast is highest can be used as a method for determining an appropriate addition coefficient set. A set may be selected. In addition, the focus detection result in a single color that is considered to have the highest detection accuracy may be a correct answer, and may be compared with a case where a combination of other addition coefficient sets is used. However, since the focus detection result in a single color has a small amount of received light, there is a problem that the S / N ratio is deteriorated. In the comparison of combinations of addition coefficient sets that can obtain an equivalent result, the combination with the highest received light amount is preferable from the viewpoint of the S / N ratio.

なお、倍率色収差による焦点検出精度への影響はレンズの状態によって異なるため、絞り値毎に適切な加算係数セットを設定してもよい。また、ズームレンズの場合はズーム位置毎に適切な加算係数セットを設定してもよい。また、加算係数セットによっては、焦点検出結果を算出するのに必要なパラメータが大きく変わることがある。前述した換算係数Kやシェーディング補正値が焦点検出信号の加算係数によって変わる場合は、校正時に適切な値を算出し、撮像装置に記憶することで焦点検出時に使用するとよい。   In addition, since the influence of the chromatic aberration of magnification on the focus detection accuracy varies depending on the state of the lens, an appropriate addition coefficient set may be set for each aperture value. In the case of a zoom lens, an appropriate addition coefficient set may be set for each zoom position. In addition, depending on the set of addition coefficients, the parameters required to calculate the focus detection result may change greatly. When the conversion coefficient K and the shading correction value described above vary depending on the addition coefficient of the focus detection signal, an appropriate value may be calculated at the time of calibration and stored in the imaging device to be used for focus detection.

上記の通り第3の実施形態によれば、結像光学系の倍率収差が焦点検出結果に与える影響を抑制し、高精度な焦点検出を行うことが可能となる。   As described above, according to the third embodiment, the influence of the magnification aberration of the imaging optical system on the focus detection result can be suppressed, and high-precision focus detection can be performed.

また、本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。   Further, the present invention supplies a program that realizes one or more functions of the above-described embodiment to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus execute the program. It can also be realized by a process of reading and executing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

101:第1レンズ群、102:絞り兼用シャッタ、103:第2レンズ群、105:第3レンズ群、107:撮像素子、121:CPU、124:撮像素子駆動回路、125:画像処理回路、126:フォーカス駆動回路、129:ズーム駆動回路   101: First lens group, 102: Shutter / shutter, 103: Second lens group, 105: Third lens group, 107: Image sensor, 121: CPU, 124: Image sensor driving circuit, 125: Image processing circuit, 126 : Focus drive circuit, 129: Zoom drive circuit

Claims (16)

複数のマイクロレンズそれぞれに対して複数の光電変換部を備え、結像光学系を介して入射する光を光電変換して電気信号を出力する、複数色のカラーフィルタに覆われた撮像素子から得られる複数色の信号に基づいて、位相差検出方式による焦点検出を行う焦点検出装置であって、
前記結像光学系の倍率色収差の特性に応じて、前記複数色の信号に適用する重み付けを示す加算係数セットを取得する取得手段と、
前記加算係数セットを用いて、前記複数色の信号の重み付け加算を行って、一対の焦点検出信号を生成する生成手段と、
前記一対の焦点検出信号間の像ずれ量を検出する検出手段と
を有することを特徴とする焦点検出装置。
Obtained from an image sensor covered with multiple color filters that have multiple photoelectric conversion units for each of the multiple microlenses, photoelectrically convert the light incident via the imaging optical system, and output an electrical signal A focus detection device that performs focus detection by a phase difference detection method based on a plurality of color signals,
Obtaining means for obtaining an addition coefficient set indicating weighting applied to the signals of the plurality of colors according to the characteristics of the chromatic aberration of magnification of the imaging optical system;
Generating means for performing weighted addition of the signals of the plurality of colors using the addition coefficient set to generate a pair of focus detection signals;
And a detecting means for detecting an image shift amount between the pair of focus detection signals.
前記取得手段は、複数の加算係数セットを予め記憶しており、前記結像光学系の情報に基づいて前記複数の加算係数セットの1つを選択することを特徴とする請求項1に記載の焦点検出装置。   The acquisition unit stores a plurality of addition coefficient sets in advance, and selects one of the plurality of addition coefficient sets based on information of the imaging optical system. Focus detection device. 前記結像光学系の情報は、前記結像光学系のレンズ識別情報であることを特徴とする請求項2に記載の焦点検出装置。   The focus detection apparatus according to claim 2, wherein the information on the imaging optical system is lens identification information on the imaging optical system. 前記取得手段は、複数の加算係数セットを予め記憶しており、前記結像光学系の倍率色収差の特性に応じて前記複数の加算係数セットのいずれかを指定する情報に基づいて、前記複数の加算係数セットの1つを選択することを特徴とする請求項1に記載の焦点検出装置。   The acquisition means stores a plurality of addition coefficient sets in advance, and the plurality of addition coefficient sets based on information designating any of the plurality of addition coefficient sets according to the characteristics of the chromatic aberration of magnification of the imaging optical system. The focus detection apparatus according to claim 1, wherein one of the addition coefficient sets is selected. 前記結像光学系の倍率色収差の特性は、前記結像光学系の倍率色収差の大きさを示す情報であることを特徴とする請求項1に記載の焦点検出装置。   The focus detection apparatus according to claim 1, wherein the characteristic of lateral chromatic aberration of the imaging optical system is information indicating the magnitude of lateral chromatic aberration of the imaging optical system. 前記倍率色収差の大きさを示す情報は、前記複数色のうち基準となる色と、その他の色との間の倍率色収差量であって、前記倍率色収差量が予め決められた閾値以上の色の加算係数セットを、前記倍率色収差が前記閾値未満である場合よりも小さくすることを特徴とする請求項5に記載の焦点検出装置。   The information indicating the magnitude of the chromatic aberration of magnification is the amount of chromatic aberration of magnification between the reference color and the other colors among the plurality of colors, and the amount of chromatic aberration of magnification is not less than a predetermined threshold. The focus detection apparatus according to claim 5, wherein the addition coefficient set is made smaller than when the lateral chromatic aberration is less than the threshold value. 前記倍率色収差の大きさを示す情報は、前記撮像素子から前記結像光学系までの射出瞳距離であって、前記射出瞳距離が予め決められた閾値以上の場合に、前記射出瞳距離が前記閾値未満である場合よりも、前記複数色のうち基準色以外の色の加算係数セットを小さくすることを特徴とする請求項5に記載の焦点検出装置。   The information indicating the magnitude of the lateral chromatic aberration is an exit pupil distance from the imaging device to the imaging optical system, and when the exit pupil distance is greater than or equal to a predetermined threshold, the exit pupil distance is The focus detection apparatus according to claim 5, wherein an addition coefficient set for a color other than a reference color among the plurality of colors is made smaller than when it is less than a threshold value. 前記倍率色収差の大きさを示す情報は、前記像ずれ量を、前記結像光学系のデフォーカス量に変換する変換係数であって、前記変換係数が予め決められた閾値以上の場合に、前記変換係数が前記閾値未満である場合よりも、前記複数色のうち基準色以外の色の加算係数セットを小さくすることを特徴とする請求項5に記載の焦点検出装置。   The information indicating the magnitude of the chromatic aberration of magnification is a conversion coefficient for converting the image shift amount into a defocus amount of the imaging optical system, and the conversion coefficient is equal to or greater than a predetermined threshold. The focus detection apparatus according to claim 5, wherein an addition coefficient set for a color other than a reference color among the plurality of colors is made smaller than when the conversion coefficient is less than the threshold value. 前記取得手段は、前記結像光学系から前記加算係数セットを取得することを特徴とする請求項1に記載の焦点検出装置。   The focus detection apparatus according to claim 1, wherein the acquisition unit acquires the addition coefficient set from the imaging optical system. 前記結像光学系は、前記撮像素子を含む撮像装置に対して着脱可能であって、
前記取得手段は、複数の加算係数セットを予め記憶しており、前記複数の加算係数セットを用いて前記複数色の信号の重み付け加算をそれぞれ行って得られた像ずれ量のうち、
予め決められた像ずれ量に最も近い像ずれ量となる加算係数セットを選択し、前記結像光学系と前記撮像装置の組み合わせと、選択した加算係数セットとを関連づけて記憶することを特徴とする請求項1に記載の焦点検出装置。
The imaging optical system is detachable from an imaging device including the imaging element,
The acquisition means stores a plurality of addition coefficient sets in advance, and among image shift amounts obtained by performing weighted addition of the signals of the plurality of colors using the plurality of addition coefficient sets,
Selecting an addition coefficient set having an image deviation amount closest to a predetermined image deviation amount, and storing the combination of the imaging optical system and the imaging device in association with the selected addition coefficient set; The focus detection apparatus according to claim 1.
前記取得手段は、さらに、前記複数の加算係数セットのうち、前記結像光学系の状態に応じて、加算係数セットを選択し、前記結像光学系の状態に関連づけて記憶することを特徴とする請求項10に記載の焦点検出装置。   The acquisition unit further selects an addition coefficient set from the plurality of addition coefficient sets according to a state of the imaging optical system, and stores the addition coefficient set in association with the state of the imaging optical system. The focus detection apparatus according to claim 10. 請求項1乃至11のいずれか1項に記載の焦点検出装置と、
前記撮像素子と、
前記像ずれ量に基づいて、前記結像光学系を制御する制御手段と
を有することを特徴とする撮像装置。
The focus detection apparatus according to any one of claims 1 to 11,
The imaging element;
An image pickup apparatus comprising: control means for controlling the imaging optical system based on the image shift amount.
前記結像光学系を更に有することを特徴とする請求項12に記載の撮像装置。   The imaging apparatus according to claim 12, further comprising the imaging optical system. 複数のマイクロレンズそれぞれに対して複数の光電変換部を備え、結像光学系を介して入射する光を光電変換して電気信号を出力する、複数色のカラーフィルタに覆われた撮像素子から得られる複数色の信号に基づいて、位相差検出方式による焦点検出を行う焦点検出方法であって、
取得手段が、前記結像光学系の倍率色収差の特性に応じて、前記複数色の信号に適用する重み付けを示す加算係数セットを取得する取得工程と、
生成手段が、前記加算係数セットを用いて、前記複数色の信号の重み付け加算を行って、一対の焦点検出信号を生成する生成工程と、
検出手段が、前記一対の焦点検出信号間の像ずれ量を検出する検出工程と
を有することを特徴とする焦点検出方法。
Obtained from an image sensor covered with multiple color filters that have multiple photoelectric conversion units for each of the multiple microlenses, photoelectrically convert the light incident via the imaging optical system, and output an electrical signal A focus detection method for performing focus detection by a phase difference detection method based on a plurality of color signals,
An obtaining step for obtaining an addition coefficient set indicating weighting to be applied to the signals of the plurality of colors according to the characteristics of the chromatic aberration of magnification of the imaging optical system;
A generating step of generating a pair of focus detection signals by performing weighted addition of the signals of the plurality of colors using the addition coefficient set;
And a detection step of detecting an image shift amount between the pair of focus detection signals.
コンピュータを、請求項1乃至11のいずれか1項に記載の焦点検出装置の各手段として機能させるためのプログラム。   The program for functioning a computer as each means of the focus detection apparatus of any one of Claims 1 thru | or 11. 請求項15に記載のプログラムを記憶したコンピュータが読み取り可能な記憶媒体。   A computer-readable storage medium storing the program according to claim 15.
JP2017236295A 2017-01-13 2017-12-08 Focus detectors and methods, and imaging devices Active JP7022575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/862,813 US10326926B2 (en) 2017-01-13 2018-01-05 Focus detection apparatus and method, and image capturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004603 2017-01-13
JP2017004603 2017-01-13

Publications (3)

Publication Number Publication Date
JP2018116267A true JP2018116267A (en) 2018-07-26
JP2018116267A5 JP2018116267A5 (en) 2021-01-28
JP7022575B2 JP7022575B2 (en) 2022-02-18

Family

ID=62984203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017236295A Active JP7022575B2 (en) 2017-01-13 2017-12-08 Focus detectors and methods, and imaging devices

Country Status (1)

Country Link
JP (1) JP7022575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162765A (en) * 2020-04-01 2021-10-11 株式会社Screenホールディングス In-focus position detection method, in-focus position detection device and in-focus position detection program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052009A (en) * 2006-08-24 2008-03-06 Nikon Corp Focus detection device, focus detection method and imaging apparatus
JP2013171251A (en) * 2012-02-22 2013-09-02 Nikon Corp Focus detection device
JP2014072541A (en) * 2012-09-27 2014-04-21 Nikon Corp Image sensor and image pick-up device
JP2014215436A (en) * 2013-04-25 2014-11-17 キヤノン株式会社 Image-capturing device, and control method and control program therefor
JP2014222291A (en) * 2013-05-13 2014-11-27 キヤノン株式会社 Imaging apparatus and control method thereof
WO2016111175A1 (en) * 2015-01-07 2016-07-14 ソニー株式会社 Image processing device, image processing method, and program
JP2016180999A (en) * 2016-05-26 2016-10-13 株式会社ニコン Focus detection apparatus and imaging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052009A (en) * 2006-08-24 2008-03-06 Nikon Corp Focus detection device, focus detection method and imaging apparatus
JP2013171251A (en) * 2012-02-22 2013-09-02 Nikon Corp Focus detection device
JP2014072541A (en) * 2012-09-27 2014-04-21 Nikon Corp Image sensor and image pick-up device
JP2014215436A (en) * 2013-04-25 2014-11-17 キヤノン株式会社 Image-capturing device, and control method and control program therefor
JP2014222291A (en) * 2013-05-13 2014-11-27 キヤノン株式会社 Imaging apparatus and control method thereof
WO2016111175A1 (en) * 2015-01-07 2016-07-14 ソニー株式会社 Image processing device, image processing method, and program
JP2016180999A (en) * 2016-05-26 2016-10-13 株式会社ニコン Focus detection apparatus and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162765A (en) * 2020-04-01 2021-10-11 株式会社Screenホールディングス In-focus position detection method, in-focus position detection device and in-focus position detection program
JP7405678B2 (en) 2020-04-01 2023-12-26 株式会社Screenホールディングス Focus position detection method, focus position detection device, and focus position detection program

Also Published As

Publication number Publication date
JP7022575B2 (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US10545312B2 (en) Focus detection apparatus, control method thereof, and storage medium storing program
JP6239857B2 (en) Imaging apparatus and control method thereof
JP6532119B2 (en) Image pickup apparatus and control method thereof
JP6249825B2 (en) Imaging device, control method thereof, and control program
JP6486149B2 (en) Image processing apparatus, imaging apparatus, image processing method, program, and storage medium
JP6376974B2 (en) Imaging apparatus and imaging system
JP6381266B2 (en) IMAGING DEVICE, CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP2018132581A (en) Focus detection apparatus, focus detection method, and focus detection program
JP6254843B2 (en) Image processing apparatus and control method thereof
JP2015194736A (en) Imaging apparatus and control method thereof
JP6285683B2 (en) Imaging apparatus and control method thereof
JP7150785B2 (en) Image processing device, imaging device, image processing method, and storage medium
JP2015210285A (en) Imaging device, manufacturing method of the same, program thereof and recording medium
US10326926B2 (en) Focus detection apparatus and method, and image capturing apparatus
JP2017219782A (en) Control device, imaging device, control method, program, and storage medium
JP7022575B2 (en) Focus detectors and methods, and imaging devices
JP6639326B2 (en) Control device, imaging device, control method, program, and storage medium
JP2015145970A (en) Imaging device, control method of the same, program abd recording medium
JP6525829B2 (en) Control device, imaging device, control method, program, and storage medium
JP2018151508A (en) Imaging device
JP2016133595A (en) Controller, imaging device, control method, program, and storage medium
JP2015225310A (en) Image capturing device, control method therefor, program, and storage medium
JP6938719B2 (en) Imaging device and imaging system
JP7612334B2 (en) Control device, imaging device, control method, and program
JP2018019348A (en) Imaging device, image processing method, image processing system, and image processing program

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R151 Written notification of patent or utility model registration

Ref document number: 7022575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151