JP2017103275A - シリコンウェーハの評価方法およびその利用 - Google Patents
シリコンウェーハの評価方法およびその利用 Download PDFInfo
- Publication number
- JP2017103275A JP2017103275A JP2015233126A JP2015233126A JP2017103275A JP 2017103275 A JP2017103275 A JP 2017103275A JP 2015233126 A JP2015233126 A JP 2015233126A JP 2015233126 A JP2015233126 A JP 2015233126A JP 2017103275 A JP2017103275 A JP 2017103275A
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- evaluation
- recombination lifetime
- corona discharge
- thermal oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 260
- 239000010703 silicon Substances 0.000 title claims abstract description 260
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 259
- 238000000034 method Methods 0.000 title claims abstract description 96
- 235000012431 wafers Nutrition 0.000 claims abstract description 277
- 230000006798 recombination Effects 0.000 claims abstract description 177
- 238000005215 recombination Methods 0.000 claims abstract description 176
- 238000011156 evaluation Methods 0.000 claims abstract description 106
- 230000003647 oxidation Effects 0.000 claims abstract description 102
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 102
- 238000003851 corona treatment Methods 0.000 claims abstract description 97
- 238000011282 treatment Methods 0.000 claims abstract description 91
- 238000005259 measurement Methods 0.000 claims abstract description 87
- 229910052751 metal Inorganic materials 0.000 claims abstract description 70
- 239000002184 metal Substances 0.000 claims abstract description 70
- 238000011109 contamination Methods 0.000 claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims description 75
- 230000002950 deficient Effects 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 11
- 230000000052 comparative effect Effects 0.000 description 24
- 238000009825 accumulation Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 208000028659 discharge Diseases 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 229940038504 oxygen 100 % Drugs 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 238000012951 Remeasurement Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
【解決手段】評価対象シリコンウェーハに熱酸化処理を施すこと、熱酸化処理後のシリコンウェーハの表面にコロナ放電処理を施すこと、コロナ放電処理を施したシリコンウェーハ表面において、μ−PCD法により、シリコンウェーハの評価に用いるための再結合ライフタイムを測定すること、前記シリコンウェーハの評価に用いるための再結合ライフタイムの測定結果に基づき評価対象シリコンウェーハを評価すること、を含み、前記コロナ放電処理を、熱酸化処理後の再結合ライフタイムに応じて決定される基準にしたがい行うシリコンウェーハの評価方法。
【選択図】なし
Description
シリコンウェーハの金属汚染量が多いほど、μ−PCD法により測定される再結合ライフタイムは短くなる。したがって、μ−PCD法により測定される再結合ライフタイムに基づき、シリコンウェーハの金属汚染の有無や程度を評価することができる。
シリコンウェーハの熱処理を行う熱処理炉の金属汚染に起因してシリコンウェーハに金属不純物が混入することは、このシリコンウェーハを用いて作製される半導体デバイスのデバイス特性低下の原因となる。そこで、熱処理炉の金属汚染を、同炉内で熱処理したモニターウェーハ(シリコンウェーハ)の金属汚染レベルから間接的に評価し、必要に応じて炉内の洗浄、部品交換等の金属汚染低減のための管理を行うことが、シリコンウェーハの製造分野では、通常、日常的に実施されている。上記モニターウェーハの金属汚染の有無や程度は、μ−PCD法により測定される再結合ライフタイムに基づき評価することができる。また、このような評価対象の熱処理炉としては、例えば、エピタキシャル層の気相成長を行う熱処理炉(エピタキシャル成長炉)が挙げられる。
以上の要求に応えるためには、シリコンウェーハの金属汚染やシリコンウェーハの熱処理を行う熱処理炉の金属汚染がわずかであっても検出可能とするために、μ−PCD法による金属汚染評価の感度を高めることが望まれる。
シリコンウェーハの再結合ライフタイム(以下「τR」と記載する。)は、以下の式1で表すことができる。
1/τR = 1/τSRH + 1/τAuger + 1/τRad (式1)
上記式中、τSRHは、金属汚染やバルク結晶欠陥に起因する深い準位を再結合中心とする、いわゆる、ショックレー・リード・ホール再結合メカニズムによる再結合のライフタイムである。τAugerは、Auger再結合によるライフタイム、τRadは、Radiative再結合によるライフタイムである。Auger再結合によるライフタイムとRadiative再結合によるライフタイムは、ドーパント濃度とキャリアの注入量により決定される値である。一方、SRHは、以下の式2により表すことができる。
1/τSRH = 1/τbulk + 1/τsurface (式2)
τbulkとは、シリコンウェーハ内部の金属汚染や結晶欠陥に起因するライフタイムであり、τsurfaceは、シリコンウェーハ表面で起こる再結合に起因するライフタイムである。μ−PCD法により測定される再結合ライフタイムの値から金属汚染を高感度に評価するためには、τbulkの値がτSRHの値と良好に相関することが好ましい。一方、τsurfaceは、μ−PCD法による再結合ライフタイムの測定前に行われる表面処理の影響を受ける値である。したがって、τsurfaceは、式2におけるτSRHとτbulkとの相関性を低下させる要因になり得る。それ故、式2におけるτSRHとτbulkとの相関性を高めることによりμ−PCD法により測定される再結合ライフタイムの値を用いる金属汚染評価の高感度化を達成するためには、表面再結合を抑制することによりτsurfaceが式2のτSRHに与える影響を低減すべきである。表面再結合を抑制することにより1/τsurfaceの値が小さくなるほど、式2から求められる1/τSRHの値は小さくなる。そして、1/τSRHの値が小さくなるほど、式1から求められる1/τRの値は小さくなり、結果的に、その逆数である、μ−PCD法により測定されるシリコンウェーハの再結合ライフタイムτRの値は大きく(再結合ライフタイムが長く)なる。即ち、μ−PCD法により測定されるシリコンウェーハの再結合ライフタイムが長くなることは、高感度化の妨げとなる表面再結合が抑制されていることを意味すると、本発明者らは考えるに至った。
評価対象シリコンウェーハに熱酸化処理を施すこと、
熱酸化処理後のシリコンウェーハの表面にコロナ放電処理を施すこと、
コロナ放電処理を施したシリコンウェーハ表面において、μ−PCD法により、シリコンウェーハの評価に用いるための再結合ライフタイムを測定すること、
上記シリコンウェーハの評価に用いるための再結合ライフタイムの測定結果に基づき評価対象シリコンウェーハを評価すること、
を含み、
上記コロナ放電処理を、下記基準(1)、(2)または(3):
(1)熱酸化処理後の再結合ライフタイムが10μs以上のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をプラスに帯電させるコロナ放電処理を行う;
(2)熱酸化処理後の再結合ライフタイムが10μs未満のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う;
(3)熱酸化処理後の再結合ライフタイムが10μs以上のp型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う、
にしたがい行う、シリコンウェーハの評価方法、
を見出すに至った。即ち、上記(1)〜(3)の基準にしたがい、熱酸化処理後のシリコンウェーハに対してコロナ放電処理を施すことにより、その後に行われるμ−PCD法により測定される再結合ライフタイムを長く(再結合ライフタイムの値を大きく)することができることが、本発明者らの鋭意検討の結果、明らかとなった。
シリコンウェーハに熱酸化処理を施すことにより、シリコンウェーハ上に熱酸化膜を形成することができる。この処理により表面再結合を抑制(不活性化、パッシベーション(passivation)とも呼ばれる。)できることは、例えば特許文献1の段落0005に記載されている。
コロナ放電処理に関しては、n型シリコンウェーハは多数キャリアが電子であるため、コロナ放電処理でプラスの電荷を堆積させることによりシリコンウェーハ表面(詳しくは、熱酸化膜表面)をプラスに帯電させることは、コロナ放電により蓄積側(accumulation側)に電荷を印加することを意味する。他方、n型シリコンウェーハにコロナ放電処理でマイナスの電荷を堆積させることによりシリコンウェーハ表面をマイナスに帯電させることは、コロナ放電により反転側(inversion側)に電荷を印加することを意味する。一方、p型シリコンウェーハは多数キャリアが正孔であるため、コロナ放電処理でマイナスの電荷を堆積させることによりシリコンウェーハ表面をマイナスに帯電させることは、コロナ放電により蓄積側(accumulation側)に電荷を印加することを意味する。本発明者らは、蓄積側に電荷を印加すると、シリコンウェーハ表層のバルクライフタイムの影響が大きくなり、反転側に電荷を印加すると、熱酸化膜界面の影響が大きくなると考えている。これは熱酸化処理による表面のパッシベーション効果に加えコロナ放電処理によってバンドの曲がりを調節することで、蓄積側に電荷を印加するとバルクで発生した過剰キャリアの表面側への移動を妨げることができるためと本発明者らは推察している。バルクの再結合中心が少なくライフタイムが長い場合には、キャリアがよりバルク側に存在するほうがライフタイムを長くすることができると考えられる。他方、バルクの再結合中心が多くライフタイムが短い場合は、キャリアが自由に動くことができるほうが再結合する割合は減るためライフタイムを長くすることができると考えられる。したがって、熱酸化処理後の再結合ライフタイムがある閾値より長いシリコンウェーハに対しては蓄積側に、閾値より短いシリコンウェーハに対しては反転側に、コロナ放電処理により電荷を印加することで、再結合ライフタイムを長くすることができると本発明者らは推察している。上記閾値は、本発明者らの鋭意検討の結果、10μsとすることが妥当であることも明らかとなった。ただし理由は定かではないが、p型のシリコンウェーハについては、熱酸化処理後の再結合ライフタイムが10μs未満の場合、コロナ放電処理で印加する電荷が蓄積側であるか反転側であるかによって、再結合ライフタイムの値には大きな違いは見られなかった。したがって上記評価方法では、上記(1)〜(3)の基準にしたがい、熱酸化処理後のシリコンウェーハに対してコロナ放電処理を施す。
ただし先に記載したように、以上は推察に過ぎず、本発明を何ら限定するものではない。
ところで非特許文献1には、熱酸化処理後にコロナ放電処理を行うことが記載されているが(非特許文献1の90〜91頁)、シリコンウェーハの導電型により熱酸化処理後の再結合ライフタイムの値に応じて、コロナ放電により印加する電荷を変化させることは、非特許文献1には何ら示唆はない。
複数のシリコンウェーハを含むシリコンウェーハのロットを準備すること、
上記ロットから少なくとも1つのシリコンウェーハを抽出すること、
上記抽出されたシリコンウェーハを評価すること、および、
上記評価により良品と判定されたシリコンウェーハと同一ロットに含まれていた少なくとも1つのシリコンウェーハを製品シリコンウェーハとして出荷すること、
を含み、かつ、
上記抽出されたシリコンウェーハの評価を、上記シリコンウェーハの評価方法によって行う、シリコンウェーハの製造方法、
に関する。
評価対象の熱処理炉においてシリコンウェーハの熱処理を行うこと、
上記熱処理されたシリコンウェーハを上記シリコンウェーハの評価方法により評価すること、および、
上記評価により得られた再結合ライフタイムに基づき上記熱処理炉の金属汚染を評価すること、
を含む、熱処理炉の評価方法、
に関する。
上記熱処理炉の評価方法により熱処理炉の評価を行うこと、および、
評価の結果、金属汚染なし、もしくは金属汚染の程度が許容レベルと判定された熱処理炉において、または、評価の結果、金属汚染の程度が許容レベルを超えると判定された熱処理炉に金属汚染低減処理を施した後に該熱処理炉において熱処理を行うこと、
を含む、シリコンウェーハの製造方法、
に関する。
本発明の一態様は、以下のシリコンウェーハの評価方法に関する。
評価対象シリコンウェーハに熱酸化処理を施すこと、
熱酸化処理後のシリコンウェーハの表面にコロナ放電処理を施すこと、
コロナ放電処理を施したシリコンウェーハ表面において、μ−PCD法により、シリコンウェーハの評価に用いるための再結合ライフタイムを測定すること、
上記シリコンウェーハの評価に用いるための再結合ライフタイムの測定結果に基づき評価対象シリコンウェーハを評価すること、
を含み、
上記コロナ放電処理を、下記基準(1)、(2)または(3):
(1)熱酸化処理後の再結合ライフタイムが10μs以上のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をプラスに帯電させるコロナ放電処理を行う;
(2)熱酸化処理後の再結合ライフタイムが10μs未満のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う;
(3)熱酸化処理後の再結合ライフタイムが10μs以上のp型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う、
にしたがい行う、シリコンウェーハの評価方法。
評価対象シリコンウェーハは、一態様ではn型シリコンウェーハであり、他の一態様ではp型シリコンウェーハである。評価対象シリコンウェーハには、熱酸化処理後の再結合ライフタイムの値に応じて、上記(1)〜(3)のいずれかの基準にしたがいコロナ放電処理およびその後のμ−PCD法が行われる。詳細は後述する。評価対象シリコンウェーハは、ベアウェーハであってもよく、シリコンエピタキシャルウェーハであってもよく、再表層に熱酸化膜が形成されたシリコンウェーハであってもよい。また、評価対象シリコンウェーハのサイズは、例えば直径200mm、300mm、450mmであることができるが、これより小さくても大きくてもよく、特に限定されるものではない。また、その抵抗値は、例えば1Ω・cm〜100Ω・cm程度であることができるが、この範囲に限定されるものではない。一態様では、評価対象シリコンウェーハは、熱処理炉の金属汚染の評価を行うためのモニターウェーハであることができ、他の一態様では金属汚染の有無や程度を評価すべきシリコンウェーハであることができる。
熱酸化処理を評価対象シリコンウェーハに施すことにより、評価対象シリコンウェーハの、少なくともμ−PCD法による測定においてキャリア注入(具体的には光照射)が行われる表面上に熱酸化膜を形成することができる。これにより、μ−PCD法測定中に表面再結合が発生することを抑制する(不活性化、パッシベーション)ことができる。
上記熱酸化処理後、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面に、コロナ放電処理が施される。コロナ放電処理が施される表面には、上記熱酸化処理によって熱酸化膜が形成されている。コロナ放電処理は、市販のコロナ放電処理装置を用いる等の従来公知のコロナ放電処理法によって行うことができる。そして本発明の評価方法では、上記コロナ放電処理を、下記基準(1)、(2)または(3)にしたがい行う。
(1)熱酸化処理後の再結合ライフタイムが10μs以上のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をプラスに帯電させるコロナ放電処理を行う;
(2)熱酸化処理後の再結合ライフタイムが10μs未満のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う;
(3)熱酸化処理後の再結合ライフタイムが10μs以上のp型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う。
以上説明したコロナ放電処理後、熱酸化処理およびコロナ放電処理が施されたシリコンウェーハ表面において、再結合ライフタイム測定を行う。再結合ライフタイム測定は、通常のμ−PCD法による再結合ライフタイム測定と同様に行えばよい。そして、この測定により得られた測定結果に基づき、評価対象シリコンウェーハを評価する。例えば、測定結果は、熱酸化処理およびコロナ放電処理が施されたシリコンウェーハ表面の複数箇所でμ−PCD法により測定される再結合ライフタイムの平均値、熱酸化処理およびコロナ放電処理が施されたシリコンウェーハ表面の任意の1箇所でμ−PCD法により測定される再結合ライフタイムの測定値、熱酸化処理およびコロナ放電処理が施されたシリコンウェーハ表面の面内の再結合ライフタイムマップ(面内分布評価)等であることができる。再結合ライフタイムの平均値や測定値が大きいほど金属汚染が少なく、小さいほど金属汚染が多いと判定することができる。また、再結合ライフタイムマップにおいて、局所的に再結合ライフタイムが短い箇所が見られたなら、その箇所において局所的な金属汚染が発生していると判定することができる。本発明の評価方法は、評価対象シリコンウェーハを熱酸化処理した後、上記基準(1)〜(3)のいずれかにしたがいコロナ放電処理を施してμ−PCD法による再結合ライフタイム測定を行うことにより、測定される再結合ライフタイムを長くすることができる。このことがμ−PCD法により測定される再結合ライフタイムに基づく金属汚染評価の高感度化につながることに関する本発明者らによる推察は、先に記載した通りである。再結合ライフタイムの測定結果から金属汚染を評価する手法は公知であり、本発明では公知技術を何ら制限なく適用することができる。
本発明の更なる態様は、以下のシリコンウェーハの製造方法および熱処理炉の評価方法に関する。
上記ロットから少なくとも1つのシリコンウェーハを抽出すること、
上記抽出されたシリコンウェーハを評価すること、および、
上記評価により良品と判定されたシリコンウェーハと同一ロットに含まれていた少なくとも1つのシリコンウェーハを製品シリコンウェーハとして出荷すること、
を含み、かつ、
上記抽出されたシリコンウェーハの評価を、上記シリコンウェーハの評価方法によって行う、シリコンウェーハの製造方法(以下、「製造方法1」ともいう)。
上記熱処理されたシリコンウェーハを上記シリコンウェーハの評価方法により評価すること、および、
上記評価により得られた再結合ライフタイムに基づき上記熱処理炉の金属汚染を評価すること、
を含む、熱処理炉の評価方法;ならびに、
上記熱処理炉の評価方法により熱処理炉の評価を行うこと、および、
評価の結果、金属汚染なし、もしくは金属汚染の程度が許容レベルと判定された熱処理炉において、または、評価の結果、金属汚染の程度が許容レベルを超えると判定された熱処理炉に金属汚染低減処理を施した後に該熱処理炉において熱処理を行うこと、
を含む、シリコンウェーハの製造方法(以下、「製造方法2」ともいう)。
直径200mmのn型シリコンウェーハ(抵抗値:10Ω・cm)を同じシリコンウェーハロットから2枚取り出し、両シリコンウェーハを、炉内雰囲気温度1000℃の熱酸化炉(酸素100%雰囲気)内に10分間配置して熱酸化処理を施した。熱酸化処理後のμ−PCD法による再結合ライフタイム測定を、上記測定装置により行った。
上記熱酸化処理後、一方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりプラス(蓄積側)に帯電させ(実施例1)、他方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりマイナス(反転側)に帯電させた(比較例1)後、μ−PCD法による再結合ライフタイム測定を上記測定装置により行った。両シリコンウェーハについて、上記コロナ放電処理とμ−PCD法による再結合ライフタイム測定を複数回繰り返した。
測定結果を、図1に示す。図中のa.u.は、任意単位(arbitrary unit)を意味する。以下に記載する図中のa.u.も同様である。
図1に示す結果から、上記基準(1)にしたがいコロナ放電処理を行った後にμ−PCD法により再結合ライフタイム測定を行ったことにより(実施例1)、再結合ライフタイムを長くできることが確認された。
直径200mmのp型シリコンウェーハ(抵抗値:10Ω・cm)を同じシリコンウェーハロットから2枚取り出し、両シリコンウェーハを、炉内雰囲気温度1000℃の熱酸化炉(酸素100%雰囲気)内に10分間配置して熱酸化処理を施した。熱酸化処理後のμ−PCD法による再結合ライフタイム測定を、上記測定装置により行った。
上記熱酸化処理後、一方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりマイナス(蓄積側)に帯電させ(実施例2)、他方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりプラス(反転側)に帯電させた(比較例2)後、μ−PCD法による再結合ライフタイム測定を上記測定装置により行った。両シリコンウェーハについて、上記コロナ放電処理とμ−PCD法による再結合ライフタイム測定を複数回繰り返した。
測定結果を、図2に示す。
図1に示す結果から、上記基準(3)にしたがいコロナ放電処理を行った後にμ−PCD法により再結合ライフタイム測定を行ったことにより(実施例2)、再結合ライフタイムを長くできることが確認された。
直径200mmのn型シリコンウェーハ(抵抗値:10Ω・cm)を、炉内雰囲気温度1000℃の熱酸化炉(酸素100%雰囲気)内に10分間配置して熱酸化処理を施した。熱酸化処理後のμ−PCD法による再結合ライフタイム測定を上記測定装置により行ったところ、再結合ライフタイムは10μs以上であった。
上記熱酸化処理後のシリコンウェーハ表面(熱酸化膜表面)を、上記基準(1)にしたがいコロナ放電処理によりプラス(蓄積側)に帯電させた後、μ―PCD法による再結合ライフタイム測定を上記測定装置により合計4回複数回繰り返した。1回目の測定はコロナ放電処理直後に行い、1回目の測定の46分後に2回目の測定を行い、1回目の測定の79分後に3回目の測定を行い、1回目の測定の131分後に4回目の測定を行った。
測定結果を、図3に示す。図3に示した各回の再結合ライフタイムの平均値と標準偏差を求め、これらから変動係数CV値を求めたところ0.5%と小さな値であり、コロナ放電処理からの時間の経過に伴う測定結果の変化が少ないことが確認された。したがって、本発明のシリコンウェーハの評価方法では、コロナ放電処理直後に再結合ライフタイム測定を行ってもよく、直後に行わずに放置後(例えば2〜24時間後)に行ってもよい。
直径200mmのn型シリコンウェーハ(抵抗値:10Ω・cm)を同じシリコンウェーハロットから2枚取り出し、両シリコンウェーハを、炉内雰囲気温度1000℃の熱酸化炉(酸素100%雰囲気)内に10分間配置して熱酸化処理を施した。熱酸化処理後のμ−PCD法による再結合ライフタイム測定を、上記測定装置により行った。
上記熱酸化処理後、一方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりプラス(蓄積側)に帯電させ(比較例3)、他方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりマイナス(反転側)に帯電させた(実施例4)後、μ―PCD法による再結合ライフタイム測定を上記測定装置により行った。両シリコンウェーハについて、上記コロナ放電処理とμ―PCD法による再結合ライフタイム測定を複数回繰り返した。
測定結果を、図4に示す。
図4に示す結果から、上記基準(2)にしたがいコロナ放電処理を行った後にμ−PCD法により再結合ライフタイム測定を行ったことにより(実施例4)、再結合ライフタイムを長くできることが確認された。
直径200mmのp型シリコンウェーハ(抵抗値:10Ω・cm)を2枚用意し、両シリコンウェーハを、炉内雰囲気温度1000℃の熱酸化炉(酸素100%雰囲気)内に10分間配置して熱酸化処理を施した。熱酸化処理後のμ−PCD法による再結合ライフタイム測定を、上記測定装置により行った。
上記熱酸化処理後、一方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりマイナス(蓄積側)に帯電させ(比較例4)、他方のシリコンウェーハ表面(熱酸化膜表面)は、コロナ放電処理によりプラス(反転側)に帯電させた(比較例5)後、μ―PCD法による再結合ライフタイム測定を行った。両シリコンウェーハについて、上記コロナ放電処理とμ―PCD法による再結合ライフタイム測定を複数回繰り返した。
測定結果を、図5に示す。比較例4、5で再結合ライフタイム測定を行ったシリコンウェーハは、熱酸化処理後の再結合ライフタイム(図5中、コロナ放電処理回数0回の値)が10μs未満のp型シリコンウェーハである。図5に示す結果から、熱酸化処理後の再結合ライフタイム(図5中、コロナ放電処理回数0回の値)が10μs未満のp型シリコンウェーハは、表面をコロナ放電処理によりプラスに帯電させてもマイナスに帯電させても再結合ライフタイムは長くならないことが確認された。
直径200mmのn型シリコンウェーハ(抵抗値:10Ω・cm)を同じシリコンウェーハロットから取り出し、各シリコンウェーハを、表1に示す炉内雰囲気温度の熱酸化炉(酸素100%雰囲気)内に表1に示す時間配置して熱酸化処理を施した。熱酸化処理後のμ−PCD法による再結合ライフタイム測定を、図6に示すキャリア注入量で上記測定装置により行った。
熱酸化処理後であってコロナ放電処理前の再結合ライフタイムを図6(a)に、熱酸化処理後かつコロナ放電処理後の再結合ライフタイムを図6(b)に示す。
図6に示す結果において、熱酸化処理を加熱温度1000℃未満で行った場合(実施例5、8)と1000℃以上で行った場合(実施例6、7)と対比すると、加熱温度1000℃以上で熱酸化処理を行うと(実施例6、7)、加熱温度1000℃で熱酸化処理を行うより、加熱時間は短いにもかかわらずコロナ放電処理前の再結合ライフタイムは長く、上記基準(本実施例では基準(1))にしたがうコロナ放電処理を行うことにより、再結合ライフタイムを更に長くできることが確認できる。したがって、熱酸化処理の加熱温度は1000℃以上とすることが好ましい。ただし、図6の実施例5、8の結果により示されている通り、加熱温度1000℃未満であっても、上記基準にしたがうコロナ放電処理を行うことにより、再結合ライフタイムを長くすることができる。
直径200mmのn型シリコンウェーハ(抵抗値:10Ω・cm)を同じシリコンウェーハロットから複数枚取り出し、エピタキシャル成長炉において、厚さ5μmのエピタキシャル層を形成するための熱処理を施した。
熱処理は、以下の3水準のエピタキシャル成長炉にて実施した。
水準A:炉内清掃(以下、「メンテナンス」と記載する。)直後のエピタキシャル成長炉
水準B:上記メンテナンスの後、所定時間経過後のエピタキシャル成長炉
水準C:水準Bより更にメンテナンスから時間が経過したエピタキシャル成長炉
上記熱酸化処理後のエピタキシャルウェーハ表面(熱酸化膜表面)を、上記基準(1)にしたがいコロナ放電処理によりプラス(蓄積側)に帯電させた後、μ―PCD法による再結合ライフタイム測定を上記測定装置により行った。
水準A、B、Cのエピタキシャル成長炉における熱処理後のウェーハ(エピタキシャルウェーハ)に対して、上記の熱酸化処理およびコロナ放電処理に代えて、μ−PCD法における測定前の前処理(パッシベーション)として知られているヨウ素/エタノール処理を施した点以外、実施例9と同様とした。ヨウ素/エタノール処理は、上記熱処理後のウェーハを0.05mol/Lのヨウ素含有エタノール溶液に浸漬することにより行った。
実施例9、比較例6においてA−1、A−2、B−1、B−2、C−1、C−2について測定された再結合ライフタイムをプロットしたグラフを、図7に示す。
これに対し、図7に示されているように、比較例6では、A−2の再結合ライフライフタイムが、B−1の再結合ライフタイムより長かった。
また、図7に示されているように、実施例9において同一水準のエピタキシャル成長炉で熱処理を行った2枚のウェーハの再結合ライフタイムの測定結果のばらつきは、比較例6と比べて小さい。
以上の結果から、実施例9において得られた再結合ライフタイムの測定結果に基づき金属汚染を高感度に評価できることが確認できる。
Claims (6)
- 評価対象シリコンウェーハに熱酸化処理を施すこと、
熱酸化処理後のシリコンウェーハの表面にコロナ放電処理を施すこと、
コロナ放電処理を施したシリコンウェーハ表面において、μ−PCD法により、シリコンウェーハの評価に用いるための再結合ライフタイムを測定すること、
前記シリコンウェーハの評価に用いるための再結合ライフタイムの測定結果に基づき評価対象シリコンウェーハを評価すること、
を含み、
前記コロナ放電処理を、下記基準(1)、(2)または(3):
(1)熱酸化処理後の再結合ライフタイムが10μs以上のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をプラスに帯電させるコロナ放電処理を行う;
(2)熱酸化処理後の再結合ライフタイムが10μs未満のn型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う;
(3)熱酸化処理後の再結合ライフタイムが10μs以上のp型シリコンウェーハには、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われる表面をマイナスに帯電させるコロナ放電処理を行う、
にしたがい行う、シリコンウェーハの評価方法。 - 前記熱酸化処理を、雰囲気温度1000℃以上の酸化性雰囲気中に評価対象シリコンウェーハを配置することにより行う、請求項1に記載のシリコンウェーハの評価方法。
- 前記熱酸化処理とコロナ放電処理との間に、μ−PCD法によりシリコンウェーハの評価に用いるための再結合ライフタイムの測定が行われるシリコンウェーハ表面において、コロナ放電処理判定用再結合ライフタイムの測定をμ−PCD法により行うことを更に含む、請求項1または2に記載のシリコンウェーハの評価方法。
- 複数のシリコンウェーハを含むシリコンウェーハのロットを準備すること、
前記ロットから少なくとも1つのシリコンウェーハを抽出すること、
前記抽出されたシリコンウェーハを評価すること、および、
前記評価により良品と判定されたシリコンウェーハと同一ロットに含まれていた少なくとも1つのシリコンウェーハを製品シリコンウェーハとして出荷すること、
を含み、かつ、
前記抽出されたシリコンウェーハの評価を、請求項1〜3のいずれか1項に記載の評価方法によって行う、シリコンウェーハの製造方法。 - 評価対象の熱処理炉においてシリコンウェーハの熱処理を行うこと、
前記熱処理されたシリコンウェーハを請求項1〜3のいずれか1項に記載の評価方法により評価すること、および、
上記評価により得られた再結合ライフタイムに基づき前記熱処理炉の金属汚染を評価すること、
を含む、熱処理炉の評価方法。 - 請求項5に記載の評価方法により熱処理炉の評価を行うこと、および、
評価の結果、金属汚染なし、もしくは金属汚染の程度が許容レベルと判定された熱処理炉において、または、評価の結果、金属汚染の程度が許容レベルを超えると判定された熱処理炉に金属汚染低減処理を施した後に該熱処理炉において熱処理を行うこと、
を含む、シリコンウェーハの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015233126A JP6555103B2 (ja) | 2015-11-30 | 2015-11-30 | シリコンウェーハの評価方法およびその利用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015233126A JP6555103B2 (ja) | 2015-11-30 | 2015-11-30 | シリコンウェーハの評価方法およびその利用 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017103275A true JP2017103275A (ja) | 2017-06-08 |
JP6555103B2 JP6555103B2 (ja) | 2019-08-07 |
Family
ID=59016922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015233126A Active JP6555103B2 (ja) | 2015-11-30 | 2015-11-30 | シリコンウェーハの評価方法およびその利用 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6555103B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019123706A1 (ja) * | 2017-12-22 | 2019-06-27 | グローバルウェーハズ・ジャパン株式会社 | 金属汚染評価方法 |
JP2019129223A (ja) * | 2018-01-24 | 2019-08-01 | 株式会社Sumco | シリコン層の評価方法およびシリコンエピタキシャルウェーハの製造方法 |
CN112366146A (zh) * | 2020-11-05 | 2021-02-12 | 天津中环领先材料技术有限公司 | 一种晶圆片的寿命测试方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07240450A (ja) * | 1994-02-28 | 1995-09-12 | Nec Yamagata Ltd | 担体寿命測定方法 |
JP2007042950A (ja) * | 2005-08-04 | 2007-02-15 | Sumco Corp | エピタキシャル層の品質評価方法、soi層の品質評価方法、シリコンウェーハの製造方法 |
JP2010040688A (ja) * | 2008-08-04 | 2010-02-18 | Shin Etsu Handotai Co Ltd | シリコン基板の評価方法、汚染検出方法及びエピタキシャル基板の製造方法 |
JP2010040793A (ja) * | 2008-08-06 | 2010-02-18 | Sumco Corp | 熱処理炉評価用ウェーハ、熱処理炉評価方法および半導体ウェーハの製造方法 |
-
2015
- 2015-11-30 JP JP2015233126A patent/JP6555103B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07240450A (ja) * | 1994-02-28 | 1995-09-12 | Nec Yamagata Ltd | 担体寿命測定方法 |
JP2007042950A (ja) * | 2005-08-04 | 2007-02-15 | Sumco Corp | エピタキシャル層の品質評価方法、soi層の品質評価方法、シリコンウェーハの製造方法 |
JP2010040688A (ja) * | 2008-08-04 | 2010-02-18 | Shin Etsu Handotai Co Ltd | シリコン基板の評価方法、汚染検出方法及びエピタキシャル基板の製造方法 |
JP2010040793A (ja) * | 2008-08-06 | 2010-02-18 | Sumco Corp | 熱処理炉評価用ウェーハ、熱処理炉評価方法および半導体ウェーハの製造方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019123706A1 (ja) * | 2017-12-22 | 2019-06-27 | グローバルウェーハズ・ジャパン株式会社 | 金属汚染評価方法 |
JP2019114633A (ja) * | 2017-12-22 | 2019-07-11 | グローバルウェーハズ・ジャパン株式会社 | 金属汚染評価方法 |
CN111480219A (zh) * | 2017-12-22 | 2020-07-31 | 环球晶圆日本股份有限公司 | 金属污染评价方法 |
KR20200100783A (ko) * | 2017-12-22 | 2020-08-26 | 글로벌웨어퍼스 재팬 가부시키가이샤 | 금속 오염 평가 방법 |
EP3731263A4 (en) * | 2017-12-22 | 2021-09-08 | GLobalWafers Japan Co., Ltd. | METAL CONTAMINATION ASSESSMENT PROCESS |
JP7057122B2 (ja) | 2017-12-22 | 2022-04-19 | グローバルウェーハズ・ジャパン株式会社 | 金属汚染評価方法 |
KR102463966B1 (ko) * | 2017-12-22 | 2022-11-04 | 글로벌웨어퍼스 재팬 가부시키가이샤 | 금속 오염 평가 방법 |
US11538721B2 (en) | 2017-12-22 | 2022-12-27 | Globalwafers Japan Co., Ltd. | Evaluation method of metal contamination |
JP2019129223A (ja) * | 2018-01-24 | 2019-08-01 | 株式会社Sumco | シリコン層の評価方法およびシリコンエピタキシャルウェーハの製造方法 |
WO2019146505A1 (ja) * | 2018-01-24 | 2019-08-01 | 株式会社Sumco | シリコン層の評価方法およびシリコンエピタキシャルウェーハの製造方法 |
US11183433B2 (en) | 2018-01-24 | 2021-11-23 | Sumco Corporation | Method of evaluating silicon layer and a method of manufacturing silicon epitaxial wafer |
CN112366146A (zh) * | 2020-11-05 | 2021-02-12 | 天津中环领先材料技术有限公司 | 一种晶圆片的寿命测试方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6555103B2 (ja) | 2019-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6555103B2 (ja) | シリコンウェーハの評価方法およびその利用 | |
JP7172747B2 (ja) | シリコン単結晶の抵抗率測定方法 | |
JP6696729B2 (ja) | 半導体基板の評価方法及び半導体基板の製造方法 | |
JP5407212B2 (ja) | 熱処理炉評価方法および半導体ウェーハの製造方法 | |
TWI717628B (zh) | 金屬污染評價方法 | |
KR20170018309A (ko) | 반도체 기판의 결함영역의 평가방법 | |
JP2013084840A (ja) | 金属汚染評価方法及びエピタキシャルウェーハの製造方法 | |
JP5742742B2 (ja) | 金属汚染評価方法 | |
JP5949303B2 (ja) | エピタキシャル成長炉の評価方法およびエピタキシャルウェーハの製造方法 | |
JP5720557B2 (ja) | 半導体基板の評価方法および半導体基板の製造方法 | |
US20250138080A1 (en) | Evaluation method of metal contamination | |
CN109075076B (zh) | 硅晶片 | |
JP5742739B2 (ja) | 金属汚染評価用シリコン基板の選別方法 | |
JP6421711B2 (ja) | 再結合ライフタイム測定の前処理方法 | |
JP5630426B2 (ja) | 気相成長装置の清浄度評価方法 | |
JP5454298B2 (ja) | 半導体基板の製造方法 | |
JP5574244B2 (ja) | 気相成長装置の清浄度評価方法 | |
JP5614394B2 (ja) | 気相成長装置の清浄度評価方法 | |
JP2009182233A (ja) | アニールウェーハの洗浄方法 | |
JP2010140994A (ja) | シリコンウエハの評価方法 | |
JP2017009307A (ja) | 半導体基板の評価方法 | |
JP2008021707A (ja) | 半導体基板の評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190516 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190611 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6555103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |