[go: up one dir, main page]

JP2017094309A - Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method - Google Patents

Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method Download PDF

Info

Publication number
JP2017094309A
JP2017094309A JP2015231618A JP2015231618A JP2017094309A JP 2017094309 A JP2017094309 A JP 2017094309A JP 2015231618 A JP2015231618 A JP 2015231618A JP 2015231618 A JP2015231618 A JP 2015231618A JP 2017094309 A JP2017094309 A JP 2017094309A
Authority
JP
Japan
Prior art keywords
aldehyde
copper
cerium
removal
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015231618A
Other languages
Japanese (ja)
Other versions
JP6759565B2 (en
Inventor
有希 岡田
Yuki Okada
有希 岡田
小林 真申
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2015231618A priority Critical patent/JP6759565B2/en
Publication of JP2017094309A publication Critical patent/JP2017094309A/en
Application granted granted Critical
Publication of JP6759565B2 publication Critical patent/JP6759565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low temperature removal catalyst and a removal method for aldehyde gas, which have high performance of aldehyde gas removal in a low temperature region without using a noble metal and have little effect on environmental pollution and human body.SOLUTION: The problem can be solved by: using a composite metal catalyst containing cerium and copper; making the catalyst come in contact with aldehyde gas which is oxidatively decomposed; and having decomposition products of the aldehyde gas adsorbed and removed by the catalyst.SELECTED DRAWING: None

Description

本発明は、アルデヒド類除去触媒とその製造方法、アルデヒド類ガスの除去方法に関するものである。   The present invention relates to an aldehyde removal catalyst, a method for producing the catalyst, and a method for removing aldehyde gas.

従来より、建物の室内や自動車の車内等におけるタバコ臭の除去を主目的として、空気清浄機や脱臭剤が広く用いられている。これらは、タバコ臭の主成分であるアセトアルデヒド、あるいは、シックハウスの原因物質であるホルムアルデヒド等の除去を目的とするものであり、多くの除去剤の検討がなされている。その中でも、活性炭は各種有機物質を吸着除去する材料として古くから知られているが、低分子で高極性の有機物(例えば、アセトアルデヒド、ホルムアルデヒド等)は十分吸着除去することができず、上述の用途に用いる場合は、活性炭にアミン類やアスコルビン酸等を担持させて吸着除去能を高めたものが用いられている。   Conventionally, air purifiers and deodorizing agents have been widely used mainly for the purpose of removing tobacco odors in the interior of buildings or in automobiles. These are intended to remove acetaldehyde, which is the main component of tobacco odor, or formaldehyde, which is a causative substance of sick house, and many removal agents have been studied. Among them, activated carbon has long been known as a material for adsorbing and removing various organic substances, but it cannot sufficiently adsorb and remove low-molecular and high-polarity organic substances (for example, acetaldehyde, formaldehyde, etc.). In the case of use in the present invention, an activated carbon having amines, ascorbic acid or the like supported thereon to enhance the adsorption removal ability is used.

このように、アミン類を担持させたものとしては、例えば、アニリンを用いたものや(特許文献1)、エタノール系アミン等を用いたものが開示されている(特許文献2)。   Thus, as what carried amines, the thing using aniline (patent document 1), the thing using ethanol system amine, etc. are disclosed, for example (patent document 2).

しかしながら、アミン類を担持させる技術は、担持アミン類の状態は不安定であることから、熱的および経時的な化学変化による失活が起こりやすく、長期にわたって満足すべき除去性能を発現することが困難であるという問題がある。また、アスコルビン酸においても、吸湿すると空気中で容易に酸化分解され、失活してしまい性能劣化が起こるという問題がある。   However, the technology for supporting amines is unstable in the state of the supported amines, and thus is easily deactivated due to thermal and chemical changes over time, and can exhibit satisfactory removal performance over a long period of time. There is a problem that it is difficult. In addition, ascorbic acid also has a problem that when it absorbs moisture, it is easily oxidized and decomposed in the air and deactivated, resulting in performance deterioration.

一方、アルデヒド類ガスの処理技術として、貴金属担持触媒を用いてアルデヒド類を酸化分解する処理技術が知られている。前記、貴金属担持触媒として、例えば、金担持セリウム含有酸化物があるが(特許文献3)、このものは貴金属を使用しているため、コスト高になるという問題がある。   On the other hand, as a processing technique for aldehyde gases, a processing technique for oxidatively decomposing aldehydes using a noble metal-supported catalyst is known. As the noble metal-supported catalyst, for example, there is a gold-supported cerium-containing oxide (Patent Document 3). However, since this uses a noble metal, there is a problem that the cost increases.

また、貴金属を用いない揮発性有機化合物分解用触媒としてセリウム・コバルト・銅を含む複合酸化物や(特許文献4、特許文献5)、セリウム・マンガンを含む複合酸化物からなるホルムアルデヒド酸化触媒(特許文献6)が開示されている。しかしながら、かかるコバルト含有複合酸化物やマンガン含有複合酸化物は、PRTR第一種指定化学物質であるコバルト化合物やマンガン化合物が含有されており、環境汚染の懸念がある。また、これらは低温では活性が低く、100℃より高い温度をかけなければ、十分な除去性能を得られないという問題がある。   In addition, as a catalyst for decomposing volatile organic compounds that do not use precious metals, complex oxides containing cerium, cobalt, and copper (Patent Documents 4 and 5), and formaldehyde oxidation catalysts comprising complex oxides containing cerium and manganese (patents) Document 6) is disclosed. However, such cobalt-containing composite oxides and manganese-containing composite oxides contain cobalt compounds and manganese compounds that are PRTR first-class designated chemical substances, and there is a concern about environmental pollution. Further, these have low activity at low temperatures, and there is a problem that sufficient removal performance cannot be obtained unless a temperature higher than 100 ° C. is applied.

さらに、マンガンやコバルトを含まないセリウム酸化物単体では、低温でアルデヒドの除去性能はあるものの、分解生成物としてアルコールが発生し、それらが除去材には吸着せず空気中に飛散するため人体に有害である。   Furthermore, although cerium oxide alone, which does not contain manganese or cobalt, has the ability to remove aldehydes at low temperatures, alcohol is generated as a decomposition product, which does not adsorb on the removal material and scatters in the air. It is harmful.

上述のとおり、貴金属を用いず、低温領域で、また環境汚染や人体への影響が低く、かつ、除去性能の高いアルデヒド類ガスの除去触媒は見当たらないのが現状である。本願で言う低温領域とは、100℃以下のことである。   As described above, there is currently no aldehyde gas removal catalyst that does not use precious metals, has a low temperature range, has a low influence on environmental pollution and the human body, and has a high removal performance. The low temperature region referred to in the present application is 100 ° C. or lower.

特開昭56−53744号公報JP 56-53744 A 特開昭60−202735号公報JP-A-60-202735 特開2004−74069号公報JP 2004-74069 A 特許第5414719号公報Japanese Patent No. 5414719 特許第5422320号公報Japanese Patent No. 5422320 特開2010−58074号公報JP 2010-58074 A

本発明は、貴金属を用いずに、低温領域において、アルデヒド類ガスの除去性能が高く、かつ、環境汚染や人体への影響が低いアルデヒド類ガスの低温除去触媒とその製造方法、アルデヒド類ガスの除去方法を提供することを目的とする。   The present invention provides a low-temperature removal catalyst for aldehyde gases, which has high aldehyde gas removal performance in a low-temperature region without using precious metals, and has low impact on the environment and the human body, a method for producing the same, and a method for producing aldehyde gases. An object is to provide a removal method.

本発明者らは上記の課題を解決するために、鋭意研究した結果、遂に本発明を完成するに到った。すなわち本発明は、以下の構成からなる。
1.セリウムと銅を含有する複合金属触媒であって、該複合金属酸化物中に銅をCuO換算で4〜20質量%含有することを特徴とするアルデヒド類除去触媒。
2.100℃以下の低温でアルデヒド類除去性能を有することを特徴とする、上記1に記載のアルデヒド類除去触媒。
3.アセトアルデヒド100ppmを含む空気をアルデヒド類除去触媒の存在下で密封して80℃で100分間加熱した際に、エタノールが生成しないことを特徴とする、上記1または2に記載のアルデヒド類除去触媒。
4.セリウムと銅を含有する複合金属酸化物のBET比表面積が30m/g以上であることを特徴とする上記1〜3のいずれかに記載のアルデヒド類低温除去触媒。
5.セリウム塩と銅塩から共沈法により得られた化合物を焼成することを特徴とする、上記1〜4のいずれかに記載のアルデヒド類除去触媒の製造方法。
6.前記セリウム塩と銅塩がいずれも硝酸塩であることを特徴とする上記5に記載のアルデヒド類除去触媒の製造方法。
7.上記1〜5のいずれかに記載のアルデヒド類除去触媒を、アルデヒド類ガスに接触させて酸化分解させ、かつアルデヒド類ガスの分解生成物を前記触媒が吸着除去することを特徴とするアルデヒド類ガスの除去方法。
8.上記1〜4のいずれかに記載のアルデヒド類除去触媒を用いて、40℃〜100℃の範囲内の低温加熱によりアルデヒド類ガスを除去することを特徴とする、アルデヒド類ガスの除去方法。
As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, this invention consists of the following structures.
1. A composite metal catalyst containing cerium and copper, wherein the composite metal oxide contains 4 to 20% by mass of copper in terms of CuO.
2. The aldehyde removal catalyst according to 1 above, which has an aldehyde removal performance at a low temperature of 100 ° C. or lower.
3. 3. The aldehyde removal catalyst according to 1 or 2 above, wherein ethanol is not produced when air containing 100 ppm of acetaldehyde is sealed in the presence of an aldehyde removal catalyst and heated at 80 ° C. for 100 minutes.
4). 4. The low temperature removal catalyst for aldehydes according to any one of 1 to 3 above, wherein the composite metal oxide containing cerium and copper has a BET specific surface area of 30 m 2 / g or more.
5. The method for producing an aldehyde removal catalyst according to any one of the above 1 to 4, wherein a compound obtained by coprecipitation from cerium salt and copper salt is calcined.
6). 6. The method for producing an aldehyde removal catalyst according to 5 above, wherein the cerium salt and the copper salt are both nitrates.
7). An aldehyde gas characterized in that the aldehyde removal catalyst according to any one of the above 1 to 5 is brought into contact with an aldehyde gas to undergo oxidative decomposition, and the decomposition product of the aldehyde gas is adsorbed and removed by the catalyst. Removal method.
8). A method for removing aldehyde gas, wherein the aldehyde gas is removed by low-temperature heating within a range of 40 ° C to 100 ° C using the aldehyde removal catalyst according to any one of 1 to 4 above.

本発明によるアルデヒド類除去触媒は、セリウム塩と銅塩から共沈法により得られた化合物を焼成したセリウム−銅複合酸化物であるため、低温領域においてアルデヒド類ガスの除去性能が高く、環境汚染への影響が少ないという利点を有する。また、本発明のアルデヒド類除去触媒はアルデヒド類ガスを酸化分解し、アルデヒド類ガスの分解生成物を触媒が吸着除去するため、空気中に分解成分が漂うことがなく、人体への影響が少ないアルデヒド類ガスの除去方法といえる。   The aldehyde removal catalyst according to the present invention is a cerium-copper composite oxide obtained by calcining a compound obtained from a cerium salt and a copper salt by a coprecipitation method. It has the advantage that there is little influence on. Further, the aldehyde removal catalyst of the present invention oxidatively decomposes aldehyde gas, and the catalyst absorbs and removes the decomposition product of aldehyde gas, so that no decomposition component drifts in the air, and there is little influence on the human body. This can be said to be a method for removing aldehyde gases.

以下、本発明を詳細に説明する。
本発明における、アルデヒド類除去触媒は、セリウム−銅含有複合金属酸化物から構成されている。セリウム−銅複合酸化物の合成法は、原材料としてセリウム塩と銅塩を用い、共沈法により化合物を得て、それらを焼成する方法が好ましい。共沈法を用いて合成したセリウム−銅複合酸化物をアルデヒド類低温除去触媒として使用することにより、環境汚染や人体への影響が低く、かつ、低温領域においてアルデヒド類ガスを高い効率で除去できることを見出した。ここで言うアルデヒド類としては、ホルムアルデヒド、アセトアルデヒドなどが挙げられる。また、共沈法とは2種類以上の金属イオンを含む溶液から複数種類の難溶性塩を同時に沈殿させる方法であり、均一性の高い化合物を得ることが可能である。
Hereinafter, the present invention will be described in detail.
The aldehyde removal catalyst in the present invention is composed of a cerium-copper-containing composite metal oxide. The method for synthesizing the cerium-copper composite oxide is preferably a method in which a cerium salt and a copper salt are used as raw materials, a compound is obtained by a coprecipitation method, and they are fired. By using the cerium-copper composite oxide synthesized using the coprecipitation method as a low-temperature removal catalyst for aldehydes, it has low impact on the environment and the human body, and aldehyde gases can be removed with high efficiency in the low-temperature region. I found. Examples of aldehydes mentioned here include formaldehyde and acetaldehyde. The coprecipitation method is a method in which a plurality of types of hardly soluble salts are simultaneously precipitated from a solution containing two or more types of metal ions, and a highly uniform compound can be obtained.

本発明のセリウムと銅を含有する複合酸化物からなるアルデヒド類除去触媒において、共沈法により合成するのが好ましい。共沈法以外の合成法、例えば、酸化物同士の物理的混合や炭酸塩の混合粉末を焼成した炭酸塩分解等では、銅元素がセリウム元素中に高分散されず、その結果、アルデヒド類ガスが触媒近傍に来た際、銅とセリウムの相乗効果が発現できず、人体への影響が低くかつ低温領域においてアルデヒド類ガスを高い効率で除去することはできない。ここでいう、人体への影響が低い触媒とは、触媒によりアルデヒド類ガスを分解した際、アルコールやカルボン酸など人体に有害な分解生成物を空気中に発生させない触媒のことである。前途の相乗効果のメカニズムは明確ではないが、次の(1)〜(4)のように推測される。   In the aldehyde removal catalyst comprising a complex oxide containing cerium and copper according to the present invention, it is preferably synthesized by a coprecipitation method. In synthesis methods other than the coprecipitation method, for example, physical decomposition of oxides or decomposition of carbonate by baking carbonate mixed powder, copper element is not highly dispersed in cerium element, and as a result, aldehyde gas However, when it comes to the vicinity of the catalyst, the synergistic effect of copper and cerium cannot be expressed, the influence on the human body is low, and the aldehyde gas cannot be removed with high efficiency in a low temperature region. The catalyst having a low influence on the human body is a catalyst that does not generate decomposition products harmful to the human body such as alcohol and carboxylic acid in the air when the aldehyde gas is decomposed by the catalyst. Although the mechanism of the synergistic effect is not clear, it is presumed as the following (1) to (4).

つまり、最初に、(1)アルデヒド類ガスがセリウム元素上に補足される、次に、(2)セリウム元素上に補足されたアルデヒド類ガスがセリウムの電子授受作用により活性化され分解されやすい状態になる、そして、(3)そのごく近傍に位置する銅元素により、セリウム元素上で活性化されたアルデヒド類ガスが酢酸に酸化分解される。その際、(4)近傍に位置するセリウム元素からの電子授受作用を受け、銅元素においても、その分解力が向上していると考えられる。また、酸化セリウムは以下の式のように酸素を吸放出する作用もあるため、酸素供給源として働き、銅を触媒としたアルデヒド類ガスの酸化分解を促進していると考えられる。
2CeO ⇔ Ce+ O
That is, first, (1) the aldehyde gas is captured on the cerium element, and then (2) the aldehyde gas captured on the cerium element is activated and easily decomposed by the electron transfer function of cerium. (3) The aldehyde gas activated on the cerium element is oxidatively decomposed into acetic acid by the copper element located in the very vicinity thereof. At that time, (4) it is considered that the decomposing power is improved also in the copper element due to the electron transfer action from the cerium element located in the vicinity. Further, since cerium oxide also has an action of absorbing and releasing oxygen as in the following formula, it is considered that it acts as an oxygen supply source and promotes oxidative decomposition of aldehyde gas using copper as a catalyst.
2CeO 2 ⇔ Ce 2 O 3 + O

このように、共沈法を用いて銅元素がセリウム元素中に高分散され、銅とセリウムが近傍にいる場合には、銅を触媒とした酸化分解が進行し、酢酸が生成する。この酢酸は触媒に吸着除去されるため、空気中には分散しない。一方で、共沈法以外の方法を用いた場合では、セリウム単体によるアルデヒド類ガスの不均化反応が進行し、酢酸とエタノールが生成する。この場合、酢酸は触媒に吸着除去されるが、エタノールは除去されずに空気中に漂うため、人体に有害である。   As described above, when the copper element is highly dispersed in the cerium element using the coprecipitation method, and copper and cerium are in the vicinity, oxidative decomposition using copper as a catalyst proceeds to produce acetic acid. Since this acetic acid is adsorbed and removed by the catalyst, it is not dispersed in the air. On the other hand, when a method other than the coprecipitation method is used, the disproportionation reaction of the aldehyde gas by cerium alone proceeds to produce acetic acid and ethanol. In this case, acetic acid is adsorbed and removed by the catalyst, but ethanol is not removed and drifts in the air, which is harmful to the human body.

セリウムと銅を含有する複合金属酸化物からなるアルデヒド類低温除去触媒は、上述したように共沈法により合成される。合成手順としては、セリウム塩と銅塩を含む水溶液を調整し、アルカリを添加して沈殿物を生成させ、この沈殿物を焼成することによって得ることができる。合成原料として用いるセリウム塩、銅塩としては、硝酸塩、硫酸塩、炭酸塩、水和物、塩化物等を挙げることができ、硝酸塩が好ましい。アルカリは、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムや水酸化アンモニウム溶液等を挙げることができる。一次粒子の粒径をより小さくし、また調製後の試料に不純物が残らないようにするという観点から水酸化アンモニウム溶液を用いることが好ましい。沈殿物を生成させるための水溶液のpHとしては、7〜12、好ましくは8〜10である。得られた沈殿物を乾燥し、空気中で焼成する。乾燥温度は好ましくは30〜120℃であり、乾燥時間は好ましくは5〜10時間で真空乾燥することが好ましい。焼成温度は好ましくは300℃〜800℃、より好ましくは、500℃〜700℃である。焼成時間は好ましくは1時間〜8時間、より好ましくは3時間〜6時間である。   An aldehyde low temperature removal catalyst comprising a composite metal oxide containing cerium and copper is synthesized by a coprecipitation method as described above. As a synthesis procedure, it can be obtained by preparing an aqueous solution containing a cerium salt and a copper salt, adding an alkali to form a precipitate, and firing the precipitate. Examples of the cerium salt and copper salt used as the raw material for synthesis include nitrates, sulfates, carbonates, hydrates, chlorides and the like, and nitrates are preferred. Examples of the alkali include sodium hydroxide, potassium hydroxide, sodium carbonate and ammonium hydroxide solution. It is preferable to use an ammonium hydroxide solution from the viewpoint of reducing the particle size of the primary particles and preventing impurities from remaining in the prepared sample. As pH of the aqueous solution for producing | generating a deposit, it is 7-12, Preferably it is 8-10. The resulting precipitate is dried and calcined in air. The drying temperature is preferably 30 to 120 ° C., and the drying time is preferably 5 to 10 hours. The firing temperature is preferably 300 ° C to 800 ° C, more preferably 500 ° C to 700 ° C. The firing time is preferably 1 hour to 8 hours, more preferably 3 hours to 6 hours.

セリウムと銅を含有する複合酸化物における銅の含有率は、特に制限されるものではないが、銅の触媒能をより高める観点からCuO換算で4〜20質量%が好ましく、より好ましくは4〜15質量%であり、もっとも好ましくは4〜7質量%で含有されることが好ましい。4質量%未満以下であると、銅酸化物が少なすぎるため、前記相乗効果メカニズムにおける(3)の影響が小さくなり、結果として十分な除去性能が実現できなくなる。また、20質量%以上を超えるとセリウム元素が銅元素により被覆され、前記相乗効果のメカニズムにおける(1)、および、(2)が阻害されてしまい、相乗効果が小さくなり、その結果、十分な除去性能が実現できなくなる。   The copper content in the composite oxide containing cerium and copper is not particularly limited, but is preferably 4 to 20% by mass, more preferably 4 to 20% in terms of CuO from the viewpoint of further enhancing the catalytic ability of copper. It is preferably 15% by mass, and most preferably 4 to 7% by mass. If it is less than 4% by mass, the amount of copper oxide is too small, and therefore the influence of (3) in the synergistic effect mechanism becomes small, and as a result, sufficient removal performance cannot be realized. Moreover, when it exceeds 20 mass%, a cerium element is coat | covered with a copper element, (1) and (2) in the mechanism of the said synergistic effect will be inhibited, and a synergistic effect will become small, As a result, sufficient Removal performance cannot be realized.

また、セリウムの含有率としては、CeO換算で80〜96質量%が好ましく、より好ましくは85〜96質量%であり、もっとも好ましくは93〜96質量%で含有されることが好ましい。96質量%を超えると、セリウム量が多すぎるため、前記相乗効果メカニズムにおける(3)が有効に働かず、そもそも酸化反応が進行しにくくなる。また、80質量%未満以下ではセリウム元素が銅元素により被覆され、前記相乗効果のメカニズムにおける(1)、および、(2)が阻害されてしまい、相乗効果が小さくなり、その結果、十分な除去性能が実現できなくなる。   The content of cerium is preferably 80 to 96% by mass in terms of CeO, more preferably 85 to 96% by mass, and most preferably 93 to 96% by mass. When it exceeds 96 mass%, since the amount of cerium is too large, (3) in the synergistic effect mechanism does not work effectively, and the oxidation reaction hardly proceeds in the first place. If the amount is less than 80% by mass, the cerium element is coated with the copper element, and (1) and (2) in the mechanism of the synergistic effect are hindered, and the synergistic effect is reduced. Performance cannot be realized.

セリウムと銅を含有する複合金属酸化物におけるBET比表面積は、30m/g以上であることが好ましい。30m/g未満であると、細孔による濃縮効果が小さく、触媒の反応速度が遅くなる。 The BET specific surface area of the composite metal oxide containing cerium and copper is preferably 30 m 2 / g or more. If it is less than 30 m 2 / g, the concentration effect by the pores is small, and the reaction rate of the catalyst becomes slow.

本発明のアルデヒド類除去触媒を用いてアルデヒド類ガスを除去する方法としては、アルデヒド類ガスを40℃〜100℃、好ましくは80℃〜100℃で本発明のアルデヒド類除去触媒と接触させればよい。低温でアルデヒド類ガスを除去できることにより家庭用、自動車用のフィルターに使用することが可能で、工場の排ガス処理装置に搭載し低エネルギーでアルデヒド類を分解することが可能である。   As a method for removing the aldehyde gas using the aldehyde removal catalyst of the present invention, the aldehyde gas is brought into contact with the aldehyde removal catalyst of the present invention at 40 to 100 ° C., preferably 80 to 100 ° C. Good. The ability to remove aldehyde gases at a low temperature makes it possible to use them in household and automobile filters, and they can be installed in factory exhaust gas treatment equipment to decompose aldehydes with low energy.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、実施例及び比較例中における分析または評価は、以下のようにして行った。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range. In addition, the analysis or evaluation in an Example and a comparative example was performed as follows.

<複合金属酸化物における金属比の測定方法>
走査型蛍光X線分析装置(RIGAKU製ZSX100e:4.0kw Rh管球)を使用し、薄膜FP法(ファンダメンタルパラメータ法)により理論計算を行って定量を行った。複合金属酸化物中の酸化セリウム、酸化銅、酸化ジルコニウム、酸化鉄は、それぞれCeO2、CuO、Zr2O3、Fe2O3の組成であると仮定し、それぞれの含有率(重量分率)を算出した。
<Measuring method of metal ratio in composite metal oxide>
Using a scanning X-ray fluorescence analyzer (ZSX100e: 4.0 kW Rh tube manufactured by RIGAKU), quantitative analysis was performed by performing a theoretical calculation by a thin film FP method (fundamental parameter method). The cerium oxide, copper oxide, zirconium oxide, and iron oxide in the composite metal oxide were assumed to have a composition of CeO2, CuO, Zr2O3, and Fe2O3, respectively, and the respective contents (weight fractions) were calculated.

<BET比表面積の測定方法>
サンプルを約100mg採取し、120℃で12時間真空乾燥した後、秤量した。高機能比表面積/細孔分布測定装置(Micromeritics社製「ASAP2020」)を使用し、液体窒素の沸点(−195.8℃)における窒素ガスの吸着量を相対圧が0.02〜0.95の範囲で徐々に高めながら40点測定し、前記サンプルの吸着等温線を作製した。解析ソフトウェア(Micromeritics社製「ASAP 2020 V3.04」)を用い、相対圧0.02〜0.15での結果をBETプロットし、重量当たりのBET比表面積(m/g)を求めた。
<Measurement method of BET specific surface area>
About 100 mg of a sample was taken, vacuum-dried at 120 ° C. for 12 hours, and then weighed. Using a high-functional specific surface area / pore distribution measuring device (“ASAP2020” manufactured by Micromeritics), the adsorption amount of nitrogen gas at the boiling point (-195.8 ° C.) of liquid nitrogen is 0.02 to 0.95. 40 points were measured while gradually increasing in the above range, and an adsorption isotherm of the sample was prepared. Using analysis software (“ASAP 2020 V3.04” manufactured by Micromeritics), the results at a relative pressure of 0.02 to 0.15 were BET-plotted to obtain the BET specific surface area (m 2 / g) per weight.

<アセトアルデヒド除去性能の測定方法・テドラーバッグ中の揮発ガス成分検出方法>
5Lのテドラーバッグ中にアセトアルデヒド100ppmを含む温度25℃、湿度50RH%の空気、および、サンプル50mgを封入し、80℃に加熱したオーブンに静置した。中に入っているサンプルとアセトアルデヒドを含む空気が十分に接触、反応するように、テドラーバッグを適宜振った。100分後のテドラーバッグ内のアセトアルデヒドガス濃度をFID付きガスクロマトグラフにて測定し、反応前後のアセトアルデヒドの濃度変化からテドラーバッグ中のアセトアルデヒド残存率[%]を求めた。残存率は、下記式(i);
アセトアルデヒド残存率(%)={(100分後のテドラーバッグ内のアセトアルデヒド濃度)/(反応前のテドラーバッグ中のアセトアルデヒド濃度(100ppm))}×100・・・・(i)
に基づき算出した。そのため、100分後のテドラーバッグ中のアセトアルデヒド残存率が低いほど性能が高いと言える。なお、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分に関しても、アセトアルデヒド同様にガスクロマトグラフにより測定した。
<Method for measuring acetaldehyde removal performance / Method for detecting volatile gas components in Tedlar bag>
A 5 L Tedlar bag containing 100 ppm of acetaldehyde at a temperature of 25 ° C. and a humidity of 50 RH% and a sample of 50 mg were sealed and placed in an oven heated to 80 ° C. The Tedlar bag was shaken appropriately so that the sample contained therein and the air containing acetaldehyde sufficiently contacted and reacted. The acetaldehyde gas concentration in the Tedlar bag after 100 minutes was measured with a gas chromatograph with FID, and the residual acetaldehyde ratio [%] in the Tedlar bag was determined from the change in the concentration of acetaldehyde before and after the reaction. The residual rate is the following formula (i);
Acetaldehyde residual ratio (%) = {(Acetaldehyde concentration in Tedlar bag after 100 minutes) / (Acetaldehyde concentration in Tedlar bag before reaction (100 ppm))} × 100 (i)
Calculated based on Therefore, it can be said that the lower the acetaldehyde residual rate in the Tedlar bag after 100 minutes, the higher the performance. Note that the volatile gas components other than acetaldehyde in the Tedlar bag were also measured by a gas chromatograph in the same manner as acetaldehyde.

<実施例1>
硝酸銅(II)三水和物(ナカライテスク社製)0.7g、硝酸セリウム(III)六水和物(ナカライテスク社製)5gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、濾過・洗浄して集めた沈殿物を120℃、6時間真空乾燥を行い、余分な水分を排除した。そして、乾燥した沈殿物を650℃、5時間空気中で焼成することにより、触媒サンプルを得た。得られた触媒サンプルについて、BET比表面積、アセトアルデヒド除去性能、銅とセリウムの金属混合比率、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Example 1>
Copper (II) nitrate trihydrate (manufactured by Nacalai Tesque) 0.7 g and cerium nitrate (III) hexahydrate (manufactured by Nacalai Tesque) 5 g were dissolved in 75 ml of ion-exchanged water and 28% with stirring. Aqueous ammonia was added slowly until the solution pH was 10. After stirring for 1 hour at room temperature, the precipitate collected by filtration and washing was vacuum-dried at 120 ° C. for 6 hours to remove excess water. And the catalyst sample was obtained by baking the dried deposit in the air for 650 degreeC and 5 hours. About the obtained catalyst sample, the BET specific surface area, the acetaldehyde removal performance, the metal mixing ratio of copper and cerium, and volatile gas components other than acetaldehyde in the Tedlar bag were measured.

<実施例2>
硝酸銅(II)三水和物(ナカライテスク社製)1.2g、硝酸セリウム(III)六水和物(ナカライテスク社製)4.1gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、濾過・洗浄して集めた沈殿物を120℃、6時間真空乾燥を行い、余分な水分を排除した。そして、乾燥した沈殿物を650℃、5時間空気中で焼成することにより、触媒サンプルを得た。得られた触媒サンプルについて、BET比表面積、アセトアルデヒド除去性能、銅とセリウムの金属混合比率、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Example 2>
While stirring 1.2 g of copper (II) nitrate trihydrate (Nacalai Tesque) and 4.1 g of cerium (III) nitrate hexahydrate (Nacalai Tesque) in 75 ml of ion-exchanged water, stirring 28% aqueous ammonia was slowly added until the solution pH was 10. After stirring for 1 hour at room temperature, the precipitate collected by filtration and washing was vacuum-dried at 120 ° C. for 6 hours to remove excess water. And the catalyst sample was obtained by baking the dried deposit in the air for 650 degreeC and 5 hours. About the obtained catalyst sample, the BET specific surface area, the acetaldehyde removal performance, the metal mixing ratio of copper and cerium, and volatile gas components other than acetaldehyde in the Tedlar bag were measured.

<実施例3>
硝酸銅(II)三水和物(ナカライテスク社製)1.8g、硝酸セリウム(III)六水和物(ナカライテスク社製)3.2gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、濾過・洗浄して集めた沈殿物を120℃、6時間真空乾燥を行い、余分な水分を排除した。そして、乾燥した沈殿物を650℃、5時間空気中で焼成することにより、触媒サンプルを得た。得られた触媒サンプルについて、BET比表面積、アセトアルデヒド除去性能、銅とセリウムの金属混合比率、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Example 3>
While stirring 1.8 g of copper (II) nitrate trihydrate (manufactured by Nacalai Tesque) and 3.2 g of cerium nitrate (III) hexahydrate (manufactured by Nacalai Tesque) in 75 ml of ion-exchanged water, stirring the solution. 28% aqueous ammonia was slowly added until the solution pH was 10. After stirring for 1 hour at room temperature, the precipitate collected by filtration and washing was vacuum-dried at 120 ° C. for 6 hours to remove excess water. And the catalyst sample was obtained by baking the dried deposit in the air for 650 degreeC and 5 hours. About the obtained catalyst sample, the BET specific surface area, the acetaldehyde removal performance, the metal mixing ratio of copper and cerium, and volatile gas components other than acetaldehyde in the Tedlar bag were measured.

<比較例1>
硝酸銅(II)三水和物(ナカライテスク社製)0.3g、硝酸セリウム(III)六水和物(ナカライテスク社製)5.7gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、濾過・洗浄して集めた沈殿物を120℃、6時間真空乾燥を行い、余分な水分を排除した。そして、乾燥した沈殿物を650℃、5時間空気中で焼成することにより、触媒サンプルを得た。得られた触媒サンプルについて、BET比表面積、アセトアルデヒド除去性能、銅とセリウムの金属混合比率、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative Example 1>
While stirring 0.3 g of copper (II) nitrate trihydrate (manufactured by Nacalai Tesque) and 5.7 g of cerium (III) nitrate hexahydrate (manufactured by Nacalai Tesque) in 75 ml of ion-exchanged water, stirring the mixture 28% aqueous ammonia was slowly added until the solution pH was 10. After stirring for 1 hour at room temperature, the precipitate collected by filtration and washing was vacuum-dried at 120 ° C. for 6 hours to remove excess water. And the catalyst sample was obtained by baking the dried deposit in the air for 650 degreeC and 5 hours. About the obtained catalyst sample, the BET specific surface area, the acetaldehyde removal performance, the metal mixing ratio of copper and cerium, and volatile gas components other than acetaldehyde in the Tedlar bag were measured.

<比較例2>
硝酸銅(II)三水和物(ナカライテスク社製)3.5gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、その溶液を真空乾燥し、さらに、650℃、5時間空気中で焼成することにより、サンプルを得た。得られたサンプルについて、BET比表面積、アセトアルデヒド除去性能、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative example 2>
Copper (II) nitrate trihydrate (manufactured by Nacalai Tesque) (3.5 g) was dissolved in 75 ml of ion-exchanged water, and 28% aqueous ammonia was slowly added with stirring until the solution pH reached 10. After stirring at room temperature for 1 hour, the solution was vacuum-dried and further calcined in air at 650 ° C. for 5 hours to obtain a sample. About the obtained sample, BET specific surface area, acetaldehyde removal performance, and volatile gas components other than acetaldehyde in a Tedlar bag were measured.

<比較例3>
硝酸セリウム(III)六水和物(ナカライテスク社製)6.3gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、濾過・洗浄して集めた沈殿物を120℃、6時間真空乾燥を行い、余分な水分を排除した。そして、乾燥した沈殿物を650℃、5時間空気中で焼成することにより、サンプルを得た。得られたサンプルについて、BET比表面積、アセトアルデヒド除去性能、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative Example 3>
6.3 g of cerium (III) nitrate hexahydrate (manufactured by Nacalai Tesque) was dissolved in 75 ml of ion-exchanged water, and 28% aqueous ammonia was slowly added with stirring until the pH of the solution reached 10. After stirring for 1 hour at room temperature, the precipitate collected by filtration and washing was vacuum-dried at 120 ° C. for 6 hours to remove excess water. And the sample was obtained by baking the dried deposit in air at 650 degreeC for 5 hours. About the obtained sample, BET specific surface area, acetaldehyde removal performance, and volatile gas components other than acetaldehyde in a Tedlar bag were measured.

<比較例4>
比較例1で調製した酸化銅5.5mg、比較例2で調製した酸化セリウム50mgを乳鉢で30分間混合し、サンプルを得た。得られたサンプルについて、アセトアルデヒド除去性能、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative example 4>
A sample was obtained by mixing 5.5 mg of copper oxide prepared in Comparative Example 1 and 50 mg of cerium oxide prepared in Comparative Example 2 in a mortar for 30 minutes. About the obtained sample, acetaldehyde removal performance and volatile gas components other than acetaldehyde in a tedlar bag were measured.

<比較例5>
比較例1で調製した酸化銅50mg、比較例2で調製した酸化セリウム50mgを乳鉢で30分間混合し、サンプルを得た。得られたサンプルについて、アセトアルデヒド除去性能、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative Example 5>
50 mg of copper oxide prepared in Comparative Example 1 and 50 mg of cerium oxide prepared in Comparative Example 2 were mixed in a mortar for 30 minutes to obtain a sample. About the obtained sample, acetaldehyde removal performance and volatile gas components other than acetaldehyde in a tedlar bag were measured.

<比較例6>
オキシ硝酸ジルコニウム二水和物(ナカライテスク社製)1.9g、硝酸セリウム(III)六水和物(ナカライテスク社製)3.2gを75mlのイオン交換水に溶解させ、撹拌しながら1M水酸化ナトリウム水溶液を溶液pHが10になるまでゆっくりと添加した。18時間室温で撹拌した後、その溶液を80℃で2時間加熱し、沈殿物をろ過・洗浄した。得られた沈殿物は110℃で終夜乾燥した後、400℃、4時間空気中で焼成することにより、サンプルを得た。得られたサンプルについて、BET比表面積、アセトアルデヒド除去性能、ジルコニウムとセリウムの金属混合比率、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative Example 6>
1.9 g of zirconium oxynitrate dihydrate (manufactured by Nacalai Tesque) and 3.2 g of cerium (III) nitrate hexahydrate (manufactured by Nacalai Tesque) were dissolved in 75 ml of ion-exchanged water and stirred with 1M water. Aqueous sodium oxide was added slowly until the solution pH was 10. After stirring at room temperature for 18 hours, the solution was heated at 80 ° C. for 2 hours, and the precipitate was filtered and washed. The obtained precipitate was dried at 110 ° C. overnight and then calcined in air at 400 ° C. for 4 hours to obtain a sample. About the obtained sample, BET specific surface area, acetaldehyde removal performance, the metal mixing ratio of zirconium and cerium, and volatile gas components other than acetaldehyde in the Tedlar bag were measured.

<比較例7>
硝酸鉄(III)九水和物(和光純薬社製)1.2g、硝酸セリウム(III)六水和物(ナカライテスク社製)5gを75mlのイオン交換水に溶解させ、撹拌しながら28%アンモニア水を溶液pHが10になるまでゆっくりと添加した。1時間室温で撹拌した後、濾過・洗浄して集めた沈殿物を120℃、6時間真空乾燥を行い、余分な水分を排除した。そして、乾燥した沈殿物を650℃、5時間空気中で焼成することにより、サンプルを得た。得られたサンプルについて、BET比表面積、アセトアルデヒド除去性能、鉄とセリウムの金属混合比率、テドラーバッグ中のアセトアルデヒド以外の揮発ガス成分を測定した。
<Comparative Example 7>
Iron nitrate (III) nonahydrate (Wako Pure Chemical Industries, Ltd.) 1.2 g and cerium nitrate (III) hexahydrate (Nacalai Tesque, Inc.) 5 g were dissolved in 75 ml of ion-exchanged water and stirred for 28 % Aqueous ammonia was slowly added until the solution pH was 10. After stirring for 1 hour at room temperature, the precipitate collected by filtration and washing was vacuum-dried at 120 ° C. for 6 hours to remove excess water. And the sample was obtained by baking the dried deposit in air at 650 degreeC for 5 hours. About the obtained sample, BET specific surface area, acetaldehyde removal performance, the metal mixing ratio of iron and cerium, and volatile gas components other than acetaldehyde in the Tedlar bag were measured.

本発明のアルデヒド類低温除去触媒とアルデヒド類ガスの除去方法は、低温度領域で満足すべき除去性能を安価に発現することができ、かつ、環境汚染や人体への影響が低いため、広い分野で用いることができ、産業界に寄与すること大である。 The low temperature removal catalyst for aldehydes and the method for removing aldehyde gas of the present invention can express satisfactory removal performance in a low temperature region at low cost and have low impact on environmental pollution and human body, so that it can be used in a wide range of fields. It can be used in and contributes to the industry.

Claims (8)

セリウムと銅を含有する複合金属触媒であって、該複合金属酸化物中に銅をCuO換算で4〜20質量%含有することを特徴とするアルデヒド類除去触媒。   A composite metal catalyst containing cerium and copper, wherein the composite metal oxide contains 4 to 20% by mass of copper in terms of CuO. 100℃以下の低温でアルデヒド類除去性能を有することを特徴とする、請求項1に記載のアルデヒド類除去触媒。   The aldehyde removal catalyst according to claim 1, which has an aldehyde removal performance at a low temperature of 100 ° C or lower. アセトアルデヒド100ppmを含む空気をアルデヒド類除去触媒の存在下で密封して80℃で100分間加熱した際に、エタノールが生成しないことを特徴とする、請求項1または2に記載のアルデヒド類除去触媒。   The aldehyde removal catalyst according to claim 1 or 2, wherein ethanol is not produced when air containing 100 ppm of acetaldehyde is sealed in the presence of an aldehyde removal catalyst and heated at 80 ° C for 100 minutes. セリウムと銅を含有する複合金属酸化物のBET比表面積が30m/g以上であることを特徴とする請求項1〜3のいずれかに記載のアルデヒド類低温除去触媒。 The aldehyde low temperature removal catalyst according to any one of claims 1 to 3, wherein the BET specific surface area of the composite metal oxide containing cerium and copper is 30 m 2 / g or more. セリウム塩と銅塩から共沈法により得られた化合物を焼成することを特徴とする、請求項1〜4のいずれかに記載のアルデヒド類除去触媒の製造方法。   The method for producing an aldehyde removal catalyst according to any one of claims 1 to 4, wherein a compound obtained by coprecipitation from cerium salt and copper salt is calcined. 前記セリウム塩と銅塩がいずれも硝酸塩であることを特徴とする請求項5に記載のアルデヒド類除去触媒の製造方法。   6. The method for producing an aldehyde removal catalyst according to claim 5, wherein the cerium salt and the copper salt are both nitrates. 請求項1〜5のいずれかに記載のアルデヒド類除去触媒を、アルデヒド類ガスに接触させて酸化分解させ、かつアルデヒド類ガスの分解生成物を前記触媒が吸着除去することを特徴とするアルデヒド類ガスの除去方法。   The aldehydes according to any one of claims 1 to 5, wherein the aldehyde removal catalyst according to any one of claims 1 to 5 is brought into contact with an aldehyde gas to undergo oxidative decomposition, and the decomposition product of the aldehyde gas is adsorbed and removed by the catalyst. Gas removal method. 請求項1〜4のいずれかに記載のアルデヒド類除去触媒を用いて、40℃〜100℃の範囲内の低温加熱によりアルデヒド類ガスを除去することを特徴とする、アルデヒド類ガスの除去方法。   A method for removing aldehyde gas, wherein the aldehyde gas is removed by low-temperature heating within a range of 40 ° C to 100 ° C using the aldehyde removal catalyst according to any one of claims 1 to 4.
JP2015231618A 2015-11-27 2015-11-27 Aldehyde removal catalyst and its manufacturing method, aldehyde gas removal method Active JP6759565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231618A JP6759565B2 (en) 2015-11-27 2015-11-27 Aldehyde removal catalyst and its manufacturing method, aldehyde gas removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231618A JP6759565B2 (en) 2015-11-27 2015-11-27 Aldehyde removal catalyst and its manufacturing method, aldehyde gas removal method

Publications (2)

Publication Number Publication Date
JP2017094309A true JP2017094309A (en) 2017-06-01
JP6759565B2 JP6759565B2 (en) 2020-09-23

Family

ID=58805106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231618A Active JP6759565B2 (en) 2015-11-27 2015-11-27 Aldehyde removal catalyst and its manufacturing method, aldehyde gas removal method

Country Status (1)

Country Link
JP (1) JP6759565B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118986A1 (en) * 2020-12-04 2022-06-09 三井化学株式会社 Odor removal catalyst and use thereof
CN116099524A (en) * 2023-02-17 2023-05-12 云南民族大学 A cerium-zirconium oxide catalyst for efficiently removing formaldehyde at room temperature and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146348A (en) * 1984-12-17 1986-07-04 Toyota Central Res & Dev Lab Inc Oxidizing catalyst
JPH04235742A (en) * 1991-01-21 1992-08-24 Nissan Motor Co Ltd Aldehyde decomposing catalyst for purifyying exhaust gas
JP2002028486A (en) * 2000-07-14 2002-01-29 Toyobo Co Ltd Adsorption and decomposition agent of aldehydes and producing method thereof
JP2010069418A (en) * 2008-09-19 2010-04-02 Nippon Shokubai Co Ltd Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst
JP2010104913A (en) * 2008-10-30 2010-05-13 Univ Of Tokyo Photocatalytic material, method for decomposing organic matter, interior material, air cleaner, and oxidizing agent production apparatus
JP5414719B2 (en) * 2010-03-31 2014-02-12 地方独立行政法人東京都立産業技術研究センター INORGANIC OXIDE FORMED CATALYST FOR DECOMPOSING VOLATILE ORGANIC COMPOUNDS AND METHOD FOR PRODUCING THE SAME
JP5422320B2 (en) * 2008-09-22 2014-02-19 地方独立行政法人東京都立産業技術研究センター Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146348A (en) * 1984-12-17 1986-07-04 Toyota Central Res & Dev Lab Inc Oxidizing catalyst
JPH04235742A (en) * 1991-01-21 1992-08-24 Nissan Motor Co Ltd Aldehyde decomposing catalyst for purifyying exhaust gas
JP2002028486A (en) * 2000-07-14 2002-01-29 Toyobo Co Ltd Adsorption and decomposition agent of aldehydes and producing method thereof
JP2010069418A (en) * 2008-09-19 2010-04-02 Nippon Shokubai Co Ltd Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst
JP5422320B2 (en) * 2008-09-22 2014-02-19 地方独立行政法人東京都立産業技術研究センター Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds
JP2010104913A (en) * 2008-10-30 2010-05-13 Univ Of Tokyo Photocatalytic material, method for decomposing organic matter, interior material, air cleaner, and oxidizing agent production apparatus
US20110198210A1 (en) * 2008-10-30 2011-08-18 Kazuhito Hashimoto Photocatalytic material, method of decomposing organic substance, interior member, air cleaning device, and device for producing oxidizing agent
JP5414719B2 (en) * 2010-03-31 2014-02-12 地方独立行政法人東京都立産業技術研究センター INORGANIC OXIDE FORMED CATALYST FOR DECOMPOSING VOLATILE ORGANIC COMPOUNDS AND METHOD FOR PRODUCING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022118986A1 (en) * 2020-12-04 2022-06-09 三井化学株式会社 Odor removal catalyst and use thereof
JP7645284B2 (en) 2020-12-04 2025-03-13 三井化学株式会社 Odor removal catalyst and its uses
CN116099524A (en) * 2023-02-17 2023-05-12 云南民族大学 A cerium-zirconium oxide catalyst for efficiently removing formaldehyde at room temperature and preparation method thereof

Also Published As

Publication number Publication date
JP6759565B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6486360B2 (en) Carbon monoxide and / or oxidation catalyst for volatile organic compounds
JP4573320B2 (en) Nitrous oxide decomposition catalyst, production method thereof, and decomposition method of nitrous oxide
Huang et al. Effect of reduction treatment on structural properties of TiO 2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
CN104785302B (en) Denitrifying catalyst with selective catalytic reduction and its preparation method and application
JP5756740B2 (en) Photocatalyst, method for producing the same, and method for treating nitrate-containing water
TW201529160A (en) Ammonia decomposition catalyst
JPWO2010007978A1 (en) Deodorizing catalyst, deodorizing method using the same, and regenerating method of the catalyst
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
JP4119974B2 (en) Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
Huang et al. Novel regenerated V-and Ce-mixed oxide modified catalysts for the NH3-SCR of NOx displaying a distinctive broad temperature window
CN101905162A (en) Molecular sieve-supported cobalt-based composite oxide catalyst, preparation method and application
Pacultová et al. On the stability of alkali metal promoters in Co mixed oxides during direct NO catalytic decomposition
JP2001187343A (en) Room temperature purification catalyst and method of using the same
JP2002355558A (en) Method for removing formaldehyde by oxidation
JP6759565B2 (en) Aldehyde removal catalyst and its manufacturing method, aldehyde gas removal method
Yi et al. Mn-CeOx/MeOx (Ti, Al)/cordierite preparation with ultrasound-assisted for non-methane hydrocarbon removal from cooking oil fumes
JP5503155B2 (en) Carbon monoxide removal filter
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
JP2007054714A (en) Nitrous oxide decomposition catalyst and nitrous oxide decomposition method using the catalyst
JP6886290B2 (en) Method for manufacturing low temperature oxidation catalyst
CN105170152A (en) Iron ion exchange titanium ion pillared montmorillonite catalyst used for thermally catalyzing and oxidizing methylbenzene and preparation method for iron ion exchange titanium ion pillared montmorillonite catalyst
JP6225807B2 (en) VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same
JP6032974B2 (en) Method for producing exhaust gas purification catalyst
CN113181951A (en) Preparation of carbon nitride modified copper-loaded cerium-zirconium solid solution catalyst and application of carbon nitride modified copper-loaded cerium-zirconium solid solution catalyst in catalytic oxidation of toluene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350