JP2017199721A - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- JP2017199721A JP2017199721A JP2016087176A JP2016087176A JP2017199721A JP 2017199721 A JP2017199721 A JP 2017199721A JP 2016087176 A JP2016087176 A JP 2016087176A JP 2016087176 A JP2016087176 A JP 2016087176A JP 2017199721 A JP2017199721 A JP 2017199721A
- Authority
- JP
- Japan
- Prior art keywords
- region
- semiconductor
- semiconductor layer
- drift
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 252
- 239000012535 impurity Substances 0.000 claims abstract description 54
- 239000000758 substrate Substances 0.000 claims description 39
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 229910052814 silicon oxide Inorganic materials 0.000 description 25
- 230000005684 electric field Effects 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- VRAIHTAYLFXSJJ-UHFFFAOYSA-N alumane Chemical compound [AlH3].[AlH3] VRAIHTAYLFXSJJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Images
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本明細書は、縦型の半導体装置に関する技術を開示する。 The present specification discloses a technique related to a vertical semiconductor device.
縦型の半導体装置の開発が進められている。特許文献1(図19)は、半導体層の表面から裏面に向けて伸びる誘電体4が半導体層内に設けられた半導体装置を開示している。誘電体4は、半導体層内を第1半導体領域と第2半導体領域に分離している。特許文献1は、装置がオン状態のときに第2半導体領域内の電位が上昇する。誘電体4を介して第2半導体領域に対向する部分の第1半導体領域に、低抵抗のチャネルが形成される。その結果、第1半導体領域を電流が流れる。このような半導体装置は、第1半導体領域の表面から裏面までのほぼ全域にチャネルが形成される。そのため、キャリアの移動抵抗(特にドリフト抵抗)を低くすることができる。
Vertical semiconductor devices are being developed. Patent Document 1 (FIG. 19) discloses a semiconductor device in which a dielectric 4 extending from the front surface to the back surface of a semiconductor layer is provided in the semiconductor layer. The
特許文献1の第2半導体領域は、半導体層の裏面側から、n+型ドレイン領域5,p−型接続領域32,n型接続領域31,n−型ドリフト制御領域3,p−型接続領域33及びp+型接続領域34がこの順に積層された構造を有している。n+型ドレイン領域5はドレイン電極11に接続されており、p+型接続領域34は制御電極19に接続されている。制御電極19に電圧が印加されると、p−型接続領域32とn型接続領域31に電界が加わり、n−型ドリフト制御領域3の電位が上昇する。誘電体4を介して第2半導体領域に対向する位置の第1半導体領域にチャネルが形成され、そのチャネルを電子が移動する。また、ドレイン電極11に電圧が印加された状態で制御電極19に対する電圧の印加が停止されると、p−型接続領域33からn−型ドリフト制御領域3に向けて電界が広がり(空乏層が伸び)、第2半導体領域の耐圧が維持される。 The second semiconductor region of Patent Document 1 includes an n + type drain region 5, a p − type connection region 32, an n type connection region 31, an n − type drift control region 3 and a p − type connection region from the back side of the semiconductor layer. 33 and p + type connection region 34 are stacked in this order. The n + type drain region 5 is connected to the drain electrode 11, and the p + type connection region 34 is connected to the control electrode 19. When a voltage is applied to the control electrode 19, an electric field is applied to the p − type connection region 32 and the n type connection region 31, and the potential of the n − type drift control region 3 increases. A channel is formed in the first semiconductor region at a position facing the second semiconductor region via the dielectric 4, and electrons move through the channel. In addition, when the voltage application to the control electrode 19 is stopped while the voltage is applied to the drain electrode 11, the electric field spreads from the p − type connection region 33 toward the n − type drift control region 3 (the depletion layer is Elongation), the breakdown voltage of the second semiconductor region is maintained.
特許文献1では、p−型接続領域32及びn型接続領域31が、誘電体4を介してn−型ドリフト領域2に対向している。そのため、第1半導体領域において、n−型ドリフト領域2のn+型ドレイン領域5側の端部までチャネルが形成される。半導体装置がオンしているときは、n−型ドリフト領域2とn+型ドレイン領域5の間に電界層が生じる。特許文献1は、装置がオンしているときに、n−型ドリフト領域2のn+型ドレイン領域5側の端部で電流集中が生じ、電界層に高密度の電流が流れる。その結果、半導体装置の動作が不安定となり、半導体装置の耐久性が低下することが起こり得る。本明細書は、縦型の半導体装置において、耐久性の高い装置を実現する技術を提供する。
In Patent Document 1, the p − type connection region 32 and the n type connection region 31 are opposed to the n −
本明細書で開示する縦型の半導体装置は、半導体層の表面から裏面に向けて伸びる誘電体によって分離されている第1半導体領域と第2半導体領域を備えている。第1半導体領域は、第1導電型のドレイン領域と、第1導電型のドリフト領域と、第2導電型のベース領域と、第1導電型のソース領域を有している。ドレイン領域は、半導体層の裏面に設けられている。ドリフト領域は、ドレイン領域の表面に設けられており、ドレイン領域より不純物濃度が低い。ベース領域は、ドリフト領域の表面に設けられている。ソース領域は、ベース領域の表面に設けられており、ベース領域によってドリフト領域から分離されている。第2半導体領域は、第2導電型の第1領域と、第1導電型の第2領域と、第1導電型の第3領域と、第2導電型の第4領域を有している。第1領域は、半導体層の裏面に設けられている。第2領域は、第1領域の表面に設けられている。第3領域は、第2領域の表面に設けられており、第2領域より不純物濃度が低い。第4領域は、第3領域の表面に設けられている。上記半導体装置では、ドレイン領域とドリフト領域の界面が誘電体と接触する長さが、ベース領域とドリフト領域の界面が誘電体と接触する長さより長い。また、上記半導体装置では、ドレイン領域と第1領域の双方が、第1導電型の半導体基板と接している。なお、ソース領域はソース電極に接続され、第4領域は半導体装置のオンオフを制御する制御電極に接続され、半導体基板がドレイン電極に接続される。 The vertical semiconductor device disclosed in this specification includes a first semiconductor region and a second semiconductor region separated by a dielectric extending from the front surface to the back surface of the semiconductor layer. The first semiconductor region has a first conductivity type drain region, a first conductivity type drift region, a second conductivity type base region, and a first conductivity type source region. The drain region is provided on the back surface of the semiconductor layer. The drift region is provided on the surface of the drain region and has a lower impurity concentration than the drain region. The base region is provided on the surface of the drift region. The source region is provided on the surface of the base region, and is separated from the drift region by the base region. The second semiconductor region includes a first conductivity type first region, a first conductivity type second region, a first conductivity type third region, and a second conductivity type fourth region. The first region is provided on the back surface of the semiconductor layer. The second region is provided on the surface of the first region. The third region is provided on the surface of the second region and has a lower impurity concentration than the second region. The fourth region is provided on the surface of the third region. In the semiconductor device, the length at which the interface between the drain region and the drift region is in contact with the dielectric is longer than the length at which the interface between the base region and the drift region is in contact with the dielectric. In the semiconductor device, both the drain region and the first region are in contact with the first conductivity type semiconductor substrate. Note that the source region is connected to the source electrode, the fourth region is connected to a control electrode for controlling on / off of the semiconductor device, and the semiconductor substrate is connected to the drain electrode.
上記半導体装置は、制御電極に電圧を印加すると、第2導電型の第1領域と第1導電型の第2領域によって電界が生じ、第2半導体領域内の電位が上昇する。その結果、誘電体を介して第2半導体領域と対向する第1半導体領域にチャネルが形成される。第1半導体領域内において、キャリアが、チャネルを通過して(誘電体に沿って)ソース領域からドレイン領域に移動する。上記半導体装置では、ドレイン領域とドリフト領域の界面が誘電体と接触する長さが、ベース領域とドリフト領域の界面が誘電体と接触する長さより長い。簡単にいうと、ドリフト領域のサイズが、ドレイン領域側で大きく、ベース領域側で小さい。そのため、半導体装置がオン状態のときに、ベース領域側から移動してきたキャリアがドレイン領域側で拡散する。これにより、ドリフト領域のドレイン領域側端部で電流集中が生じることが抑制され、半導体装置の耐久性を維持することができる。 In the semiconductor device, when a voltage is applied to the control electrode, an electric field is generated by the first conductivity type first region and the first conductivity type second region, and the potential in the second semiconductor region increases. As a result, a channel is formed in the first semiconductor region facing the second semiconductor region via the dielectric. Within the first semiconductor region, carriers move from the source region to the drain region through the channel (along the dielectric). In the semiconductor device, the length at which the interface between the drain region and the drift region is in contact with the dielectric is longer than the length at which the interface between the base region and the drift region is in contact with the dielectric. In short, the size of the drift region is large on the drain region side and small on the base region side. Therefore, when the semiconductor device is on, carriers that have moved from the base region side diffuse on the drain region side. Thereby, current concentration is suppressed from occurring at the end of the drift region on the drain region side, and the durability of the semiconductor device can be maintained.
以下、本明細書で開示される技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。 The technical features disclosed in this specification will be summarized below. The items described below have technical usefulness independently.
本明細書で開示する半導体装置は、縦型の半導体装置であり、一対の主電極が半導体層の表裏面に設けられている。半導体層は、半導体基板の表面に設けられていてよい。この場合、半導体層と半導体基板を併せて、1つの半導体層と捉えることもできる。半導体層及び半導体基板の材料は、シリコン又は化合物半導体(炭化ケイ素、窒化ガリウム、ガリウム砒素等)であってよい。 The semiconductor device disclosed in this specification is a vertical semiconductor device, and a pair of main electrodes are provided on the front and back surfaces of a semiconductor layer. The semiconductor layer may be provided on the surface of the semiconductor substrate. In this case, the semiconductor layer and the semiconductor substrate can be combined and regarded as one semiconductor layer. The material of the semiconductor layer and the semiconductor substrate may be silicon or a compound semiconductor (silicon carbide, gallium nitride, gallium arsenide, etc.).
半導体層内に、半導体層の表面から裏面に向けて伸びる誘電体が設けられている。半導体層内は、誘電体によって第1半導体領域と第2半導体領域に分離されている。誘電体は、半導体層の表面から裏面に至るまで伸びていてもよい。誘電体は、半導体層に形成されたトレンチ内に充填されていてよい。誘電体の一例として酸化膜(例えばSiO2)が挙げられる。誘電体の厚み(第1半導体領域に接する面と第2半導体領域に接する面の距離)は、10〜200nmであってよい。半導体層の表面側と裏面側で、誘電体の形状が異なっていてよい。具体的には、誘電体は、半導体層の表面側のサイズ(半導体層の表面と裏面を結ぶ第1方向に直交する面内のサイズ)が、半導体層の裏面側のサイズより大きくてよい。一例として、誘電体は、半導体層表面側において、第1方向に直交する第2方向に伸びており、半導体層裏面側において、第2方向に伸びる第1部分と、第2方向に交差する第3方向に伸びる第2部分を備えていてよい。 A dielectric that extends from the front surface to the back surface of the semiconductor layer is provided in the semiconductor layer. The semiconductor layer is separated into a first semiconductor region and a second semiconductor region by a dielectric. The dielectric may extend from the front surface to the back surface of the semiconductor layer. The dielectric may be filled in a trench formed in the semiconductor layer. An example of the dielectric is an oxide film (for example, SiO 2 ). The thickness of the dielectric (the distance between the surface in contact with the first semiconductor region and the surface in contact with the second semiconductor region) may be 10 to 200 nm. The shape of the dielectric may be different between the front surface side and the back surface side of the semiconductor layer. Specifically, the size of the dielectric on the front side of the semiconductor layer (size in a plane perpendicular to the first direction connecting the front and back surfaces of the semiconductor layer) may be larger than the size on the back side of the semiconductor layer. As an example, the dielectric extends in the second direction orthogonal to the first direction on the semiconductor layer surface side, and the first portion extending in the second direction intersects the second direction on the back side of the semiconductor layer. A second portion extending in three directions may be provided.
第1半導体領域は、第1導電型のドレイン領域と、第1導電型のドリフト領域と、第2導電型のベース領域と、第1導電型のソース領域を備えている。ドレイン領域は、第1半導体領域の裏面に設けられている。ドリフト領域は、ドレイン領域の表面に設けられている。ドリフト領域は、ドレイン領域より不純物濃度が低い。ベース領域は、ドリフト領域の表面に設けられている。ドリフト領域は、表面側(ベース領域側)と裏面側(ドレイン領域側)で形状が異なっていてよい。具体的には、ドリフト領域は、半導体層の表面側のサイズが、半導体層の裏面側のサイズより大きくてよい。ドリフト領域は、半導体層表面側において、第1方向に直交する第2方向に伸びており、半導体層裏面側において、第2方向に伸びる第1部分と、第2方向に交差する第3方向に伸びる第2部分を備えていてよい。すなわち、ドリフト領域は、誘電体の形状に沿った形状であってよい。 The first semiconductor region includes a first conductivity type drain region, a first conductivity type drift region, a second conductivity type base region, and a first conductivity type source region. The drain region is provided on the back surface of the first semiconductor region. The drift region is provided on the surface of the drain region. The drift region has a lower impurity concentration than the drain region. The base region is provided on the surface of the drift region. The shape of the drift region may be different on the front surface side (base region side) and the back surface side (drain region side). Specifically, the size of the drift region in the front surface side of the semiconductor layer may be larger than the size of the back surface side of the semiconductor layer. The drift region extends in the second direction orthogonal to the first direction on the semiconductor layer surface side, and in the third direction intersecting the second direction with the first portion extending in the second direction on the back side of the semiconductor layer. A second portion that extends may be provided. That is, the drift region may have a shape along the shape of the dielectric.
ソース領域は、ベース領域の表面に設けられている。ソース領域は、ベース領域によってドリフト領域から分離されている。ソース領域は、ソース電極に接続されている。なお、ソース領域は、ベース領域の表面の全面に設けられていてもよいし、一部に設けられていてもよい。ソース領域がベース領域の表面の一部に設けられている場合、ベース領域の表面に、第2導電型のコンタクト領域が設けられていてもよい。コンタクト領域の不純物濃度は、ベース領域より濃くてよい。ソース領域とコンタクト領域の双方が、ソース電極に電気的に接続されていてよい。なお、ベース領域の一部が、半導体層の表面に露出していてもよい。すなわち、ベース領域は、ソース領域及びコンタクト領域の双方が形成されていない表面を有していてもよい。 The source region is provided on the surface of the base region. The source region is separated from the drift region by the base region. The source region is connected to the source electrode. Note that the source region may be provided over the entire surface of the base region or may be provided in part. In the case where the source region is provided on a part of the surface of the base region, a contact region of the second conductivity type may be provided on the surface of the base region. The impurity concentration of the contact region may be higher than that of the base region. Both the source region and the contact region may be electrically connected to the source electrode. A part of the base region may be exposed on the surface of the semiconductor layer. That is, the base region may have a surface on which neither the source region nor the contact region is formed.
半導体装置は、n型半導体装置でもよいし、p型半導体装置であってもよい。n型半導体装置の場合、第1半導体領域において、n型のドレイン領域は、不純物濃度が1×1019〜1×1023cm−3に調整されており、厚さ(半導体層の表面と裏面を結ぶ方向の距離)が0.5〜1.0μmに調整されていてよい。n型ドリフト領域は、不純物濃度が1×1013〜1×1016cm−3に調整されており、厚さが5〜200μmに調整されていてよい。p型ベース領域は、不純物濃度が1×1016〜1×1018cm−3に調整されており、厚さが1.0〜10μmに調整されていてよい。n型ソース領域は、不純物濃度が1×1019〜1×1023cm−3に調整されており、厚さが0.5〜2.0μmに調整されていてよい。p型コンタクト領域は、不純物濃度が1×1019〜1×1023cm−3に調整されており、厚さが0.5〜2.0μmに調整されていてよい。 The semiconductor device may be an n-type semiconductor device or a p-type semiconductor device. In the case of an n-type semiconductor device, in the first semiconductor region, the n-type drain region has an impurity concentration adjusted to 1 × 10 19 to 1 × 10 23 cm −3 and has a thickness (the front and back surfaces of the semiconductor layer). May be adjusted to 0.5 to 1.0 μm. The n-type drift region has an impurity concentration adjusted to 1 × 10 13 to 1 × 10 16 cm −3 and a thickness adjusted to 5 to 200 μm. The p-type base region may have an impurity concentration adjusted to 1 × 10 16 to 1 × 10 18 cm −3 and a thickness adjusted to 1.0 to 10 μm. The n-type source region has an impurity concentration adjusted to 1 × 10 19 to 1 × 10 23 cm −3 and a thickness adjusted to 0.5 to 2.0 μm. The p-type contact region has an impurity concentration adjusted to 1 × 10 19 to 1 × 10 23 cm −3 and a thickness adjusted to 0.5 to 2.0 μm.
第2半導体領域は、第2導電型の第1領域と、第1導電型の第2領域と、第1導電型の第3領域と、第2導電型の第4領域を備えている。第1領域は、第2半導体領域の裏面の全面に設けられている。第2領域は、第1領域の表面に設けられている。また、第2領域は、ドリフト領域(第1半導体領域)のドレイン領域側の端部に対応する位置に設けられている。第3領域は、第2領域の表面に設けられている。第3領域は、第2領域より不純物濃度が低い。第4領域は、第3領域の表面に設けられている。第4領域は、半導体装置のオンオフを制御する制御電極に接続されている。また、第4領域の表面に、第2導電型の第5領域が設けられていてもよい。第5領域の不純物濃度は、第4領域より濃くてよい。この場合、第4領域は、第5領域を介して制御電極に接続される。なお、第3領域は、表面側(第4領域側)と裏面側(第5領域側)で形状が異なっていてよい。具体的には、第3領域は、半導体層の表面側(表面側第3領域)のサイズが、半導体層の裏面側(裏面側第3領域)のサイズより大きくてよい。第3領域は、誘電体の形状に沿った形状であってよい。 The second semiconductor region includes a first conductivity type first region, a first conductivity type second region, a first conductivity type third region, and a second conductivity type fourth region. The first region is provided on the entire back surface of the second semiconductor region. The second region is provided on the surface of the first region. The second region is provided at a position corresponding to the end of the drift region (first semiconductor region) on the drain region side. The third region is provided on the surface of the second region. The third region has a lower impurity concentration than the second region. The fourth region is provided on the surface of the third region. The fourth region is connected to a control electrode that controls on / off of the semiconductor device. A fifth region of the second conductivity type may be provided on the surface of the fourth region. The impurity concentration of the fifth region may be higher than that of the fourth region. In this case, the fourth region is connected to the control electrode via the fifth region. The shape of the third region may be different on the front surface side (fourth region side) and the back surface side (fifth region side). Specifically, in the third region, the size of the front surface side (front surface side third region) of the semiconductor layer may be larger than the size of the back surface side (back surface side third region) of the semiconductor layer. The third region may have a shape along the shape of the dielectric.
半導体装置がn型半導体装置の場合、第2半導体領域において、p型の第1領域は、不純物濃度が1×1021〜1×1023cm−3に調整されており、厚さが0.5〜1.0μmに調整されていてよい。n型の第2領域は、不純物濃度が1×1018〜1×1021cm−3に調整されており、厚さが0.5〜2.0μmに調整されていてよい。n型の第3領域は、不純物濃度が1×1013〜1×1016cm−3に調整されており、厚さが5〜200μmに調整されていてよい。p型の第4領域は、不純物濃度が1×1016〜1×1018cm−3に調整されており、厚さが1.0〜10μmに調整されていてよい。p型の第5領域は、不純物濃度が1×1019〜1×1023cm−3に調整されており、厚さが0.5〜2.0μmに調整されていてよい。 When the semiconductor device is an n-type semiconductor device, in the second semiconductor region, the p-type first region has an impurity concentration adjusted to 1 × 10 21 to 1 × 10 23 cm −3 and a thickness of 0. It may be adjusted to 5 to 1.0 μm. The n-type second region may have an impurity concentration adjusted to 1 × 10 18 to 1 × 10 21 cm −3 and a thickness adjusted to 0.5 to 2.0 μm. The n-type third region may have an impurity concentration adjusted to 1 × 10 13 to 1 × 10 16 cm −3 and a thickness adjusted to 5 to 200 μm. The p-type fourth region may have an impurity concentration adjusted to 1 × 10 16 to 1 × 10 18 cm −3 and a thickness adjusted to 1.0 to 10 μm. The p-type fifth region may have an impurity concentration adjusted to 1 × 10 19 to 1 × 10 23 cm −3 and a thickness adjusted to 0.5 to 2.0 μm.
半導体層は、第1導電型の半導体基板(n型半導体装置の場合n型半導体基板)の表面に設けられている。半導体層の裏面は、半導体基板の表面と接している。すなわち、第1導電型のドレイン領域と第2導電型の第1領域の双方が、第1導電型の半導体基板と接する。上記したように、第1領域は、第2半導体領域の裏面の全面に設けられている。そのため、第1導電型の半導体基板と第1導電型の第2領域は、第2導電型の第1領域によって分離されている。上記した誘電体は、半導体層の表面から半導体層と半導体基板との接合面まで伸びていてよい。あるいは、誘電体は、半導体層を貫通し、半導体基板内まで伸びていてもよい。不純物を含む各領域を半導体層内に形成した後、半導体層と半導体基板を接合してもよい。あるいは、半導体層は、半導体基板の表面に結晶成長させたものであってもよい。この場合、半導体層と半導体基板を併せて、1つの半導体層と捉えることもできる。n型半導体装置の場合、n型の半導体基板は、不純物濃度が1×1021〜1×1023cm−3に調整されており、厚さが100〜500μmに調整されていてよい。上記したように、第1領域の不純物濃度は1×1021〜1×1023cm−3に調整されていてよい。すなわち、第1領域と半導体基板は、縮退半導体の状態となるように不純物が導入されていてよい。この場合、第1領域と半導体基板によって、ツェナーダイオードが構成される。半導体基板の裏面は、ドレイン電極に接続されている。 The semiconductor layer is provided on the surface of a first conductivity type semiconductor substrate (in the case of an n-type semiconductor device, an n-type semiconductor substrate). The back surface of the semiconductor layer is in contact with the surface of the semiconductor substrate. That is, both the first conductivity type drain region and the second conductivity type first region are in contact with the first conductivity type semiconductor substrate. As described above, the first region is provided on the entire back surface of the second semiconductor region. Therefore, the first conductivity type semiconductor substrate and the first conductivity type second region are separated by the second conductivity type first region. The above-described dielectric may extend from the surface of the semiconductor layer to the bonding surface between the semiconductor layer and the semiconductor substrate. Alternatively, the dielectric may penetrate through the semiconductor layer and extend into the semiconductor substrate. After each region containing impurities is formed in the semiconductor layer, the semiconductor layer and the semiconductor substrate may be bonded. Alternatively, the semiconductor layer may be a crystal grown on the surface of the semiconductor substrate. In this case, the semiconductor layer and the semiconductor substrate can be combined and regarded as one semiconductor layer. In the case of an n-type semiconductor device, the n-type semiconductor substrate has an impurity concentration adjusted to 1 × 10 21 to 1 × 10 23 cm −3 and a thickness adjusted to 100 to 500 μm. As described above, the impurity concentration of the first region may be adjusted to 1 × 10 21 to 1 × 10 23 cm −3 . That is, the first region and the semiconductor substrate may be doped with impurities so as to be in a degenerate semiconductor state. In this case, a Zener diode is constituted by the first region and the semiconductor substrate. The back surface of the semiconductor substrate is connected to the drain electrode.
ドリフト領域と第3領域の不純物濃度は等しくてよい。半導体層の裏面からドリフト領域の半導体層表面側の端部までの距離は、半導体層の裏面から第3領域の半導体層表面側の端部までの距離と等しくてよい。すなわち、半導体層の裏面からベース領域の半導体層裏面側の端部までの距離は、半導体層の裏面から第4領域の半導体層表面側の端部までの距離と等しくてよい。ベース領域と第4領域の不純物濃度も等しくてよい。ベース領域と第4領域の厚さも等しくてよい。また、コンタクト領域と第5領域の不純物濃度は等しくてよい。コンタクト領域と第5領域の厚さも等しくてよい。このような場合、ドリフト領域と第3領域、ベース領域と第4領域、コンタクト領域と第5領域を同時に形成することができる。半導体層内にドリフト領域,ベース領域及びコンタクト領域に相当する構造を形成した後、半導体層内に誘電体を形成して半導体層を分断することにより、分断された一方がドリフト領域,ベース領域及びコンタクト領域となり、他方が第3領域,第4領域及び第5領域となる。 The impurity concentration of the drift region and the third region may be equal. The distance from the back surface of the semiconductor layer to the end portion of the drift region on the semiconductor layer surface side may be equal to the distance from the back surface of the semiconductor layer to the end portion of the third region on the semiconductor layer surface side. That is, the distance from the back surface of the semiconductor layer to the end of the base region on the back side of the semiconductor layer may be equal to the distance from the back surface of the semiconductor layer to the end of the fourth region on the surface side of the semiconductor layer. The impurity concentration of the base region and the fourth region may be equal. The base region and the fourth region may have the same thickness. Further, the impurity concentration of the contact region and the fifth region may be equal. The contact region and the fifth region may have the same thickness. In such a case, the drift region and the third region, the base region and the fourth region, and the contact region and the fifth region can be formed simultaneously. After forming a structure corresponding to the drift region, the base region, and the contact region in the semiconductor layer, a dielectric is formed in the semiconductor layer to divide the semiconductor layer, so that one of the divided regions is the drift region, the base region, and It becomes a contact region, and the other becomes a third region, a fourth region, and a fifth region.
図1から図5を参照し、半導体装置100について説明する。なお、図面に示している座標は、Z方向が特許請求の範囲の第1方向、Y方向が特許請求の範囲の第2方向、X方向が特許請求の範囲の第3方向の一例である。図1に示すように、半導体装置100は、半導体基板4と、半導体層50と、ドレイン電極2と、ソース電極22と、ゲート電極16を備えている。n+型の半導体基板4の裏面にドレイン電極2が設けられており、表面に半導体層50が設けられている。ドレイン電極2の材料はアルミニウムアルミニウム(Al)である。ドレイン電極2は、半導体基板4に電気的に接続されている。半導体基板4及び半導体層50の材料は、シリコンである。半導体基板4は、n型の不純物としてリン(P)を含んでいる。半導体基板4の不純物濃度は1×1021〜1×1023cm−3であり、厚さは100〜500μmである。半導体層50の表面に、ソース電極22とゲート電極16が設けられている。半導体装置100は、縦型のトランジスタである。ソース電極22の材料はアルミニウムであり、ゲート電極16の材料は多結晶シリコンである。ゲート電極16は、特許請求の範囲に記載の制御電極の一例である。
The
酸化シリコン(SiO2)膜18が、半導体層50の表面から裏面まで伸びている。半導体層50は、酸化シリコン膜18によって、第1半導体領域50aと第2半導体領域50bに分離されている。酸化シリコン膜18の厚さt5は、10〜200nmである。酸化シリコン膜18は、特許請求の範囲に記載の誘電体の一例である。詳細は後述するが、酸化シリコン膜18の形状は、半導体層50の表面側と裏面側で異なる。
A silicon oxide (SiO 2 )
第1半導体領域50aは、n+型のドレイン領域30と、n型のドリフト領域28と、p型のベース領域26と、n+型のソース領域20と、p+型のベースコンタクト領域24を備えている。ドレイン領域30は、半導体層50(第1半導体領域50a)の裏面にリンをイオン注入することによって形成される。ドレイン領域30は、酸化シリコン膜18に接している。ドレイン領域30の不純物濃度は1×1019〜1×1023cm−3であり、厚さは0.5〜1.0μmである。ベース領域26は、半導体層50の表面にホウ素(B)をイオン注入することによって形成される。ベース領域26の不純物濃度は1×1016〜1×1018cm−3であり、厚さは1.0〜10μmである。半導体層50の裏面にドレイン領域30を形成し、表面にベース領域26を形成することによって、ドレイン領域30の表面にドリフト領域28が設けられ、ドリフト領域28の表面にベース領域26が設けられる。詳細は後述するが、ドリフト領域28の形状は、表面側(表面側ドリフト領域28a)と裏面側(裏面側ドリフト領域28b)で異なる。
The
ソース領域20は、ベース領域26の表面の一部にリンをイオン注入することによって形成される。ソース領域20は、酸化シリコン膜18に接している。なお、ソース領域20は、ベース領域26の裏面には達していない。そのため、ソース領域20は、ベース領域26によってドリフト領域28から分離されている。ソース領域20の不純物濃度は1×1019〜1×1023cm−3であり、厚さは0.5〜2.0μmである。ベースコンタクト領域24は、ベース領域26の表面のソース領域20とは異なる位置にホウ素をイオン注入することによって形成される。ソース領域20及びベースコンタクト領域24は、ソース電極22に電気的に接続されている。ベースコンタクト領域24によって、ソース電極22とベース領域26の接触抵抗が低減する。ベースコンタクトの不純物濃度は1×1019〜1×1023cm−3であり、厚さは0.5〜2.0μmである。
The
ドリフト領域28には不純物としてリンが含まれている。ドリフト領域28は、半導体層50内にドレイン領域30,ベース領域26,ソース領域20及びベースコンタクト領域24を形成した残部である。そのため、ドリフト領域28の不純物濃度は、ドレイン領域の不純物濃度より低い。ドリフト領域28の不純物濃度は1×1013〜1×1016cm−3であり、厚さは5〜200μmである。なお、ドリフト領域28及びベース領域26も、酸化シリコン膜18に接している。また、上記ドリフト領域28の厚さは、表面側ドリフト領域28aと裏面側ドリフト領域28bの合計の厚さである。
The
第2半導体領域50bは、p+型の第1領域6と、n+型の第2領域8と、n型の第3領域10と、p型の第4領域12と、p+型の第5領域14を備えている。第1領域6と第2領域8は、半導体層50(第2半導体領域50b)の裏面に設けられている。第1領域6及び第2領域8は、半導体層50の裏面にリンをイオン注入して第2領域8を形成した後、半導体層50の裏面に第2領域8よりも浅くホウ素をイオン注入することによって形成される。その結果、第1領域6が半導体層50の裏面に形成され、第2領域8が第1領域6の表面に形成される。第1領域6及び第2領域8は、酸化シリコン膜18に接している。第1領域6の不純物濃度は1×1021〜1×1023cm−3であり、厚さは0.5〜1.0μmである。第2領域の不純物濃度は1×1018〜1×1021cm−3であり、厚さは0.5〜2.0μmである。
The
第4領域12は、半導体層50の表面にホウ素をイオン注入することによって形成される。第4領域12の不純物濃度は1×1016〜1×1018cm−3であり、厚さは1.0〜10μmである。第5領域14は、第4領域12の表面にホウ素をイオン注入することによって形成される。第5領域14の不純物濃度は1×1019〜1×1023cm−3であり、厚さは0.5〜2.0μmである。第5領域14の不純物濃度は、第4領域12の不純物濃度より濃い。第5領域14を設けることによって、ゲート電極16と第4領域12の接触抵抗が低減する。なお、第3領域10には不純物としてリンが含まれている。第3領域10は、半導体層50内に第1領域6,第2領域8,第4領域12及び第5領域を形成した残部である。そのため、第3領域10の不純物濃度は、第2領域8の不純物濃度より低い。第3領域10の不純物濃度は1×1013〜1×1016cm−3であり、厚さは5〜200μmである。詳細は後述するが、第3領域10の形状は、表面側(表面側第3領域10a)と裏面側(裏面側第3領域10b)で異なる。なお、上記第3領域10の厚さは、表面側第3領域10aと裏面側第3領域10bの合計の厚さである。
The
ベースコンタクト領域24と第5領域14は同時に形成される。そのため、ベースコンタクト領域24と第5領域14の厚さt1は等しい。換言すると、半導体層50の表面から、ベースコンタクト領域24及び第5領域14の半導体層50裏面側の端部までの厚さt1は等しい。また、ベース領域26と第4領域12も同時に形成される。ベース領域26と第4領域12の厚さt2は等しい。換言すると、半導体層50の表面から、ベース領域26及び第4領域12の半導体層50裏面側の端部までの厚さt4は等しい。あるいは、半導体層50の裏面から、ベース領域26及び第4領域12の半導体層50裏面側の端部までの厚さt3は等しい。半導体装置では、半導体層50内に各半導体領域を形成した後、半導体層50の表面から裏面に至るトレンチを形成し、トレンチ内に酸化シリコンを充填することにより、酸化シリコン膜18によって分離された第1半導体領域50aと第2半導体領域50bが形成される。
The
半導体装置100では、n+型のドレイン領域30とp+型の第1領域6の双方が、n+型の半導体基板4に接している。そのため、ドレイン領域30と半導体基板4は低抵抗に接続されている。また、第1領域6と半導体基板4によって、pnダイオードが形成される。上記したように、第1領域6のp型不純物濃度は1×1021〜1×1023cm−3であり、半導体基板4のn型不純物濃度は1×1021〜1×1023cm−3である。両者の不純物濃度は、縮退半導体レベルである。そのため、第1領域6と半導体基板4によって、ツェナーダイオードが構成される。
In the
図2から図5を参照し、ドリフト領域28,第3領域10及び酸化シリコン膜18の形状について説明する。図5に示すように、酸化シリコン膜18は、半導体層50の表面側と裏面側で形状が異なる。なお、図5の参照番号28,10は、ドリフト領域28及び第3領域10(図5では省略)が配置される位置を示している。
The shapes of the
図2に示すように、裏面側ドリフト領域28b及び裏面側第3領域10bが設けられているX−Y面では、酸化シリコン膜18は、Y方向に伸びる第1部分18aとX方向に伸びる第2部分18bを備えている。裏面側ドリフト領域28bは、第1部分18aと第2部分18bの双方に接している。すなわち、裏面側ドリフト領域28bの形状は、酸化シリコン膜18の形状に沿っている。
As shown in FIG. 2, in the XY plane in which the back
図3に示すように、裏面側ドリフト領域28bと表面側ドリフト領域28aの境界部分では、酸化シリコン膜18は、裏面側ドリフト領域28bの一部の表面を覆う第3部分18cを備えている。第3部分18cは、X−Y面に広がっている。第3部分18cの表面には表面側第3領域10aが設けられており、裏面には裏面側ドリフト領域28bが設けられている。
As shown in FIG. 3, the
図4に示すように、表面側ドリフト領域28a及び表面側第3領域10aが設けられているX−Y面では、酸化シリコン膜18は、Y方向に直線状に伸びている。第4部分18dは、第1部分18aの半導体層50の表面側にのみ接続しており、第1部分18aの半導体層50の裏面側には接続していない(図5も参照)。表面側ドリフト領域28a及び表面側第3領域10aは、酸化シリコン膜18(第1部分18a及び第4部分18d)に沿って、Y方向に直線状に伸びている。
As shown in FIG. 4, the
なお、図5から明らかなように、裏面側ドリフト領域28bのサイズは表面側ドリフト領域28aのサイズより大きい。また、表面側第3領域10aのサイズは裏面側第3領域のサイズより大きい。このような構造にすることにより、ドリフト領域28の表面側と裏面面側でチャネルのサイズ(X−Y面における長さ)を異ならせることができる。半導体装置100では、X−Y面において、裏面側ドリフト領域28bと酸化シリコン膜18の接触部分の長さが、表面側ドリフト領域28aと酸化シリコン膜18の接触部分の長さより長い。その結果、ドレイン領域30とドリフト領域28(裏面側ドリフト領域28b)の界面が酸化シリコン膜18と接触する長さは、ベース領域26とドリフト領域28(表面側ドリフト領域28a)の界面が酸化シリコン膜18と接触する長さより長い。
As is apparent from FIG. 5, the size of the back
半導体装置100の利点を説明する。半導体装置100では、ドレイン電極2が電源の高電位側に接続され、ソース電極22が電源の低電位側(例えば、接地電位)に接続され、ゲート電極16がゲート駆動回路(図示書略)に接続される。ゲート電極16は、半導体装置100のオンオフを制御する制御電極である。ゲート電極16にオン電圧が印加されると、第1領域6と、第2領域8及び第3領域10の一部によって形成されるpn接合に逆バイアスが印加され、pn接合に電界がかかり、第2半導体領域50b(特に第3領域10)の電位が上昇する。その結果、第1半導体領域50aの酸化シリコン膜18を介して第2半導体領域50bに対向する位置に、電子のチャネルが形成される。
Advantages of the
上記したように、X−Y面において、裏面側ドリフト領域28bと酸化シリコン膜18の接触部分の長さは、表面側ドリフト領域28aと酸化シリコン膜18の接触部分の長さより長い。そのため、X−Y面におけるチャネルの長さは、表面側ドリフト領域28aよりも裏面側ドリフト領域28bの方が長い。ソース領域20からドレイン領域30に向けて移動する電子は、ドリフト領域28のドレイン領域30側の端部40で拡散してドレイン領域30に移動する。そのため、半導体装置100は、ドリフト領域28のドレイン領域30側において電流集中が抑制され、装置の耐久性が低下することを抑制することができる。なお、半導体装置100は、チャネルがベース領域26内だけでなくドリフト領域28内にも形成される。そのため、半導体装置100は、ドリフト領域28内における電子の移動抵抗を低減することができる。
As described above, in the XY plane, the length of the contact portion between the back
ゲート電極16に対してオン電圧の印加を停止すると、第1半導体領域50a内に形成されていたチャネルが消失する。第1半導体領域50aでは、p型のベース領域26によってn型のソース領域20とn型のドリフト領域28が分離されている。そのため、ドレイン電極2とソース電極22の間に電流が流れない。また、ゲート電極16にオン電圧が印加されていないときは、ベース領域26からドリフト領域28に向けて電界が広がり(空乏化し)、第1半導体領域50aの耐圧が確保される。同様に、第4領域12から第3領域10に向けて電界が広がり、第2半導体領域50bの耐圧が確保される。上記したように、ベース領域26及び第4領域12の不純物濃度が等しく、ドリフト領域28及び第3領域10の不純物濃度が等しい。そのため、第1半導体領域50a及び第2半導体領域50bの耐圧は等しい。
When the application of the on-voltage to the
半導体装置100の他の利点を説明する。第2半導体領域50bでは、半導体装置100がオフ状態のとき(ゲート電極16にオン電圧が印加されていないとき)に、第1領域6と半導体基板4のpn接合に逆バイアスが印加される。しかしながら、上記したように、第1領域6と半導体基板4はツェナーダイオードを構成している。そのため、半導体装置100がオフ状態のときは、両者は実質的に短絡し、同電位となる。第1領域6と半導体基板4の接合界面に強い電界が発生しない。仮に第1領域6と半導体基板4の接合界面に強い電界が発生すると、第2半導体領域50bの耐圧が低下し、結果として半導体装置100の耐圧が低下する。半導体装置100は、第1領域6と半導体基板4でツェナーダイオードを構成することによって、装置の耐圧が低下することを防止している。
Another advantage of the
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
4:半導体基板
6:第1領域
8:第2領域
10:第3領域
12:第4領域
15:第5領域
18:誘電体
20:ソース領域
26:ベース領域
28:ドリフト領域
30:ドレイン領域
50:半導体層
50a:第1半導体領域
50b:第2半導体領域
100:半導体装置
4: semiconductor substrate 6: first region 8: second region 10: third region 12: fourth region 15: fifth region 18: dielectric 20: source region 26: base region 28: drift region 30: drain region 50 :
Claims (5)
前記第1半導体領域は、
前記半導体層の裏面に設けられている第1導電型のドレイン領域と、
前記ドレイン領域の表面に設けられており、前記ドレイン領域より不純物濃度が低い第1導電型のドリフト領域と、
前記ドリフト領域の表面に設けられている第2導電型のベース領域と、
前記ベース領域の表面に設けられており、前記ベース領域によって前記ドリフト領域から分離されている第1導電型のソース領域と、を有しており、
前記第2半導体領域は、
前記半導体層の裏面に設けられている第2導電型の第1領域と、
前記第1領域の表面に設けられている第1導電型の第2領域と、
前記第2領域の表面に設けられており、前記第2領域より不純物濃度が低い第1導電型の第3領域と、
第3領域の表面に設けられている第2導電型の第4領域と、を有しており、
前記ドレイン領域と前記ドリフト領域の界面が前記誘電体と接触する長さが、前記ベース領域と前記ドリフト領域の界面が前記誘電体と接触する長さより長く、
前記ドレイン領域と前記第1領域の双方が、第1導電型の半導体基板と接しており、
前記ソース領域はソース電極に接続され、
前記第4領域は半導体装置のオンオフを制御する制御電極に接続され、
前記半導体基板がドレイン電極に接続される、半導体装置。 A vertical semiconductor device comprising a first semiconductor region and a second semiconductor region separated by a dielectric extending from the front surface to the back surface of the semiconductor layer;
The first semiconductor region is
A drain region of a first conductivity type provided on the back surface of the semiconductor layer;
A drift region of a first conductivity type provided on a surface of the drain region and having an impurity concentration lower than that of the drain region;
A base region of a second conductivity type provided on the surface of the drift region;
A source region of a first conductivity type provided on a surface of the base region and separated from the drift region by the base region;
The second semiconductor region is
A first region of a second conductivity type provided on the back surface of the semiconductor layer;
A second region of the first conductivity type provided on the surface of the first region;
A third region of a first conductivity type provided on a surface of the second region and having an impurity concentration lower than that of the second region;
A second region of the second conductivity type provided on the surface of the third region,
The length at which the interface between the drain region and the drift region is in contact with the dielectric is longer than the length at which the interface between the base region and the drift region is in contact with the dielectric,
Both the drain region and the first region are in contact with the semiconductor substrate of the first conductivity type,
The source region is connected to a source electrode;
The fourth region is connected to a control electrode for controlling on / off of the semiconductor device,
A semiconductor device, wherein the semiconductor substrate is connected to a drain electrode.
半導体層表面側において、前記半導体層の表面と裏面を結ぶ第1方向に直交する第2方向に伸びており、
半導体層裏面側において、前記第2方向に伸びる第1部分と、前記第2方向に交差する第3方向に伸びる第2部分とを備えている請求項1に記載の半導体装置。 The dielectric is
In the semiconductor layer surface side, it extends in a second direction orthogonal to the first direction connecting the front surface and the back surface of the semiconductor layer,
2. The semiconductor device according to claim 1, further comprising a first portion extending in the second direction and a second portion extending in a third direction intersecting the second direction on the back side of the semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016087176A JP2017199721A (en) | 2016-04-25 | 2016-04-25 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016087176A JP2017199721A (en) | 2016-04-25 | 2016-04-25 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017199721A true JP2017199721A (en) | 2017-11-02 |
Family
ID=60239593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016087176A Pending JP2017199721A (en) | 2016-04-25 | 2016-04-25 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017199721A (en) |
-
2016
- 2016-04-25 JP JP2016087176A patent/JP2017199721A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109891595B (en) | Semiconductor device with a plurality of semiconductor chips | |
JP5787853B2 (en) | Power semiconductor device | |
CN105830217B (en) | Semiconductor device with a plurality of semiconductor chips | |
CN104054179B (en) | Semiconductor device with a plurality of semiconductor chips | |
CN105322002B (en) | Reverse conduction IGBT | |
CN110462838B (en) | Semiconductor device | |
JP6606007B2 (en) | Switching element | |
JP5753814B2 (en) | Diode, semiconductor device and MOSFET | |
CN104103691B (en) | Semiconductor device with compensation regions | |
JP2013021240A (en) | Diode and semiconductor device | |
JP2016115763A (en) | Reverse conducting IGBT | |
CN103325786A (en) | Semiconductor device | |
CN108292680B (en) | Silicon carbide semiconductor device | |
JP2018060984A (en) | Semiconductor device | |
WO2022004084A1 (en) | Semiconductor device | |
CN104078493A (en) | Semiconductor device | |
JP2018098221A (en) | Semiconductor device | |
JP2017191817A (en) | Method for manufacturing switching element | |
US9887261B2 (en) | Charge compensation device and manufacturing therefor | |
JP6283709B2 (en) | Semiconductor device | |
JP2018098447A (en) | MOSFET | |
JP6211933B2 (en) | Semiconductor device | |
JP2016149429A (en) | Reverse conducting IGBT | |
JPWO2018154963A1 (en) | Semiconductor device | |
JP6658560B2 (en) | Semiconductor device |