[go: up one dir, main page]

JP6285683B2 - Imaging apparatus and control method thereof - Google Patents

Imaging apparatus and control method thereof Download PDF

Info

Publication number
JP6285683B2
JP6285683B2 JP2013206808A JP2013206808A JP6285683B2 JP 6285683 B2 JP6285683 B2 JP 6285683B2 JP 2013206808 A JP2013206808 A JP 2013206808A JP 2013206808 A JP2013206808 A JP 2013206808A JP 6285683 B2 JP6285683 B2 JP 6285683B2
Authority
JP
Japan
Prior art keywords
focus detection
focus
defocus amount
detection
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013206808A
Other languages
Japanese (ja)
Other versions
JP2015072312A5 (en
JP2015072312A (en
Inventor
英之 浜野
英之 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013206808A priority Critical patent/JP6285683B2/en
Publication of JP2015072312A publication Critical patent/JP2015072312A/en
Publication of JP2015072312A5 publication Critical patent/JP2015072312A5/ja
Application granted granted Critical
Publication of JP6285683B2 publication Critical patent/JP6285683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Description

本発明は、撮像装置及びその制御方法に関し、更に詳しくは、自動焦点調節機能を有する撮像装置及びその制御方法に関するものである。   The present invention relates to an imaging apparatus and a control method thereof, and more particularly to an imaging apparatus having an automatic focus adjustment function and a control method thereof.

撮像装置で行われる焦点検出方法の1つに、撮像素子に形成された焦点検出画素により位相差方式の焦点検出を行う撮像面位相差方式がある。   As one of focus detection methods performed in the imaging apparatus, there is an imaging plane phase difference method in which focus detection by a phase difference method is performed by focus detection pixels formed on an image sensor.

特許文献1では、1つの画素に対して、1つのマイクロレンズと複数に分割された光電変換部が形成されている2次元撮像素子を用いた撮像装置が開示されている。分割された光電変換部は、1つのマイクロレンズを介して撮影レンズの射出瞳の異なる領域を透過した光を受光するように構成され、瞳分割を行っている。こういった分割された光電変換部を有する画素(焦点検出画素)から出力されたそれぞれの焦点検出信号から相関量を算出し、相関量から像ずれ量を求めることで、位相差方式の焦点検出を行うことができる。また、特許文献2では、分割された光電変換部から出力された焦点検出信号を画素毎に加算することにより撮像信号を生成することが開示されている。   Patent Document 1 discloses an imaging apparatus using a two-dimensional imaging element in which one microlens and a plurality of divided photoelectric conversion units are formed for one pixel. The divided photoelectric conversion unit is configured to receive light transmitted through different regions of the exit pupil of the photographing lens through one microlens, and performs pupil division. A phase difference type focus detection is performed by calculating a correlation amount from each focus detection signal output from a pixel (focus detection pixel) having such a divided photoelectric conversion unit and obtaining an image shift amount from the correlation amount. It can be performed. Patent Document 2 discloses that an imaging signal is generated by adding a focus detection signal output from a divided photoelectric conversion unit for each pixel.

また、特許文献3では、複数の撮像画素からなる2次元撮像素子に、部分的に対の焦点検出画素が配置された撮像装置が開示されている。対の焦点検出画素は、開口部を有する遮光層により、撮影レンズの射出瞳の異なる領域を受光するように構成され、瞳分割を行っている。2次元撮像素子の大部分に配置された撮像画素で撮像信号を取得し、一部に配置された焦点検出画素の焦点検出信号から相関量を算出し、相関量から像ずれ量を求めて、位相差方式の焦点検出を行うことが開示されている。   Patent Document 3 discloses an imaging apparatus in which a pair of focus detection pixels is partially arranged on a two-dimensional imaging element composed of a plurality of imaging pixels. The pair of focus detection pixels are configured to receive different regions of the exit pupil of the photographing lens by a light shielding layer having an opening, and perform pupil division. An imaging signal is acquired with imaging pixels arranged in most of the two-dimensional imaging device, a correlation amount is calculated from focus detection signals of focus detection pixels arranged in a part, and an image shift amount is obtained from the correlation amount, It is disclosed to perform phase difference type focus detection.

撮像面位相差方式の焦点検出においては、撮像素子に形成された焦点検出画素によりデフォーカス方向とデフォーカス量を同時に検出することが可能であり、高速に焦点調節を行うことができる。   In focus detection using the imaging surface phase difference method, it is possible to simultaneously detect the defocus direction and the amount of defocus using focus detection pixels formed on the image sensor, and focus adjustment can be performed at high speed.

米国特許4410804号US Pat. No. 4,410,804 特開2001−083407号公報JP 2001-083407 A 特開2000−156823号公報JP 2000-156823 A

しかしながら、撮像面位相差方式では、焦点検出を行う焦点検出画素が受光する光束と撮像画像を取得する撮像画素が受光する光束が異なるため、撮影レンズの各収差(球面収差、非点収差、コマ収差など)の焦点検出信号への影響と撮像信号への影響が異なる。そのため、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間に差が生じるという課題がある。   However, in the imaging surface phase difference method, the light beam received by the focus detection pixel that performs focus detection differs from the light beam received by the imaging pixel that acquires the captured image, so each aberration (spherical aberration, astigmatism, coma) of the photographic lens is different. The influence of the aberration on the focus detection signal is different from the influence of the imaging signal. For this reason, there is a problem that a difference occurs between the detected in-focus position calculated from the focus detection signal and the best in-focus position of the imaging signal.

本発明は上記問題点を鑑みてなされたものであり、焦点検出をより高精度且つ迅速に行えるようにすることを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to enable focus detection to be performed with higher accuracy and speed.

上記目的を達成するために、本発明の撮像装置は、結像光学系の異なる瞳部分領域を通過した一対の光束をそれぞれ受光する第1焦点検出画素及び第2焦点検出画素を有する撮像素子と、焦点検出領域内の前記第1焦点検出画素から出力される第1焦点検出信号と、前記第2焦点検出画素から出力される第2焦点検出信号との相関量を算出し、該相関量に基づいて、合焦位置までの差を示す第1検出デフォーカス量を検出する第1焦点検出手段と、前記第1焦点検出信号と前記第2焦点検出信号を互いにシフトさせながら加算して得られたシフト加算信号から、各シフト量毎のコントラスト評価値を算出し、該コントラスト評価値に基づいて、合焦位置までの差を示す第2検出デフォーカス量を検出する第2焦点検出手段と、前記結像光学系の瞳領域を通過した光束により得られる信号のコントラストが最大となる合焦位置と、前記第1検出デフォーカス量に対応する合焦位置との差を抑制するための焦点検出補正値を、前記結像光学系のズーム位置とフォーカス位置に応じた値として記憶する記憶手段と、前記第1検出デフォーカス量を前記記憶手段に記憶された前記焦点検出補正値で補正したデフォーカス量に基づいて焦点調節を行った後に、前記第2検出デフォーカス量に基づいて焦点調節を行う焦点調節手段とを有し、前記焦点調節手段は、前記焦点検出領域の像高または被写体までの距離の少なくとも一方が所定の条件を満たす場合には、前記第2検出デフォーカス量に基づく焦点調節を行わないIn order to achieve the above object, an imaging device of the present invention includes an imaging element having a first focus detection pixel and a second focus detection pixel that respectively receive a pair of light beams that have passed through different pupil partial regions of an imaging optical system. Calculating a correlation amount between the first focus detection signal output from the first focus detection pixel in the focus detection region and the second focus detection signal output from the second focus detection pixel, and calculating the correlation amount Based on the first focus detection means for detecting the first detection defocus amount indicating the difference to the in-focus position, and the first focus detection signal and the second focus detection signal are added while being shifted from each other. A second focus detection unit that calculates a contrast evaluation value for each shift amount from the shift addition signal and detects a second detection defocus amount indicating a difference to the in-focus position based on the contrast evaluation value; The imaging optical system A focus detection correction value for suppressing the difference between the focus position at which the contrast of the signal obtained by the light flux that has passed through the pupil region is maximum and the focus position corresponding to the first detection defocus amount is calculated as the result of the focus detection correction value. A storage unit that stores values corresponding to a zoom position and a focus position of the image optical system, and a focus based on the defocus amount obtained by correcting the first detection defocus amount with the focus detection correction value stored in the storage unit. after the adjusting, possess a focusing means for performing focus point adjusted based on the second detection defocus amount, the focusing means is at least one of the distance to the image height or a subject of the focus detection area If the predetermined condition is satisfied, focus adjustment based on the second detected defocus amount is not performed .

本発明によれば、焦点検出をより高精度且つ迅速に行うことができる。   According to the present invention, focus detection can be performed with higher accuracy and speed.

本発明の実施の形態に係る撮像装置の概略構成図。1 is a schematic configuration diagram of an imaging apparatus according to an embodiment of the present invention. 実施の形態における画素配列の概略図。FIG. 3 is a schematic diagram of a pixel arrangement in the embodiment. 実施の形態における画素の概略平面図と概略断面図。FIG. 2 is a schematic plan view and a schematic cross-sectional view of a pixel in an embodiment. 実施の形態における画素構造と瞳分割の概略説明図。Schematic explanatory drawing of the pixel structure and pupil division in the embodiment. 実施の形態における撮像素子と瞳分割の概略説明図。Schematic explanatory drawing of an image sensor and pupil division in an embodiment. 実施の形態における第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量との概略関係図。FIG. 6 is a schematic relationship diagram between a defocus amount and an image shift amount of a first focus detection signal and a second focus detection signal in the embodiment. 実施の形態における焦点検出領域の説明図。Explanatory drawing of the focus detection area | region in embodiment. 実施の形態における第1焦点検出の処理を示すフローチャート。The flowchart which shows the process of the 1st focus detection in embodiment. 実施の形態における第1焦点検出信号と第2焦点検出信号の瞳ずれによるシェーディングの概略説明図。The schematic explanatory drawing of the shading by the pupil shift | offset | difference of the 1st focus detection signal and 2nd focus detection signal in embodiment. 実施の形態におけるフィルター周波数帯域の一例を示す図。The figure which shows an example of the filter frequency band in embodiment. 第1の実施形態における第1焦点検出信号と第2焦点検出信号の一例を示す図。FIG. 5 is a diagram illustrating an example of a first focus detection signal and a second focus detection signal according to the first embodiment. フォーカスレンズが最良合焦位置にある場合の第1フィルター処理後の第1焦点検出信号と第2焦点検出信号の一例を示す図。The figure which shows an example of the 1st focus detection signal and 2nd focus detection signal after a 1st filter process in case a focus lens exists in the best focus position. 第1の実施形態における第1検出デフォーカス量と第2検出デフォーカス量の一例を示す図。FIG. 5 is a diagram illustrating an example of a first detection defocus amount and a second detection defocus amount according to the first embodiment. 実施の形態におけるリフォーカス処理の概略説明図。FIG. 5 is a schematic explanatory diagram of refocus processing in the embodiment. 実施の形態における第2焦点検出の処理を示すフローチャート。The flowchart which shows the process of the 2nd focus detection in embodiment. フォーカスレンズが最良合焦位置にある場合の第2フィルター処理後の第1焦点検出信号と第2焦点検出信号の一例を示す図。The figure which shows an example of the 1st focus detection signal and 2nd focus detection signal after a 2nd filter process in case a focus lens exists in the best focus position. 実施の形態における第2フィルター処理後の第1焦点検出信号と第2焦点検出信号のシフト加算信号の一例を示す図。The figure which shows an example of the shift addition signal of the 1st focus detection signal and the 2nd focus detection signal after the 2nd filter process in embodiment. 実施の形態におけるコントラスト評価値の一例を示す図。The figure which shows an example of the contrast evaluation value in embodiment. 実施の形態におけるリフォーカス可能範囲の概略説明図。FIG. 3 is a schematic explanatory diagram of a refocusable range in the embodiment. 実施の形態における焦点検出補正値の説明図。Explanatory drawing of the focus detection correction value in embodiment. 第1の実施形態における焦点検出処理の流れを示すフローチャート。5 is a flowchart showing a flow of focus detection processing in the first embodiment. 第2の実施形態における焦点検出処理の流れを示すフローチャート。9 is a flowchart showing a flow of focus detection processing in the second embodiment. 第4の実施形態における焦点検出処理の流れを示すフローチャート。10 is a flowchart showing a flow of focus detection processing in the fourth embodiment. 第5の実施形態における画素配列の概略図。Schematic of the pixel arrangement in a 5th embodiment. 第4の実施形態における画素の概略平面図と概略断面図。The schematic plan view and schematic sectional drawing of the pixel in 4th Embodiment.

以下、添付図面を参照して本発明を実施するための最良の形態を詳細に説明する。ただし、本形態において例示される構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、本発明がそれらの例示に限定されるものではない。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components exemplified in this embodiment should be changed as appropriate according to the configuration of the apparatus to which the present invention is applied and various conditions. However, the present invention is not limited to these examples.

<第1の実施形態>
●全体構成
図1は本発明の実施の形態における撮像素子を有する撮像装置であるカメラの概略構成を示したものである。図1において、第1レンズ群101は結像光学系の先端に配置され、光軸方向に進退可能に保持される。絞り兼用シャッタ102は、その開口径を調節することで撮影時の光量調節を行うほか、静止画撮影時には露光秒時調節用シャッタとしての機能も備える。第2レンズ群103は、絞り兼用シャッタ102と一体となって光軸方向に進退し、第1レンズ群101の進退動作との連動により、変倍作用(ズーム機能)を実現することができる。
<First Embodiment>
Overall Configuration FIG. 1 shows a schematic configuration of a camera which is an image pickup apparatus having an image pickup device according to an embodiment of the present invention. In FIG. 1, the first lens group 101 is disposed at the tip of the imaging optical system and is held so as to be able to advance and retreat in the optical axis direction. The aperture / shutter 102 adjusts the aperture diameter to adjust the amount of light at the time of shooting, and also has a function as an exposure time adjustment shutter at the time of still image shooting. The second lens group 103 moves forward and backward in the optical axis direction integrally with the diaphragm / shutter 102, and a zooming function (zoom function) can be realized in conjunction with the forward / backward movement of the first lens group 101.

第3レンズ群105(フォーカスレンズ)は、光軸方向の進退により焦点調節を行う。光学的ローパスフィルタ106は、撮影画像の偽色やモアレを軽減するための光学素子である。撮像素子107は2次元CMOSフォトセンサとその周辺回路からなり、結像光学系の結像面に配置される。上述した第1レンズ群101、絞り兼用シャッタ102、第2レンズ群103、第3レンズ群105、光学的ローパスフィルタ106は、結像光学系を構成している。   The third lens group 105 (focus lens) performs focus adjustment by advancing and retreating in the optical axis direction. The optical low-pass filter 106 is an optical element for reducing false colors and moire in the captured image. The image sensor 107 is composed of a two-dimensional CMOS photosensor and its peripheral circuit, and is disposed on the imaging surface of the imaging optical system. The first lens group 101, the diaphragm / shutter 102, the second lens group 103, the third lens group 105, and the optical low-pass filter 106 described above constitute an imaging optical system.

ズームアクチュエータ111は、不図示のカム筒を回動することで、第1レンズ群101ないし第3レンズ群103を光軸方向に進退駆動し、変倍操作を行う。絞りシャッタアクチュエータ112は、絞り兼用シャッタ102の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行う。フォーカスアクチュエータ114は、第3レンズ群105を光軸方向に進退駆動して焦点調節を行う。   The zoom actuator 111 rotates a cam cylinder (not shown) to drive the first lens group 101 to the third lens group 103 forward and backward in the optical axis direction, and performs a zooming operation. The aperture shutter actuator 112 controls the aperture diameter of the aperture / shutter 102 to adjust the amount of photographing light, and controls the exposure time during still image photographing. The focus actuator 114 adjusts the focus by driving the third lens group 105 back and forth in the optical axis direction.

撮影時の被写体照明用電子フラッシュ115で、キセノン管を用いた閃光照明装置が好適だが、連続発光するLEDを備えた照明装置を用いても良い。AF補助光発光部116は、所定の開口パターンを有したマスクの像を、投光レンズを介して被写界に投影し、暗い被写体あるいは低コントラスト被写体に対する焦点検出能力を向上させる。   A flash illumination device using a xenon tube is suitable for the electronic flash 115 for illuminating the subject at the time of shooting, but an illumination device including an LED that emits light continuously may be used. The AF auxiliary light emitting unit 116 projects a mask image having a predetermined opening pattern onto the object field via the projection lens, and improves the focus detection capability for a dark subject or a low-contrast subject.

121は、カメラ本体の種々の制御を司るカメラ内CPUで、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を有する。CPU121は、ROMに記憶された所定のプログラムに基づいて、カメラが有する各種回路を駆動し、AF、撮影、画像処理と記録等の一連の動作を実行する。また、本実施形態では、結像光学系の状態に応じた焦点検出補正値も記憶されている。   Reference numeral 121 denotes an in-camera CPU that controls various controls of the camera body, and includes a calculation unit, ROM, RAM, A / D converter, D / A converter, communication interface circuit, and the like. The CPU 121 drives various circuits included in the camera based on a predetermined program stored in the ROM, and executes a series of operations such as AF, photographing, image processing, and recording. In the present embodiment, a focus detection correction value corresponding to the state of the imaging optical system is also stored.

焦点検出補正値は、第3レンズ群105の位置に対応したフォーカス状態、第1レンズ群101の位置に対応したズーム状態、結像光学系のFナンバー毎に複数用意されている。そして、撮像素子107の出力信号を用いて後述する焦点調節を行う際には、結像光学系の第1レンズ群101、第3レンズ群105の位置及びFナンバーに対応した最適な焦点検出補正値が選択される構成となっている。   A plurality of focus detection correction values are prepared for each focus state corresponding to the position of the third lens group 105, zoom state corresponding to the position of the first lens group 101, and F number of the imaging optical system. When performing focus adjustment, which will be described later, using the output signal of the image sensor 107, optimum focus detection correction corresponding to the positions and F-numbers of the first lens group 101 and the third lens group 105 of the imaging optical system. A value is selected.

なお本実施形態では、焦点検出補正値をCPU121に記憶するように構成したが、本発明はこれに限るものではない。例えば、交換レンズ式の撮像装置においては、結像光学系を有する交換レンズが不揮発性メモリを有し、そのメモリに上述の焦点検出補正値を記憶してもよい。この場合には、結像光学系の状態に応じて、焦点検出補正値を撮像装置に送信すればよい。   In the present embodiment, the focus detection correction value is stored in the CPU 121, but the present invention is not limited to this. For example, in an interchangeable lens type imaging apparatus, an interchangeable lens having an imaging optical system may have a nonvolatile memory, and the focus detection correction value described above may be stored in the memory. In this case, the focus detection correction value may be transmitted to the imaging device according to the state of the imaging optical system.

電子フラッシュ制御回路122は、撮影動作に同期して電子フラッシュ115を点灯制御する。補助光駆動回路123は、焦点検出動作に同期してAF補助光発光部116を点灯制御する。撮像素子駆動回路124は、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してCPU121に送信する。画像処理回路125は、撮像素子107が取得した画像のγ変換、カラー補間、JPEG圧縮等の処理を行う。   The electronic flash control circuit 122 controls lighting of the electronic flash 115 in synchronization with the photographing operation. The auxiliary light driving circuit 123 controls the lighting of the AF auxiliary light emitting unit 116 in synchronization with the focus detection operation. The image sensor driving circuit 124 controls the image capturing operation of the image sensor 107, A / D converts the acquired image signal, and transmits it to the CPU 121. The image processing circuit 125 performs processing such as γ conversion, color interpolation, and JPEG compression of the image acquired by the image sensor 107.

フォーカス駆動回路126は、焦点検出結果に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に進退駆動して焦点調節を行う。絞りシャッタ駆動回路128は、絞りシャッタアクチュエータ112を駆動制御して絞り兼用シャッタ102の開口を制御する。ズーム駆動回路129は、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。   The focus drive circuit 126 controls the focus actuator 114 based on the focus detection result, and adjusts the focus by driving the third lens group 105 back and forth in the optical axis direction. The aperture shutter drive circuit 128 controls the aperture of the aperture / shutter 102 by drivingly controlling the aperture shutter actuator 112. The zoom drive circuit 129 drives the zoom actuator 111 according to the zoom operation of the photographer.

LCD等の表示器131は、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の焦点検出領域の指標や合焦状態表示画像等を表示する。操作スイッチ群132は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。着脱可能なフラッシュメモリ133は、撮影済み画像を記録する。   A display 131 such as an LCD displays information related to the shooting mode of the camera, a preview image before shooting and a confirmation image after shooting, an index of a focus detection area at the time of focus detection, a focus state display image, and the like. The operation switch group 132 includes a power switch, a release (shooting trigger) switch, a zoom operation switch, a shooting mode selection switch, and the like. The detachable flash memory 133 records captured images.

●撮像素子
次に、本実施形態における撮像素子107の撮像画素と焦点検出画素の配列の概略を図2に示す。図2は、本実施形態の2次元CMOSセンサー(撮像素子)の画素(撮像画素)配列を4列×4行の範囲で、焦点検出画素配列を8列×4行の範囲で示したものである。
Image Sensor Next, an outline of the arrangement of the imaging pixels and focus detection pixels of the image sensor 107 in the present embodiment is shown in FIG. FIG. 2 shows the pixel (imaging pixel) array of the two-dimensional CMOS sensor (imaging device) of this embodiment in a range of 4 columns × 4 rows and the focus detection pixel array in a range of 8 columns × 4 rows. is there.

画素群200は2行×2列の画素からなり、R(赤)の分光感度を有する画素200Rが左上に、G(緑)の分光感度を有する画素200Gが右上と左下に、B(青)の分光感度を有する画素200Bが右下に配置されている。さらに、各画素は2列×1行に配列された第1焦点検出画素201と第2焦点検出画素202により構成されている。   The pixel group 200 includes pixels of 2 rows × 2 columns, a pixel 200R having a spectral sensitivity of R (red) is on the upper left, a pixel 200G having a spectral sensitivity of G (green) is on the upper right and lower left, and B (blue). The pixel 200 </ b> B having the spectral sensitivity is arranged in the lower right. Further, each pixel includes a first focus detection pixel 201 and a second focus detection pixel 202 arranged in 2 columns × 1 row.

図2に示した4列×4行の画素(8列×4行の焦点検出画素)を面上に多数配置し、撮像画像(焦点検出信号)の取得を可能としている。本実施形態では、画素の周期Pが4μm、画素数Nが横5575列×縦3725行=約2075万画素、焦点検出画素の列方向周期PAFが2μm、焦点検出画素数NAFが横11150列×縦3725行=約4150万画素の撮像素子として説明を行う。   A large number of 4 columns × 4 rows of pixels (8 columns × 4 rows of focus detection pixels) shown in FIG. 2 are arranged on the surface to enable acquisition of a captured image (focus detection signal). In the present embodiment, the pixel period P is 4 μm, the number of pixels N is 5575 columns × 3725 rows = approximately 20.75 million pixels, the column direction cycle PAF of the focus detection pixels is 2 μm, and the focus detection pixel number NAF is 11150 columns × The description will be made assuming that the image sensor has 3725 vertical rows = about 41.5 million pixels.

図2に示した撮像素子107の1つの画素200Gを、撮像素子107の受光面側(+z側)から見た平面図を図3(a)に示し、図3(a)のa−a断面を−y側から見た断面図を図3(b)に示す。図3に示すように、本実施形態の画素200Gでは、各画素の受光側に入射光を集光するためのマイクロレンズ305が形成され、x方向にN分割(2分割)、y方向にN分割(1分割)された光電変換部301と光電変換部302が形成される。光電変換部301及び302が、それぞれ、第1焦点検出画素201と第2焦点検出画素202に対応する。光電変換部301及び302は、p型層とn型層の間にイントリンシック層を挟んだpin構造フォトダイオードとしても良いし、必要に応じて、イントリンシック層を省略し、pn接合フォトダイオードとしても良い。 A plan view of one pixel 200G of the image sensor 107 shown in FIG. 2 as viewed from the light receiving surface side (+ z side) of the image sensor 107 is shown in FIG. 3A, and a cross section taken along the line aa in FIG. FIG. 3B shows a cross-sectional view as seen from the −y side. As shown in FIG. 3, in the pixel 200G of this embodiment, a microlens 305 for condensing incident light is formed on the light receiving side of each pixel, and is divided into NH (two divisions) in the x direction and in the y direction. N V division (first division) by photoelectric conversion unit 301 and the photoelectric conversion portion 302 is formed. The photoelectric conversion units 301 and 302 correspond to the first focus detection pixel 201 and the second focus detection pixel 202, respectively. The photoelectric conversion units 301 and 302 may be a pin structure photodiode in which an intrinsic layer is sandwiched between a p-type layer and an n-type layer, or the intrinsic layer may be omitted as necessary to serve as a pn junction photodiode. Also good.

各画素には、マイクロレンズ305と、光電変換部301及び302との間に、カラーフィルタ306が形成される。また、必要に応じて、各焦点検出画素毎にカラーフィルタの分光透過率を変えても良いし、カラーフィルタを省略しても良い。   In each pixel, a color filter 306 is formed between the microlens 305 and the photoelectric conversion units 301 and 302. Further, as necessary, the spectral transmittance of the color filter may be changed for each focus detection pixel, or the color filter may be omitted.

図3に示した画素200Gに入射した光は、マイクロレンズ305により集光され、カラーフィルタ306で分光されたのち、光電変換部301及び302で受光される。光電変換部301及び302では、受光量に応じて電子とホールが対生成し、空乏層で分離された後、負電荷の電子はn型層(不図示)に蓄積され、一方、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子107の外部へ排出される。光電変換部301及び302のn型層(不図示)に蓄積された電子は、転送ゲートを介して、静電容量部(FD)に転送され、電圧信号に変換されて出力される。   Light incident on the pixel 200 </ b> G illustrated in FIG. 3 is collected by the microlens 305, dispersed by the color filter 306, and then received by the photoelectric conversion units 301 and 302. In the photoelectric conversion units 301 and 302, a pair of electrons and holes are generated according to the amount of received light and separated by a depletion layer, and then negatively charged electrons are accumulated in an n-type layer (not shown), while holes are constant. The light is discharged outside the image sensor 107 through a p-type layer connected to a voltage source (not shown). Electrons accumulated in n-type layers (not shown) of the photoelectric conversion units 301 and 302 are transferred to a capacitance unit (FD) via a transfer gate, converted into a voltage signal, and output.

図3に示した本実施形態の画素構造と瞳分割との対応関係を図4を参照して説明する。図4は、図3(a)に示した本実施形態の画素構造のa−a断面を+y側から見た断面図と結像光学系の射出瞳面を示す図である。なお、図4では、射出瞳面の座標軸と対応を取るために、断面図のx軸とy軸を図3に対して反転させている。   The correspondence relationship between the pixel structure of this embodiment shown in FIG. 3 and pupil division will be described with reference to FIG. FIG. 4 is a cross-sectional view of the pixel structure of the present embodiment shown in FIG. 3A as viewed from the + y side and a view showing an exit pupil plane of the imaging optical system. In FIG. 4, the x-axis and y-axis of the cross-sectional view are inverted with respect to FIG. 3 in order to correspond to the coordinate axis of the exit pupil plane.

第1焦点検出画素201の第1瞳部分領域501は、重心が−x方向に偏心している光電変換部301の受光面と、マイクロレンズ305によって概ね共役関係になっており、第1焦点検出画素201で受光可能な瞳領域を表している。第1焦点検出画素201の第1瞳部分領域501は、瞳面上で+X側に重心が偏心している。   The first pupil partial region 501 of the first focus detection pixel 201 is substantially conjugated by the microlens 305 and the light receiving surface of the photoelectric conversion unit 301 whose center of gravity is decentered in the −x direction. Reference numeral 201 denotes a pupil region that can receive light. The first pupil partial region 501 of the first focus detection pixel 201 has an eccentric center of gravity on the + X side on the pupil plane.

また、第2焦点検出画素202の第2瞳部分領域502は、重心が+x方向に偏心している光電変換部302の受光面と、マイクロレンズ305によって概ね共役関係になっており、第2焦点検出画素202で受光可能な瞳領域を表している。第2焦点検出画素202の第2瞳部分領域502は、瞳面上で−X側に重心が偏心している。   In addition, the second pupil partial region 502 of the second focus detection pixel 202 is substantially conjugate with the light receiving surface of the photoelectric conversion unit 302 whose center of gravity is decentered in the + x direction and the microlens 305, so that the second focus detection is performed. A pupil region that can be received by the pixel 202 is shown. The second pupil partial region 502 of the second focus detection pixel 202 has an eccentric center of gravity on the −X side on the pupil plane.

また、瞳領域500は、光電変換部301及び302(第1焦点検出画素201と第2焦点検出画素202)を全て合わせた際の画素200G全体で受光可能な瞳領域である。   The pupil region 500 is a pupil region that can receive light in the entire pixel 200G when all of the photoelectric conversion units 301 and 302 (the first focus detection pixel 201 and the second focus detection pixel 202) are combined.

図5は、本実施形態の撮像素子107と瞳分割との対応関係を示した概略図である。第1瞳部分領域501と第2瞳部分領域502をそれぞれ通過した一対の光束は、撮像素子107の各画素にそれぞれ異なる角度で入射し、2×1に分割された第1焦点検出画素201と第2焦点検出画素202で受光される。本実施形態は、瞳領域が水平方向に2つに瞳分割されている例である。必要に応じて、垂直方向に瞳分割を行っても良い。   FIG. 5 is a schematic diagram illustrating a correspondence relationship between the image sensor 107 and pupil division according to the present embodiment. A pair of light beams that have passed through the first pupil partial region 501 and the second pupil partial region 502 are incident on the pixels of the image sensor 107 at different angles, and are divided into 2 × 1 first focus detection pixels 201 and Light is received by the second focus detection pixel 202. In the present embodiment, the pupil region is divided into two pupils in the horizontal direction. If necessary, pupil division may be performed in the vertical direction.

なお、上述した例では第1焦点検出画素と第2焦点検出画素から構成された撮像画素が複数配列されているが、本発明はこれに限られるものではない。必要に応じて、撮像画素と、第1焦点検出画素、第2焦点検出画素を個別の画素構成とし、撮像画素配列の一部に、第1焦点検出画素と第2焦点検出画素を部分的に配置する構成としても良い。   In the above-described example, a plurality of imaging pixels each including the first focus detection pixel and the second focus detection pixel are arranged. However, the present invention is not limited to this. If necessary, the imaging pixel, the first focus detection pixel, and the second focus detection pixel are configured as separate pixels, and the first focus detection pixel and the second focus detection pixel are partially included in a part of the imaging pixel array. It is good also as a structure to arrange.

本実施形態では、撮像素子107の各画素の第1焦点検出画素201の受光信号を集めて第1焦点検出信号を生成し、各画素の第2焦点検出画素202の受光信号を集めて第2焦点検出信号を生成して焦点検出を行う。また、撮像素子107の各画素毎に、第1焦点検出画素201と第2焦点検出画素202の信号を加算することで、有効画素数Nの解像度の撮像信号(撮像画像)を生成する。   In the present embodiment, the first focus detection signal 201 is collected by collecting the light reception signals of the first focus detection pixels 201 of the respective pixels of the image sensor 107, and the second light detection signals of the second focus detection pixels 202 of the respective pixels are collected. A focus detection signal is generated to perform focus detection. Further, by adding the signals of the first focus detection pixel 201 and the second focus detection pixel 202 for each pixel of the imaging element 107, an imaging signal (captured image) having a resolution of N effective pixels is generated.

●デフォーカス量と像ずれ量の関係
以下、本実施形態の撮像素子107により取得される第1焦点検出信号と第2焦点検出信号のデフォーカス量と、像ずれ量との関係について説明する。図6は、第1焦点検出信号と第2焦点検出信号のデフォーカス量と第1焦点検出信号と第2焦点検出信号間の像ずれ量の概略関係図である。撮像面800に本実施形態の撮像素子107が配置され、図4、図5を参照して説明したように、結像光学系の射出瞳が、第1瞳部分領域501と第2瞳部分領域502に2分割される。
Relationship between Defocus Amount and Image Deviation Amount Hereinafter, the relationship between the defocus amount of the first focus detection signal and the second focus detection signal acquired by the image sensor 107 of the present embodiment and the image deviation amount will be described. FIG. 6 is a schematic relationship diagram of the defocus amounts of the first focus detection signal and the second focus detection signal and the image shift amount between the first focus detection signal and the second focus detection signal. As described with reference to FIGS. 4 and 5, the imaging element 107 of the present embodiment is disposed on the imaging surface 800, and the exit pupil of the imaging optical system includes the first pupil partial region 501 and the second pupil partial region. Divided into 502.

デフォーカス量dは、被写体の結像位置から撮像面までの距離を大きさ|d|とし、被写体の結像位置が撮像面より被写体側にある前ピン状態を負符号(d<0)、被写体の結像位置が撮像面より被写体の反対側にある後ピン状態を正符号(d>0)として定義される。被写体の結像位置が撮像面(合焦位置)にある合焦状態はd=0である。図6で、被写体801は合焦状態(d=0)の例を示しており、被写体802は前ピン状態(d<0)の例を示している。前ピン状態(d<0)と後ピン状態(d>0)を合わせて、デフォーカス状態(|d|>0)とする。   The defocus amount d is a distance | d | from the imaging position of the subject to the imaging surface, and a negative sign (d <0) indicates a front pin state where the imaging position of the subject is on the subject side from the imaging surface. A rear pin state in which the imaging position of the subject is on the opposite side of the subject from the imaging surface is defined as a positive sign (d> 0). An in-focus state where the imaging position of the subject is on the imaging surface (in-focus position) is d = 0. In FIG. 6, the subject 801 shows an example in a focused state (d = 0), and the subject 802 shows an example in a front pin state (d <0). The front pin state (d <0) and the rear pin state (d> 0) are combined to form a defocus state (| d |> 0).

前ピン状態(d<0)では、被写体802からの光束のうち、第1瞳部分領域501(第2瞳部分領域502)を通過した光束は、一度、集光した後、光束の重心位置G1(G2)を中心として幅Γ1(Γ2)に広がり、撮像面800でボケた像となる。ボケた像は、撮像素子107に配列された各画素を構成する第1焦点検出画素201(第2焦点検出画素202)により受光され、第1焦点検出信号(第2焦点検出信号)が生成される。よって、第1焦点検出信号(第2焦点検出信号)は、撮像面800上の重心位置G1(G2)に、被写体802が幅Γ1(Γ2)にボケた被写体像として記録される。被写体像のボケ幅Γ1(Γ2)は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。同様に、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ量p(=光束の重心位置の差G1−G2)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。後ピン状態(d>0)でも、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。   In the front pin state (d <0), the luminous flux that has passed through the first pupil partial area 501 (second pupil partial area 502) out of the luminous flux from the subject 802 is once condensed and then the gravity center position G1 of the luminous flux. The image spreads in the width Γ 1 (Γ 2) with (G 2) as the center, resulting in a blurred image on the imaging surface 800. The blurred image is received by the first focus detection pixel 201 (second focus detection pixel 202) constituting each pixel arranged in the image sensor 107, and a first focus detection signal (second focus detection signal) is generated. The Therefore, the first focus detection signal (second focus detection signal) is recorded as a subject image in which the subject 802 is blurred by the width Γ1 (Γ2) at the gravity center position G1 (G2) on the imaging surface 800. The blur width Γ1 (Γ2) of the subject image generally increases in proportion to the amount of defocus amount d | d |. Similarly, the magnitude | p | of the object image displacement amount p (= difference G1-G2 in the center of gravity of the light beam) between the first focus detection signal and the second focus detection signal is also the size of the defocus amount d. As | d | increases, it generally increases in proportion. Even in the rear pin state (d> 0), the image shift direction of the subject image between the first focus detection signal and the second focus detection signal is opposite to that in the front pin state, but the same.

このように、第1焦点検出信号と第2焦点検出信号、もしくは、第1焦点検出信号と第2焦点検出信号を加算した撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号間の像ずれ量の大きさが増加する。   As described above, the first focus detection signal and the second focus detection signal, or the defocus amount of the image pickup signal obtained by adding the first focus detection signal and the second focus detection signal increases. The amount of image shift between the focus detection signal and the second focus detection signal increases.

●焦点検出
本実施形態では、第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量の関係性を用いて、位相差方式の第1焦点検出と、リフォーカス原理に基づいた方式(以下、「リフォーカス方式」と呼ぶ。)の第2焦点検出を行う。また、結像光学系の状態に合わせた焦点検出補正値を用いた補正も行う。主に、大デフォーカス状態から小デフォーカス状態まで焦点調節するために、焦点検出補正値による補正を行った第1焦点検出の結果を用い、小デフォーカス状態から最良合焦位置近傍まで焦点調節するために第2焦点検出を行う。詳細は、後述する。
Focus detection In this embodiment, based on the relationship between the defocus amount and the image shift amount of the first focus detection signal and the second focus detection signal, the first focus detection based on the phase difference method and the refocus principle are used. The second focus detection of the method (hereinafter referred to as “refocus method”) is performed. Further, correction using a focus detection correction value that matches the state of the imaging optical system is also performed. Mainly, focus adjustment is performed from the small defocus state to the vicinity of the best focus position by using the result of the first focus detection corrected by the focus detection correction value in order to adjust the focus from the large defocus state to the small defocus state. Therefore, the second focus detection is performed. Details will be described later.

[焦点検出領域]
まず、第1焦点検出信号と第2焦点検出信号を取得する撮像素子107上の領域である焦点検出領域について説明する。図7は、撮像素子107の有効画素領域1000における焦点検出領域と、焦点検出時に表示器131に表示される焦点検出領域を示す指標を重ねて示したものである。本実施形態では、焦点検出領域は行方向に3つ、列方向に3つの、計9個設定している。行方向にn番目、列方向にm番目の焦点検出領域をA(n,m)と表し、この領域内の第1焦点検出画素201と第2焦点検出画素202の信号を用いて、後述する第1焦点検出及び第2焦点検出を行う。また、同様に行方向にn番目、列方向にm番目の焦点検出領域の指標をI(n,m)と表す。
[Focus detection area]
First, a focus detection area that is an area on the image sensor 107 that acquires the first focus detection signal and the second focus detection signal will be described. FIG. 7 shows the focus detection area in the effective pixel area 1000 of the image sensor 107 and the index indicating the focus detection area displayed on the display 131 at the time of focus detection. In the present embodiment, nine focus detection areas are set, three in the row direction and three in the column direction. The nth focus detection region in the row direction and the mth focus detection region in the column direction is represented as A (n, m), and will be described later using signals from the first focus detection pixel 201 and the second focus detection pixel 202 in this region. First focus detection and second focus detection are performed. Similarly, the index of the nth focus detection region in the row direction and the mth in the column direction is represented as I (n, m).

なお、本実施形態では、行方向に3つ、列方向に3つの焦点検出領域を設定した例を示している。しかしながら、上述した撮像素子107のように有効画素領域1000のどの画素からも第1焦点検出信号及び第2焦点検出信号が得られる撮像素子においては、焦点検出領域の数、位置、サイズを適宜設定してもよい。例えば、撮影者の指定した領域を中心に、所定の範囲を焦点検出領域として設定してもよい。   In the present embodiment, an example is shown in which three focus detection areas are set in the row direction and three in the column direction. However, in the image sensor that can obtain the first focus detection signal and the second focus detection signal from any pixel in the effective pixel region 1000 like the image sensor 107 described above, the number, position, and size of the focus detection regions are set as appropriate. May be. For example, a predetermined range may be set as the focus detection area around the area designated by the photographer.

[位相差方式の第1焦点検出]
以下、本第1の実施形態における位相差方式の第1焦点検出について説明する。位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号を相対的にシフトさせて信号の一致度を表す相関量(第1評価値)を計算し、相関(信号の一致度)が良くなるシフト量から像ずれ量を検出する。撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号間の像ずれ量の大きさが増加する関係性から、像ずれ量を第1検出デフォーカス量に変換して焦点検出を行う。
[First focus detection of phase difference method]
The phase difference type first focus detection in the first embodiment will be described below. In the first focus detection based on the phase difference method, the first focus detection signal and the second focus detection signal are relatively shifted to calculate a correlation amount (first evaluation value) representing the degree of coincidence of the signals. The image shift amount is detected from the shift amount that improves the degree of coincidence. As the defocus amount of the image pickup signal increases, the image shift amount is determined based on the relationship that the image shift amount increases between the first focus detection signal and the second focus detection signal. Focus detection is performed by converting into a focus amount.

図8に、第1の実施形態における第1焦点検出の処理の流れの概略図を示す。なお、図8の処理は、第1の実施形態における焦点検出信号生成手段、第1焦点検出手段である撮像素子107、画像処理回路125とCPU121によって実行される。   FIG. 8 shows a schematic diagram of the flow of processing of the first focus detection in the first embodiment. Note that the processing in FIG. 8 is executed by the focus detection signal generation unit, the image sensor 107 as the first focus detection unit, the image processing circuit 125, and the CPU 121 in the first embodiment.

S110で、撮像素子107の有効画素領域1000に焦点検出領域を設定する。焦点検出信号生成手段により、焦点検出領域内の第1焦点検出画素201の受光信号から第1焦点検出信号を生成し、焦点検出領域内の第2焦点検出画素202の受光信号から第2焦点検出信号を生成する。   In S110, a focus detection area is set in the effective pixel area 1000 of the image sensor 107. The focus detection signal generating means generates a first focus detection signal from the light reception signal of the first focus detection pixel 201 in the focus detection area, and detects the second focus from the light reception signal of the second focus detection pixel 202 in the focus detection area. Generate a signal.

S120で、第1焦点検出信号と第2焦点検出信号に対して、それぞれ、信号データ量を抑制するために列方向に3画素加算処理を行い、さらに、RGB信号を輝度Y信号にするためにベイヤー(RGB)加算処理を行う。これら2つの加算処理を合わせて第1画素加算処理とする。   In S120, for each of the first focus detection signal and the second focus detection signal, a three-pixel addition process is performed in the column direction to suppress the signal data amount, and further, the RGB signal is converted into a luminance Y signal. A Bayer (RGB) addition process is performed. These two addition processes are combined into a first pixel addition process.

S130では、第1画素加算処理した第1焦点検出信号と第2焦点検出信号に、それぞれ、シェーディング補正処理(光学補正処理)を行う。以下、第1焦点検出信号と第2焦点検出信号の瞳ずれによるシェーディングについて説明する。図9に、撮像素子107の周辺像高における第1焦点検出画素201の第1瞳部分領域501、第2焦点検出画素202の第2瞳部分領域502、および結像光学系の射出瞳400の関係を示す。   In S130, a shading correction process (optical correction process) is performed on the first focus detection signal and the second focus detection signal that have been subjected to the first pixel addition process, respectively. Hereinafter, shading due to pupil shift between the first focus detection signal and the second focus detection signal will be described. FIG. 9 shows the first pupil partial region 501 of the first focus detection pixel 201, the second pupil partial region 502 of the second focus detection pixel 202, and the exit pupil 400 of the imaging optical system at the peripheral image height of the image sensor 107. Show the relationship.

図9(a)は、結像光学系の射出瞳距離Dlと撮像素子107の設定瞳距離Dsが同じ場合である。この場合は、第1瞳部分領域501と第2瞳部分領域502により、結像光学系の射出瞳400が、概ね、均等に瞳分割される。   FIG. 9A shows a case where the exit pupil distance Dl of the imaging optical system and the set pupil distance Ds of the image sensor 107 are the same. In this case, the exit pupil 400 of the imaging optical system is substantially equally divided by the first pupil partial region 501 and the second pupil partial region 502.

これに対して、図9(b)に示した結像光学系の射出瞳距離Dlが撮像素子107の設定瞳距離Dsより短い場合、撮像素子107の周辺像高では、結像光学系の射出瞳と撮像素子107の入射瞳の瞳ずれを生じる。そのため、結像光学系の射出瞳400が、不均一に瞳分割されてしまう。同様に、図9(c)に示した結像光学系の射出瞳距離Dlが撮像素子の設定瞳距離Dsより長い場合、撮像素子107の周辺像高では、結像光学系の射出瞳と撮像素子107の入射瞳の瞳ずれを生じ、結像光学系の射出瞳400が、不均一に瞳分割されてしまう。周辺像高で瞳分割が不均一になるのに伴い、第1焦点検出信号と第2焦点検出信号の強度も不均一になり、第1焦点検出信号と第2焦点検出信号のいずれか一方の強度が大きくなり、他方の強度が小さくなるシェーディングが生じる。   On the other hand, when the exit pupil distance Dl of the imaging optical system shown in FIG. 9B is shorter than the set pupil distance Ds of the image sensor 107, the exit of the imaging optical system is performed at the peripheral image height of the image sensor 107. A pupil shift occurs between the pupil and the entrance pupil of the image sensor 107. Therefore, the exit pupil 400 of the imaging optical system is non-uniformly divided into pupils. Similarly, when the exit pupil distance Dl of the imaging optical system shown in FIG. 9C is longer than the set pupil distance Ds of the imaging device, the imaging pupil and the exit pupil of the imaging optical system are imaged at the peripheral image height of the imaging device 107. A pupil shift of the entrance pupil of the element 107 occurs, and the exit pupil 400 of the imaging optical system is non-uniformly pupil-divided. As pupil division becomes nonuniform at the peripheral image height, the intensity of the first focus detection signal and the second focus detection signal also becomes nonuniform, and one of the first focus detection signal and the second focus detection signal Shading occurs with increasing strength and decreasing the other strength.

そこで、S130では、まず、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値と、射出瞳距離に応じて、第1焦点検出信号の第1シェーディング補正係数と、第2焦点検出信号の第2シェーディング補正係数をそれぞれ生成する。そして、第1シェーディング補正係数を第1焦点検出信号に乗算し、第2シェーディング補正係数を第2焦点検出信号に乗算して、第1焦点検出信号と第2焦点検出信号のシェーディング補正処理(光学補正処理)を行う。   Therefore, in S130, first, according to the image height of the focus detection area, the F value of the imaging lens (imaging optical system), and the exit pupil distance, the first shading correction coefficient of the first focus detection signal, and the second A second shading correction coefficient for the focus detection signal is generated. Then, the first focus detection signal is multiplied by the first focus detection signal, the second shading correction coefficient is multiplied by the second focus detection signal, and shading correction processing (optical) of the first focus detection signal and the second focus detection signal is performed. Correction process).

位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号の相関(信号の一致度)を基に、第1検出デフォーカス量の検出を行う。瞳ずれによるシェーディングが生じると第1焦点検出信号と第2焦点検出信号の相関が低下する場合がある。よって、位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号の相関を改善し、焦点検出性能を良好とするために、シェーディング補正処理を行うことが望ましい。   In the first focus detection of the phase difference method, the first detection defocus amount is detected based on the correlation (signal coincidence) between the first focus detection signal and the second focus detection signal. When shading due to pupil shift occurs, the correlation between the first focus detection signal and the second focus detection signal may decrease. Therefore, in the first focus detection of the phase difference method, it is desirable to perform shading correction processing in order to improve the correlation between the first focus detection signal and the second focus detection signal and to improve the focus detection performance.

S140では、シェーディング補正処理した第1焦点検出信号と第2焦点検出信号に、第1フィルター処理を行う。第1の実施形態の第1フィルター処理の通過帯域例を、図10の実線901で示す。第1の実施形態では、位相差方式の第1焦点検出により、大デフォーカス状態での焦点検出を行うため、第1フィルター処理の通過帯域は低周波帯域を含むように構成される。必要に応じて、大デフォーカス状態から小デフォーカス状態まで焦点調節を行う際に、デフォーカス状態に応じて、第1焦点検出時の第1フィルター処理の通過帯域を、図10の1点鎖線のように、より高周波帯域に調整しても良い。   In S140, a first filter process is performed on the first focus detection signal and the second focus detection signal subjected to the shading correction process. An example of a pass band of the first filter processing of the first embodiment is indicated by a solid line 901 in FIG. In the first embodiment, since the focus detection in the large defocus state is performed by the first focus detection of the phase difference method, the pass band of the first filter processing is configured to include the low frequency band. When the focus adjustment is performed from the large defocus state to the small defocus state as necessary, the pass band of the first filter processing at the time of the first focus detection according to the defocus state is indicated by a one-dot chain line in FIG. In this way, the frequency may be adjusted to a higher frequency band.

次に、S150では、第1フィルター処理後の第1焦点検出信号と第2焦点検出信号を相対的に瞳分割方向にシフトさせる第1シフト処理を行い、信号の一致度を表す相関量(第1評価値)を算出する。   Next, in S150, a first shift process that relatively shifts the first focus detection signal and the second focus detection signal after the first filter process in the pupil division direction is performed, and a correlation amount (a first amount indicating the degree of coincidence of the signals) 1 evaluation value) is calculated.

第1フィルター処理後のk番目の第1焦点検出信号をA(k)、第2焦点検出信号をB(k)、焦点検出領域に対応する番号kの範囲をWとする。さらに、第1シフト処理によるシフト量をs1、シフト量s1のシフト範囲をΓ1とすると、相関量(第1評価値)CORは、式(1)により算出される。   The k-th first focus detection signal after the first filter processing is A (k), the second focus detection signal is B (k), and the range of the number k corresponding to the focus detection area is W. Further, assuming that the shift amount by the first shift process is s1 and the shift range of the shift amount s1 is Γ1, the correlation amount (first evaluation value) COR is calculated by Expression (1).

Figure 0006285683
シフト量s1の第1シフト処理により、k番目の第1焦点検出信号A(k)とk−s1番目の第2焦点検出信号B(k−s1)を対応させ減算し、シフト減算信号を生成する。生成されたシフト減算信号の絶対値を計算し、焦点検出領域に対応する範囲W内で番号kの和を取り、相関量(第1評価値)COR(s1)を算出する。必要に応じて、各行毎に算出された相関量(第1評価値)を、各シフト量毎に、複数行に渡って加算しても良い。
Figure 0006285683
By the first shift process of the shift amount s1, the k-th first focus detection signal A (k) and the k-s1st second focus detection signal B (k-s1) are subtracted in correspondence to generate a shift subtraction signal. To do. The absolute value of the generated shift subtraction signal is calculated, the number k is summed within the range W corresponding to the focus detection area, and the correlation amount (first evaluation value) COR (s1) is calculated. If necessary, the correlation amount (first evaluation value) calculated for each row may be added over a plurality of rows for each shift amount.

S160では、相関量(第1評価値)から、サブピクセル演算により、相関量が最小値となる実数値のシフト量を算出して像ずれ量p1とする。そして、算出した像ずれ量p1に、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じた第1変換係数K1をかけて、第1検出デフォーカス量(Def1)を検出する。   In S160, from the correlation amount (first evaluation value), a real-valued shift amount at which the correlation amount is the minimum value is calculated by subpixel calculation, and is set as the image shift amount p1. Then, the calculated image shift amount p1 is multiplied by the image height of the focus detection region, the F value of the imaging lens (imaging optical system), and the first conversion coefficient K1 corresponding to the exit pupil distance, thereby the first detection defocus. The amount (Def1) is detected.

このように、本実施形態における位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号に、第1フィルター処理と第1シフト処理を行い、相関量を算出し、相関量から第1検出デフォーカス量を検出する。   As described above, in the first focus detection of the phase difference method in the present embodiment, the first filter processing and the first shift processing are performed on the first focus detection signal and the second focus detection signal, the correlation amount is calculated, and the correlation is calculated. The first detection defocus amount is detected from the amount.

本実施形態の撮像素子107では、第1焦点検出画素及び第2焦点検出画素が受光する光束と、撮像画素が受光する光束が異なり、結像光学系の各収差(球面収差、非点収差、コマ収差など)の焦点検出画素への影響と撮像信号への影響とが異なる。結像光学系の絞り値が小さく、開口が大きい(被写体が暗い)と差異がより大きくなる。そのため、結像光学系の絞り値が小さく、開口が大きい時に、位相差方式の第1焦点検出により算出される検出合焦位置(第1検出デフォーカス量が0となる位置)と、例えば、撮像信号のMTFピーク位置等の最良合焦位置との間に差が生じる場合がある。特に、結像光学系の絞り値が所定絞り値以下の場合に、位相差方式の第1焦点検出の焦点検出精度が低下する場合がある。   In the image sensor 107 of the present embodiment, the light beam received by the first focus detection pixel and the second focus detection pixel is different from the light beam received by the image pickup pixel, and each aberration (spherical aberration, astigmatism, The influence on the focus detection pixel and the influence on the imaging signal are different. The difference becomes larger when the aperture value of the imaging optical system is small and the aperture is large (the subject is dark). Therefore, when the aperture value of the imaging optical system is small and the aperture is large, the detection focus position (position where the first detection defocus amount is 0) calculated by the first focus detection of the phase difference method, for example, There may be a difference between the best focus position such as the MTF peak position of the imaging signal. In particular, when the aperture value of the imaging optical system is equal to or less than a predetermined aperture value, the focus detection accuracy of the first focus detection of the phase difference method may be lowered.

図11は、第3レンズ群105が最良合焦位置にある場合の、第1の実施形態の撮像素子107の周辺像高における第1焦点検出信号(破線)と第2焦点検出信号(実線)の例を示す。ここでは、最良合焦位置にあるが、結像光学系の各収差の影響により、第1焦点検出信号と第2焦点検出信号の信号形状が異なる例を示している。図12は、同じく第3レンズ群105が最良合焦位置にある場合の、シェーディング補正処理および第1フィルター処理後の周辺像高における第1焦点検出信号(破線)と第2焦点検出信号(実線)を示す。第3レンズ群105が最良合焦位置にあるが、第1焦点検出信号と第2焦点検出信号間の像ずれ量p1が0ではない。このように、位相差方式の第1焦点検出により算出される検出合焦位置と、撮像信号の最良合焦位置との間には差が生じる。   FIG. 11 shows the first focus detection signal (broken line) and the second focus detection signal (solid line) at the peripheral image height of the image sensor 107 of the first embodiment when the third lens group 105 is in the best focus position. An example of Here, an example is shown in which the first focus detection signal and the second focus detection signal are different in signal shape due to the influence of each aberration of the imaging optical system, although it is in the best focus position. FIG. 12 also shows the first focus detection signal (broken line) and the second focus detection signal (solid line) at the peripheral image height after the shading correction process and the first filter process when the third lens group 105 is at the best focus position. ). Although the third lens group 105 is in the best focus position, the image shift amount p1 between the first focus detection signal and the second focus detection signal is not zero. As described above, there is a difference between the detection focus position calculated by the first focus detection of the phase difference method and the best focus position of the imaging signal.

図13は、第1の実施形態における位相差方式の第1焦点検出により得られた第1検出デフォーカス量(破線)の例を示す。横軸は、最良合焦位置をデフォーカス量0[mm]とした設定デフォーカス量であり、縦軸は位相差方式の第1焦点検出により得られた検出デフォーカス量である。なお、図11に示した第1焦点検出信号と第2焦点検出信号は、図13の設定デフォーカス量0[mm]における第1焦点検出信号と第2焦点検出信号である。設定デフォーカス量0[mm]である最良合焦位置において、第1検出デフォーカス量が後ピン側に約50umオフセットしていることから、最良合焦位置と第1焦点検出により算出される検出合焦位置との間に約50umの差異が生じていることが分かる。   FIG. 13 shows an example of the first detected defocus amount (broken line) obtained by the first focus detection of the phase difference method in the first embodiment. The horizontal axis is the set defocus amount with the best focus position being the defocus amount 0 [mm], and the vertical axis is the detected defocus amount obtained by the first focus detection of the phase difference method. Note that the first focus detection signal and the second focus detection signal shown in FIG. 11 are the first focus detection signal and the second focus detection signal at the set defocus amount of 0 [mm] in FIG. At the best focus position where the set defocus amount is 0 [mm], since the first detection defocus amount is offset by about 50 μm to the rear pin side, detection calculated by the best focus position and the first focus detection It can be seen that there is a difference of about 50 μm from the in-focus position.

本実施形態では、焦点検出信号から算出される検出合焦位置と、撮像信号から求めることのできる最良合焦位置との差を抑制し、高精度な焦点検出を実現する。そのために、位相差方式の第1焦点検出に加えて、結像光学系の状態に合わせた焦点検出補正値を用いた補正と、結像光学系の最良合焦位置近傍で高精度な焦点検出が可能なリフォーカス方式の第2焦点検出を、焦点検出時の状況に応じて組み合わせて行う。   In the present embodiment, the difference between the detected focus position calculated from the focus detection signal and the best focus position that can be obtained from the imaging signal is suppressed, thereby realizing highly accurate focus detection. Therefore, in addition to the first focus detection using the phase difference method, correction using a focus detection correction value that matches the state of the imaging optical system, and high-precision focus detection near the best focus position of the imaging optical system The second focus detection of the refocusing method that can be performed is performed in combination according to the situation at the time of focus detection.

[リフォーカス方式の第2焦点検出]
以下、第1の実施形態におけるリフォーカス方式の第2焦点検出について説明する。
[Refocus second focus detection]
Hereinafter, the refocus second focus detection in the first embodiment will be described.

第1の実施形態のリフォーカス方式の第2焦点検出では、第1焦点検出信号と第2焦点検出信号を相対的にシフトして加算し、シフト加算信号(リフォーカス信号)を生成する。そして生成されたシフト加算信号(リフォーカス信号)のコントラスト評価値を算出し、コントラスト評価値から撮像信号のMTFピーク位置を推定し、第2検出デフォーカス量を検出する。   In the second focus detection of the refocus method of the first embodiment, the first focus detection signal and the second focus detection signal are relatively shifted and added to generate a shift addition signal (refocus signal). Then, the contrast evaluation value of the generated shift addition signal (refocus signal) is calculated, the MTF peak position of the imaging signal is estimated from the contrast evaluation value, and the second detection defocus amount is detected.

第1の実施形態の撮像素子107により取得された第1焦点検出信号と第2焦点検出信号による1次元方向(列方向、水平方向)のリフォーカス処理の概略説明図を図14を参照して説明する。図14の撮像面800は、図5及び図6に示した撮像面800に対応している。図14では、iを整数として、撮像面800に配置された撮像素子107の列方向i番目の画素の第1焦点検出信号をAi、第2焦点検出信号をBiとして模式的に表している。第1焦点検出信号Aiは、瞳部分領域501を透過し、主光線角度θaでi番目の画素に入射した光束の受光信号を示す。同様に、第2焦点検出信号Biは、瞳部分領域502を透過し、主光線角度θbでi番目の画素に入射した光束の受光信号を示す。   A schematic explanatory diagram of a refocus process in a one-dimensional direction (column direction, horizontal direction) by the first focus detection signal and the second focus detection signal acquired by the image sensor 107 of the first embodiment with reference to FIG. explain. The imaging surface 800 in FIG. 14 corresponds to the imaging surface 800 illustrated in FIGS. 5 and 6. In FIG. 14, i is an integer, and the first focus detection signal of the i-th pixel in the column direction of the image sensor 107 arranged on the imaging surface 800 is schematically represented as Ai, and the second focus detection signal as Bi. The first focus detection signal Ai indicates a light reception signal of a light beam that has passed through the pupil partial region 501 and has entered the i-th pixel at the principal ray angle θa. Similarly, the second focus detection signal Bi indicates a light reception signal of a light beam that has passed through the pupil partial region 502 and has entered the i-th pixel at the principal ray angle θb.

第1焦点検出信号Aiと第2焦点検出信号Biは、光強度分布情報だけでなく、入射角度情報も有している。よって、第1焦点検出信号Aiを角度θaに沿って仮想結像面810まで平行移動させ、第2焦点検出信号Biを角度θbに沿って仮想結像面810まで平行移動させ、加算することで、仮想結像面810でのリフォーカス信号を生成できる。第1焦点検出信号Aiを角度θaに沿って仮想結像面810まで平行移動させることは、列方向に+0.5画素シフトすることに対応する。また、第2焦点検出信号Biを角度θbに沿って仮想結像面810まで平行移動させることは、列方向に−0.5画素シフトすることに対応する。従って、第1焦点検出信号Aiと第2焦点検出信号Biを相対的に+1画素シフトさせ、AiとBi+1を対応させて加算することで、仮想結像面810でのリフォーカス信号を生成できる。同様に、第1焦点検出信号Aiと第2焦点検出信号Biを整数画素分シフトさせて加算することで、整数シフト量に応じた各仮想結像面でのシフト加算信号(リフォーカス信号)を生成できる。   The first focus detection signal Ai and the second focus detection signal Bi have not only light intensity distribution information but also incident angle information. Therefore, the first focus detection signal Ai is translated along the angle θa to the virtual imaging plane 810, and the second focus detection signal Bi is translated along the angle θb to the virtual imaging plane 810 and added. A refocus signal at the virtual imaging plane 810 can be generated. Translating the first focus detection signal Ai along the angle θa to the virtual imaging plane 810 corresponds to shifting +0.5 pixels in the column direction. Further, translating the second focus detection signal Bi along the angle θb to the virtual imaging plane 810 corresponds to shifting by −0.5 pixel in the column direction. Therefore, the first focus detection signal Ai and the second focus detection signal Bi are relatively shifted by +1 pixel, and Ai and Bi + 1 are added in correspondence with each other, thereby generating a refocus signal on the virtual imaging plane 810. Similarly, by shifting the first focus detection signal Ai and the second focus detection signal Bi by an integer pixel and adding them, a shift addition signal (refocus signal) on each virtual imaging plane corresponding to the integer shift amount is added. Can be generated.

生成されたシフト加算信号(リフォーカス信号)のコントラスト評価値を算出し、算出されたコントラスト評価値から撮像信号のMTFピーク位置を推定することで、リフォーカス方式の第2焦点検出を行う。   The contrast evaluation value of the generated shift addition signal (refocus signal) is calculated, and the MTF peak position of the imaging signal is estimated from the calculated contrast evaluation value, thereby performing the second focus detection of the refocus method.

図15に、第1の実施形態における第2焦点検出の処理の流れの概略図を示す。なお、図15の処理は、第1の実施形態における焦点検出信号生成手段、第2焦点検出手段である撮像素子107、画像処理回路125とCPU121によって実行される。   FIG. 15 is a schematic diagram showing the flow of the second focus detection process in the first embodiment. The processing in FIG. 15 is executed by the focus detection signal generation unit, the image sensor 107 as the second focus detection unit, the image processing circuit 125, and the CPU 121 in the first embodiment.

S210で、撮像素子107の有効画素領域1000に焦点検出領域を設定する。焦点検出信号生成手段により、焦点検出領域内の第1焦点検出画素201の受光信号から第1焦点検出信号を生成し、焦点検出領域内の第2焦点検出画素202の受光信号から第2焦点検出信号を生成する。   In S210, a focus detection area is set in the effective pixel area 1000 of the image sensor 107. The focus detection signal generating means generates a first focus detection signal from the light reception signal of the first focus detection pixel 201 in the focus detection area, and detects the second focus from the light reception signal of the second focus detection pixel 202 in the focus detection area. Generate a signal.

S220で、第1焦点検出信号と第2焦点検出信号に対して、それぞれ、信号データ量を抑制するために列方向に3画素加算処理を行い、さらに、RGB信号を輝度Y信号にするためにベイヤー(RGB)加算処理を行う。これら2つの加算処理を合わせて第2画素加算処理とする。必要に応じて、3画素加算処理とベイヤー(RGB)加算処理のいずれか、または、これら両方の加算処理を省略しても良い。   In S220, for each of the first focus detection signal and the second focus detection signal, a three-pixel addition process is performed in the column direction to suppress the signal data amount, and further, the RGB signal is converted into a luminance Y signal. A Bayer (RGB) addition process is performed. These two addition processes are combined into a second pixel addition process. If necessary, one or both of the three-pixel addition processing and the Bayer (RGB) addition processing may be omitted.

S230では、第2画素加算処理した第1焦点検出信号と第2焦点検出信号に、第2フィルター処理を行う。第1の実施形態の第2フィルター処理の通過帯域例を、図10の破線903及び点線904で示す。第1の実施形態では、リフォーカス方式の第2焦点検出により、小デフォーカス状態から最良合焦位置近傍まで焦点検出を行う。従って、第2フィルター処理の通過帯域は、第1フィルター処理の通過帯域よりも、高周波帯域を含むように構成される。必要に応じて、第2フィルター処理に被写体信号のエッジ抽出を行うラプラシアン型(2階微分型)[1、−2、1]フィルターを用いて、図10の点線904で示すように第2フィルター処理の通過帯域をより高周波帯域に調整しても良い。被写体の高周波成分を抽出して第2焦点検出を行うことにより、焦点検出精度をより向上することができる。   In S230, the second filter processing is performed on the first focus detection signal and the second focus detection signal subjected to the second pixel addition processing. An example of a pass band of the second filter processing of the first embodiment is indicated by a broken line 903 and a dotted line 904 in FIG. In the first embodiment, focus detection is performed from the small defocus state to the vicinity of the best focus position by the second focus detection of the refocus method. Therefore, the pass band of the second filter process is configured to include a higher frequency band than the pass band of the first filter process. If necessary, a second filter processing is performed using a Laplacian type (second-order differential type) [1, -2, 1] filter that performs edge extraction of the subject signal, as indicated by a dotted line 904 in FIG. The pass band of processing may be adjusted to a higher frequency band. By extracting the high frequency component of the subject and performing the second focus detection, the focus detection accuracy can be further improved.

S240では、第2フィルター処理後の第1焦点検出信号と第2焦点検出信号を相対的に瞳分割方向にシフトさせる第2シフト処理を行い、加算してシフト加算信号(リフォーカス信号)を生成する。S240では、さらに、生成されたシフト加算信号からコントラスト評価値(第2評価値)を算出する。   In S240, a second shift process for relatively shifting the first focus detection signal and the second focus detection signal after the second filter process in the pupil division direction is performed and added to generate a shift addition signal (refocus signal). To do. In S240, a contrast evaluation value (second evaluation value) is further calculated from the generated shift addition signal.

第1フィルター処理後のk番目の第1焦点検出信号をA(k)、第2焦点検出信号をB(k)、焦点検出領域に対応する番号kの範囲をWとする。第2シフト処理によるシフト量をs、シフト量sのシフト範囲をΓ2として、コントラスト評価値(第2評価値)RFCONは、式(2)により算出される。 The k-th first focus detection signal after the first filter processing is A (k), the second focus detection signal is B (k), and the range of the number k corresponding to the focus detection area is W. The contrast evaluation value (second evaluation value) RFCON is calculated by Expression (2), where s 2 is the shift amount by the second shift process and Γ2 is the shift range of the shift amount s 2 .

Figure 0006285683
Figure 0006285683

シフト量sの第2シフト処理により、k番目の第1焦点検出信号A(k)とk−s2番目の第2焦点検出信号B(k−s)を対応させて加算し、シフト加算信号を生成する。そして、シフト加算信号の絶対値を計算し、焦点検出領域Wの範囲での最大値を取り、コントラスト評価値(第2評価値)RFCON(s)を算出する。必要に応じて、各行毎に算出されたコントラスト評価値(第2評価値)を、各シフト量毎に、複数行に亘って加算しても良い。 By the second shift process of the shift amount s 2 , the kth first focus detection signal A (k) and the k−s2nd second focus detection signal B (k−s 2 ) are added in correspondence with each other, and shift addition is performed. Generate a signal. Then, the absolute value of the shift addition signal is calculated, the maximum value in the range of the focus detection area W is taken, and the contrast evaluation value (second evaluation value) RFCON (s 2 ) is calculated. If necessary, the contrast evaluation value (second evaluation value) calculated for each row may be added over a plurality of rows for each shift amount.

S250では、コントラスト評価値(第2評価値)から、サブピクセル演算により、コントラスト評価値が最大値となる実数値のシフト量を算出してピークシフト量p2とする。ピークシフト量p2に、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じた第2変換係数K2をかけて、第2検出デフォーカス量(Def2)を検出する。必要に応じて、第1変換係数K1と第2変換係数K2を同一の値としても良い。   In S250, from the contrast evaluation value (second evaluation value), a real-value shift amount at which the contrast evaluation value becomes the maximum value is calculated by subpixel calculation, and is set as the peak shift amount p2. The second detection defocus amount (Def2) is obtained by multiplying the peak shift amount p2 by the image height of the focus detection area, the F value of the imaging lens (imaging optical system), and the second conversion coefficient K2 corresponding to the exit pupil distance. Is detected. If necessary, the first conversion coefficient K1 and the second conversion coefficient K2 may be the same value.

このように、本実施形態におけるリフォーカス方式の第2焦点検出では、第1焦点検出信号と前記第2焦点検出信号に、第2フィルター処理と第2シフト処理を行い、加算してシフト加算信号を生成し、シフト加算信号からコントラスト評価値を算出する。更に、コントラスト評価値から第2検出デフォーカス量を検出する。   As described above, in the second focus detection of the refocus method in the present embodiment, the second focus processing signal and the second focus detection signal are subjected to the second filter processing and the second shift processing, and are added to obtain the shift addition signal. And the contrast evaluation value is calculated from the shift addition signal. Further, the second detection defocus amount is detected from the contrast evaluation value.

第1の実施形態の撮像素子107では、図4、図5に示したように、第1焦点検出画素201が受光する光束と第2焦点検出画素202が受光する光束を加算したものが、撮像画素が受光する光束となる。リフォーカス方式の第2焦点検出では、位相差方式の第1焦点検出とは異なり、第1焦点検出信号と第2焦点検出信号のシフト加算信号(リフォーカス信号)により焦点検出を行う。よって、第2焦点検出で用いられるシフト加算信号に対応する光束と、撮像信号に対応する光束が概ね一致するため、結像光学系の各収差(球面収差、非点収差、コマ収差など)のシフト加算信号への影響と撮像信号への影響も、概ね同じである。従って、リフォーカス方式の第2焦点検出により算出される検出合焦位置(第2検出デフォーカス量が0となる位置)と撮像信号の最良合焦位置(撮像信号のMTFピーク位置)が、概ね一致するため、位相差方式の第1焦点検出より高精度に焦点検出できる。   In the image sensor 107 of the first embodiment, as shown in FIGS. 4 and 5, an image obtained by adding the light beam received by the first focus detection pixel 201 and the light beam received by the second focus detection pixel 202 is captured. It becomes a light beam received by the pixel. In the second focus detection of the refocus method, unlike the first focus detection of the phase difference method, focus detection is performed by a shift addition signal (refocus signal) of the first focus detection signal and the second focus detection signal. Therefore, since the light beam corresponding to the shift addition signal used in the second focus detection and the light beam corresponding to the imaging signal substantially coincide with each other, each aberration of the imaging optical system (spherical aberration, astigmatism, coma aberration, etc.) The influence on the shift addition signal and the influence on the imaging signal are substantially the same. Therefore, the detection focus position (position where the second detection defocus amount is 0) calculated by the refocus second focus detection and the best focus position of the imaging signal (MTF peak position of the imaging signal) are approximately Therefore, the focus detection can be performed with higher accuracy than the first focus detection using the phase difference method.

図11に示した第1の実施形態の撮像素子の周辺像高での撮像信号の最良合焦位置における第1焦点検出信号(破線)と第2焦点検出信号(実線)の例に、第2フィルター処理を施した後の第1焦点検出信号(破線)と第2焦点検出信号(実線)を図16に示す。また、第2フィルター処理後の第1焦点検出信号(破線)と第2焦点検出信号(実線)を、それぞれ、相対的に−2、−1、0、1、2シフトさせてシフト加算したシフト加算信号(リフォーカス信号)の例を図17に示す。シフト量の変化に伴い、シフト加算信号のピーク値が変化することが分かる。各シフト加算信号から算出されたコントラスト評価値(第2評価値)の例を図18に示す。   An example of the first focus detection signal (broken line) and the second focus detection signal (solid line) at the best focus position of the image pickup signal at the peripheral image height of the image pickup device of the first embodiment shown in FIG. FIG. 16 shows the first focus detection signal (broken line) and the second focus detection signal (solid line) after the filtering process. In addition, the first focus detection signal (broken line) and the second focus detection signal (solid line) after the second filter processing are relatively shifted by -2, -1, 0, 1, 2, and shifted to add. An example of the addition signal (refocus signal) is shown in FIG. It can be seen that the peak value of the shift addition signal changes as the shift amount changes. An example of the contrast evaluation value (second evaluation value) calculated from each shift addition signal is shown in FIG.

図13に、第1の実施形態におけるリフォーカス方式の第2焦点検出により得られた第2検出デフォーカス量(実線)の例を示す。横軸は、最良合焦位置をデフォーカス量0[mm]とした設定デフォーカス量であり、縦軸はリフォーカス方式の第2焦点検出により得られた検出デフォーカス量である。設定デフォーカス量0[mm]である最良合焦位置において、第2検出デフォーカス量は、第1焦点検出による第1検出デフォーカス量よりも小さく抑制され、高精度に焦点検出できることが分かる。   FIG. 13 shows an example of the second detected defocus amount (solid line) obtained by the second focus detection of the refocus method in the first embodiment. The horizontal axis is the set defocus amount with the best focus position being the defocus amount of 0 [mm], and the vertical axis is the detected defocus amount obtained by the second focus detection of the refocus method. It can be seen that at the best in-focus position where the set defocus amount is 0 [mm], the second detection defocus amount is suppressed to be smaller than the first detection defocus amount by the first focus detection, and the focus detection can be performed with high accuracy.

このように、本実施形態では、結像光学系の設定デフォーカス量0[mm]である最良合焦位置近傍において、リフォーカス方式の第2焦点検出の方が、位相差方式の第1焦点検出より、高精度に焦点検出できる。   As described above, in the present embodiment, in the vicinity of the best focus position where the set defocus amount of the imaging optical system is 0 [mm], the second focus detection of the refocus method is the first focus of the phase difference method. Focus detection can be performed with higher accuracy than detection.

[リフォーカス可能範囲]
一方、リフォーカス可能範囲には限界があるため、リフォーカス方式の第2焦点検出が高精度で焦点検出できるデフォーカス量の範囲は限定される。
[Refocusable range]
On the other hand, since there is a limit to the refocusable range, the range of the defocus amount that can be detected with high accuracy by the refocus second focus detection is limited.

第1の実施形態におけるリフォーカス可能範囲の概略説明図を図19に示す。許容錯乱円をδとし、結像光学系の絞り値をFとすると、絞り値Fでの被写界深度は±Fδである。これに対して、N×N(2×1)分割されて狭くなった瞳部分領域501(または502)の水平方向の実効絞り値F01(またはF02)は、F01=NFと暗くなる。第1焦点検出信号(または第2焦点検出信号)毎の実効的な被写界深度は±NFδとN倍深くなり、合焦範囲がN倍に広がる。実効的な被写界深度±NFδの範囲内では、第1焦点検出信号(または第2焦点検出信号)毎に合焦した被写体像が取得されている。よって、図14に示した主光線角度θa(またはθb)に沿って第1焦点検出信号(または第2焦点検出信号)を平行移動するリフォーカス処理により、撮影後に、合焦位置を再調整(リフォーカス)することができる。よって、撮影後に合焦位置を再調整(リフォーカス)できる撮像面からのデフォーカス量dは限定されており、デフォーカス量dのリフォーカス可能範囲は、概ね、式(3)の範囲である。 A schematic explanatory diagram of a refocusable range in the first embodiment is shown in FIG. If the allowable circle of confusion is δ and the aperture value of the imaging optical system is F, the depth of field at the aperture value F is ± Fδ. On the other hand, the effective aperture value F 01 (or F 02 ) in the horizontal direction of the pupil partial region 501 (or 502) that is narrowed by N H × N V (2 × 1) is F 01 = N H It becomes dark with F. The effective depth of field for each first focus detection signal (or second focus detection signal) becomes NH Fδ and N H times deeper, and the focus range is extended N H times. Within the range of effective depth of field ± N H Fδ, a focused subject image is acquired for each first focus detection signal (or second focus detection signal). Accordingly, the refocusing process of moving the first focus detection signal (or second focus detection signal) along the principal ray angle θa (or θb) shown in FIG. Refocus). Therefore, the defocus amount d from the imaging surface where the focus position can be readjusted (refocused) after shooting is limited, and the refocusable range of the defocus amount d is approximately the range of Expression (3). .

Figure 0006285683
許容錯乱円δは、δ=2ΔX(画素周期ΔXのナイキスト周波数1/(2ΔX)の逆数)などで規定される。必要に応じて、第2画素加算処理後の第1焦点検出信号(第2焦点検出信号)の周期ΔXAF(=6ΔX:6画素加算の場合)のナイキスト周波数1/(2ΔXAF)の逆数を許容錯乱円δ=2ΔXAFとしても用いても良い。
Figure 0006285683
The permissible circle of confusion δ is defined by δ = 2ΔX (the reciprocal of the Nyquist frequency 1 / (2ΔX) of the pixel period ΔX). If necessary, the reciprocal of the Nyquist frequency 1 / (2ΔXAF) of the period ΔX AF (= 6ΔX: in the case of 6 pixel addition) of the first focus detection signal (second focus detection signal) after the second pixel addition processing is allowed. The circle of confusion δ = 2ΔX may be used as AF .

リフォーカス方式の第2焦点検出が高精度で焦点検出できるデフォーカス量の範囲は、概ね式(3)の範囲に限定され、第2焦点検出により高精度に焦点検出が可能なデフォーカス範囲は、位相差方式の第1焦点検出可能なデフォーカス範囲以下の範囲である。図6に示したように、第1焦点検出信号と第2焦点検出信号との水平方向の相対的なシフト量とデフォーカス量は、概ね比例する。従って、第1の実施形態では、リフォーカス方式の第2焦点検出の第2シフト処理のシフト範囲が、位相差方式の第1焦点検出の第1シフト処理のシフト範囲以下となるように構成される。   The defocus amount range in which the refocus second focus detection can detect the focus with high accuracy is generally limited to the range of the expression (3), and the defocus range in which the focus detection can be performed with high accuracy by the second focus detection is as follows. The range is equal to or smaller than the defocus range in which the first focus detection of the phase difference method can be performed. As shown in FIG. 6, the relative shift amount and the defocus amount in the horizontal direction between the first focus detection signal and the second focus detection signal are substantially proportional. Therefore, in the first embodiment, the shift range of the second shift process of the second focus detection of the refocus method is configured to be equal to or less than the shift range of the first shift process of the first focus detection of the phase difference method. The

第1の実施形態における焦点検出では、結像光学系の大デフォーカス状態から小デフォーカス状態まで焦点調節するために第1焦点検出を行い、結像光学系の小デフォーカス状態から最良合焦位置近傍まで焦点調節するために第2焦点検出を行う。従って、第2焦点検出の第2フィルター処理の通過帯域が、第1焦点検出の第1フィルター処理の通過帯域より高周波帯域を含むことが望ましい。また、第2焦点検出の第2画素加算処理の画素加算数が、第1焦点検出の第1画素加算処理の画素加算数以下であることが望ましい。   In the focus detection in the first embodiment, the first focus detection is performed to adjust the focus from the large defocus state to the small defocus state of the imaging optical system, and the best focus is achieved from the small defocus state of the imaging optical system. Second focus detection is performed to adjust the focus to near the position. Therefore, it is desirable that the pass band of the second filter processing of the second focus detection includes a higher frequency band than the pass band of the first filter processing of the first focus detection. In addition, it is desirable that the pixel addition number in the second pixel addition process for the second focus detection is equal to or less than the pixel addition number in the first pixel addition process for the first focus detection.

上述したように、結像光学系の絞り値が所定絞り値以下の場合に、位相差方式の第1焦点検出の焦点検出精度が低下する場合がある。従って、必要に応じて、結像光学系の絞り値が所定絞り値以下の場合に、位相差方式の第1焦点検出に加えて、リフォーカス方式の第2焦点検出により第2検出デフォーカス量を検出し、高精度な焦点検出を行うことが望ましい。   As described above, when the aperture value of the imaging optical system is equal to or smaller than the predetermined aperture value, the focus detection accuracy of the first focus detection of the phase difference method may be lowered. Therefore, if necessary, when the aperture value of the imaging optical system is equal to or smaller than the predetermined aperture value, the second detection defocus amount is obtained by the refocus second focus detection in addition to the phase difference first focus detection. Therefore, it is desirable to detect focus and to perform highly accurate focus detection.

第1の実施形態は、瞳領域が水平方向に2つに瞳分割されているため、撮像信号の水平方向のMTFピーク位置を検出することができる。必要に応じて、撮像信号の水平方向のMTFピーク位置と撮像信号のMTFピーク位置(撮像信号の水平垂直方向のMTFピーク位置の平均)との差分を補正値として保持し、第2検出デフォーカス量を補正しても良い。   In the first embodiment, since the pupil region is divided into two pupils in the horizontal direction, the horizontal MTF peak position of the imaging signal can be detected. If necessary, the difference between the horizontal MTF peak position of the imaging signal and the MTF peak position of the imaging signal (the average of the MTF peak positions in the horizontal and vertical directions of the imaging signal) is held as a correction value, and the second detection defocus is performed. The amount may be corrected.

上述の通り、第2検出デフォーカス量は、第1焦点検出信号と第2焦点検出信号を用いて検出されるため、検出デフォーカス量は被写体の状況や結像光学系の製造誤差などの影響を受けにくい。一方で、第2検出デフォーカス量を検出できる範囲に制限が有ったり、コントラストが低い、照度が低いなど被写体の状況によって検出不能になる場合があったりする。このような第2検出デフォーカス量が検出できない場合にも、高精度な焦点調節を行うため、本実施形態では、焦点検出補正値を用いて第1検出デフォーカス量の補正を行う。   As described above, since the second detection defocus amount is detected by using the first focus detection signal and the second focus detection signal, the detection defocus amount is affected by the subject condition, the manufacturing error of the imaging optical system, and the like. It is hard to receive. On the other hand, the range in which the second detection defocus amount can be detected is limited, or the detection may be impossible depending on the state of the subject such as low contrast and low illuminance. Even when such a second detected defocus amount cannot be detected, in this embodiment, the first detection defocus amount is corrected using the focus detection correction value in order to perform highly accurate focus adjustment.

[焦点検出補正値]
以下、第1の実施形態における位相差方式の第1焦点検出に対して行う焦点検出補正値による補正について説明する。
[Focus detection correction value]
Hereinafter, correction by the focus detection correction value performed for the first focus detection of the phase difference method in the first embodiment will be described.

上述の通り、焦点検出信号から算出される第1検出デフォーカス量で示される検出合焦位置と撮像信号の最良合焦位置との間には、差が生じる。第1の実施形態では、その差を抑制するための方法として、上述の第2焦点検出以外に、焦点検出補正値による補正を行うことも可能に構成されている。   As described above, there is a difference between the detection focus position indicated by the first detection defocus amount calculated from the focus detection signal and the best focus position of the imaging signal. In the first embodiment, as a method for suppressing the difference, in addition to the above-described second focus detection, correction using a focus detection correction value can be performed.

図20は、CPU121に格納されている第1焦点検出で算出される第1検出デフォーカス量の補正値の例を示している。図20は、図7の焦点検出領域A(2,2)に対応した焦点検出補正値を示している。同様に、他の8個の焦点検出領域についても焦点検出補正値を記憶している。但し、結像光学系の光軸に対して対称な焦点検出領域については、設計上の焦点検出補正値は等しくなる。従って、9つの焦点検出領域に対して、4つの焦点検出補正値のテーブルを記憶していればよい。   FIG. 20 shows an example of the correction value of the first detection defocus amount calculated by the first focus detection stored in the CPU 121. FIG. 20 shows focus detection correction values corresponding to the focus detection area A (2, 2) in FIG. Similarly, focus detection correction values are stored for the other eight focus detection areas. However, the design focus detection correction values are equal for the focus detection regions that are symmetrical with respect to the optical axis of the imaging optical system. Therefore, it suffices to store a table of four focus detection correction values for nine focus detection areas.

図20において、結像光学系のズーム位置とフォーカス位置を8つのゾーンに分割し、その分割ゾーンごとに焦点検出補正値BP111~BP188を備える構成としている。従って、結像光学系の第3レンズ群105、第1レンズ群101の位置に応じて高精度な焦点検出補正値を得られる構成となっている。   In FIG. 20, the zoom position and the focus position of the imaging optical system are divided into eight zones, and focus detection correction values BP111 to BP188 are provided for each of the divided zones. Accordingly, a highly accurate focus detection correction value can be obtained according to the positions of the third lens group 105 and the first lens group 101 of the imaging optical system.

本第1の実施形態では、焦点検出補正値を図20のように焦点検出領域ごとにテーブルデータを記憶するようにしたが、焦点検出補正値の記憶方法については、これに限らない。例えば、撮像素子と結像光学系の光軸の交点を原点とし撮像装置の水平方向、垂直方向をX軸、Y軸とした座標を設定し、焦点検出領域の中心座標における補正値をXとYの関数で求めてもよい。この場合、焦点検出補正値として記憶するべき情報量を削減することができる。   In the first embodiment, the focus detection correction value is stored as table data for each focus detection area as shown in FIG. 20, but the method of storing the focus detection correction value is not limited to this. For example, coordinates are set with the intersection of the optical axis of the imaging device and the imaging optical system as the origin and the horizontal and vertical directions of the imaging device as the X axis and the Y axis, and the correction value at the center coordinate of the focus detection area is set as X You may obtain | require with the function of Y. In this case, the amount of information to be stored as the focus detection correction value can be reduced.

●焦点検出処理の流れ
次に、第1の実施形態における焦点検出処理の流れについて、図21のフローチャートを参照して説明する。第1の実施形態では、結像光学系のデフォーカス量の絶対値が閾値Th1以下になるまで位相差方式の第1焦点検出を行った後、第1検出デフォーカス量に対して焦点検出補正値による補正を行ってレンズ駆動する。これにより、結像光学系の大デフォーカス状態から小デフォーカス状態まで焦点調節を行う。その後、結像光学系のデフォーカス量の絶対値が閾値Th2(<閾値Th1)以下になるまでリフォーカス方式の第2焦点検出を行ってレンズ駆動し、結像光学系の小デフォーカス状態から最良合焦位置近傍まで焦点調節を行う。
Focus Detection Process Flow Next, the focus detection process flow in the first embodiment will be described with reference to the flowchart of FIG. In the first embodiment, after performing the first focus detection of the phase difference method until the absolute value of the defocus amount of the imaging optical system becomes equal to or less than the threshold value Th1, the focus detection correction is performed on the first detected defocus amount. The lens is driven by correcting the value. Thereby, the focus adjustment is performed from the large defocus state to the small defocus state of the imaging optical system. Thereafter, until the absolute value of the defocus amount of the imaging optical system becomes equal to or less than the threshold value Th2 (<threshold Th1), the second focus detection of the refocusing method is performed to drive the lens, and the small focus state of the imaging optical system is Adjust the focus to near the best focus position.

S100で、位相差方式による第1焦点検出により第1検出デフォーカス量(Def1)を検出する。その後、S101で、第1検出デフォーカス量に対して補正を行い、補正後第1検出デフォーカス量(Def1´)を算出する。ここで行う補正は、上述の通り、結像光学系の状態に応じて、記憶されている補正値を用いて行う。補正後第1デフォーカス量(Def1´)の大きさ|Def1´|が閾値Th1より大きい場合は(S102でNO)、S103で、補正後第1検出デフォーカス量(Def1´)に応じてレンズ駆動を行い、S100に戻る。補正後第1検出デフォーカス量(Def1´)の大きさ|Def1´|が閾値Th1以下の場合は(S102でYES)、S200に進む。   In S100, the first detection defocus amount (Def1) is detected by the first focus detection by the phase difference method. Thereafter, in S101, the first detected defocus amount is corrected, and the corrected first detected defocus amount (Def1 ′) is calculated. As described above, the correction performed here is performed using the stored correction value according to the state of the imaging optical system. If the magnitude | Def1 '| of the corrected first defocus amount (Def1') is larger than the threshold Th1 (NO in S102), the lens is determined in S103 according to the corrected first detected defocus amount (Def1 '). Drive is performed, and the process returns to S100. If the corrected first detected defocus amount (Def1 ′) | Def1 ′ | is equal to or smaller than the threshold Th1 (YES in S102), the process proceeds to S200.

S200で、リフォーカス方式による第2焦点検出により第2検出デフォーカス量(Def2)を検出する。検出された第2デフォーカス量(Def2)の大きさ|Def2|が閾値Th2(<閾値Th1)より大きい場合は(S201でNO)、S202で、第2デフォーカス量(Def2)に応じてレンズ駆動を行い、S200に戻る。検出された第2デフォーカス量(Def2)の大きさ|Def2|が閾値Th2以下の場合は(S201でYES)、焦点調節動作を終了する。   In S200, the second detection defocus amount (Def2) is detected by the second focus detection by the refocus method. If the detected magnitude | Def2 | of the second defocus amount (Def2) is larger than the threshold Th2 (<threshold Th1) (NO in S201), the lens is determined in S202 according to the second defocus amount (Def2). Drive is performed, and the process returns to S200. When the detected magnitude | Def2 | of the second defocus amount (Def2) is equal to or smaller than the threshold Th2 (YES in S201), the focus adjustment operation is terminated.

第1の実施形態では、第1焦点検出で検出された第1検出デフォーカス量に対して、結像光学系の状態に応じて記憶された補正値を用いた補正を行い、その補正値を用いて合焦近傍までレンズ駆動を行う。これにより、被写体のコントラストが低い、照度が低いなどの理由で第2焦点検出が行えない場合でも、高精度な焦点調節を行うことができる。   In the first embodiment, the first detection defocus amount detected by the first focus detection is corrected using the correction value stored in accordance with the state of the imaging optical system, and the correction value is calculated. Used to drive the lens to near the in-focus position. Thereby, even when the second focus detection cannot be performed because the subject has a low contrast or the illuminance is low, the focus adjustment can be performed with high accuracy.

また、補正された第1検出デフォーカス量を用いて、合焦近傍までレンズ駆動を行うため、補正を行わない場合と比べて、第2焦点検出を、より合焦近傍で行うことができる。これにより、第2焦点検出で焦点検出可能なデフォーカス範囲をより広く確保することができる。   Further, since the lens is driven to near the in-focus position using the corrected first detection defocus amount, the second focus detection can be performed near the in-focus position as compared with the case where the correction is not performed. Thereby, it is possible to secure a wider defocus range in which focus detection is possible in the second focus detection.

第1の実施形態では、補正後の第1検出デフォーカス量に基づきレンズ駆動を行った後、第2焦点検出を行うため、高精度な焦点検出が可能となる。但し、2つの焦点検出処理を連続的に行うため、結像光学系の光軸方向に動く被写体に対して焦点検出し続けるコンティニュアスAF時には、焦点検出の時間間隔が長くなり、検出精度の悪化につながることがある。このようなコンティニュアスAF時やコンティニュアスAFと連続撮影を繰り返し行う場合には、第2焦点検出を省略してもよい。本発明では、第1検出デフォーカス量に対して焦点検出補正値による補正を行った結果で、コンティニュアスAFを行うことができるため、高精度な焦点調節状態を維持することができる。   In the first embodiment, since the second focus detection is performed after the lens is driven based on the corrected first detection defocus amount, the focus detection with high accuracy is possible. However, since the two focus detection processes are performed continuously, the focus detection time interval becomes longer and the detection accuracy becomes longer during continuous AF in which focus detection is continued for a subject moving in the optical axis direction of the imaging optical system. May lead to deterioration. In such a continuous AF or when continuous shooting is repeated with continuous AF, the second focus detection may be omitted. In the present invention, since continuous AF can be performed as a result of correcting the first detection defocus amount by the focus detection correction value, a highly accurate focus adjustment state can be maintained.

第1の実施形態では、閾値Th2よりも閾値Th1の方が大きい値としたのは、第2焦点検出によって、より高精度に焦点検出を行うためである。第1焦点検出では、第2焦点検出が可能なデフォーカス範囲まで焦点調節を行えばよいので、閾値Th2に対して閾値Th1は大きくて良い。これにより、より高速に第1焦点検出から第2焦点検出に移行することができる。但し、第2焦点検出を省略する場合には、閾値Th1を小さくし閾値Th2と等しい値に設定してもよい。補正後の第1検出デフォーカス量に基づき焦点検出処理を終える場合にも、高精度な焦点調節を実現可能とするためである。   In the first embodiment, the reason why the threshold value Th1 is larger than the threshold value Th2 is to perform focus detection with higher accuracy by the second focus detection. In the first focus detection, the focus adjustment may be performed up to the defocus range in which the second focus detection is possible, and therefore the threshold value Th1 may be larger than the threshold value Th2. Thereby, it is possible to shift from the first focus detection to the second focus detection at a higher speed. However, when the second focus detection is omitted, the threshold value Th1 may be reduced and set equal to the threshold value Th2. This is because high-precision focus adjustment can be realized even when the focus detection process is finished based on the corrected first detection defocus amount.

以上の構成により、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間の差を抑制し、高精度な焦点検出が可能となる。   With the above configuration, the difference between the detection focus position calculated from the focus detection signal and the best focus position of the imaging signal is suppressed, and high-precision focus detection is possible.

<第2の実施形態>
次に、本発明の第2の実施形態について説明する。図22は、第2の実施形態における焦点検出処理の流れを示すフローチャートである。第2の実施形態では、第2焦点検出を行うか否かを条件により切替え、第2焦点検出処理を行わない場合には、高速に焦点検出を行う場合について説明する。それ以外の処理及び撮像装置の構成は、第1の実施形態で説明したものと同様であるので、説明を省略する。
<Second Embodiment>
Next, a second embodiment of the present invention will be described. FIG. 22 is a flowchart showing the flow of focus detection processing in the second embodiment. In the second embodiment, whether or not to perform the second focus detection is switched depending on the condition, and the case where the focus detection is performed at high speed when the second focus detection process is not performed will be described. Since other processes and the configuration of the imaging apparatus are the same as those described in the first embodiment, description thereof is omitted.

図22のS100で、位相差方式による第1焦点検出により第1検出デフォーカス量(Def1)を検出する。その後、S101で、第1検出デフォーカス量に対して補正を行い、補正後第1検出デフォーカス量(Def1´)を算出する。ここで行う補正は、上述の通り、結像光学系の状態に応じて記憶されている補正値を用いて行う。補正後第1デフォーカス量(Def1´)の大きさ|Def1´|が閾値Th1より大きい場合は(S102でNO)、S103で、補正後第1検出デフォーカス量(Def1´)に応じてレンズ駆動を行い、S100に戻る。   In S100 of FIG. 22, the first detection defocus amount (Def1) is detected by the first focus detection by the phase difference method. Thereafter, in S101, the first detected defocus amount is corrected, and the corrected first detected defocus amount (Def1 ′) is calculated. The correction performed here is performed using the correction value stored in accordance with the state of the imaging optical system as described above. If the magnitude | Def1 '| of the corrected first defocus amount (Def1') is larger than the threshold Th1 (NO in S102), the lens is determined in S103 according to the corrected first detected defocus amount (Def1 '). Drive is performed, and the process returns to S100.

補正後第1検出デフォーカス量(Def1´)の大きさ|Def1´|が閾値Th1以下の場合は(S102でYES)、焦点検出領域の像高が、閾値Th3(第1の閾値)よりも小さいか否かを判定し、小さい場合には(S110でYES)、焦点調節動作を終了する。焦点検出領域の像高は、図7で例示した9つの焦点検出領域の中心と有効画素領域1000(撮影範囲)の中心との距離で算出される。一般に、焦点検出領域の像高が0に近いほど、結像光学系の各収差の個体ばらつきは小さい。そのため、第2焦点検出を行わなくても、焦点検出補正値による補正により、十分に高精度な焦点検出を行うことができる。そこで、第2の実施形態では、焦点検出領域の像高が閾値Th3より小さい場合には、第2焦点検出を行わないことにより、高速に焦点検出を行うことができる。   When the magnitude | Def1 ′ | of the corrected first detection defocus amount (Def1 ′) is equal to or smaller than the threshold Th1 (YES in S102), the image height of the focus detection area is larger than the threshold Th3 (first threshold). Whether or not it is small is determined. If it is small (YES in S110), the focus adjustment operation is terminated. The image height of the focus detection area is calculated by the distance between the centers of the nine focus detection areas exemplified in FIG. 7 and the center of the effective pixel area 1000 (imaging range). In general, the closer the image height of the focus detection area is to 0, the smaller the individual variation of each aberration of the imaging optical system. Therefore, sufficiently high-precision focus detection can be performed by the correction using the focus detection correction value without performing the second focus detection. Therefore, in the second embodiment, when the image height of the focus detection area is smaller than the threshold Th3, focus detection can be performed at high speed by not performing the second focus detection.

一方、焦点検出領域の像高が、閾値Th3以上の場合には(S110でNO)、S111において被写体距離が閾値Th4(第2の閾値)より遠いか近いかを判定する。被写体距離が閾値Th4より遠い場合には(S111でYES)、焦点調節動作を終了する。被写体距離は、結像光学系の第3レンズ群105の位置と対応付けてCPU121で記憶しておくことにより、第3レンズ群105の位置と第1検出デフォーカス量により、被写体距離を算出することができる。一般に、被写体距離は遠いほど、結像光学系の各収差の量は小さく、個体ばらつきも小さい。そのため、第2焦点検出を行わなくても、焦点検出補正値による補正により、十分に高精度な焦点検出を行うことができる。第2の実施形態では、被写体距離が閾値Th4より遠い場合には、第2焦点検出を行わないことにより、高速に焦点検出を行うことができる。   On the other hand, if the image height of the focus detection area is greater than or equal to the threshold Th3 (NO in S110), it is determined in S111 whether or not the subject distance is farther than the threshold Th4 (second threshold). If the subject distance is longer than the threshold Th4 (YES in S111), the focus adjustment operation is terminated. The subject distance is stored in the CPU 121 in association with the position of the third lens group 105 of the imaging optical system, so that the subject distance is calculated based on the position of the third lens group 105 and the first detected defocus amount. be able to. In general, the farther the subject distance, the smaller the amount of each aberration of the imaging optical system and the smaller the individual variation. Therefore, sufficiently high-precision focus detection can be performed by the correction using the focus detection correction value without performing the second focus detection. In the second embodiment, when the subject distance is farther than the threshold Th4, focus detection can be performed at high speed by not performing the second focus detection.

被写体距離が、閾値Th4以下の場合には(S111でNO)、第1の実施形態と同様にS200に進む。S200以降の処理は、第1の実施形態で図21を参照して説明した処理と同様であるので、ここでは説明を省略する。   If the subject distance is equal to or smaller than the threshold Th4 (NO in S111), the process proceeds to S200 as in the first embodiment. Since the processing after S200 is the same as the processing described with reference to FIG. 21 in the first embodiment, description thereof is omitted here.

本第2の実施形態では、結像光学系の各収差の個体ばらつきが、小さいと見込まれる場合には、焦点検出補正値による補正で十分に高精度な焦点検出が行えるため、第2焦点検出を省略することにより、高速に焦点検出を行うことができる。なお、本第2の実施形態では、結像光学系の各収差の個体ばらつきの大きさの見込みを、焦点検出領域の像高と被写体距離の両方を用いて判定したが、いずれか一方を用いて判定してもよい。   In the second embodiment, when the individual variation of each aberration of the imaging optical system is expected to be small, the focus detection can be performed with sufficiently high accuracy by the correction using the focus detection correction value. By omitting, focus detection can be performed at high speed. In the second embodiment, the likelihood of the individual variation of each aberration of the imaging optical system is determined using both the image height of the focus detection area and the subject distance, but either one is used. May be determined.

また、結像光学系の各収差の個体ばらつきの大きさの判定方法としても、上記の方法に限らない。例えば、結像光学系のFナンバーによって第2焦点検出を行うか否かを判定することが考えられる。Fナンバーが小さい場合には、結像光学系の各収差の量が大きいため、個体ばらつきも大きい。そのため、Fナンバーが所定の値より大きい場合には、第2焦点検出を省略することが考えられる。   Further, the method for determining the magnitude of individual variation of each aberration of the imaging optical system is not limited to the above method. For example, it is conceivable to determine whether or not to perform the second focus detection based on the F number of the imaging optical system. When the F number is small, the amount of each aberration of the imaging optical system is large, and thus individual variation is large. Therefore, when the F number is larger than a predetermined value, it is conceivable to omit the second focus detection.

また、その他の方法として、焦点検出補正値として記憶されている補正値が、結像光学系の個体ばらつき(個体差)を含む値であるか否かに応じて、第2焦点検出を行うか否かを判定することが考えられる。撮像装置の製造時に、焦点検出補正値を個体毎に測定して記憶する場合には、焦点検出補正値は個体ばらつきを含むため、第2焦点検出を省略することが考えられる。特に、結像光学系を交換可能な交換レンズ式の撮像装置で、交換レンズによって焦点検出補正値が結像光学系の個体ばらつきを含むものと含まないものがある場合には、撮像装置に装着される交換レンズによって、第2焦点検出を行うか否かを切り替えればよい。   As another method, whether the second focus detection is performed depending on whether or not the correction value stored as the focus detection correction value is a value including individual variation (individual difference) of the imaging optical system. It is conceivable to determine whether or not. When the focus detection correction value is measured and stored for each individual at the time of manufacturing the imaging device, the focus detection correction value includes individual variation, and thus it is conceivable to omit the second focus detection. In particular, if there is an interchangeable lens type imaging device with an interchangeable imaging optical system, the focus detection correction value may or may not include individual variations in the imaging optical system, depending on the interchangeable lens. Whether or not to perform the second focus detection may be switched by the interchangeable lens.

また、その他の方法として、結像光学系のもつ非点収差に対応して、焦点検出補正値を結像光学系の光軸に対して放射線方向の補正値と同心円方向の補正値を独立して記憶することが考えられる。この場合には、図20で例示した焦点検出補正値を、中央の焦点検出領域A(2,2)以外の焦点検出領域に対しては、結像光学系の光軸に対して放射線方向と同心円方向の2種類を記憶する。第2の実施形態の構成では、第1焦点検出、第2焦点検出は、水平方向の1方向に関して、焦点検出を行う。そのため、放射線方向と同心円方向の焦点検出補正値に差が大きい場合には、水平方向以外にコントラストがある被写体に対して第2焦点検出を行っても、高精度な焦点検出が行えない。そのため、放射線方向と同心円方向の焦点検出補正値に差が大きい場合には、第2焦点検出を省略することが考えられる。   As another method, corresponding to the astigmatism of the imaging optical system, the focus detection correction value is made independent of the correction value in the radial direction and the correction value in the concentric direction with respect to the optical axis of the imaging optical system. It is possible to memorize it. In this case, the focus detection correction value exemplified in FIG. 20 is set to the radiation direction with respect to the optical axis of the imaging optical system for focus detection regions other than the central focus detection region A (2, 2). Two types of concentric directions are stored. In the configuration of the second embodiment, the first focus detection and the second focus detection perform focus detection in one horizontal direction. For this reason, when there is a large difference between the focus detection correction values in the radiation direction and the concentric direction, high-precision focus detection cannot be performed even if the second focus detection is performed on a subject having a contrast other than the horizontal direction. For this reason, it is conceivable to omit the second focus detection when there is a large difference between the focus detection correction values in the radiation direction and the concentric direction.

本第2の実施形態では、閾値Th2よりも閾値Th1の方が大きい値としたのは、第2焦点検出によって、より高精度に焦点検出を行うためである。第1焦点検出では、第2焦点検出が可能なデフォーカス範囲まで焦点調節を行えばよいので、閾値Th2に対して閾値Th1は大きくて良い。これにより、より高速に第1焦点検出から第2焦点検出に移行することができる。但し、第2焦点検出を省略する場合には、閾値Th1を小さくし閾値Th2と等しい値に設定してもよい。補正後の第1検出デフォーカス量に基づき焦点検出処理を終える場合にも、高精度な焦点調節を実現可能とするためである。   In the second embodiment, the threshold value Th1 is set to a larger value than the threshold value Th2 because the focus detection is performed with higher accuracy by the second focus detection. In the first focus detection, the focus adjustment may be performed up to the defocus range in which the second focus detection is possible, and therefore the threshold value Th1 may be larger than the threshold value Th2. Thereby, it is possible to shift from the first focus detection to the second focus detection at a higher speed. However, when the second focus detection is omitted, the threshold value Th1 may be reduced and set equal to the threshold value Th2. This is because high-precision focus adjustment can be realized even when the focus detection process is finished based on the corrected first detection defocus amount.

上記の通り第2の実施形態によれば、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間の差を抑制し、高精度な焦点検出が可能となる。   As described above, according to the second embodiment, the difference between the detection focus position calculated from the focus detection signal and the best focus position of the imaging signal is suppressed, and high-precision focus detection is possible.

<第3の実施形態>
次に、本発明の第3の実施形態について説明する。本第3の実施形態では、第1検出デフォーカス量を補正する焦点検出補正値を、第1焦点検出で行うシフト処理の方向である水平方向と、結像光学系の放射線方向とが成す角度によって変更する。これにより、より高精度な焦点検出補正値を算出することができる。それ以外の処理及び撮像装置の構成は、第1の実施形態で説明したものと同様であるので、説明を省略する。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. In the third embodiment, the focus detection correction value for correcting the first detection defocus amount is an angle formed by the horizontal direction, which is the direction of shift processing performed in the first focus detection, and the radiation direction of the imaging optical system. To change. As a result, a more accurate focus detection correction value can be calculated. Since other processes and the configuration of the imaging apparatus are the same as those described in the first embodiment, description thereof is omitted.

第3の実施形態では、焦点検出補正値を、結像光学系の光軸に対して放射線方向の補正値と同心円方向の補正値を独立して記憶する。この場合には、第1の実施形態の図20で例示した焦点検出補正値を、中央の焦点検出領域A(2,2)以外の焦点検出領域に対しては、放射線方向と同心円方向の2種類を記憶する。   In the third embodiment, the focus detection correction value is stored independently of the correction value in the radial direction and the correction value in the concentric direction with respect to the optical axis of the imaging optical system. In this case, the focus detection correction values exemplified in FIG. 20 of the first embodiment are set to 2 in the concentric direction and the radiation direction for the focus detection areas other than the central focus detection area A (2, 2). Remember the type.

結像光学系のある状態における放射線方向の補正値をBPm、同心円方向の補正値をBPsとし、焦点検出領域の中心と有効画素領域1000の中心を結ぶ直線と水平方向のなす角度をθとすると、用いる焦点検出補正値BPは、下記の式(4)で算出される。
BP = BPm × cosθ + BPs × (1 - cosθ) …(4)
式(4)で算出される焦点検出補正値を用いて、第1検出デフォーカス量を補正する。これにより、より高精度に合焦近傍までレンズ駆動を行うことができるため、被写体のコントラストが低い、照度が低いなどの条件などで第2焦点検出が行えない場合でも、高精度な焦点調節を行うことができる。
When the correction value in the radiation direction in the state where the imaging optical system is present is BPm, the correction value in the concentric circle direction is BPs, and the angle between the straight line connecting the center of the focus detection area and the center of the effective pixel area 1000 and the horizontal direction is θ. The focus detection correction value BP to be used is calculated by the following equation (4).
BP = BPm x cosθ + BPs x (1-cosθ) (4)
The first detection defocus amount is corrected using the focus detection correction value calculated by Expression (4). As a result, the lens can be driven to near the in-focus position with higher accuracy, so even when the second focus detection cannot be performed under conditions such as low contrast of the subject or low illuminance, high-precision focus adjustment is possible. It can be carried out.

また、より高精度な補正を行うため、第2焦点検出をより合焦近傍で行うことができる。これにより、第2焦点検出で焦点検出可能なデフォーカス範囲をより広く確保することができる。   In addition, in order to perform correction with higher accuracy, the second focus detection can be performed near the in-focus state. Thereby, it is possible to secure a wider defocus range in which focus detection is possible in the second focus detection.

<第4の実施形態>
次に、本発明の第4の実施形態について説明する。図23は、第4の実施形態における焦点検出処理の流れを示すフローチャートである。第4の実施形態では、位相差方式の第1焦点検出による第1検出デフォーカス量の検出と、リフォーカス方式の第2焦点検出による第2検出デフォーカス量の検出とを並列処理し、高速に焦点検出を行う例について説明する。なお、第2の実施形態において図22を参照して説明した処理と同様の処理には同じステップ番号を付している。それ以外の処理及び撮像装置の構成は、第1の実施形態で説明したものと同様であるので、説明を省略する。
<Fourth Embodiment>
Next, a fourth embodiment of the present invention will be described. FIG. 23 is a flowchart illustrating a flow of focus detection processing according to the fourth embodiment. In the fourth embodiment, the detection of the first detection defocus amount by the first focus detection of the phase difference method and the detection of the second detection defocus amount by the second focus detection of the refocus method are processed in parallel, and high speed processing is performed. An example of performing focus detection will be described. In addition, the same step number is attached | subjected to the process similar to the process demonstrated with reference to FIG. 22 in 2nd Embodiment. Since other processes and the configuration of the imaging apparatus are the same as those described in the first embodiment, description thereof is omitted.

図23のS100で、位相差方式による第1焦点検出により第1検出デフォーカス量(Def1)を検出し、S101で、第1検出デフォーカス量に対して補正を行い、補正後第1検出デフォーカス量(Def1´)を算出する。また、並列的に、S200で、リフォーカス方式による第2焦点検出により第2検出デフォーカス量(Def2)を検出する。   In S100 of FIG. 23, the first detection defocus amount (Def1) is detected by the first focus detection by the phase difference method. In S101, the first detection defocus amount is corrected, and the corrected first detection defocus amount is detected. A focus amount (Def1 ′) is calculated. In parallel, in S200, the second detection defocus amount (Def2) is detected by the second focus detection by the refocus method.

次に、S300において、第2シフト処理のシフト範囲内で第2検出デフォーカス量(Def2)が検出されている場合は、S301に進んで、第2検出デフォーカス量(Def2)を第3検出デフォーカス量(Def3)とする。検出されなかった場合は、S302に進んで、補正後第1検出デフォーカス量(Def1´)を第3検出デフォーカス量(Def3)とする。次のS303において、第3デフォーカス量(Def3)の大きさ|Def3|が閾値Th2より大きい場合は、S304で、第3デフォーカス量(Def3)に応じてレンズ駆動を行い、S100とS200に戻る。第3デフォーカス量(Def3)の大きさ|Def3|が閾値Th2以下の場合は、焦点調節動作を終了する。   Next, in S300, when the second detection defocus amount (Def2) is detected within the shift range of the second shift process, the process proceeds to S301, and the second detection defocus amount (Def2) is third detected. A defocus amount (Def3) is assumed. When not detected, it progresses to S302 and makes 1st detection defocus amount (Def1 ') after correction | amendment 3rd detection defocus amount (Def3). In the next S303, if the magnitude | Def3 | of the third defocus amount (Def3) is larger than the threshold Th2, the lens is driven in S304 according to the third defocus amount (Def3), and S100 and S200 are performed. Return. When the magnitude | Def3 | of the third defocus amount (Def3) is equal to or smaller than the threshold value Th2, the focus adjustment operation is terminated.

上記の通り第4の実施形態によれば、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間の差を抑制し、高精度な焦点検出が可能となる。   As described above, according to the fourth embodiment, the difference between the detection focus position calculated from the focus detection signal and the best focus position of the imaging signal is suppressed, and high-precision focus detection is possible.

<第5の実施形態>
次に、本発明の第5の実施形態について説明する。本第5の実施形態では、撮像素子107の幅画素の構成が図2に示すものと異なる。それ以外の処理及び撮像装置の構成は、第1の実施形態で説明したものと同様であるので、説明を省略する。
<Fifth Embodiment>
Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, the configuration of the width pixels of the image sensor 107 is different from that shown in FIG. Since other processes and the configuration of the imaging apparatus are the same as those described in the first embodiment, description thereof is omitted.

図24は、第5の実施形態における撮像素子107(2次元CMOSセンサー)の画素(撮像画素)配列を4列×4行の範囲で、副画素配列を8列×8行の範囲で示したものである。なお、図2に示す構成では、各画素が2列×1行の副画素に分割されているのに対し、図24に示す構成では、各画素が2列×2行の副画素241から副画素244により構成されているところが異なる。   FIG. 24 shows the pixel (imaging pixel) array of the image sensor 107 (two-dimensional CMOS sensor) in the fifth embodiment in a range of 4 columns × 4 rows, and the sub-pixel array in a range of 8 columns × 8 rows. Is. In the configuration shown in FIG. 2, each pixel is divided into sub-pixels of 2 columns × 1 row, whereas in the configuration shown in FIG. 24, each pixel is sub-pixelated from sub-pixels 241 of 2 columns × 2 rows. The place where the pixel 244 is configured is different.

図24に示した4列×4行の画素(8列×8行の副画素)を面上に多数配置し、撮像画像(副画素信号)の取得を可能としている。第5の実施形態では、画素の周期Pが4μm、画素数Nが横5575列×縦3725行=約2075万画素、副画素の周期PSUBが2μm、副画素数NSUBが横11150列×縦7450行=約8300万画素の撮像素子として説明を行う。   A large number of 4 columns × 4 rows of pixels (8 columns × 8 rows of sub-pixels) shown in FIG. 24 are arranged on the surface, and a captured image (sub-pixel signal) can be acquired. In the fifth embodiment, the pixel period P is 4 μm, the pixel number N is 5575 columns × 3725 rows = approximately 20.75 million pixels, the subpixel cycle PSUB is 2 μm, and the subpixel number NSUB is 11150 columns × 7450 pixels. The description will be made assuming that the image sensor having a row = about 83 million pixels.

図24に示した撮像素子107の1つの画素200Gを、撮像素子107の受光面側(+z側)から見た平面図を図25(a)に示し、図25(a)のa−a断面を−y側から見た断面図を図25(b)に示す。図25に示すように、第5の実施形態の画素200Gでは、各画素の受光側に入射光を集光するためのマイクロレンズ305が形成され、x方向にN分割(2分割)、y方向にN分割(2分割)された光電変換部301から光電変換部304が形成される。光電変換部301から光電変換部304が、それぞれ、副画素241から副画素204に対応する。 FIG. 25A shows a plan view of one pixel 200G of the image sensor 107 shown in FIG. 24 as viewed from the light receiving surface side (+ z side) of the image sensor 107, and a cross section taken along the line aa in FIG. FIG. 25 (b) shows a cross-sectional view as seen from the −y side. As shown in FIG. 25, in the pixel 200G of the fifth embodiment, a microlens 305 for condensing incident light is formed on the light receiving side of each pixel, and is divided into NH in the x direction (two divisions), y the photoelectric conversion unit 304 from N V division (2 divided) photoelectric conversion unit 301 is formed in the direction. Photoelectric converters 301 to 304 correspond to subpixels 241 to 204, respectively.

第5の実施形態では、撮像素子107の各画素毎に、副画素241から副画素204の信号を加算することで、有効画素数Nの解像度の撮像信号(撮像画像)を生成する。   In the fifth embodiment, an image signal (captured image) having a resolution of N effective pixels is generated by adding the signals of the sub-pixels 241 to 204 for each pixel of the image sensor 107.

また、第5の実施形態では、各画素毎に、副画素241と副画素243の信号を加算して第1焦点検出信号を生成し、副画素242と副画素204の信号を加算して第2焦点検出信号を生成することができる。これらの加算処理により、水平方向の瞳分割に対応した第1焦点検出信号と第2焦点検出信号を取得でき、位相差方式の第1焦点検出とリフォーカス方式の第2焦点検出を行うことができる。即ち、この場合、副画素241と副画素243とが第1焦点検出画素に対応し、副画素242と副画素244とが第2焦点検出画素に対応することになる。   In the fifth embodiment, the first focus detection signal is generated by adding the signals of the sub-pixel 241 and the sub-pixel 243 for each pixel, and the signals of the sub-pixel 242 and the sub-pixel 204 are added together. A bifocal detection signal can be generated. By these addition processes, the first focus detection signal and the second focus detection signal corresponding to the pupil division in the horizontal direction can be acquired, and the first focus detection of the phase difference method and the second focus detection of the refocus method can be performed. it can. That is, in this case, the subpixel 241 and the subpixel 243 correspond to the first focus detection pixel, and the subpixel 242 and the subpixel 244 correspond to the second focus detection pixel.

同様に、第5の実施形態では、各画素毎に、副画素241と副画素242の信号を加算して第1焦点検出信号を生成し、副画素243と副画素244の信号を加算して第2焦点検出信号を生成することができる。これらの加算処理により、垂直方向の瞳分割に対応した第1焦点検出信号と第2焦点検出信号を取得でき、位相差方式の第1焦点検出とリフォーカス方式の第2焦点検出を行うことができる。即ち、この場合、副画素241と副画素242とが第1焦点検出画素に対応し、副画素243と副画素244とが第2焦点検出画素に対応することになる。   Similarly, in the fifth embodiment, for each pixel, the signals of the subpixel 241 and the subpixel 242 are added to generate a first focus detection signal, and the signals of the subpixel 243 and the subpixel 244 are added. A second focus detection signal can be generated. By these addition processes, the first focus detection signal and the second focus detection signal corresponding to the pupil division in the vertical direction can be acquired, and the first focus detection of the phase difference method and the second focus detection of the refocus method can be performed. it can. That is, in this case, the subpixel 241 and the subpixel 242 correspond to the first focus detection pixel, and the subpixel 243 and the subpixel 244 correspond to the second focus detection pixel.

上記の通り本第5の実施形態によれば、被写体が、水平方向及び垂直方向のいずれに高周波数成分を有する場合であっても、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間の差を抑制し、高精度な焦点検出が可能となる。   As described above, according to the fifth embodiment, the detected in-focus position calculated from the focus detection signal and the imaging signal, regardless of whether the subject has a high frequency component in either the horizontal direction or the vertical direction. It is possible to suppress a difference from the best in-focus position and to detect a focus with high accuracy.

なお、第5の実施形態における撮像素子107を、第1〜第4の実施形態の撮像素子107として用いることが可能であることは言うまでもない。   Needless to say, the image sensor 107 according to the fifth embodiment can be used as the image sensor 107 according to the first to fourth embodiments.

Claims (8)

結像光学系の異なる瞳部分領域を通過した一対の光束をそれぞれ受光する第1焦点検出画素及び第2焦点検出画素を有する撮像素子と、
焦点検出領域内の前記第1焦点検出画素から出力される第1焦点検出信号と、前記第2焦点検出画素から出力される第2焦点検出信号との相関量を算出し、該相関量に基づいて、合焦位置までの差を示す第1検出デフォーカス量を検出する第1焦点検出手段と、
前記第1焦点検出信号と前記第2焦点検出信号を互いにシフトさせながら加算して得られたシフト加算信号から、各シフト量毎のコントラスト評価値を算出し、該コントラスト評価値に基づいて、合焦位置までの差を示す第2検出デフォーカス量を検出する第2焦点検出手段と、
前記結像光学系の瞳領域を通過した光束により得られる信号のコントラストが最大となる合焦位置と、前記第1検出デフォーカス量に対応する合焦位置との差を抑制するための焦点検出補正値を、前記結像光学系のズーム位置とフォーカス位置に応じた値として記憶する記憶手段と、
前記第1検出デフォーカス量を前記記憶手段に記憶された前記焦点検出補正値で補正したデフォーカス量に基づいて焦点調節を行った後に、前記第2検出デフォーカス量に基づいて焦点調節を行う焦点調節手段と
を有し、
前記焦点調節手段は、前記焦点検出領域の像高または被写体までの距離の少なくとも一方が所定の条件を満たす場合には、前記第2検出デフォーカス量に基づく焦点調節を行わないことを特徴とする撮像装置。
An imaging device having a first focus detection pixel and a second focus detection pixel that respectively receive a pair of light beams that have passed through different pupil partial regions of the imaging optical system;
A correlation amount between the first focus detection signal output from the first focus detection pixel in the focus detection region and the second focus detection signal output from the second focus detection pixel is calculated, and based on the correlation amount First focus detection means for detecting a first detection defocus amount indicating a difference to the in-focus position;
A contrast evaluation value for each shift amount is calculated from a shift addition signal obtained by adding the first focus detection signal and the second focus detection signal while shifting each other, and based on the contrast evaluation value, the contrast evaluation value is calculated. Second focus detection means for detecting a second detection defocus amount indicating a difference to the focal position;
Focus detection for suppressing the difference between the focus position at which the contrast of the signal obtained by the light beam that has passed through the pupil region of the imaging optical system is maximum and the focus position corresponding to the first detection defocus amount Storage means for storing a correction value as a value corresponding to a zoom position and a focus position of the imaging optical system;
After the focus adjustment based on the defocus amount corrected by said stored focus detection correction value in the storage means the first detecting defocus amount, the adjusted focal point based on the second detection defocus amount It possesses a focus adjustment means for performing,
The focus adjusting unit does not perform focus adjustment based on the second detected defocus amount when at least one of an image height of the focus detection area or a distance to a subject satisfies a predetermined condition. Imaging device.
前記焦点調節手段は、合焦状態を維持し続けるために、前記焦点調節手段による焦点調節を続けて行う場合には、前記第2検出デフォーカス量に基づく焦点調節を行わないことを特徴とする請求項1に記載の撮像装置。 The focus adjustment unit does not perform focus adjustment based on the second detected defocus amount when the focus adjustment by the focus adjustment unit is continuously performed in order to keep the focused state. The imaging device according to claim 1 . 前記像高が予め決められた第1の閾値より小さい場合に、前記焦点調節手段は、前記第2検出デフォーカス量に基づく焦点調節を行わないことを特徴とする請求項1または2に記載の撮像装置。 If the image height is less than the first threshold value determined in advance, the focal point adjusting means, according to claim 1 or 2, characterized in that does not perform focus adjustment based on the second detection defocus amount Imaging device. 被写体までの距離に関する情報を取得する取得手段を更に有し、
前記被写体までの距離が、予め決められた第2の閾値より大きい場合に、前記焦点調節手段は、前記第検出デフォーカス量に基づく焦点調節を行わないことを特徴とする請求項1乃至のいずれか1項に記載の撮像装置。
It further has an acquisition means for acquiring information related to the distance to the subject,
Distance to the subject is, is larger than a second threshold previously determined, the focusing means to claim 1, characterized in that not adversely line focus adjustment based on the second detection defocus amount 4. The imaging device according to any one of 3 .
前記結像光学系が交換可能であって、装着された結像光学系の個体ばらつきに基づいて前記第2検出デフォーカス量に基づく焦点調節を行わないか否かを選択することを特徴とする請求項1乃至のいずれか1項に記載の撮像装置。 The imaging optical system is replaceable, and it is selected whether or not to perform focus adjustment based on the second detection defocus amount based on individual variation of the mounted imaging optical system. The imaging device according to any one of claims 1 to 4 . 前記結像光学系のFナンバーが予め決められた第3の閾値より大きい場合に、前記焦点調節手段は、前記第検出デフォーカス量に基づく焦点調節を行わないことを特徴とする請求項1乃至のいずれか1項に記載の撮像装置。 If third greater than the threshold value F-number of the imaging optical system is predetermined, said focusing means, claims, characterized in that not adversely line focus adjustment based on the second detection defocus amount The imaging device according to any one of 1 to 5 . 前記焦点検出補正値は、前記結像光学系の光軸に対して放射線方向の焦点検出補正値と同心円方向の焦点検出補正値から構成され、
前記放射線方向もしくは前記同心円方向と、前記第1焦点検出信号と前記第2焦点検出信号とのずれ方向が成す角度に応じて、前記放射線方向の焦点検出補正値と前記同心円方向の焦点検出補正値を重みづけして算出される焦点検出補正値を用いて、前記第1検出デフォーカス量を補正することを特徴とする請求項1乃至のいずれか1項に記載の撮像装置。
The focus detection correction value includes a focus detection correction value in a radial direction and a focus detection correction value in a concentric direction with respect to the optical axis of the imaging optical system,
The focus detection correction value in the radiation direction and the focus detection correction value in the concentric direction according to the angle formed by the deviation direction between the radiation direction or the concentric circle direction and the first focus detection signal and the second focus detection signal. with focus detection correction value calculated by weight the imaging apparatus according to any one of claims 1 to 6, characterized in that to correct the first detection defocus amount.
結像光学系の異なる瞳部分領域を通過した一対の光束をそれぞれ受光する第1焦点検出画素及び第2焦点検出画素を有する撮像素子を有する撮像装置の制御方法であって、
第1焦点検出手段が、焦点検出領域内の前記第1焦点検出画素から出力される第1焦点検出信号と、前記第2焦点検出画素から出力される第2焦点検出信号との相関量を算出し、該相関量に基づいて、合焦位置までの差を示す第1検出デフォーカス量を検出する第1焦点検出工程と、
補正手段が、前記結像光学系の瞳領域を通過した光束により得られる信号のコントラストが最大となる合焦位置と、前記第1検出デフォーカス量に対応する合焦位置との差を抑制するための焦点検出補正値を、前記結像光学系のズーム位置とフォーカス位置に応じた値として記憶する記憶手段から、前記第1検出デフォーカス量に対応する焦点検出補正値を読み出して、該焦点検出補正値を用いて前記第1検出デフォーカス量を補正する補正工程と、
第2焦点検出手段が、前記第1焦点検出信号と前記第2焦点検出信号を互いにシフトさせながら加算して得られたシフト加算信号から、各シフト量毎のコントラスト評価値を算出し、該コントラスト評価値に基づいて、合焦位置までの差を示す第2検出デフォーカス量を検出する第2焦点検出工程と、
焦点調節手段が、前記第1検出デフォーカス量を前記記憶手段に記憶された前記焦点検出補正値で補正したデフォーカス量に基づいて焦点調節を行った後に、前記第2検出デフォーカス量に基づいて焦点調節を行う焦点調節工程と
を有し、
前記焦点調節工程では、前記焦点検出領域の像高または被写体までの距離の少なくとも一方が所定の条件を満たす場合には、前記第2検出デフォーカス量に基づく焦点調節を行わないことを特徴とする撮像装置の制御方法。
A method for controlling an imaging apparatus having an imaging element having a first focus detection pixel and a second focus detection pixel that respectively receive a pair of light beams that have passed through different pupil partial regions of an imaging optical system,
The first focus detection means calculates a correlation amount between the first focus detection signal output from the first focus detection pixel in the focus detection area and the second focus detection signal output from the second focus detection pixel. A first focus detection step of detecting a first detection defocus amount indicating a difference to the in-focus position based on the correlation amount;
The correction unit suppresses a difference between a focus position at which a contrast of a signal obtained by the light beam that has passed through the pupil region of the imaging optical system is maximum and a focus position corresponding to the first detection defocus amount. A focus detection correction value corresponding to the first detection defocus amount is read out from a storage unit that stores a focus detection correction value for the focus as a zoom position and a focus position of the imaging optical system. A correction step of correcting the first detection defocus amount using a detection correction value;
A second focus detection unit calculates a contrast evaluation value for each shift amount from a shift addition signal obtained by adding the first focus detection signal and the second focus detection signal while shifting each other, and the contrast A second focus detection step of detecting a second detection defocus amount indicating a difference to the in-focus position based on the evaluation value;
The focus adjustment unit performs focus adjustment based on the defocus amount obtained by correcting the first detection defocus amount with the focus detection correction value stored in the storage unit, and then based on the second detection defocus amount. focus Te point adjustment possess a focusing step of performing,
In the focus adjustment step, focus adjustment based on the second detection defocus amount is not performed when at least one of the image height of the focus detection region and the distance to the subject satisfies a predetermined condition. Control method of imaging apparatus.
JP2013206808A 2013-10-01 2013-10-01 Imaging apparatus and control method thereof Expired - Fee Related JP6285683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206808A JP6285683B2 (en) 2013-10-01 2013-10-01 Imaging apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013206808A JP6285683B2 (en) 2013-10-01 2013-10-01 Imaging apparatus and control method thereof

Publications (3)

Publication Number Publication Date
JP2015072312A JP2015072312A (en) 2015-04-16
JP2015072312A5 JP2015072312A5 (en) 2016-11-17
JP6285683B2 true JP6285683B2 (en) 2018-02-28

Family

ID=53014734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206808A Expired - Fee Related JP6285683B2 (en) 2013-10-01 2013-10-01 Imaging apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP6285683B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595797B2 (en) * 2015-05-12 2019-10-23 キヤノン株式会社 Imaging apparatus and control method thereof
JP6702669B2 (en) * 2015-07-29 2020-06-03 キヤノン株式会社 Imaging device and control method thereof
JP6639326B2 (en) * 2015-07-30 2020-02-05 キヤノン株式会社 Control device, imaging device, control method, program, and storage medium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098474A (en) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd Interchangeable lens, camera body and lens interchangeable type camera system
JP4209660B2 (en) * 2002-10-23 2009-01-14 富士フイルム株式会社 Digital camera and camera system
JP2006171144A (en) * 2004-12-14 2006-06-29 Canon Inc Auxiliary light device for focus detection of camera
JP5241096B2 (en) * 2006-12-19 2013-07-17 キヤノン株式会社 IMAGING DEVICE, ITS CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP5212396B2 (en) * 2010-02-10 2013-06-19 株式会社ニコン Focus detection device
KR101777351B1 (en) * 2011-05-16 2017-09-11 삼성전자주식회사 Image pickup device, digital photographing apparatus using the device, auto-focusing method, and computer-readable storage medium for performing the method
JP5961929B2 (en) * 2011-06-21 2016-08-03 株式会社ニコン camera
JP6000520B2 (en) * 2011-07-25 2016-09-28 キヤノン株式会社 Imaging apparatus and control method and program thereof
JP5914055B2 (en) * 2012-03-06 2016-05-11 キヤノン株式会社 Imaging device

Also Published As

Publication number Publication date
JP2015072312A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6239862B2 (en) Focus adjustment apparatus, focus adjustment method and program, and imaging apparatus
JP6362060B2 (en) Imaging apparatus, control method thereof, and program
JP6239857B2 (en) Imaging apparatus and control method thereof
JP6249825B2 (en) Imaging device, control method thereof, and control program
JP6532119B2 (en) Image pickup apparatus and control method thereof
JP2015129846A (en) Image capturing device and control method therefor
JP7057397B2 (en) Image processing device, image pickup device, image processing method, program, and storage medium
JP6381266B2 (en) IMAGING DEVICE, CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP6700986B2 (en) Image processing device, imaging device, image processing method, and program
JP2015194736A (en) Imaging apparatus and control method thereof
JP2017158018A (en) Image processing apparatus, control method therefor, and imaging apparatus
JP6285683B2 (en) Imaging apparatus and control method thereof
JP2015210285A (en) Imaging device, manufacturing method of the same, program thereof and recording medium
JP2017219782A (en) Control device, imaging device, control method, program, and storage medium
JP2015145970A (en) Imaging device, control method of the same, program abd recording medium
JP6639326B2 (en) Control device, imaging device, control method, program, and storage medium
JP6525829B2 (en) Control device, imaging device, control method, program, and storage medium
JP2015225310A (en) Image capturing device, control method therefor, program, and storage medium
JP2015225311A (en) Image capturing device, control method therefor, program, and storage medium
JP7022575B2 (en) Focus detectors and methods, and imaging devices
JP6789810B2 (en) Image processing method, image processing device, and imaging device
CN113596431B (en) Image processing apparatus, image capturing apparatus, image processing method, and storage medium
JP2016133595A (en) Controller, imaging device, control method, program, and storage medium
JP6735621B2 (en) Image processing apparatus, control method thereof, program, and imaging apparatus
JP6765829B2 (en) Image processing device, control method of image processing device, imaging device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180202

R151 Written notification of patent or utility model registration

Ref document number: 6285683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees