[go: up one dir, main page]

JP2017164811A - Laser welding method, welded joint manufacturing method, spark plug electrode manufacturing method, and spark plug manufacturing method - Google Patents

Laser welding method, welded joint manufacturing method, spark plug electrode manufacturing method, and spark plug manufacturing method Download PDF

Info

Publication number
JP2017164811A
JP2017164811A JP2017016899A JP2017016899A JP2017164811A JP 2017164811 A JP2017164811 A JP 2017164811A JP 2017016899 A JP2017016899 A JP 2017016899A JP 2017016899 A JP2017016899 A JP 2017016899A JP 2017164811 A JP2017164811 A JP 2017164811A
Authority
JP
Japan
Prior art keywords
welding
penetration depth
laser beam
output
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017016899A
Other languages
Japanese (ja)
Other versions
JP6871002B2 (en
Inventor
洋樹 山本
Hiroki Yamamoto
洋樹 山本
穂波 大原
Honami Ohara
穂波 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to EP17159529.1A priority Critical patent/EP3216552B1/en
Priority to US15/451,543 priority patent/US10201876B2/en
Priority to CN201710138339.1A priority patent/CN107175404B/en
Publication of JP2017164811A publication Critical patent/JP2017164811A/en
Application granted granted Critical
Publication of JP6871002B2 publication Critical patent/JP6871002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)
  • Laser Beam Processing (AREA)

Abstract

【目的】 2つの部材を重ね合せ、その重ね合せ面の端縁にレーザ光を照射し、その端縁を溶接ラインとして、溶接開始位置から終端に向けてレーザ光を走査させることでその重ね合せ面で、2部材をレーザ溶接する際、スパッタを発生させず、走査の開始位置側での溶かし込み深さ不足を招くこともなく、所望とする溶かし込み深さで溶接する。【解決手段】重ね合せた2部材10,20の溶接の開始位置S1ではスパッタを発生させない出力でレーザ光Laの照射を開始し、その開始後、レーザ光Laを走査させずに、該レーザ光Laの出力を、照射する端縁20eから2つの部材10,20の重ね合せ面10a,20aの奥に向かう溶かし込み深さが、所定の溶かし込み深さ範囲内となるように漸増する。漸増後は終端S2に向けて、その溶かし込み深さ範囲内に保持されるようにしてレーザ光Laを走査させる。【選択図】図6[Purpose] Two members are superposed, the edge of the superposed surface is irradiated with a laser beam, and the edge is used as a welding line, and the laser beam is scanned from the welding start position to the end to superimpose the two members. On the surface, when the two members are laser welded, spatter is not generated, the penetration depth on the scanning start position side is not insufficient, and the welding is performed at a desired penetration depth. SOLUTION: At a welding start position S1 of two overlapped members 10 and 20, laser light La irradiation is started at an output that does not generate spatter, and after the start, the laser light is not scanned without scanning the laser light La. The output of La is gradually increased so that the melting depth toward the depths of the overlapping surfaces 10a and 20a of the two members 10 and 20 from the irradiated edge 20e is within a predetermined melting depth range. After the gradual increase, the laser beam La is scanned toward the terminal S2 so as to be kept within the penetration depth range. [Selection diagram] FIG. 6

Description

本発明は、2つの部材を重ね合せ(突き合せ)、その重ね合せ面における端縁に対し、その重ね合せ面の奥に向けてレーザ光を照射し、所望とする溶し込み深さ(溶け込み深さ)を確保して、両部材をその重ね合せ面においてレーザ溶接する方法、及び溶接接合体等の製造方法に関する。   The present invention superimposes (butts) two members, irradiates the edge of the overlapping surface with laser light toward the back of the overlapping surface, and a desired penetration depth (penetration) The present invention relates to a method of laser welding the two members on their overlapping surfaces and a method for manufacturing a welded joint and the like.

例えば、一方の部材(板部材)の一主面(平面)に、他方の部材である例えば直方体の一平面を重ね、その重ね合せ面(突き合せ面)において両部材をレーザ溶接(以下、単に溶接ともいう)する場合がある。この場合、その重ね合せ面における端縁(外端縁)のうちの一つの辺(以下、単に一辺ともいう)に対し、その重ね合せ面の奥に向かうようにレーザ光を照射し、その一辺を溶接ラインとして、一定速度でレーザ光の走査を行って両部材(母材)をその重ね合せ面において溶接することが行われている。例えば、自動車エンジンに用いられるスパークプラグを構成する接地側電極の製造時である(特許文献1参照)。このような溶接において、その精度を確保しながら溶接強度(接合強度)を高めるには、過剰溶融とならない範囲で、重ね合せ面のできるだけ広い面において溶融、凝固が行われるようにする必要がある。そして、そのためには、重ね合せ面の端縁のうち、レーザ光が照射される受光部(入射側)の一辺から、その照射の奥に位置する対向する一辺(レーザ光の進行先の一辺)に向かい、その重ね合せ面において両金属が必要かつ十分な溶け込み深さ(照射方向の溶融深さ)が得られるように、レーザ光の出力やその走査の速度(照射時間)等の条件を選択する必要がある。   For example, one main surface (flat surface) of one member (plate member) is overlapped with one flat surface of the other member, for example, a rectangular parallelepiped, and both members are laser welded (hereinafter simply referred to as “welding surface”) Sometimes referred to as welding). In this case, one side (hereinafter also simply referred to as one side) of the edge (outer edge) on the overlapping surface is irradiated with laser light toward the back of the overlapping surface. As a welding line, laser beam scanning is performed at a constant speed to weld both members (base materials) on their overlapping surfaces. For example, it is at the time of manufacture of the ground side electrode which comprises the spark plug used for a motor vehicle engine (refer patent document 1). In such welding, in order to increase the welding strength (joining strength) while ensuring the accuracy, it is necessary to perform melting and solidification on the widest possible surface of the overlapping surface within a range that does not cause excessive melting. . For this purpose, from one edge of the overlapping surface to one side of the light receiving part (incident side) irradiated with the laser light, one opposite side located at the back of the irradiation (one side where the laser light travels) Select the conditions such as the laser beam output and the scanning speed (irradiation time) so that both metals have the necessary and sufficient penetration depth (melting depth in the irradiation direction) on the overlapping surface. There is a need to.

図6は、このような溶接の一例を説明する拡大図であり、図8に示したようなスパークプラグ100を構成する接地側電極(部品)31の製造において、その接地側電極本体(一部のみ図示)10の先端寄り部位に、貴金属チップ20を溶接するときの説明用の部分模式拡大図である。なお、図8は、従来公知のスパークプラグ100の一例を示す縦断半断面図であり、このものは、異径筒状の主体金具40と、その内部に貫通状に配置された中空軸状の碍子50と、この碍子50の中心軸穴内に組付けられ、この碍子50の先端(図示上端)53において自身の先端を露出させてなる中心電極60、そして、主体金具40の先端面43に溶接により固定され、接地側電極本体10において曲げ形成された接地側電極31等から構成されており、この接地側電極本体10の先端に溶接により固定されている貴金属チップ20と、中心電極60の先端とで火花放電ギャップを形成している。そして、ここに、貴金属チップ20は、スパークプラグ100における相手側電極である中心電極60の先端との放電着火性、さらには耐久性の向上のためのものである。以下、本願において、これら接地側電極、中心電極は、単に電極ともいい、接地側電極本体、中心電極本体は、電極本体ともいう。   FIG. 6 is an enlarged view for explaining an example of such welding. In the production of the ground side electrode (component) 31 constituting the spark plug 100 as shown in FIG. (Only shown) is a partial schematic enlarged view for explanation when the noble metal tip 20 is welded to a portion near the tip of 10. FIG. 8 is a longitudinal cross-sectional half view showing an example of a conventionally known spark plug 100, which has a cylindrical metal shell 40 with a different diameter and a hollow shaft-like shape disposed in the inside thereof. The insulator 50 is welded to the center electrode 60 which is assembled in the center shaft hole of the insulator 50 and exposes its tip at the tip (upper end in the figure) 53 of the insulator 50, and the tip surface 43 of the metal shell 40. The noble metal tip 20 is fixed to the tip of the ground-side electrode body 10 by welding, and the tip of the center electrode 60 is fixed to the tip of the ground-side electrode body 10 by welding. And forms a spark discharge gap. Here, the noble metal tip 20 is for improving the discharge ignitability and the durability with the tip of the center electrode 60 which is the counterpart electrode in the spark plug 100. Hereinafter, in the present application, the ground side electrode and the center electrode are also simply referred to as electrodes, and the ground side electrode body and the center electrode body are also referred to as electrode bodies.

図6に示したように、その接地側電極本体10の先端寄り部位への貴金属チップ20の溶接においては、接地側電極本体(例えば、ニッケル合金からなる帯板状の角棒部材)10の先端面11寄り部位の板面(平面)13に、貴金属チップ(白金やイリジウム等の貴金属、又はこれらを主成分とする合金からなる微小直方体)20を、図6−A(正面図),図6−B(平面図)に示したように同本体10の先端面11に揃えて(又は近接させて)位置決めして重ね合わせる。そして、その両部材(溶接部材)10,20の重ね合せ面10a,20aの端縁のうち、例えば、図6−B(平面図)の右側の端縁(貴金属チップの端縁)20eである、接地側電極本体10の先端面11側における一辺(溶接ラインWL)に沿い、その一端S1から他端S2に向け、レーザ光Laを照射し、一定速度で走査が行われるようにし、両部材をその重ね合せ面10a,20aで溶接していた。このような接地側電極本体10は、横断面における幅W1が、2mm〜3mmで、厚さH1が、1mm〜1.5mm程度の小さい角棒部材(細長い帯板状の部材)であり、これに溶接される貴金属チップ(以下、チップともいう)20は、厚みH2が、0.4mm〜1mm程度で、平面(図6−B参照)が縦横1mm〜1.5mm角程度の微小な直方体である。したがって、その溶接ラインWLの長さも、1mm〜1.5mm程度と短いため、その溶接は、前記したように、溶接ラインWLに沿い、レーザ光Laがその一端(溶接の開始位置)S1から他端(終端)S2に向けて(図6−Bの例えば下から上に向けて)通過するように一定速度で、1回の走査をさせることによっていた。   As shown in FIG. 6, in welding the noble metal tip 20 to a portion near the tip of the ground-side electrode body 10, the tip of the ground-side electrode body (for example, a strip-shaped square bar member made of nickel alloy) 10. 6A (front view) and FIG. 6, a noble metal tip (a fine rectangular parallelepiped made of a noble metal such as platinum or iridium or an alloy containing these as a main component) 20 is formed on a plate surface (plane) 13 near the surface 11. As shown in -B (plan view), it is aligned and overlapped with (or brought close to) the front end surface 11 of the main body 10. And among the edges of the overlapping surfaces 10a, 20a of both the members (welding members) 10, 20, for example, the right edge (edge of the noble metal tip) 20e in FIG. 6B (plan view). The laser beam La is irradiated from one end S1 to the other end S2 along one side (welding line WL) on the front end surface 11 side of the ground-side electrode body 10 so that scanning is performed at a constant speed. Were welded at the overlapping surfaces 10a and 20a. Such a ground-side electrode body 10 is a small square bar member (elongated strip-like member) having a width W1 in the cross section of 2 mm to 3 mm and a thickness H1 of about 1 mm to 1.5 mm. A noble metal tip (hereinafter also referred to as a tip) 20 to be welded to a thin rectangular parallelepiped having a thickness H2 of about 0.4 mm to 1 mm and a plane (see FIG. 6B) of about 1 mm to 1.5 mm square. is there. Therefore, since the length of the welding line WL is also as short as about 1 mm to 1.5 mm, the welding is performed along the welding line WL as described above, and the laser beam La is transmitted from one end (welding start position) S1 to the other. The scanning was performed once at a constant speed so as to pass toward the end (end) S2 (for example, from bottom to top in FIG. 6B).

ところで、このようなレーザ溶接において精度の低下を招くことなく、所望とする高い溶接強度を得るためには、上記したように、重ね合せ面10a,20a(図6−B(平面図)における貴金属チップ10の平面と同じ領域面積)において両金属の過剰溶融を招くことなく、レーザ光の照射方向(図6−A,Bの右から左方向)に、貴金属チップ20の辺長Lhに対応して十分な溶し込み深さを確保する必要がある。そして、その溶かし込み深さは、レーザ光Laの走査方向である、照射の一端S1である開始位置(以下、開始位置ともいう)から、他端S2である終端にかけての一辺(溶接ラインWL)に沿っても、大きなバラツキが生じないようにしないといけない。すなわち、その溶かし込み深さは、貴金属チップ20の辺長Lhに対応した十分な溶し込み深さで、溶接ラインWLに沿っても大きなバラツキが生じないように、その辺長Lhに対し、なるべく小さい誤差αの範囲での溶かし込み深さ範囲(辺長Lh±α)とされるべきである。スパークプラグの接地側電極のように過酷な条件に晒され、着火性能や耐久性が要求されるものでは、精度の低下を招くことなく、重ね合せ面10a,20aの全体(全面)での確実な溶接が要求されるためである。こうしたことから、従来、このような溶接に際しては、テスト溶接に基づき、必要、十分な溶かし込み深さが得られるよう、レーザ光の出力や走査速度等を割り出し、一定出力のレーザ光を一定速度で走査させていた。なおこのレーザ光の走査は、レーザ側でなく溶接部材(母材)側、又はその両者の相対的な移動によってもできるから、本願でレーザ光の走査という場合には、このような場合も含むものとする。   By the way, in order to obtain a desired high welding strength without causing a decrease in accuracy in such laser welding, as described above, the precious metal in the overlapping surfaces 10a and 20a (FIG. 6B (plan view)). Corresponding to the side length Lh of the noble metal tip 20 in the laser light irradiation direction (from right to left in FIGS. 6A and 6B) without causing excessive melting of both metals in the same area as the plane of the chip 10). It is necessary to ensure a sufficient penetration depth. The penetration depth is one side (welding line WL) from the start position (hereinafter also referred to as start position) that is one end S1 of irradiation to the end that is the other end S2, which is the scanning direction of the laser beam La. It must be ensured that there is no great variation even if That is, the penetration depth is a sufficient penetration depth corresponding to the side length Lh of the noble metal tip 20, and with respect to the side length Lh so that no large variation occurs along the welding line WL, The penetration depth range (side length Lh ± α) should be within the range of as small an error α as possible. If the spark plug is exposed to harsh conditions such as the grounding electrode of the spark plug and requires ignition performance and durability, the entire overlapping surfaces 10a and 20a (entire surface) can be reliably obtained without degrading accuracy. This is because the required welding is required. For this reason, conventionally, when performing such welding, the laser beam output, scanning speed, etc. are determined based on test welding so that the necessary and sufficient penetration depth can be obtained. I was scanning with. This laser beam scanning can be performed not by the laser side but by the relative movement of the welding member (base material) side or both. Shall be.

一方、このようなレーザ溶接において従来は、その照射に用いる一定出力のレーザ光の出力を高めに設定していた。理由は次のようである。レーザ光が照射され、溶融が始まっている状態にある溶接母材(図6の両部材をなす接地側電極本体と貴金属チップ)の走査箇所の近傍は既に入熱がある。しかし、レーザ光の照射の開始時(溶接開始時)となるその開始位置S1では、冷却、固化状態にあるその母材にレーザ光を照射し、溶融させるのであるから、その溶融のためには、レーザ光が照射され、既に、走査、溶融が始まっている状態にある溶接母材(照射開始後のワーク)におけるその溶融部位の近傍の溶融に必要な熱エネルギーよりも多くの熱エネルギーを要する。すなわち、走査、溶融が始まっている状態での溶接母材の溶融部位の近傍は既に入熱があるのであるから、相対的に小さい出力のレーザ光で所望とする溶かし込み深さが得られる。これに対し、照射による入熱及び溶融の無いその開始位置S1においては、そのような入熱、溶融が無い分、レーザ光の出力を高くしないと、所望とする溶かし込み深さが得られない。これが、一定出力のレーザ光による照射、走査で溶接する従来技術において、その出力を高めに設定していた理由である。   On the other hand, in such laser welding, conventionally, the output of a constant output laser beam used for the irradiation has been set high. The reason is as follows. There is already heat input in the vicinity of the scanning portion of the welding base material (the ground side electrode main body and the noble metal tip forming both members in FIG. 6) in a state where the laser beam is irradiated and melting is started. However, at the start position S1 at the start of laser beam irradiation (at the start of welding), the base material in the cooled and solidified state is irradiated with laser beam and melted. More heat energy is required than the heat energy necessary for melting near the melted part in the welded base material (work after starting irradiation) that has been irradiated with laser light and has already started scanning and melting. . That is, since there is already heat input in the vicinity of the melted portion of the weld base material in a state where scanning and melting have started, a desired penetration depth can be obtained with a relatively small output laser beam. On the other hand, at the starting position S1 where there is no heat input and melting due to irradiation, the desired penetration depth cannot be obtained unless the laser beam output is increased by the amount of such heat input and melting. . This is the reason why the output is set high in the conventional technique of welding by irradiation and scanning with a laser beam having a constant output.

特開2008−277272号公報JP 2008-277272 A

ところが、前記したようにレーザ光の出力を高めに設定することによって、それを照射し、走査させることでレーザ溶接をする場合には、その溶接過程でスパッタ(溶接中に飛散するスラグや金属粒)が発生しやすく、これが母材表面に付着しやすいという解決すべき課題があった。前記したように、レーザ光の照射(溶接)の開始位置においては、冷却、固化状態にある母材へのその照射となるから、その開始箇所では急激な入熱、温度上昇となり、急激な溶融の発生となる。それだけではなく、上記したように、レーザ光の出力を高めに設定して照射を開始し、走査をする場合には、その溶接の開始位置(受光部位)での母材への入熱、温度上昇は一層、急激となる。こうしたことから、母材の照射の開始位置においては局所的にその内部よりも表面又は表面付近に急激な熱伝導による急激な温度上昇が生じるとともに、その後も過剰溶融となりがちである。結果、その開始位置も含め、溶融金属の突沸が生じてしまい、これがスパッタの発生、飛散を招くと考えられる。このようなスパッタの発生、飛散によるその付着は、それ自体許容されるものではないが、その発生、飛散があると、その分、溶融金属のロスを招くことになるから、上記した接地側電極の製造におけるような小物の精密溶接であり、微細なビート幅となるようなレーザ溶接では、溶接強度(接合強度)にも影響してしまうという大きな課題がある。   However, when laser welding is performed by irradiating and scanning the laser beam by setting the output of the laser beam high as described above, spatter (slag or metal particles scattered during welding) is performed during the welding process. ) Are likely to occur, and there is a problem to be solved that this easily adheres to the surface of the base material. As described above, at the starting position of the laser beam irradiation (welding), the irradiation is performed on the base material in the cooled and solidified state. Will occur. In addition, as described above, when the irradiation is started with the laser beam output set to a high value and scanning is performed, the heat input to the base material at the welding start position (light receiving part), the temperature The rise is even more rapid. For this reason, at the starting position of the irradiation of the base material, a rapid temperature increase occurs due to rapid heat conduction locally on the surface or in the vicinity of the surface of the base material, and excessive melting tends to occur thereafter. As a result, including the starting position, bumping of the molten metal occurs, which is considered to cause spattering and scattering. Such spatter generation and adhesion due to scattering are not permissible per se, but if such generation and scattering occur, the loss of molten metal will be caused accordingly. In laser welding, which is precision welding of small parts as in the manufacture of the above, and has a fine beat width, there is a big problem that the welding strength (joining strength) is also affected.

このようなスパッタの発生を防ぐためには、レーザ光の出力を低めに設定するか、スパッタの発生の可能性の高い走査の初期ないし前半においては、その発生を招かない程度の十分に低い出力のレーザ光としておき、その後の走査過程で所定の溶かし込み深さが得られる出力に増大することも考えられる。しかし、そのいずれにおいても、少なくとも走査過程の初期である照射の開始位置及びその近傍においては、所望とする溶し込み深さが得られない。結果、両部材の重ね合せ面10a,20aでは、図7中にダブルハッチングで示したように、照射(溶接)の終端S2側では十分な深さの溶かし込み範囲が得られるとしても、開始位置S1寄りの走査の初期ないし前半における溶し込み深さは、終端S2側のそれに比べて浅くなり、その重ね合せ面における十分な溶接面積が得られない。また、このような溶接では、溶接面積が単に小さくなるというだけでなく、走査方向(溶接ラインWL)に沿い、溶接面の深さが、貴金属チップ20の辺長Lh方向(図7の左右方向)において大きく異なるものとなるため、接合強度のアンバランスを招いてしまう。このように、溶接の初期ないし前半における出力を低下させることで、スパッタの発生を防ぐことはできるとしても、それでは、十分な溶接面積が得られないし溶接面のアンバランスを招いてしまい、強固かつ安定した溶接強度が得られない。   In order to prevent the occurrence of such spatter, the output of the laser beam is set to be low, or the output is sufficiently low so as not to cause the occurrence in the initial or first half of the scan where the possibility of occurrence of spatter is high. It is also conceivable that the laser beam is increased to an output capable of obtaining a predetermined penetration depth in the subsequent scanning process. However, in any of these cases, a desired penetration depth cannot be obtained at least in the irradiation start position that is the initial stage of the scanning process and in the vicinity thereof. As a result, in the overlapping surfaces 10a and 20a of both members, as shown by double hatching in FIG. 7, even if a penetration range having a sufficient depth is obtained on the end S2 side of irradiation (welding), the start position The penetration depth in the initial or first half of the scan close to S1 is shallower than that on the end S2 side, and a sufficient welding area on the overlapping surface cannot be obtained. In such welding, not only the welding area is simply reduced, but also the depth of the welding surface along the scanning direction (welding line WL) is the side length Lh direction of the noble metal tip 20 (the horizontal direction in FIG. 7). ), The bonding strength is unbalanced. In this way, even if it is possible to prevent the occurrence of spatter by reducing the output in the initial or first half of welding, it is not possible to obtain a sufficient welding area or unbalance of the welding surface, and Stable welding strength cannot be obtained.

本発明は、如上のようなレーザ溶接における課題に鑑みてなされたもので、2つの部材を重ね合せ、その重ね合せ面の端縁にレーザ光を照射し、その端縁に沿うラインを溶接ラインとして、溶接の開始位置から終端に向けてレーザ光を走査させることによって、2つの部材を前記重ね合せ面において溶接するレーザ溶接方法において、スパッタの発生を招くこともなく、しかも、その溶接の開始位置及びその付近における溶かし込み深さの不足を招くこともなく、その走査方向において、前記端縁から前記重ね合せ面の奥に向かう溶かし込み深さが所望とする溶かし込み深さで溶接できるようにすると共に、このような溶接工程を含む溶接接合体の製造方法、スパークプラグ用の電極(接地側電極、中心電極)等の製造方法を提供することをその目的とする。   The present invention has been made in view of the problems in laser welding as described above. Two members are overlapped, the edge of the overlap surface is irradiated with laser light, and a line along the edge is welded. In the laser welding method in which two members are welded on the overlapping surface by scanning the laser beam from the welding start position to the end, spattering is not caused and the start of the welding is performed. The welding depth can be welded at a desired penetration depth from the edge to the back of the overlapping surface in the scanning direction without causing a shortage of the penetration depth at the position and its vicinity. And providing a method for manufacturing a welded assembly including such a welding process, a method for manufacturing an electrode for a spark plug (ground side electrode, center electrode), and the like. For the purpose of.

請求項1に記載の本発明は、2つの部材を重ね合せ、その重ね合せ面の端縁にレーザ光を照射し、その端縁に沿うラインを溶接ラインとして、溶接の開始位置から終端に向けてレーザ光を走査させることによって2つの部材を前記重ね合せ面において溶接するレーザ溶接方法において、
前記溶接ラインの溶接の開始位置においてスパッタを発生させない出力でレーザ光の照射を開始し、
その開始後、該レーザ光を走査させることなく、該レーザ光の出力を、前記端縁から前記重ね合せ面の奥に向かう溶かし込み深さが所定の溶かし込み深さ範囲内となるように漸増し、
その漸増後に、前記終端に向けて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにしてレーザ光を走査させることを特徴とする。
According to the first aspect of the present invention, two members are overlapped, laser light is irradiated to the edge of the overlapping surface, and a line along the edge is used as a welding line from the welding start position to the end. In a laser welding method of welding two members on the overlapping surface by scanning a laser beam
Laser beam irradiation is started at an output that does not generate spatter at the welding start position of the welding line,
After the start, the laser beam output is gradually increased without scanning the laser beam so that the penetration depth from the edge toward the back of the overlapping surface is within a predetermined penetration depth range. And
After the gradual increase, the laser beam is scanned toward the end so that the penetration depth is maintained within a predetermined penetration depth range.

請求項2に記載の本発明は、2つの部材を重ね合せ、その重ね合せ面の端縁にレーザ光を照射し、その端縁に沿うラインを溶接ラインとして、溶接の開始位置から終端に向けてレーザ光を走査させることによって2つの部材を前記重ね合せ面において溶接するレーザ溶接方法において、
前記溶接ラインの溶接の開始位置においてスパッタを発生させない出力でレーザ光の照射を開始し、
その開始後の所定の時間内に限り、その他の時間における走査よりも相対的に遅い速度でレーザ光を走査させながら、該レーザ光の出力を、前記端縁から前記重ね合せ面の奥に向かう溶かし込み深さが所定の溶かし込み深さ範囲内となるように漸増し、
その漸増後に、前記終端に向けて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させることを特徴とする。
According to the second aspect of the present invention, two members are overlapped, laser light is irradiated to the edge of the overlapping surface, and a line along the edge is used as a welding line from the welding start position to the end. In a laser welding method of welding two members on the overlapping surface by scanning a laser beam
Laser beam irradiation is started at an output that does not generate spatter at the welding start position of the welding line,
Only within a predetermined time after the start, while scanning the laser beam at a relatively slower speed than the scanning at other times, the output of the laser beam is directed from the edge to the back of the overlapping surface. Gradually increase so that the penetration depth falls within the prescribed penetration depth range,
After the gradual increase, the laser beam is scanned toward the end so that the penetration depth is maintained within a predetermined penetration depth range.

請求項3に記載の本発明は、請求項1又は2のいずれかにおいて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の出力範囲内で出力を漸減させながらの走査を含め、走査させることを特徴とするレーザ溶接方法である。
請求項4に記載の本発明は、請求項1又は2のいずれかにおいて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の速度範囲内で速度を漸増させながらの走査を含め、走査させることを特徴とするレーザ溶接方法である。
The present invention according to claim 3 is the invention according to claim 1 or 2,
Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range,
Laser welding characterized in that the laser beam is scanned, including scanning while gradually decreasing the output within a predetermined output range, so that the penetration depth is maintained within a predetermined penetration depth range. Is the method.
The present invention according to claim 4 provides the method according to claim 1 or 2,
Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range,
Laser welding characterized in that the laser beam is scanned, including scanning while gradually increasing the speed within a predetermined speed range so that the penetration depth is maintained within a predetermined penetration depth range. Is the method.

請求項5に記載の本発明は、請求項1又は2のいずれかにおいて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の出力範囲内で出力を漸減させながら、しかも、所定の速度範囲内で速度を漸増させながらの走査を含め、走査させることを特徴とするレーザ溶接方法である。
請求項6に記載の本発明は、前記2つの部材における一方の部材が、スパークプラグ用の接地側電極又は中心電極を構成する電極本体であり、他方の部材が、該電極本体の先端に溶接される貴金属チップであることを特徴とする請求項1〜5のいずれか1項に記載のレーザ溶接方法である。
The present invention according to claim 5 provides the method according to claim 1 or 2,
Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range,
While gradually decreasing the output of the laser beam within a predetermined output range and gradually increasing the speed within a predetermined speed range so that the penetration depth is maintained within the predetermined penetration depth range. The laser welding method is characterized in that the scanning is performed including the above-described scanning.
According to a sixth aspect of the present invention, one of the two members is an electrode main body constituting a ground side electrode or a center electrode for a spark plug, and the other member is welded to the tip of the electrode main body. The laser welding method according to any one of claims 1 to 5, wherein the laser welding method is a noble metal tip.

請求項7に記載の本発明は、請求項1〜5のいずれか1項に記載のレーザ溶接方法によって前記2つの部材を溶接する工程を含む溶接接合体の製造方法である。
請求項8に記載の本発明は、請求項6に記載のレーザ溶接方法によって前記電極本体と前記貴金属チップとを溶接する工程を含むスパークプラグ用の電極の製造方法である。
請求項9に記載の本発明は、請求項8に記載のスパークプラグ用の電極の製造方法を含むスパークプラグの製造方法である。
A seventh aspect of the present invention is a method of manufacturing a welded joint including a step of welding the two members by the laser welding method according to any one of the first to fifth aspects.
The present invention described in claim 8 is a method for manufacturing an electrode for a spark plug, comprising the step of welding the electrode body and the noble metal tip by the laser welding method according to claim 6.
A ninth aspect of the present invention is a spark plug manufacturing method including the method for manufacturing a spark plug electrode according to the eighth aspect.

レーザ光の出力に関して、スパッタを発生させない出力と、発生させる出力とのおおよその境界値は、溶接する部材(母材)に応じてテスト溶接することで知ることができる。ここで、テスト溶接は、母材の融点、熱伝導率、熱容量に応じ、レーザ光の出力等を変化させながら行えばよい。このため、スパッタを発生させない出力は、このようなテスト溶接に基づき、任意に設定すればよい。すなわち、溶接の開始位置における開始の出力は、0でもよいし、テスト溶接においてスパッタの発生が開始される平均的な出力の例えば、50%とするなど、適宜に安全率をみて設定すればよい。   Regarding the output of the laser beam, an approximate boundary value between the output that does not generate spatter and the output that can be generated can be known by performing test welding according to the member (base material) to be welded. Here, the test welding may be performed while changing the output of the laser beam or the like according to the melting point, thermal conductivity, and heat capacity of the base material. For this reason, what is necessary is just to set arbitrarily the output which does not generate | occur | produce a sputter | spatter based on such test welding. That is, the start output at the welding start position may be 0, or may be set with an appropriate safety factor such as 50% of the average output at which spatter generation is started in test welding. .

本発明において「所定の溶かし込み深さ範囲」は、溶接する2つの部材の材質、大きさ、さらにはその重ね合せ面の大きさ等に応じて、重ね合せ面のうち、溶接すべきとされる面積等に基づいて設定すればよい。例えば、2部材の重ね合せ面が長方形で、その一方の長辺が照射側をなす端縁(溶接ライン)である場合において、その重ね合せ面の全体を溶融、凝固させて溶接したい場合における溶かし込み深さは、その短辺に沿う方向になる。そして、「所定の溶かし込み深さ範囲」は、その短辺の長さを基準に設定すればよい。例えば、その短辺の長さが、1.5mmであれば、1.4mm〜1.6mm、或いは、1.3mm〜1.4mm、又は1.4mm〜1.5mmなどとして、溶接寸法精度等に基づき、適宜の寸法公差を付与して設定すればよい。また、漸増後は、前記終端に向けて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにしてレーザ光を走査させることとすればよく、これは、出力と走査の速度との関係で、それが保持されるようにすればよい。   In the present invention, the “predetermined penetration depth range” is to be welded out of the overlapping surfaces in accordance with the material and size of the two members to be welded and the size of the overlapping surfaces. What is necessary is just to set based on the area etc. which are set. For example, when the overlapping surfaces of two members are rectangular and one of the long sides is the edge (welding line) on the irradiation side, the entire overlapping surface is melted, solidified, and welded. The depth of insertion is along the short side. The “predetermined penetration depth range” may be set based on the length of the short side. For example, if the length of the short side is 1.5 mm, the welding dimension accuracy, etc., as 1.4 mm to 1.6 mm, 1.3 mm to 1.4 mm, or 1.4 mm to 1.5 mm, etc. Based on the above, an appropriate dimensional tolerance may be given and set. Further, after the gradual increase, the laser beam may be scanned toward the end so that the penetration depth is maintained within a predetermined penetration depth range. It is sufficient to keep it in relation to the speed.

なお、上記レーザ光の出力の漸増は、時間の経過に伴ってその出力が増大するものであればよく、その増大のさせ方は、時間に比例する直線的な変化となるものでも、1又は複数の屈曲点をもつ複数の直線的な変化となるものでも、曲線的な変化となるものでも、若しくは、階段的な変化となるものでも、又は、これらの組合せからなる変化のものでもよい。照射の開始時の出力と、所定の溶かし込み深さが得られるときの出力との差等を考慮して、スパッタの発生を招くような急激な入熱、温度上昇とならないように、溶接すべき部材等の条件に応じ、徐々に増大する制御を行うこととすればよい。   The gradual increase in the output of the laser beam is not limited as long as the output increases as time elapses, and the increase is performed even if the output is linearly proportional to time. It may be a plurality of linear changes having a plurality of bending points, a curve change, a step change, or a combination of these. In consideration of the difference between the output at the start of irradiation and the output when the specified penetration depth is obtained, welding is performed so that there is no sudden heat input or temperature rise that may cause spattering. Control that gradually increases may be performed according to the conditions of the power member and the like.

請求項1に記載の本発明によれば、溶接(照射)の開始位置においてレーザ光を走査させることなく、所定の溶かし込み深さ範囲が得られるまでのその出力の漸増制御と、その漸増後の終端に向けてのレーザ光の走査の制御を行うものである。このため、スパッタの発生を防止ないし抑制できるとともに、溶接ラインに沿って、所望とする溶かし込み深さ範囲による溶接ができる。結果、過剰溶融を招くこともなく、所望とする溶接面積の溶接が得られるから、強固かつ安定した溶接が効率的に得られる。   According to the first aspect of the present invention, the gradual increase control of the output until the predetermined penetration depth range is obtained without scanning the laser beam at the welding (irradiation) start position, and after the gradual increase The scanning of the laser beam toward the terminal end is controlled. For this reason, generation | occurrence | production of a spatter can be prevented thru | or suppressed, and welding by the desired penetration depth range can be performed along a welding line. As a result, since welding with a desired welding area can be obtained without causing excessive melting, strong and stable welding can be efficiently obtained.

請求項1では、所定の溶かし込み深さ範囲が得られるまでレーザ光の走査をさせることなく、すなわち、溶接の開始位置において、停止した状態で、その出力を漸増させることとしているが、本発明では、請求項2に記載のように、その開始後の所定の時間内に限り、その他の時間における走査よりも相対的に遅い速度でレーザ光を走査させながら、該レーザ光の出力を、前記端縁から前記重ね合せ面の奥に向かう溶かし込み深さが所定の溶かし込み深さ範囲内となるように漸増することとしてもよい。ここに「相対的に遅い速度」は、漸増後に、終端に向けてレーザ光を走査させる速度よりも遅い速度を意味するが、このような請求項2に記載の発明では、相対的に遅い速度とはいえ、所定の溶かし込み深さ範囲となるまで、走査がある分、溶接ラインのうち、その走査範囲では所定の溶かし込み深さが得られない。したがって、この「相対的に遅い速度」は、溶接ラインにおいて、このような所定の溶かし込み深さが得られない範囲ができるだけ短くなるように、できるだけ低速の停止状態に近い速度とするのがよい。また、その走査過程ではスパッタの発生を招かない範囲で、なるべく出力の漸増スピード(漸増の変化率)を上げる制御をするのがよい。   According to the first aspect of the present invention, the output is gradually increased without scanning the laser beam until a predetermined penetration depth range is obtained, that is, at the welding start position, in a stopped state. Then, as described in claim 2, the laser beam output is changed while scanning the laser beam at a relatively slower speed than scanning at other times only within a predetermined time after the start. It is good also as gradually increasing so that the penetration depth which goes to the back of the said superimposition surface from an edge may become in the predetermined penetration depth range. Here, the “relatively slow speed” means a speed that is slower than the speed at which the laser beam is scanned toward the end after the gradual increase. In the invention according to claim 2, the relatively slow speed is used. However, until the predetermined penetration depth range is reached, the predetermined penetration depth cannot be obtained in the scanning range of the welding line as much as there is scanning. Therefore, this “relatively slow speed” is preferably set to a speed as close to the low-speed stop state as possible so that the range in which such a predetermined penetration depth cannot be obtained is as short as possible in the welding line. . Further, in the scanning process, it is preferable to control to increase the output increasing speed (gradual increase rate) as much as possible without causing spattering.

なお、所定の溶し込み深さ範囲内となった出力の漸増後は、前記終端に向けて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させることとすればよく、この走査過程における出力は、所定の溶し込み深さ範囲が得られた時の出力と、同一でも異なるものでもよいが、異なるものとする場合には、請求項3に記載の発明のように、請求項1又は2のいずれかにおいて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の出力範囲内で出力を漸減させながらの走査を含め、走査させることとするのがよい。このようにすることで、出力の漸増後の入熱過多や過剰溶融を防止でき、溶かし込み深さのバラツキを抑制できるためである。ここで、出力を漸減させながらの走査を含め、というのは、その漸減は、漸増後の全走査過程であっても、その全走査過程でなくてもよいことを意味する。例えば、その漸増後に続く、後半の走査過程における前半だけ、漸減させてもよい。また、このような漸増後の走査における速度は、所望とする所定の溶かし込み深さ範囲が保持されるように、出力との関係も考慮して、一定でも、変化するものでもよい。   Note that after the output is gradually increased within the predetermined penetration depth range, the laser beam is scanned toward the end so that the penetration depth is maintained within the predetermined penetration depth range. The output in this scanning process may be the same as or different from the output when the predetermined penetration depth range is obtained. Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range, as in the invention described in claim 1 or 2, It is preferable to scan the laser light including scanning while gradually decreasing the output within a predetermined output range so that the penetration depth is maintained within a predetermined penetration depth range. This is because excessive heat input and excessive melting after the gradual increase in output can be prevented, and variations in the penetration depth can be suppressed. Here, including a scan while gradually decreasing the output means that the gradual decrease may or may not be the full scan process after the gradual increase. For example, it may be decreased gradually only in the first half of the second half of the scanning process following the increase. Further, the speed in the scanning after such a gradual increase may be constant or change in consideration of the relationship with the output so that the desired predetermined penetration depth range is maintained.

なお、請求項3における出力の漸増後の出力の漸減のさせ方は、上述した、レーザ光の出力の漸増のさせ方とは逆になるものの、時間に比例する直線的な変化となるものでも、1又は複数の屈曲点をもつ複数の直線的な変化となるものでも、曲線的な変化となるものでも、若しくは、階段的な変化となるものでも、又は、これらの組合せからなる変化のものでもよい。走査の速度や、母材及び重ね合せ面の大きさ、溶接ラインの長さ等に応じて、所望とする溶かし込み深さ範囲が保持されるように設定すればよい。また、出力の漸減の開始時期は、所定の溶かし込み深さが得られた後、すなわち、漸増終了の直後でも、それから時間をおいた後でもよいのは上述したとおりである。   The method of gradually decreasing the output after gradually increasing the output in claim 3 is opposite to the above-described method of gradually increasing the output of the laser beam, but may be a linear change proportional to time. One having a plurality of linear changes having one or more bending points, a curve change, a step change, or a combination of these But you can. What is necessary is just to set so that the desired penetration depth range may be hold | maintained according to the speed of a scan, the magnitude | size of a base material and an overlapping surface, the length of a welding line, etc. In addition, as described above, the start timing of the gradual decrease of the output may be after the predetermined penetration depth is obtained, that is, immediately after the end of the gradual increase or after a lapse of time.

請求項3においては、入熱過多や過剰溶融を防止し、溶かし込み深さのバラツキを抑制するのに、出力の漸増後に出力を漸減させることとしたが、請求項4に記載の発明のように、請求項1又は2のいずれかにおいて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の速度範囲内で速度を漸増させながらの走査を含め、走査させることとしてもよい。このように、走査の速度を漸増させることにより照射時間を短くできるため、同様の効果が得られる。なお、このような場合における走査速度の漸増のさせ方も、上述した出力の漸増のさせ方と同様、適宜のパターンのものとすることができる。   In claim 3, the output is gradually decreased after the output is gradually increased in order to prevent excessive heat input and excessive melting and to suppress the variation in the penetration depth. However, as in the invention according to claim 4, According to any one of claims 1 and 2, in place of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range, the penetration depth is predetermined. The laser beam may be scanned, including scanning while gradually increasing the speed within a predetermined speed range, so that the laser beam is held within the range of the penetration depth. Thus, since the irradiation time can be shortened by gradually increasing the scanning speed, the same effect can be obtained. It should be noted that the method of gradually increasing the scanning speed in such a case can be of an appropriate pattern, similarly to the method of gradually increasing the output described above.

請求項3,4より理解されるが、本発明では、請求項5の発明のように、それらを組み合わせた制御を行うこととしてもよい。そして、この場合には、所望とする所定の溶かし込み深さ範囲が、溶接ライン沿ってバラツキなく得られるように、出力の漸減と、速度の漸増を組み合わせればよい。   As will be understood from claims 3 and 4, in the present invention, as in the invention of claim 5, it is also possible to perform control combining them. In this case, the gradual decrease of the output and the gradual increase of the speed may be combined so that the desired predetermined penetration depth range can be obtained without variation along the welding line.

本発明は、請求項6に記載のレーザ溶接方法のように、一方の部材が、スパークプラグ用の接地側電極又は中心電極を構成する電極本体であり、他方の部材が、該電極本体の先端に溶接される貴金属チップである場合のように、その溶接接合体が過酷な条件に晒され続けるスパークプラグ用の電極のように、その溶接に高精度、高溶接強度が要求される場合に極めて適する。もっとも、本発明における溶接対象はこれに限られるものではなく、同じスパークプラグ用の部品であるとしても、溶接接合体であれば電極以外にも適用できるし、スパークプラグ用以外に用いられる溶接接合体(2部材の溶接体)を得る場合にも適用できる。また請求項7に記載の本発明のように、請求項1〜5のいずれか1項に記載のレーザ溶接方法によって前記2つの部材を溶接する工程を含む溶接接合体の製造方法によれば、高精度、高溶接強度の溶接接合体を得ることができる。   In the laser welding method according to the sixth aspect of the present invention, one member is an electrode body constituting a ground side electrode or a center electrode for a spark plug, and the other member is a tip of the electrode body. Extremely when high precision and high welding strength are required for welding, such as electrodes for spark plugs, where the welded joint continues to be exposed to harsh conditions, as in the case of precious metal tips welded to Suitable. However, the object to be welded in the present invention is not limited to this, and even if it is a part for the same spark plug, it can be applied to other than an electrode as long as it is a welded joint, and welded joint used for other than a spark plug. The present invention can also be applied when obtaining a body (two-member welded body). Moreover, according to the manufacturing method of the welding joined body including the process of welding the said 2 member with the laser welding method of any one of Claims 1-5 like this invention of Claim 7, A welded assembly with high accuracy and high welding strength can be obtained.

そして、ここに溶接接合体は、ガスセンサ等のセンサやグロープラグ等の車用部品(自動車用搭載部品)等の各種部品の構成部品、構成部材があげられるが、請求項8に記載の本発明のスパークプラグ用の電極の製造方法によれば、上記したように高精度、高溶接強度の電極(接地側電極又は中心電極)が得られる。よって、請求項9に記載の本発明のように、請求項8に記載のスパークプラグ用の電極の製造方法を含むスパークプラグの製造方法によれば、放電着火性のみならず耐久性についても信頼性の高い高品質のスパークプラグを得ることができる。   In addition, the welded joined body includes constituent parts and constituent members of various parts such as a sensor such as a gas sensor and a car part such as a glow plug (mounted part for automobile), and the present invention according to claim 8. According to the method for manufacturing an electrode for a spark plug, an electrode (a ground side electrode or a center electrode) with high accuracy and high welding strength can be obtained as described above. Therefore, according to the spark plug manufacturing method including the spark plug electrode manufacturing method according to claim 8 as in the present invention according to claim 9, not only the discharge ignition property but also the durability is reliable. A high quality spark plug with high performance can be obtained.

図1−Aは、スパークプラグ用の接地側電極本体(帯状板部材又は角棒部材)に、貴金属チップ(直方体)を位置決めして重ね合せ、その重ね合せ面で両部材をレーザ溶接するとき(図6参照)の時間と、レーザ光の出力との関係の説明図であって、横軸が時間で、縦軸が出力の変化状態を示す図であり、図1−Bは、この出力の変化状態において、時間と、レーザ光の走査速度との関係の説明図であって、横軸が時間で、縦軸が走査速度の変化状態を示す図。FIG. 1-A shows a case where a noble metal tip (a rectangular parallelepiped) is positioned and superimposed on a ground side electrode body (strip-shaped plate member or square bar member) for a spark plug, and both members are laser-welded on the overlapping surface ( 6) is a diagram for explaining the relationship between the time of the laser beam output and the output of the laser beam, in which the horizontal axis represents time and the vertical axis represents the output change state. FIG. FIG. 6 is an explanatory diagram of the relationship between time and the scanning speed of laser light in a changing state, in which the horizontal axis represents time and the vertical axis represents the changing state of the scanning speed. 図1においてレーザ溶接したときの重ね合せ面における溶し込み深さ(ダブルハッチング部分)の説明用模式図。The schematic diagram for description of the penetration depth (double hatching part) in the overlapping surface when laser welding in FIG. レーザ光の出力の漸増のさせ方の別例(時間と、レーザ光の出力の変化状態の4パターン)を説明する図。The figure explaining another example (4 patterns of the change state of time and the output of a laser beam) of how to make the output of a laser beam gradually increase. レーザ光の出力を所定の溶かし込み深さ範囲が得られるまで漸増した後、その出力を漸減させる例(4パターン)を説明する漸減のさせ方(時間と、レーザ光の出力の変化状態)を説明する図。After gradually increasing the laser beam output until a predetermined penetration depth range is obtained, a method of gradually decreasing (time and the change state of the laser beam output) is described to explain an example (4 patterns) in which the output is gradually decreased. Illustration to explain. レーザ光の出力を所定の溶かし込み深さ範囲が得られるまで漸増した後、その走査速度を漸増させる例(2パターン)を説明する漸増のさせ方(時間と、走査速度の変化状態)を説明する図。After gradually increasing the laser beam output until a predetermined penetration depth range is obtained, an example (2 patterns) in which the scanning speed is gradually increased will be described. How to gradually increase (time and scanning speed change state) will be described. To do. スパークプラグ用の接地側電極本体(帯状板部材又は角棒部材)に、貴金属チップ(直方体)を位置決めして重ね合せ、両部材を重ね合せ面においてレーザ溶接するときの説明用の部分模式拡大図であって、Aは、正面図、BはAの平面図、CはAを右から見た図(接地側電極本体を先端面から見た図)。Partial enlarged schematic diagram for explanation when a noble metal tip (cuboid) is positioned and superimposed on a ground electrode body (strip-shaped plate member or square bar member) for a spark plug, and both members are laser welded on the overlapping surface. A is a front view, B is a plan view of A, and C is a view of A from the right side (a view of the ground-side electrode body viewed from the front end surface). 図6のレーザ溶接における問題点を説明する模式的な平面図。The typical top view explaining the problem in the laser welding of FIG. 従来公知のスパークプラグの一例を示す縦断半断面図。The longitudinal section half sectional view which shows an example of a conventionally well-known spark plug.

本発明に係るレーザ溶接方法、及び溶接接合体の製造方法を具体化した実施の形態例について、図面を参照しながら詳細に説明する。ただし、本形態例においては、上記したところの図6に示したスパークプラグ用の接地側電極本体10に、貴金属チップ(直方体)20を位置決めして重ね、その重ね合せ面10a、20aの端縁のうち、電極本体10の先端面11(同図A,Bの右側)側における端縁(チップの端縁)20eである一辺(直線)を溶接ラインWLとして、その重ね合せ面10a,20aにおいて両部材10,20をレーザ溶接する場合であり、溶接接合体として接地側電極を製造する場合とする。また、その溶接ラインWLのうち、図6−B(平面図)の図示下端をレーザ光Laの照射(溶接)の開始位置S1とし、図示上端である他端を溶接の終端(終了位置)S2として、レーザ光Laを走査させる制御をするものとする。なお、各部材の材質、大きさ等は上述したとおりである。また、本例における溶かし込み深さ範囲は、平面視(図6−B)における貴金属チップ(直方体)20の辺長Lh(例えば、1.5mm)に対応するもので、溶接ラインWLに沿う方向において、Lh±α(例えば、1.4mm〜1.6mm)の範囲内に保持すべきものとする。   DESCRIPTION OF EMBODIMENTS Embodiments embodying a laser welding method and a welded joint manufacturing method according to the present invention will be described in detail with reference to the drawings. However, in this embodiment, the noble metal tip (cuboid) 20 is positioned and overlapped with the spark plug ground electrode body 10 shown in FIG. 6 as described above, and the edges of the overlapping surfaces 10a and 20a are overlapped. Among them, one side (straight line) which is the end edge (end edge of the tip) 20e on the front end surface 11 (right side of FIGS. A and B) of the electrode main body 10 is defined as a welding line WL. This is a case where both the members 10 and 20 are laser-welded, and a ground side electrode is manufactured as a welded joint. Also, in the welding line WL, the lower end of FIG. 6B (plan view) is the start position S1 of laser beam La irradiation (welding), and the other end, which is the upper end of the figure, is the welding end (end position) S2. Assuming that the laser beam La is controlled to be scanned. The material and size of each member are as described above. Further, the penetration depth range in this example corresponds to the side length Lh (for example, 1.5 mm) of the noble metal tip (cuboid) 20 in a plan view (FIG. 6B), and the direction along the welding line WL. In this case, it should be held within a range of Lh ± α (for example, 1.4 mm to 1.6 mm).

このような本例においては、図示しないレーザ溶接機を用い、図6−Bに示した、溶接ラインWLにおける溶接(レーザ光Laの照射)の開始位置S1に、その照射の開始時には、スパッタを発生させない程度の低い(弱い)出力のレーザ光Laで照射を開始する。そして、このレーザ光Laを走査させることなく、その照射の開始位置S1においてレーザ光Laの出力を漸増する。その漸増は、重ね合せ面10a,20aにおける端縁20eから奥に向かう溶かし込み深さが、所定の溶かし込み深さ範囲(Lh±α)内となるまで行う。そして、その溶かし込み深さが得られた後は、その漸増後の出力のレーザ光Laを、終端S2に向けて、適度の例えば一定速度で走査させる。なお、この速度は、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持される範囲で設定される。   In this example, a laser welding machine (not shown) is used, and at the start of irradiation at the start position S1 of welding (irradiation of laser light La) in the welding line WL shown in FIG. Irradiation is started with a low (weak) output laser beam La that is not generated. Then, without scanning the laser beam La, the output of the laser beam La is gradually increased at the irradiation start position S1. The gradual increase is performed until the penetration depth from the edge 20e to the back of the overlapping surfaces 10a and 20a is within a predetermined penetration depth range (Lh ± α). Then, after the penetration depth is obtained, the laser beam La having the gradually increased output is scanned toward the end S2 at an appropriate constant speed, for example. This speed is set in a range in which the penetration depth is maintained within a predetermined penetration depth range.

このような溶接において、レーザ光Laの出力の漸増と、時間との関係は、例えば、図1−Aに示したようにされる。すなわち、その照射の開始時において出力Pは0とし、スパッタの発生を招かないように時間T1をかけて、所望とする所定の溶かし込み深さが得られる出力P1となるまで、その出力を比例的に漸増させ、その漸増後は出力P1を保持し、レーザ光Laを開始位置S1から終端S2に向けて一定の適度の速度V1で走査させる。すなわち、本例では、図1−Bに示したように、出力P1への到達時T1までは、レーザ光Laを溶接の開始位置S1に停止させておき、その出力P1への到達時T1の経過と同時に、出力P1のレーザ光(照射スポット)Laを、終端S2に向けて一定速度V1で走査させる。なお、このような本例では、レーザ光Laの漸増後の出力P1は、例えば、250〜500Wの範囲で、そして、走査速度V1は、例えば、50〜200mm/秒の範囲で設定される。   In such welding, the relationship between the gradual increase in the output of the laser beam La and the time is as shown in FIG. 1A, for example. That is, the output P is set to 0 at the start of the irradiation, and the output is proportional until the output P1 at which a desired predetermined penetration depth is obtained by taking time T1 so as not to cause spattering. The output P1 is maintained after the increase, and the laser beam La is scanned from the start position S1 toward the end S2 at a constant moderate speed V1. That is, in this example, as shown in FIG. 1-B, the laser beam La is stopped at the welding start position S1 until the time T1 when reaching the output P1, and the time T1 when reaching the output P1. Simultaneously, the laser beam (irradiation spot) La having the output P1 is scanned at the constant speed V1 toward the terminal S2. In this example, the output P1 after the gradual increase of the laser light La is set in the range of 250 to 500 W, for example, and the scanning speed V1 is set in the range of 50 to 200 mm / second, for example.

しかして、このような本例によるレーザ溶接方法によれば、スパッタの発生を招くこともなく、しかも、図2中にダブルハッチングで示したように、両部材10,20の重ね合せ面10a,20aは、溶接ラインWLに沿って、所望とする所定の溶かし込み深さ範囲(Lh±α)内でもって溶接される。このように本例の溶接方法によれば、従来におけるように、レーザ光Laの照射の開始位置S1から高めに設定した出力によるその照射を開始してその出力のままで走査させるものでなく、スパッタを発生させない出力のレーザ光で照射を開始し、その出力を漸増させることとしているため、スパッタの発生を招かない。また、低い出力によるレーザ光の照射で終端S2まで走査をするものでもないため、その照射の開始位置S1及びその近傍において所望とする溶し込み深さが得られないということもない。このように、本溶接方法によれば、その走査の開始位置S1から終端S2に向かい、溶かし込み深さの不足やアンバランスもなく、重ね合せ面10a,20aの全領域において両部材を溶接することができる。結果、強固かつ安定した溶接による、貴金属チップ付きの接地側電極が得られるため、着火性能や耐久性に優れたスパークプラグを得ることができる。   Thus, according to the laser welding method of the present example, spattering is not caused, and as shown by double hatching in FIG. 20a is welded along a welding line WL within a desired predetermined penetration depth range (Lh ± α). Thus, according to the welding method of the present example, as in the prior art, the irradiation with the output set higher from the irradiation start position S1 of the laser beam La is started, and the output is not scanned as it is, Irradiation is started with a laser beam with an output that does not generate spatter, and the output is gradually increased, so that spatter does not occur. Further, since the laser beam is not irradiated at a low output to scan to the end S2, it is not possible to obtain a desired penetration depth at the irradiation start position S1 and in the vicinity thereof. Thus, according to the present welding method, both members are welded in the entire region of the overlapping surfaces 10a and 20a from the scanning start position S1 to the terminal end S2 without any lack of fusion depth or imbalance. be able to. As a result, since a ground side electrode with a noble metal tip is obtained by strong and stable welding, a spark plug excellent in ignition performance and durability can be obtained.

すなわち、前記した本例のレーザ溶接方法を具体化した電極の製造方法によって得られた接地側電極(部品)は、その後、スパークプラグの製造に用いられ、図8に示したような従来公知のスパークプラグ100を構成することになる。なお、このようなスパークプラグ100の製造工程は従来、公知であるため、簡単な説明に止めるが、例えば次のようである(図8参照)。その接地側電極(部品)を、上述したような主体金具(ただし製造仕掛品)40の先端面43に、図8中、2点鎖線で示したように、貴金属チップ20と反対側の一端(後端面)を垂直状に突き合せるようにして抵抗溶接する。その後、その主体金具40の外周面にネジ46を形成する等の仕上げ加工を行い、このように仕上げられた接地側電極付きの主体金具をその後の組立て工程に送る。そして、その組立て工程では、主体金具内に、上述したように中心電極60、その端子65等を含む碍子50等を組付け、主体金具40の後端47を内側に曲げ、かつ、先方(図8の上方)に向けて圧縮変形(カシメ)加工をした後、所定の放電用火花ギャップが得られるよう、接地側電極31を接地側電極本体10において内側に折り曲げ加工する。このような各工程を経ることで、図8に示したようなスパークプラグ100が得られる。   That is, the ground-side electrode (component) obtained by the electrode manufacturing method embodying the laser welding method of this example described above is used for manufacturing a spark plug, and is conventionally known as shown in FIG. The spark plug 100 is configured. In addition, since the manufacturing process of such a spark plug 100 is conventionally well-known, it is stopped with simple description, but is as follows, for example (see FIG. 8). The ground-side electrode (component) is connected to the end surface 43 of the metal shell (manufactured product) 40 as described above, as shown by a two-dot chain line in FIG. Resistance welding is performed so that the rear end face is vertically butted. Thereafter, a finishing process such as forming a screw 46 on the outer peripheral surface of the metal shell 40 is performed, and the metal shell with the ground-side electrode thus finished is sent to the subsequent assembly process. In the assembling process, the insulator 50 including the center electrode 60 and its terminal 65 as described above is assembled in the metal shell, the rear end 47 of the metal shell 40 is bent inward, and the tip (FIG. 8), the ground side electrode 31 is bent inward in the ground side electrode body 10 so that a predetermined discharge spark gap is obtained. Through these steps, the spark plug 100 as shown in FIG. 8 is obtained.

本例では接地側電極31の溶接、製造において、本発明を具体化した場合で説明したが、中心電極60に、その先端に貴金属チップを溶接してなる貴金属チップ付きの中心電極を製造する場合においても同様に具体化できる。そして、少なくとも、その一方の電極において本発明を具体化した電極を用いたスパークプラグとすることで、このような電極を用いないスパークプラグに比べ、着火性能や耐久性の高度化を図ることができる。なお、中心電極の先端に貴金属チップを溶接する工程(貴金属チップ付きの中心電極の製造工程)については、その貴金属チップが、通常、円柱体(又は円板)となるために重ね合せ面が円形となり、したがって、そのような場合には溶接ラインが円周となる点が上記例における場合と相違するが、この相違点を除けば、上述したのと同様にして具体化することができる。その詳細については後述する。   In this example, the case where the present invention is embodied in welding and manufacturing of the ground side electrode 31 is described. However, in the case of manufacturing a center electrode with a noble metal tip formed by welding a noble metal tip to the tip of the center electrode 60. It can also be embodied in the same way. And, at least by making a spark plug using an electrode embodying the present invention in one of the electrodes, it is possible to improve ignition performance and durability compared to a spark plug that does not use such an electrode. it can. As for the process of welding the noble metal tip to the tip of the center electrode (manufacturing process of the center electrode with the noble metal tip), since the noble metal tip usually becomes a cylindrical body (or a disc), the overlapping surface is circular. Therefore, in such a case, the point that the welding line becomes a circumference is different from the case in the above example. However, except for this difference, the welding line can be embodied in the same manner as described above. Details thereof will be described later.

上記例(レーザ溶接方法例)では、所定の溶かし込み深さ範囲(Lh±α)が得られるまでのレーザ光Laの出力を、照射開始時の0から比例的に漸増させた場合を例示したが、この漸増は、図3−A2に示したように、階段状に漸増させても、図3−A3に示したように、曲線的(下向き凸の曲線)に漸増させてもよいし、図3−A4に示したように、上向き凸の曲線で漸増させてもよい。さらに、このような出力の漸増は、0からではなく、図3−A5に示したように、スパッタの発生を招かない範囲での適度の低出力を出発点として照射を開始してもよい。このように、上述もしたように、所定の溶かし込み深さ範囲(Lh±α)が得られるまでのレーザ光Laの出力の漸増の仕方は、適宜のものとして具体化できる。   In the above example (laser welding method example), the case where the output of the laser beam La until the predetermined penetration depth range (Lh ± α) is obtained is gradually increased from 0 at the start of irradiation. However, this gradual increase may be stepwise as shown in FIG. 3-A2, or may be gradually increased (curved downward) as shown in FIG. 3-A3. As shown in FIG. 3-A4, it may be gradually increased by an upwardly convex curve. Further, such a gradual increase in the output is not from 0, but as shown in FIG. 3A5, irradiation may be started with an appropriate low output within a range not causing the occurrence of sputtering. As described above, the method of gradually increasing the output of the laser light La until the predetermined penetration depth range (Lh ± α) is obtained can be embodied as appropriate.

また、上記例では溶接の開始位置S1においてはレーザ光Laの走査をさせないで、照射を開始し、その出力を漸増させる場合を例示したが、照射の開始時からレーザ光Laの走査があるとしても、その速度が停止に近いような微速であり、開始位置S1近くで、所定の溶かし込み深さ範囲(Lh±α)が得られるような場合には、その所定の溶かし込み深さ範囲(Lh±α)が得られるまでのその開始時から所定の時間内は、レーザ光Laの出力の漸増過程で、レーザ光Laの走査があってもよい。ただし、この場合には、少ないとはいえ所定の溶かし込み深さが得られるまでに、レーザ光Laの走査(移動)がある分、その開始位置S1寄り部位に溶かし込み深さが浅い部分が生じる。よって、このような場合にはできるだけ低速の走査とするのがよいのは上述したとおりである。   In the above example, the laser beam La is not scanned at the welding start position S1 and irradiation is started and the output is gradually increased. However, it is assumed that there is scanning of the laser beam La from the start of irradiation. However, if the speed is such a low speed as to be close to the stop position and a predetermined penetration depth range (Lh ± α) is obtained near the start position S1, the predetermined penetration depth range ( During a predetermined time from the start until Lh ± α) is obtained, the laser beam La may be scanned in the process of gradually increasing the output of the laser beam La. However, in this case, there is a portion where the penetration depth is shallower at the portion closer to the start position S1 as much as the laser beam La is scanned (moved) until a predetermined penetration depth is obtained although it is small. Arise. Therefore, in such a case, it is preferable to perform scanning at the lowest possible speed as described above.

上記例では、出力を漸増し、所定の溶かし込み深さ範囲(Lh±α)が得られた後、その漸増時の出力を保持した一定の出力のレーザ光Laにて、終端S2に向けて一定速度V1で走査させた場合を説明したが、その漸増後においては、それまでの入熱により、走査させるレーザ光Laの出力を小さくしても、所定の溶かし込み深さ範囲(Lh±α)が得られる場合があるのは上述したとおりである。したがって、そのような場合には、所定の溶かし込み深さ範囲(Lh±α)が得られた後の走査過程のうち、その例えば前半において、図4のA6,A7,A8,A9にそれぞれ示したような変化状態で、その漸増後の出力P1から漸減させ、その後、走査の終端までは一定に保持するようにしてもよい。なお、このような出力の漸減のさせ方は、所定の溶かし込み深さ範囲(Lh±α)が得られるように、走査速度との関係も考慮しながら設定し、制御をすればよい。   In the above example, the output is gradually increased, and after a predetermined penetration depth range (Lh ± α) is obtained, the laser beam La with a constant output holding the output at the time of the increase is directed toward the terminal S2. Although the case where scanning is performed at a constant speed V1 has been described, after the gradual increase, a predetermined penetration depth range (Lh ± α) can be obtained even if the output of the laser beam La to be scanned is reduced by the heat input so far. ) May be obtained as described above. Therefore, in such a case, in the first half of the scanning process after the predetermined penetration depth range (Lh ± α) is obtained, for example, in the first half, they are shown as A6, A7, A8, and A9 in FIG. In such a change state, the output P1 after the gradual increase may be gradually decreased and then held constant until the end of scanning. Note that such a method of gradually decreasing the output may be set and controlled in consideration of the relationship with the scanning speed so as to obtain a predetermined penetration depth range (Lh ± α).

さらに、上記例では、出力を漸増し、レーザ光Laを、一定の速度で走査させることとして説明したが、出力の漸増後(時間経過時T1後)において、それまでの入熱により、所定の溶かし込み深さ範囲(Lh±α)が得られた後は、レーザ光Laを走査させる速度を漸増しても(照射時間が短くなるとしても)、所定の溶かし込み深さ範囲(Lh±α)が確保される場合には、その速度は一定(等速)ではなく、図5−B2,B3に示したように漸増し、高速にすることもできる。すなわち、時間経過時T1後の速度は、図5−B2に示したように、比例的に高速となるようにしてもよいし、図5−B3に示したように階段的に漸増(増速)されるようにしてもよい。いずれも、溶接ラインWLに沿って所望とする所定の溶かし込み深さ範囲(Lh±α)が得られるように、出力との関係で適宜に設定すればよい。以上より明らかなように、出力の漸増後(時間経過時T1後)において、溶接ラインWLに沿って所望とする所定の溶かし込み深さ範囲(Lh±α)が得られる限り、出力の漸減と、走査速度の漸増を組み合わせてもよい。   Furthermore, in the above example, it has been described that the output is gradually increased and the laser beam La is scanned at a constant speed. However, after the output is gradually increased (after the time T1 has elapsed), the heat input up to that time causes a predetermined amount of heat. After the penetration depth range (Lh ± α) is obtained, the predetermined penetration depth range (Lh ± α) is obtained even if the scanning speed of the laser beam La is gradually increased (even if the irradiation time is shortened). ) Is secured, the speed is not constant (constant speed), but can be gradually increased as shown in FIGS. That is, the speed after time T1 may be proportionally increased as shown in FIG. 5-B2, or gradually increased (increased speed) as shown in FIG. 5-B3. ). In any case, it may be set appropriately in relation to the output so as to obtain a desired predetermined penetration depth range (Lh ± α) along the welding line WL. As is clear from the above, as long as the desired predetermined penetration depth range (Lh ± α) is obtained along the welding line WL after the output is gradually increased (after time T1), the output is gradually decreased. Further, the gradual increase in scanning speed may be combined.

上記例では、スパークプラグ用の接地側電極の製造において、その接地側電極本体に貴金属チップを溶接する場合で説明したが、本発明のレーザ溶接方法(溶接接合体の製造方法)は、このような部材に限られず、2つの部材を上記したように重ね合せて溶接する場合に広く適用できる。すなわち、上述したように、その溶接方法は溶接接合体(2部材の溶接体)の用途、種類等に関係なく適用できるし、製造される溶接接合体は、スパークプラグ用の接地側電極、中心電極の他、ガスセンサ等のセンサやグロープラグ等の車用部品(自動車用搭載部品)等の各種部品の構成部品、構成部材に広く適用できる。また、異種金属、同種金属間の溶接に限られず、レーザ溶接する場合、及び、それによって溶接接合体を製造する場合に広く適用できる。さらに、本発明のレーザ溶接方法においては、溶接面(溶かし込み深さ)が重ね合せ面の全体でなくても、所望とする所定の溶し込み深さ範囲が得られる溶接をする場合に広く適用できる。   In the above example, in the manufacture of the ground side electrode for the spark plug, the case where the noble metal tip is welded to the ground side electrode body has been described. However, the laser welding method of the present invention (the manufacturing method of the welded joint) is as described above. The present invention is not limited to such a member, and can be widely applied when two members are overlapped and welded as described above. That is, as described above, the welding method can be applied regardless of the use, type, etc. of the welded joint (two-member welded body), and the welded joint to be manufactured is a ground electrode for the spark plug, the center In addition to the electrodes, the present invention can be widely applied to constituent parts and constituent members of various parts such as sensors such as gas sensors and automotive parts such as glow plugs (mounted parts for automobiles). Further, the present invention is not limited to welding between different kinds of metals and the same kind of metal, and can be widely applied to laser welding and manufacturing welded joints thereby. Furthermore, in the laser welding method of the present invention, the welding surface (penetration depth) is wide when welding is performed to obtain a desired predetermined penetration depth range even if the welding surface (penetration depth) is not the entire overlapping surface. Applicable.

また、上記例では、スパークプラグ用の接地側電極の製造において具体化したが、スパークプラグ用の中心電極の製造においても、同様に適用できるのは上述したとおりである。すなわち、その中心電極をなすべき中心電極本体の先端(放電用火花ギャップをなす端)に貴金属チップを溶接する場合においても適用できる。上述もしたように、このような貴金属チップは、通常、円柱体(又は円板)となるため、重ね合せ面が円形となり、したがって、溶接ラインWLは円周となるが、このような場合には、その溶接部材をその円の中心を回転中心として例えば1回転させながら、重ね合せ面の端縁である円周にレーザ光を照射することで、その端縁(円周)にレーザ光を走査させることができる。これにより、円周に沿って、半径方向における所定の幅を溶かし込み深さとする所定の溶かし込み深さ範囲の溶接が得られる。すなわち、本発明における溶接ラインは直線に限定されるものではない。なお、レーザ溶接は、YAGレーザ溶接、COレーザ溶接等公知の各種のものに適用できる。 Further, in the above example, the present invention is embodied in the manufacture of the ground electrode for the spark plug. However, the present invention can be similarly applied to the manufacture of the center electrode for the spark plug as described above. That is, the present invention can also be applied to the case where a noble metal tip is welded to the tip of the center electrode main body (the end that forms the spark gap for discharge) that should form the center electrode. As described above, since such a noble metal tip is usually a cylindrical body (or a disk), the overlapping surface is circular, and thus the welding line WL is circumferential. Irradiates the circumference of the overlapping surface with laser light while rotating the welded member around the center of the circle, for example, one rotation, so that the edge (circumference) is irradiated with laser light. Can be scanned. Thereby, the welding of the predetermined penetration depth range which makes the predetermined width in the radial direction the penetration depth along the circumference is obtained. That is, the welding line in the present invention is not limited to a straight line. Laser welding can be applied to various known types such as YAG laser welding and CO 2 laser welding.

10 部材(接地側電極本体)
10a,20a 重ね合せ面
20 部材(貴金属チップ)
20e 端縁
31 スパークプラグ用の接地側電極(溶接接合体)
60 スパークプラグ用の中心電極
100 スパークプラグ
La レーザ光
WL 溶接ライン
S1 溶接(照射)の開始位置
S2 終端
10 members (ground side electrode body)
10a, 20a Overlapping surface 20 Member (noble metal tip)
20e Edge 31 Ground side electrode for spark plug (welded joint)
60 Spark plug center electrode 100 Spark plug La Laser beam WL Welding line S1 Welding (irradiation) start position S2 End

Claims (9)

2つの部材を重ね合せ、その重ね合せ面の端縁にレーザ光を照射し、その端縁に沿うラインを溶接ラインとして、溶接の開始位置から終端に向けてレーザ光を走査させることによって2つの部材を前記重ね合せ面において溶接するレーザ溶接方法において、
前記溶接ラインの溶接の開始位置においてスパッタを発生させない出力でレーザ光の照射を開始し、
その開始後、該レーザ光を走査させることなく、該レーザ光の出力を、前記端縁から前記重ね合せ面の奥に向かう溶かし込み深さが所定の溶かし込み深さ範囲内となるように漸増し、
その漸増後に、前記終端に向けて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにしてレーザ光を走査させることを特徴とするレーザ溶接方法。
Two members are overlapped, laser light is irradiated to the edge of the overlapping surface, and a laser beam is scanned from the start position to the end of welding with the line along the edge as a welding line. In a laser welding method for welding a member on the overlapping surface,
Laser beam irradiation is started at an output that does not generate spatter at the welding start position of the welding line,
After the start, the laser beam output is gradually increased without scanning the laser beam so that the penetration depth from the edge toward the back of the overlapping surface is within a predetermined penetration depth range. And
After the gradual increase, the laser welding method is characterized in that the laser beam is scanned toward the end so that the penetration depth is maintained within a predetermined penetration depth range.
2つの部材を重ね合せ、その重ね合せ面の端縁にレーザ光を照射し、その端縁に沿うラインを溶接ラインとして、溶接の開始位置から終端に向けてレーザ光を走査させることによって2つの部材を前記重ね合せ面において溶接するレーザ溶接方法において、
前記溶接ラインの溶接の開始位置においてスパッタを発生させない出力でレーザ光の照射を開始し、
その開始後の所定の時間内に限り、その他の時間における走査よりも相対的に遅い速度でレーザ光を走査させながら、該レーザ光の出力を、前記端縁から前記重ね合せ面の奥に向かう溶かし込み深さが所定の溶かし込み深さ範囲内となるように漸増し、
その漸増後に、前記終端に向けて、その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させることを特徴とするレーザ溶接方法。
Two members are overlapped, laser light is irradiated to the edge of the overlapping surface, and a laser beam is scanned from the start position to the end of welding with the line along the edge as a welding line. In a laser welding method for welding a member on the overlapping surface,
Laser beam irradiation is started at an output that does not generate spatter at the welding start position of the welding line,
Only within a predetermined time after the start, while scanning the laser beam at a relatively slower speed than the scanning at other times, the output of the laser beam is directed from the edge to the back of the overlapping surface. Gradually increase so that the penetration depth falls within the prescribed penetration depth range,
After the gradual increase, the laser welding method is characterized in that the laser beam is scanned toward the end so that the penetration depth is maintained within a predetermined penetration depth range.
請求項1又は2のいずれかにおいて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の出力範囲内で出力を漸減させながらの走査を含め、走査させることを特徴とするレーザ溶接方法。
In either claim 1 or 2,
Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range,
Laser welding characterized in that the laser beam is scanned, including scanning while gradually decreasing the output within a predetermined output range, so that the penetration depth is maintained within a predetermined penetration depth range. Method.
請求項1又は2のいずれかにおいて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の速度範囲内で速度を漸増させながらの走査を含め、走査させることを特徴とするレーザ溶接方法。
In either claim 1 or 2,
Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range,
Laser welding characterized in that the laser beam is scanned, including scanning while gradually increasing the speed within a predetermined speed range so that the penetration depth is maintained within a predetermined penetration depth range. Method.
請求項1又は2のいずれかにおいて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるようにレーザ光を走査させること、に代えて、
その溶かし込み深さが所定の溶かし込み深さ範囲内に保持されるように、レーザ光を、所定の出力範囲内で出力を漸減させながら、しかも、所定の速度範囲内で速度を漸増させながらの走査を含め、走査させることを特徴とするレーザ溶接方法。
In either claim 1 or 2,
Instead of scanning the laser beam so that the penetration depth is maintained within a predetermined penetration depth range,
While gradually decreasing the output of the laser beam within a predetermined output range and gradually increasing the speed within a predetermined speed range so that the penetration depth is maintained within the predetermined penetration depth range. A laser welding method characterized by performing scanning, including scanning of
前記2つの部材における一方の部材が、スパークプラグ用の接地側電極又は中心電極を構成する電極本体であり、他方の部材が、該電極本体の先端に溶接される貴金属チップであることを特徴とする請求項1〜5のいずれか1項に記載のレーザ溶接方法。   One of the two members is an electrode body constituting a ground side electrode or a center electrode for a spark plug, and the other member is a noble metal tip welded to the tip of the electrode body. The laser welding method according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載のレーザ溶接方法によって前記2つの部材を溶接する工程を含む溶接接合体の製造方法。   A method for manufacturing a welded joint, comprising a step of welding the two members by the laser welding method according to claim 1. 請求項6に記載のレーザ溶接方法によって前記電極本体と前記貴金属チップとを溶接する工程を含むスパークプラグ用の電極の製造方法。   The manufacturing method of the electrode for spark plugs including the process of welding the said electrode main body and the said noble metal tip by the laser welding method of Claim 6. 請求項8に記載のスパークプラグ用の電極の製造方法を含むスパークプラグの製造方法。   A method for producing a spark plug, comprising the method for producing an electrode for a spark plug according to claim 8.
JP2017016899A 2016-03-09 2017-02-01 Laser welding method, welding joint manufacturing method, spark plug electrode manufacturing method, and spark plug manufacturing method Expired - Fee Related JP6871002B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17159529.1A EP3216552B1 (en) 2016-03-09 2017-03-07 Laser welding methods, method of manufacturing a welded body, method of manufacturing electrode for spark plug, and method of manufacturing spark plug based on such laser welding methods
US15/451,543 US10201876B2 (en) 2016-03-09 2017-03-07 Laser welding method, method for manufacturing welded body, method for manufacturing electrode for spark plug, and method for manufacturing spark plug
CN201710138339.1A CN107175404B (en) 2016-03-09 2017-03-09 Method for laser welding, the manufacturing method of welded joint body, the manufacturing method of the manufacturing method of spark plug electrode and spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016045605 2016-03-09
JP2016045605 2016-03-09

Publications (2)

Publication Number Publication Date
JP2017164811A true JP2017164811A (en) 2017-09-21
JP6871002B2 JP6871002B2 (en) 2021-05-12

Family

ID=59909916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017016899A Expired - Fee Related JP6871002B2 (en) 2016-03-09 2017-02-01 Laser welding method, welding joint manufacturing method, spark plug electrode manufacturing method, and spark plug manufacturing method

Country Status (1)

Country Link
JP (1) JP6871002B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200112236A1 (en) * 2018-10-03 2020-04-09 Toyota Jidosha Kabushiki Kaisha Laser welding method for stator coil
JP2021053685A (en) * 2019-10-01 2021-04-08 フタバ産業株式会社 Member manufacturing method
JPWO2021193285A1 (en) * 2020-03-24 2021-09-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762882A (en) * 1980-10-01 1982-04-16 Mitsubishi Electric Corp Laser working device
JPH11320146A (en) * 1998-05-20 1999-11-24 Honda Motor Co Ltd Laser welding method
JP2002273586A (en) * 2001-03-16 2002-09-25 National Institute For Materials Science Laser welding method
JP2008270185A (en) * 2007-03-29 2008-11-06 Ngk Spark Plug Co Ltd Spark plug manufacturing method
JP2013149631A (en) * 2009-03-31 2013-08-01 Ngk Spark Plug Co Ltd Method of manufacturing spark plug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762882A (en) * 1980-10-01 1982-04-16 Mitsubishi Electric Corp Laser working device
JPH11320146A (en) * 1998-05-20 1999-11-24 Honda Motor Co Ltd Laser welding method
JP2002273586A (en) * 2001-03-16 2002-09-25 National Institute For Materials Science Laser welding method
JP2008270185A (en) * 2007-03-29 2008-11-06 Ngk Spark Plug Co Ltd Spark plug manufacturing method
JP2013149631A (en) * 2009-03-31 2013-08-01 Ngk Spark Plug Co Ltd Method of manufacturing spark plug

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200112236A1 (en) * 2018-10-03 2020-04-09 Toyota Jidosha Kabushiki Kaisha Laser welding method for stator coil
JP2020055024A (en) * 2018-10-03 2020-04-09 トヨタ自動車株式会社 Laser welding method of stator coil
JP2021053685A (en) * 2019-10-01 2021-04-08 フタバ産業株式会社 Member manufacturing method
JPWO2021193285A1 (en) * 2020-03-24 2021-09-30
WO2021193285A1 (en) * 2020-03-24 2021-09-30 株式会社Gsユアサ Electrical storage device, and method for manufacturing same
JP7694558B2 (en) 2020-03-24 2025-06-18 株式会社Gsユアサ Electricity storage device and manufacturing method thereof

Also Published As

Publication number Publication date
JP6871002B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP5942473B2 (en) Spark plug for internal combustion engine and method for manufacturing the same
JP5639021B2 (en) Manufacturing method of spark plug
JP6545211B2 (en) Method of manufacturing spark plug
JP2017164811A (en) Laser welding method, welded joint manufacturing method, spark plug electrode manufacturing method, and spark plug manufacturing method
KR101787562B1 (en) Method of manufacturing sealed battery
JP2011161506A (en) Welding method
CN107175404B (en) Method for laser welding, the manufacturing method of welded joint body, the manufacturing method of the manufacturing method of spark plug electrode and spark plug
JP6431607B2 (en) Spark plug electrode with deep penetration weld, spark plug with spark plug electrode, and method of manufacturing spark plug electrode
JP2018176242A (en) Method for manufacturing welded product
US8471174B2 (en) Method for welding tip of electrode in spark plug
JP7323740B2 (en) Electrolytic capacitor lead terminal and manufacturing method thereof
KR20160070827A (en) Spark plug production method
JP6532491B2 (en) Method of manufacturing spark plug
JP6510971B2 (en) Method of manufacturing joined body, and method of manufacturing spark plug
JP2020099917A (en) Manufacturing method of joint body
JP2018092848A (en) Manufacturing method of electrode for spark plug, and, manufacturing method of spark plug
JP2017006957A (en) Welding method and welding structure
JPH0284287A (en) Method for welding metallic material
JP5126417B2 (en) Terminal and wire connecting structure manufacturing method and terminal and wire connecting structure
CN119188162A (en) A spot welding repair method for deep defects of metal parts
JP2019129083A (en) Manufacturing method of ignition plug
US20190061035A1 (en) System and method for joining components
JP2014172078A (en) Joint body of crystal metal body and metal glass body, manufacturing method thereof and weld tool
JP2015076355A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210128

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210415

R150 Certificate of patent or registration of utility model

Ref document number: 6871002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees