[go: up one dir, main page]

JP2017066446A - 耐食性に優れた表面処理溶融亜鉛めっき鋼板 - Google Patents

耐食性に優れた表面処理溶融亜鉛めっき鋼板 Download PDF

Info

Publication number
JP2017066446A
JP2017066446A JP2015190563A JP2015190563A JP2017066446A JP 2017066446 A JP2017066446 A JP 2017066446A JP 2015190563 A JP2015190563 A JP 2015190563A JP 2015190563 A JP2015190563 A JP 2015190563A JP 2017066446 A JP2017066446 A JP 2017066446A
Authority
JP
Japan
Prior art keywords
mass
film
compound
surface treatment
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015190563A
Other languages
English (en)
Other versions
JP6323424B2 (ja
Inventor
土本 和明
Kazuaki Tsuchimoto
和明 土本
武士 松田
Takeshi Matsuda
武士 松田
三好 達也
Tatsuya Miyoshi
達也 三好
松崎 晃
Akira Matsuzaki
晃 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015190563A priority Critical patent/JP6323424B2/ja
Publication of JP2017066446A publication Critical patent/JP2017066446A/ja
Application granted granted Critical
Publication of JP6323424B2 publication Critical patent/JP6323424B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

【課題】皮膜がクロム化合物を含有することなく、耐食性と湿潤環境下での耐変色性を高度に両立させた表面処理溶融亜鉛めっき鋼板を得る。
【解決手段】亜鉛めっき表層に所定の厚さのAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を特定の割合で含有する表面処理液を塗布し、乾燥することにより形成された表面処理皮膜を有し、その上部に第2層皮膜として、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、この基体樹脂100質量部に対して特定の防錆添加成分(β)を所定量含有する有機皮膜を有する。
【選択図】なし

Description

本発明は、自動車、家電、建材などに用いられる表面処理溶融亜鉛めっき鋼板であって、表面処理皮膜中に6価クロムなどのクロム化合物を含まず、特に、耐食性および湿潤環境下での耐変色性に優れた表面処理溶融亜鉛めっき鋼板に関する。
従来、家電製品用鋼板、建材用鋼板、自動車用鋼板に使用される亜鉛系めっき鋼板の表面に、耐食性(耐白錆性、耐赤錆性)を向上させる目的で、クロム酸、重クロム酸またはその塩類を主要成分とした表面処理液によるクロメート処理を施した鋼板が広く用いられてきた。しかしながら、最近の地球環境問題から、クロメート処理によらない無公害な表面処理鋼板、所謂クロムフリー処理鋼板を採用することへの要請が高まっている。
クロムフリー処理鋼板に関する技術は既に数多く提案されており、クロム酸と同じIVA族に属するモリブデン酸、タングステン酸の不動態化作用を狙った技術、Ti、Zr、V、Mn、Ni、Coなどの遷移金属やLa、Ceなどの希土類元素の金属塩を用いる技術、タンニン酸などの多価フェノールカルボン酸やS、Nを含む化合物などのキレート剤をベースとする技術、シランカップリング剤を用いてポリシロキサン皮膜を形成する技術、或いは、これらを組み合わせた技術などが提案されている。
具体的に例を挙げると以下の通りである。
(1)ポリビニルフェノール誘導体などの有機樹脂と酸成分とエポキシ化合物とを反応させて得られる被覆剤、シランカップリング剤、およびバナジウム化合物等を配合した処理液から皮膜を形成する技術(特許文献1〜4)
(2)水性樹脂とチオカルボニル基とバナジン酸化合物とリン酸を含む皮膜を形成する技術(特許文献5)
(3)Tiなどの金属化合物と、フッ化物、リン酸化合物等の無機酸および有機酸とを含む処理液から皮膜を形成する技術(特許文献6〜12)
(4)Ce、La、Y等の希土類元素とTi、Zr元素の複合皮膜を形成し、その皮膜中でめっき界面側に酸化物層、表面側に水酸化物層を濃化させる技術(特許文献13)や、CeとSi酸化物の複合皮膜を形成する技術(特許文献14)
(5)下層に酸化物を含有するリン酸および/またはリン酸化合物皮膜、その上層に樹脂皮膜からなる有機複合被覆を形成する技術(特許文献15、16)
(6)特定のインヒビター成分とシリカ/ジルコニウム化合物からなる複合皮膜を形成する技術(特許文献17)
(7)水溶性ジルコニウム化合物と、テトラアルコキシシランと、エポキシ基を有する化合物と、キレート剤と、バナジン酸と、所定の金属化合物とからなる複合皮膜を形成する技術(特許文献18)
(8)特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、硝酸化合物からなる複合皮膜を形成する技術(特許文献19)
特開2003−13252号公報 特開2001−181860号公報 特開2004−263252号公報 特開2003−155452号公報 特許第3549455号公報 特許第3302677号公報 特開2002−105658号公報 特開2004−183015号公報 特開2003−171778号公報 特開2001−271175号公報 特開2006−213958号公報 特開2005−48199号公報 特開2001−234358号公報 特許第3596665号公報 特開2002−53980号公報 特開2002−53979号公報 特開2008−169470号公報 特開2010−255105号公報 特開2013−60647号公報
これらの技術により形成される皮膜は、有機成分または無機成分の複合添加によって亜鉛の白錆発生を抑制することを狙ったものであり、例えば、上記(1)、(2)の技術は、主に有機樹脂を添加することで耐食性を確保している。しかしながら、このような有機樹脂による皮膜は、屋外環境や高温多湿環境下では、樹脂劣化による変色が問題となる。また、皮膜形成には高温焼付が必須であり、板到達温度が30℃以上の乾燥条件が確保できれば足りるような簡易的なドライヤー乾燥で製造した場合には、耐食性が確保できない。
上記(3)、(4)の技術では、有機成分を全く含有しない無機単独皮膜が提案されている。しかしながら、これらの金属酸化物・金属水酸化物による複合皮膜では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。
上記(5)の技術では、耐食性を確保するために、上層に樹脂皮膜を用いているため、上記(1)、(2)の技術と同様の問題がある。
上記(6)の技術では、インヒビター成分としてバナジン酸化合物の不動態化作用およびリン酸化合物による難溶性金属塩を利用し、更に骨格皮膜としてジルコニウム化合物、微粒子シリカ、シランカップリング剤の複合皮膜を形成させることで優れた耐食性を発現している。しかしながら、この技術では、皮膜を厚くしなければ亜鉛めっき鋼板に十分な耐食性を付与することができない。つまり、簡易的なドライヤー乾燥で製造した場合には、乾燥不十分となり、耐食性が確保できない。
上記(7)、(8)の技術では、薄膜で耐食性に優れた亜鉛めっき鋼板を提供することが可能であるが、湿潤環境下での耐変色性が得られず、このため優れた耐食性と湿潤環境下での耐変色性を両立できないことが判った。
以上のように、現在までに提案されているクロムフリー処理鋼板では、平板部耐食性と湿潤環境下での耐変色性とを両立できないことが判った。
したがって本発明の目的は、以上のような従来技術の課題を解決し、表面処理皮膜中に6価クロムなどのクロム化合物を含まず、薄膜で耐食性と湿潤環境下での耐変色性を高度に両立させることができるとともに、簡易な設備で製造可能な表面処理溶融亜鉛めっき鋼板を提供することにある。
本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、亜鉛めっき表層にAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、第1層皮膜として、特定のシラン化合物と、炭酸ジルコニウム化合物と、バナジン酸化合物と、水とを特定の割合で配合した表面処理液による表面処理皮膜を形成し、その上部に第2層皮膜として、特定の有機高分子樹脂を基体樹脂とし、この基体樹脂中に特定の自己補修発現物質を適量配合した有機皮膜を形成することにより、上記問題点を解決できることを見出した。
本発明はこのような知見に基づきなされたもので、下記を要旨とするものである。
[1]亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iv)の条件を満足する表面処理液を塗布し、乾燥することにより形成された、片面当たりの付着量が100〜800mg/mの表面処理皮膜を有し、
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
その上部に第2層皮膜として、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する、膜厚が0.1〜5μmの有機皮膜を有することを特徴とする表面処理溶融亜鉛めっき鋼板。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
[2]亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iv)の条件を満足する表面処理液を塗布し、乾燥することにより、片面当たりの付着量が100〜800mg/mの表面処理皮膜を形成し、
(i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
(ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
(iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
その表面処理皮膜の表面に、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する塗料組成物を塗布し、加熱乾燥することにより、膜厚が0.1〜5μmの有機皮膜を形成することを特徴とする表面処理溶融亜鉛めっき鋼板の製造方法。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
本発明の表面処理溶融亜鉛めっき鋼板は、亜鉛めっき表層のAl酸化物層と特定の成分を含有する表面処理皮膜との複合化、さらには、その上層の特定の有機皮膜の複合化とにより高いバリア性が得られ、クロメート皮膜に匹敵する耐食性と湿潤環境下での耐変色性を高度に両立させることができ、しかも簡易な設備で製造可能である。
本発明で使用する溶融亜鉛めっき鋼板としては、溶融亜鉛めっきで得られるものであれば特に制限はないが、通常、溶融亜鉛めっき鋼板(GI)またはこれを合金化した合金化溶融亜鉛めっき鋼板(GA)が用いられる。
溶融亜鉛めっき鋼板の亜鉛めっき層の表層には、厚さが0.5nm以上10.0nm未満のAl酸化物層が形成されている必要がある。溶融亜鉛めっきでは、めっき浴中に微量Alが含まれため、亜鉛めっき層中には微量のAlが含有されることになるが、亜鉛めっき層中に含有されたAlは酸素との強い親和性を示すため、亜鉛めっき表層にAl酸化物層が形成される。
Al酸化物層の厚さが0.5nm未満では十分な耐食性および湿潤環境下での耐変色性が得られず、一方、10.0nmを超えると皮膜との密着性が低下するため、却って耐食性が低下し、また、密着性低下に伴い皮膜形成後の可溶成分が増加するため、湿潤環境下での耐変色性が低下する。
Al酸化物層の厚さは、亜鉛めっき層のAl含有量に影響されるだけでなく、溶融亜鉛めっき鋼板を大気中で放置あるいは数百℃で加熱することで厚くすることができるので、これらの条件(大気中で放置する条件、加熱条件など)を調整することにより、厚めに調整することができる。一方、アルカリ脱脂による化学的なエッチングや表面の研削などにより、Al酸化物層の厚さを薄くすることもできる。したがって、例えば、溶融亜鉛めっき鋼板に表面処理の前処理として施されるアルカリ脱脂において、アルカリ脱脂液の濃度や処理時間を調整することで、Al酸化物層の厚さを調整することができる。
Al酸化物層の厚さは、断面TEM観察により測定することができる。本発明では、無作為に選択された5箇所の測定値の平均値をもって、Al酸化物層の厚さとする。
本発明の表面処理溶融亜鉛めっき鋼板は、上記の溶融亜鉛めっき鋼板の表面(表層にAl酸化物層が形成された亜鉛めっき層の表面)に、特定の成分を含有する表面処理液を塗布し、乾燥することにより形成された表面処理皮膜を有し、その上部に第2層皮膜として、特定の基体樹脂と防錆添加成分を含有する有機皮膜を有する。
以下、溶融亜鉛めっき鋼板の表面に第1層皮膜として形成される表面処理皮膜について説明する。
本発明で用いる表面処理皮膜形成用の表面処理液は、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有する。なお、この表面処理液は、6価クロムなどのクロム化合物(但し、不可避的不純物として含まれるクロム化合物を除く。)を含有しない。
加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを反応させることにより得られる化合物である。
シラン化合物(A)は、Si元素に直接結合する加水分解性基を有するシラン化合物であって、加水分解性基は水分と反応することによりシラノール基を形成する。シラン化合物(A)は、Si元素に結合する基の全てが加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性基であるものでもよい。
グリシジル基を有するシランカップリング剤(a1)は、Siを含む1分子中にグリシジル基および加水分解性基として炭素数が1〜5、好ましくは1〜3である低級アルコキシル基を含有するものであれば、特に限定されず、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられ、これらの1種以上を用いることができる。
テトラアルコキシシラン(a2)は、加水分解性基として4個の低級アルコキシル基を含有するものであり、一般式Si(OR)(式中、Rは同一のまたは異なる炭素数1〜5のアルキル基を示す)で示されるものであれば、特に限定されず、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシランなどが挙げられ、これらの1種以上を用いることができる。
ホスホン酸(a3)としては、ヒドロキシエチレンジホスホン酸、ニトリロトリス(メチレンホスホン酸)、ホスホノブタントリカルボン酸、エチレジアミンテトラ(メチレンホスホン酸)などが挙げられ、これらの1種以上を用いることができる。
加水分解性基を有するシラン化合物(A)は、上記したグリシジル基を有するシランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物を含む。この低縮合物は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)の縮合反応により形成されるポリシロキサン結合を主骨格とするものであり、Si元素に結合する末端の基が加水分解性基であるものでもよいし、Si元素に結合する基の一部が加水分解性であるものでもよい。
加水分解性基を有するシラン化合物(A)としては、縮合度が2〜30の化合物が使用可能であり、特に縮合度が2〜10の化合物を使用することが好ましい。縮合度が30以下であれば、白色沈殿を生じることがなく、安定なシラン化合物(A)が得られるからである。
加水分解性基を有するシラン化合物(A)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)との低縮合物と、ホスホン酸(a3)とを、反応温度1〜80℃で10分間〜20時間程度反応させ、オートクレープ処理を行うことなどにより得ることができる。
加水分解性基を有するシラン化合物(A)は、加水分解性基の特定および縮合状態を、ゲル・パーミッション・クロマトグラフィー(GPC)、NMRおよびIRを用いて測定することができる。
加水分解性基を有するシラン化合物(A)は、グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)とを反応させることにより、シランカップリング剤(a1)と、テトラアルコキシシラン(a2)が、水とホスホン酸(a3)により加水分解されて配位するものと考えられる。この加水分解反応およびホスホン酸(a3)による配位が同時に起こることにより得られたものであり、室温域での安定性が極めて高く、長期の保存に耐えるシラン化合物を生成する。
また、ホスホン酸(a3)は、耐食性と保管安定性を確保する上でも有効な成分である。その理由は必ずしも明らかではないが、ホスホン酸(a3)は、シランカップリング剤(a1)とテトラアルコキシシラン(a2)に配位すると考えられ、表面処理液中でシラン化合物(A)が高分子化することを抑制する作用を有するものと考えられ、このような作用に起因して表面処理液を調製後長期に亘り保管した場合においても変質することなく、調製時の品質が維持されるものと考えられる。また、ホスホン酸(a3)は、後述するバナジン酸化合物(C)とも配位すると考えられ、腐食環境下でバナジウムが溶解し、再度、ポリシロキサン結合を形成するものと考えられる。
グリシジル基を有するシランカップリング剤(a1)と、テトラアルコキシシラン(a2)と、ホスホン酸(a3)の配合比率は、耐食性などの観点から、シランカップリング剤(a1)の100質量部に対して、テトラアルコキシシラン(a2)を25〜75質量部、ホスホン酸(a3)を5〜30質量部とすることが好ましい。
表面処理液中でのシラン化合物(A)の含有量は、表面処理液の全固形分中で30〜70質量%とする。シラン化合物(A)の含有量が30質量%未満では耐食性が確保できず、一方、含有量が70質量%を超えると却って耐食性が低下する。
シラン化合物(A)は、炭酸ジルコニウム化合物(B)と混合することにより、一旦乾燥すると再度水には溶解しないバリア的効果を有する。
炭酸ジルコニウム化合物(B)としては、例えば、炭酸ジルコニウムのナトリウム、カリウム、リチウム、アンモニウムなどの塩(例えば、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムナトリウム、炭酸ジルコニウムリチウム)が挙げられ、これらの1種以上を用いることができる。なかでも、炭酸ジルコニウムアンモニウムが耐食性などの点から好ましい。
炭酸ジルコニウム化合物(B)の含有量は、炭酸ジルコニウム化合物(B)のZrをZrO換算した質量(ZrO換算質量)とシラン化合物(A)の質量との比(B/A)が0.3〜2.0となるようにし、好ましくは0.35〜1.5となるようにする。質量比(B/A)が0.3未満では耐食性が確保できず、一方、質量比(B/A)が2.0を超えると却って耐食性が低下する。また、質量比(B/A)が2.0を超えると、湿潤環境下での耐変色性も低下する。
バナジン酸化合物(C)は、亜鉛系めっき鋼板表面に形成される皮膜中において、水に溶解し易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。また、バナジン酸化合物(C)は、ホスホン酸(a3)に配位していると考えられ、腐食環境下でバナジン酸化合物(C)の一部がイオン化し、不働態化することにより優れた耐食性を発揮する。
バナジン酸化合物(C)としては、例えば、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、バナジルアセチルアセトネートなどが挙げられ、これらの1種以上を用いることができる。
バナジン酸化合物(C)の含有量は、バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量との比(C/A)が0.010〜0.15となるようにし、好ましくは0.030〜0.10となるようにする。質量比(C/A)が0.010未満では耐食性が確保できず、一方、質量比(C/A)が0.15を超えると湿潤環境下での耐変色性が低下する。
表面処理液には、潤滑性能を向上させるために潤滑剤を添加することができる。潤滑剤としては、ポリエチレンワックス、酸化ポリエチレンワックス、酸化ポリプロピレンワックス、カルナバワックス、パラフィンワックス、モンタンワックス、ライスワックス、テフロン(登録商標)ワックス、2硫化炭素、グラファイトなどが挙げられ、これらの1種以上を用いることができる。
潤滑剤の含有量は、表面処理液の全固形分中で1〜10質量%が好ましく、3〜7質量%がより好ましい。潤滑剤の含有量を1質量%以上とすることで潤滑性能の向上効果が得られ、10質量%以下であれば亜鉛系めっき鋼板の耐食性が低下することはない。
また、表面処理液には、作業性を向上させるための増粘剤、導電性を向上させるための導電性物質、意匠性向上のための着色顔料、造膜性向上のための溶剤等を、必要に応じて適宜添加してもよい。
表面処理液は、上記した成分を脱イオン水、蒸留水などの水中で混合することにより得られる。表面処理液の固形分濃度は適宜選択すればよい。また、表面処理液には、必要に応じてアルコール、ケトン、セロソルブ系の水溶性溶剤、消泡剤、防菌防カビ剤、着色剤などを添加してもよい。ただし、これら(すなわち、成分(A)〜(C)と水と潤滑剤以外の添加成分)は本発明で得られる性能を損なわない程度に添加することが重要であり、添加量は表面処理液の全固形分中で5質量%未満とすることが好ましい。
表面処理皮膜の片面当たりの付着量は100〜800mg/m、好ましくは200〜500mg/mである。片面当たりの皮膜付着量が100mg/m未満では耐食性不足が懸念され、一方、800mg/mを超えると、ドライヤー乾燥などの簡易設備での製造が困難となる。
本発明の表面処理溶融亜鉛めっき鋼板は、上述した表面処理液を、亜鉛めっき表層にAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に塗布し、次いで乾燥することにより、乾燥後の片面当たりの付着量が100〜800mg/mとなるように製造される。
表面処理液を溶融亜鉛めっき鋼板の表面に塗布する方法としては、ロールコート法、バーコート法、浸漬法、スプレー塗布法などの任意の方法を採ることができる。処理される溶融亜鉛めっき鋼板の形状等によって適宜最適な方法を選択すればよい。例えば、処理される溶融亜鉛めっき鋼板がシート状であれば、ロールコート法やバーコート法、或いは、表面処理液を溶融亜鉛めっき鋼板表面にスプレーした後、ロール絞りや気体を高圧で吹きかけて塗布量を調整するスプレー塗布法を用いるのが適当である。また、溶融亜鉛めっき鋼板が成型品の場合は、表面処理液に浸漬して引き上げ、必要に応じて圧縮エアーで余分な表面処理液を吹き飛ばして塗布量を調整する方法などが適当である。
また、溶融亜鉛めっき鋼板に表面処理液を塗布する前に、必要に応じて、溶融亜鉛めっき鋼板表面の油分や汚れを除去することを目的とした前処理を施してもよい。前処理の方法は、特に限定されないが、例えば、湯洗、溶剤洗浄、アルカリ脱脂洗浄などの方法が挙げられる。溶融亜鉛めっき鋼板は、防錆目的で防錆油が塗られている場合が多く、また、防錆油が塗油されていない場合でも、表面には作業中に付着した油分や汚れなどがある。上記の前処理を施すことにより、亜鉛めっき層の表面が清浄化され、均一に濡れやすくなる。溶融亜鉛めっき鋼板表面上で表面処理液が均一に濡れる場合は、前処理は特に必要でない。
表面処理液を塗布した後、乾燥する際の加熱温度(最高到達板温)は、特に制限はないが、通常、30〜200℃程度である。加熱温度が30℃以上であれば皮膜中に水分が残存しないため、また、加熱温度が200℃以下であれば皮膜のクラック発生が抑制されるため、表面処理溶融亜鉛めっき鋼板の耐食性低下等の問題を生じることがないからである。また、加熱時間は、使用される溶融亜鉛めっき鋼板の種類などによって適宜最適な条件が選択される。なお、生産性などの観点からは、0.1〜60秒程度が好ましく、1〜30秒程度がより好ましい。
本発明の表面処理溶融亜鉛めっき鋼板は、表面処理皮膜がクロム化合物を含有することなく、優れた耐食性と湿潤環境下での耐変色性を有し、しかも簡易設備で製造可能である利点がある。このように優れた性能を有する理由は必ずしも明らかではないが、以下のような作用効果によるものであると考えられる。
本発明においては、亜鉛めっき表層に存在するAl酸化物層と表面処理皮膜の複合化による効果で高いバリア性が得られるものと考えられる。従来のクロメート皮膜では、クロム酸が亜鉛と反応することで皮膜を形成するため、めっき表層にAl酸化物層が存在しない方が高い耐食性が得られる。これに対して、本発明のようにクロメートフリー皮膜、特に亜鉛との反応層を多く形成しない表面処理皮膜を有するものでは、めっき表層にAl酸化物層が一定厚さ以上存在すると、Al酸化物層そのものが持つバリア効果と、特定の表面処理液により形成される表面処理皮膜による下記のような効果が複合化され、優れた耐食性が得られるものと考えられる。また、Al酸化物層の厚さが過剰であれば、化成処理液との反応性が低下するため皮膜形成後の可溶成分が増加し、湿潤環境下での耐変色性が低下すると考えられる。
まず、表面処理液の成分のうち、シラン化合物(A)と炭酸ジルコニウム化合物(B)により、亜鉛めっき層の表面に形成される皮膜の骨格が構成される。シラン化合物(A)の加水分解性基は、亜鉛めっき層の表面と反応することにより皮膜成分を固定化するとともに、炭酸ジルコニウム化合物(B)と三次元架橋すると考えられる。さらに、シランカップリング剤(a1)のグリシジル基も亜鉛めっき層表面と反応し、皮膜の結合力がより強固になるものと考えられる。このようにして形成された表面処理皮膜は、一旦乾燥すると再度水には溶解せずバリア的効果を有するため、上記Al酸化物層によるバリア効果と相俟って優れた耐食性が得られる。また、樹脂のように温度が必要な架橋反応による皮膜形成ではないため、ドライヤー乾燥などのような簡易な乾燥手段でも適切に皮膜形成ができる。
また、表面処理液の成分のうち、バナジン酸化合物(C)は、皮膜中において水に溶け易い形態で均一に分散して存在し、いわゆる亜鉛腐食時のインヒビター効果を発現する。すなわち、バナジン酸化合物(C)は、腐食環境下で一部がイオン化し、不動態化することにより、亜鉛の腐食自体を抑制するものと考えられる。また、ホスホン酸(a3)に配位するため、イオン化した後に、シラン化合物(A)の加水分解性基が三次元架橋することにより、皮膜欠陥部を補修し、亜鉛の腐食を抑制するものと考えられる。
すなわち、表面処理液は、シラン化合物(A)と炭酸ジルコニウム化合物(B)により緻密な皮膜を形成して、高い耐食性を得るとともに、腐食インヒビターとしてバナジン酸化合物(C)を皮膜中に含有させることにより、溶融亜鉛めっき鋼板に追従した緻密な皮膜を形成することができる。
次に、上記表面処理皮膜(第1層皮膜)の上部に第2層皮膜として形成される有機皮膜について説明する。
第1層皮膜の上部に形成される有機皮膜は、基体樹脂であるOH基および/またはCOOH基を有する有機高分子樹脂(α)と、自己補修性発現物質である下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)とを含む(好ましくは、主成分として含む)ものである。なお、この有機皮膜は、6価クロムなどのクロム化合物(但し、不可避的不純物として含まれるクロム化合物を除く。)を含有しない。
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
有機皮膜の基体樹脂としては、OH基および/またはCOOH基を有する有機高分子樹脂(α)を用いる。また、そのなかでは熱硬化性樹脂が好ましく、特にエポキシ樹脂または変性エポキシ樹脂が好ましい。さらにその中でも、酸素などの腐食因子に対して優れた遮断性を有する熱硬化性のエポキシ樹脂や変性エポキシ樹脂が最適であり、とりわけ高度な導電性およびスポット溶接性を得るために皮膜の付着量を低レベルにする場合には特に有利である。OH基および/またはCOOH基を有する有機高分子樹脂としては、例えば、エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、アクリル系共重合体樹脂、エチレン−アクリル酸共重合体樹脂、アルキッド樹脂、ポリブタジエン樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアミン樹脂、ポリフェニレン樹脂類およびこれらの樹脂の2種以上の混合物若しくは付加重合物などが挙げられる。
(1)エポキシ樹脂
エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ノボラックなどをグリシジルエーテル化したエポキシ樹脂、ビスフェノールAにプロピレンオキサイド、エチレンオキサイドまたはポリアルキレングリコールを付加し、グリシジルエーテル化したエポキシ樹脂、さらには脂肪族エポキシ樹脂、脂環族エポキシ樹脂、ポリエーテル系エポキシ樹脂などを用いることができる。
これらエポキシ樹脂は、特に低温での硬化を必要とする場合には、数平均分子量1500以上のものが望ましい。なお、上記エポキシ樹脂は単独または異なる種類のものを混合して使用することもできる。
変性エポキシ樹脂としては、上記エポキシ樹脂中のエポキシ基またはビドロキシル基に各種変性剤を反応させた樹脂が挙げられる。例えば、乾性油脂肪酸中のカルボキシル基を反応させたエポキシエステル樹脂、アクリル酸、メタクリル酸などで変性したエポキシアクリレート樹脂、イソシアネート化合物を反応させたウレタン変性エポキシ樹脂、エポキシ樹脂にイソシアネート化合物を反応させたウレタン変性エポキシ樹脂にアルカノールアミンを付加したアミン付加ウレタン変性エポキシ樹脂などを挙げることができる。
上記ポリヒドロキシポリエーテル樹脂は、単核型若しくは2核型の2価フェノールまたは単核型と2核型との混合2価フェノールを、アルカリ触媒の存在下にほぼ等モル量のエピハロヒドリンと重縮合させて得られる重合体である。単核型2価フェノールの代表例としてはレゾルシン、ハイドロキノン、カテコールが挙げられ、2核型フェノールの代表例としてはビスフェノールAが挙げられ、これらは単独で使用しても或いは2種以上を併用してもよい。
(2)ウレタン樹脂
ウレタン樹脂としては、例えば、油変性ポリウレタン樹脂、アルキド系ポリウレタン樹脂、ポリエステル系ポリウレタン樹脂、ポリエーテル系ウレタン樹脂、ポリカーボネート系ポリウレタン樹脂などを挙げることができる。
(3)アルキド樹脂
アルキド樹脂としては、例えば、油変性アルキド樹脂、ロジン変性アルキド樹脂、フェノール変性アルキド樹脂、スチレン化アルキド樹脂、シリコン変性アルキド樹脂、アクリル変性アルキド樹脂、オイルフリーアルキド樹脂、高分子量オイルフリーアルキド樹脂などを挙げることができる。
(4)アクリル系樹脂
アクリル系樹脂としては、例えば、ポリアクリル酸およびその共重合体、ポリアクリル酸エステルおよびその共重合体、ポリメタクリル酸エステルおよびその共重合体、ポリメタクリル酸エステルおよびその共重合体、ウレタン−アクリル酸共重合体(またはウレタン変性アクリル樹脂)、スチレン−アクリル酸共重合体などが挙げられ、さらにこれらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂を用いてもよい。
(5)エチレン樹脂(ポリオレフィン樹脂)
エチレン樹脂としては、例えば、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、カルボキシル変性ポリオレフィン樹脂などのエチレン系共重合体、エチレン−不飽和カルボン酸共重合体、エチレン系アイオノマーなどが挙げられ、さらに、これらの樹脂を他のアルキド樹脂、エポキシ樹脂、フェノール樹脂などによって変性させた樹脂を用いてもよい。
(6)アクリルシリコン樹脂
アクリルシリコン樹脂としては、例えば、主剤としてアクリル系共重合体の側鎖または末端に加水分解性アルコキシシリル基を含み、これに硬化剤を添加したものなどが挙げられる。これらのアクリルシリコン樹脂を用いた場合、優れた耐候性が期待できる。
(7)フッ素樹脂
フッ素樹脂としては、フルオロオレフィン系共重合体があり、これには例えば、モノマーとしてアルキルビニルエーテル、シンクロアルキルビニルエーテル、カルボン酸変性ビニルエステル、ヒドロキシアルキルアリルエーテル、テトラフルオロプロピルビニルエーテルなどと、フッ素モノマー(フルオロオレフィン)とを共重合させた共重合体がある。これらフッ素樹脂を用いた場合には、優れた耐候性と優れた疎水性が期待できる。
また、樹脂の乾燥温度の低温化を狙いとして、樹脂粒子のコア部分とシェル部分とで異なる樹脂種類、または異なるガラス転移温度の樹脂からなるコア・シェル型水分散性樹脂を用いることができる。
また、自己架橋性を有する水分散性樹脂を用い、例えば、樹脂粒子にアルコキシシラン基を付与することによって、樹脂の加熱乾燥時にアルコキシシランの加水分解によるシラノール基の生成と樹脂粒子間のシラノール基の脱水縮合反応を利用した粒子間架橋を利用することができる。
また、有機皮膜に使用する樹脂としては、有機樹脂をシランカップリング剤を介してシリカと複合化させた有機複合シリケートも好適である。
本発明では有機皮膜の耐食性や加工性の向上を狙いとして、特に熱硬化性樹脂を用いることが望ましい。この場合、尿素樹脂(ブチル化尿素樹脂など)、メラミン樹脂(ブチル化メラミン樹脂)、ブチル化尿素・メラミン樹脂、ベンゾグアナミン樹脂等のアミノ樹脂、ブロックイソシアネート、オキサゾリン化合物、フェノール樹脂などの硬化剤を配合することができる。
以上述べた有機樹脂の中で、耐食性、加工性、塗装性を考慮すると、エポキシ樹脂、エチレン系樹脂が好ましく、特に、酵素などの腐食因子に対して優れた遮断性を有する熱硬化性のエポキシ樹脂や変性エポキシ樹脂が特に好適である。これらの熱硬化性樹脂としては、熱硬化性エポキシ樹脂、熱硬化性変性エポキシ樹脂、エポキシ基含有モノマーと共重合したアクリル系共重合体樹脂、エポキシ基を有するポリブタジエン樹脂、エポキシ基を有するポリウレタン樹脂、およびこれらの樹脂の付加物もしくは縮合物などが挙げられ、これらのエポキシ基含有樹脂の1種を単独で、または2種以上混合して用いることができる。
次に、自己補修性発現物質である防錆添加成分(β)について説明する。
上記成分(a)であるリン酸塩は、単塩、複塩などの全ての種類の塩を含む。また、それを構成する金属カチオンに限定はなく、リン酸亜鉛、リン酸マグネシウム、リン酸カルシウム、リン酸アルミニウムなどのいずれの金属カチオンでもよい。また、リン酸イオンの骨格や縮合度などにも限定はなく、正塩、二水素塩、一水素塩または亜リン酸塩のいずれでもよく、さらに、正塩はオルトリン酸塩の他、ポリリン酸塩などの全ての縮合リン酸塩を含む。
また、上記成分(a)であるリン酸塩とともにカルシウム化合物を複合添加することにより、耐食性をさらに向上させることができる。カルシウム化合物は、カルシウム酸化物、カルシウム水酸化物、カルシウム塩のいずれでもよく、これらの1種または2種以上を使用できる。また、カルシウム塩の種類にも特に制限はなく、ケイ酸カルシウム、炭酸カルシウム、リン酸カルシウムなどのようなカチオンとしてカルシウムのみを含む単塩のほか、リン酸カルシウム・亜鉛、リン酸カルシウム・マグネシウムなどのようなカルシウムとカルシウム以外のカチオンを含む複塩を使用してもよい。
また、上記成分(b)であるCaイオン交換シリカは、カルシウムイオンを多孔質シリカゲル粉末の表面に固定したもので、腐食環境下でCaイオンが放出されて沈殿膜を形成する。
Caイオン交換シリカとしては任意のものを用いることができるが、平均粒子径が6μm以下、望ましくは4μm以下のものが好ましく、例えば、平均粒子径が2〜4μmのものを用いることができる。Caイオン交換シリカの平均粒子径が6μmを超えると耐食性が低下するとともに、塗料組成物中での分散安定性が低下する。
Caイオン交換シリカ中のCa濃度は1質量%以上、望ましくは2〜8質量%であることが好ましい。Ca濃度が1質量%未満ではCa放出による防錆効果が十分に得られない。なお、Caイオン交換シリカの表面積、pH、吸油量については特に限定されない。
以上のようなCaイオン交換シリカとしては、W.R.Grace&Co.製のSHIELDEX C303(平均粒子径2.5〜3.5μm、Ca濃度3質量%)、SHIELDEX AC3(平均粒子径2.3〜3.1μm、Ca濃度6質量%)、SHIELDEX AC5(平均粒子径3.8〜5.2μm、Ca濃度6質量%)(以上、いずれも商品名)、富士シリシア化学(株)製のSHIELDEX(平均粒子径3μm、Ca濃度6〜8質量%)、SHIELDEX SY710(平均粒子径2.2〜2.5μm、Ca濃度6.6〜7.5質量%)(以上、いずれも商品名)などを用いることができる。
上記成分(c)であるモリブデン酸塩は、その骨格、縮合度に限定はなく、例えば、オルトモリブデン酸塩、パラモリブデン酸塩、メタモリブデン酸塩などが挙げられる。また、単塩、複塩などの全ての塩を含み、複塩としてはリン酸モリブデン酸塩などが挙げられる。
上記成分(d)である酸化ケイ素は、コロイダルシリカ、乾式シリカのいずれでもよい。コロイダルシリカとしては、水系皮膜形成樹脂をベースとする場合には、例えば、日産化学工業(株)製のスノーテックスO、スノーテックスN、スノーテックス20、スノーテックス30、スノーテックス40、スノーテックスC、スノーテックスS(以上、いずれも商品名)、触媒化成工業(株)製のカタロイドS、カタロイドSI−350、カタロイドSI−40、カタロイドSA、カタロイドSN(以上、いずれも商品名)、旭電化工業(株)製のアデライトAT−20〜50、アデライトAT−20N、アデライトAT−300、アデライトAT−300S、アデライトAT20Q(以上、いずれも商品名)などを用いることができる。
また、溶剤系皮膜形成樹脂をベースとする場合には、例えば、日産化学工業(株)製のオルガノシリカゾルMA−ST−M、オルガノシリカゾルIPA−ST、オルガノシリカゾルEG−ST、オルガノシリカゾルE−ST−ZL、オルガノシリカゾルNPC−ST、オルガノシリカゾルDMAC−ST、オルガノシリカゾルDMAC−ST−ZL、オルガノシリカゾルXBA−ST、オルガノシリカゾルMIBK−ST(以上、いずれも商品名)、触媒化成工業(株)製のOSCAL−1132、OSCAL−1232、OSCAL−1332、OSCAL−1432、OSCAL−1532、OSCAL−1632、OSCAL−1722(以上、いずれも商品名)などを用いることができる。
特に、有機溶剤分散型シリカゾルは、分散性に優れ、ヒュームドシリカよりも耐食性に優れている。
また、ヒュームドシリカとしては、例えば、日本アエロジル(株)製のAEROSIL R971、AEROSIL R812、AEROSIL R811、AEROSIL R974、AEROSIL R202、AEROSIL R805、AEROSIL 130、AEROSIL 200、AEROSIL 300、AEROSIL 300CF(以上、いずれも商品名)などを用いることができる。
微粒子シリカは、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制することができると考えられている。
耐食性の観点からは、微粒子シリカは粒子径が5〜50nm、望ましくは5〜20nm、さらに好ましくは5〜15nmのものを用いるのが好ましい。
上記成分(e)の有機化合物のうち、トリアゾール類としては、1,2,4−トリアゾール、3−アミノ−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、5−アミノ−3−メルカプト−1,2,4−トリアゾール、1H−ベンゾトリアゾールなどが、またチオール類としては、1,3,5−トリアジン−2,4,6−トリチオール、2−メルカプトベンツイミダゾールなどが、またチアジアゾール類としては、5−アミノ−2−メルカプト−1,3,4−チアジアゾール、2,5−ジメルカプト−1,3,4−チアジアゾールなどが、またチアゾール類としては、2−N,N−ジエチルチオベンゾチアゾール、2−メルカプトベンゾチアゾール類などが、またチウラム類としては、テトラエチルチウラムジスルフィドなどが、それぞれ挙げられる。
有機皮膜中での上記防錆添加成分(β)の合計の配合量(上記成分(a)〜(e)の中から選ばれる1種以上の自己補修性発現物質の合計の配合量)は、基体樹脂(有機高分子樹脂(α))100質量部(固形分)に対して、1〜100質量部(固形分)、好ましくは10〜50質量部(固形分)とする。防錆添加成分(β)の配合量が1質量部未満では耐食性向上効果が小さい。一方、配合量が100質量部を超えると、耐食性が低下するので好ましくない。
また、有機皮膜中には上記の防錆添加成分に加えて、腐食抑制剤として、他の酸化物微粒子(例えば、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化セリウム、酸化アンチモンなど)、リンモリブデン酸塩(例えば、リンモリブデン酸アルミニウムなど)、有機リン酸およびその塩(例えば、フィチン酸、フィチン酸塩、ホスホン酸、ホスホン酸塩、およびこれらの金属塩、アルカリ金属塩、アルカリ土類金属塩など)、有機インヒビター(例えば、ヒドラジン誘導体、チオール化合物、ジチオカルバミン酸塩など)などの1種または2種以上を添加できる。
有機皮膜中には、さらに必要に応じて、皮膜の加工性を向上させる目的で固形潤滑剤を配合することができる。
本発明に適用できる固形潤滑剤としては、例えば、以下のようなものが挙げられ、これらの1種または2種以上を用いることができる。
(1)ポリオレフィンワックス、パラフィンワックス:例えば、ポリエチレンワックス、合成パラフィン、天然パラフィン、マイクロワックス、塩素化炭化水素など
(2)フッ素樹脂微粒子:例えば、ポリフルオロエチレン樹脂(ポリ4フッ化エチレン樹脂など)、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂など
また、この他にも、脂肪酸アミド系化合物(例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オレイン酸アミド、エシル酸アミド、アルキレンビス脂肪酸アミドなど)、金属石けん類(例えば、ステアリン酸カルシウム、ステアリン酸鉛、ラウリン酸カルシウム、パルミチン酸カルシウムなど)、金属硫化物(例えば、二硫化モリブデン、二硫化タングステンなど)、グラファイト、フッ化黒鉛、窒化ホウ素、ポリアルキレングリコール、アルカリ金属硫酸塩などの1種または2種以上を用いてもよい。
以上の固形潤滑剤の中でも、特に、ポリエチレンワックス、フッ素樹脂微粒子(なかでも、ポリ4フッ化エチレン樹脂微粒子)が好適である。
ポリエチレンワックスとしては、例えば、ヘキスト社製のセリダスト 9615A、セリダスト 3715、セリダスト 3620、セリダスト 3910(以上、いずれも商品名)、三洋化成(株)製のサンワックス 131−P、サンワックス 161−P(以上、いずれも商品名)、三井石油化学(株)製のケミパール W−100、ケミパール W−200、ケミパール W−500、ケミパール W−800、ケミパール W−950(以上、いずれも商品名)などを用いることができる。
また、フッ素樹脂微粒子としては、テトラフルオロエチレン微粒子が最も好ましく、例えば、ダイキン工業(株)製のルブロン L−2、ルブロン L−5(以上、いずれも商品名)、三井・デュポン(株)製のMP1100、MP1200(以上、いずれも商品名)、旭アイシーアイフロロポリマーズ(株)製のフルオンディスパージョン AD1、フルオンディスパージョン AD2、フルオン L141J、フルオン L150J、フルオン L155J(以上、いずれも商品名)などが好適である。
また、これらのなかで、ポリオレフィンワックスとテトラフルオロエチレン微粒子の併用により特に優れた潤滑効果が期待できる。
有機皮膜中での固形潤滑剤の配合量は、基体樹脂(有機高分子樹脂(α))100質量部(固形分)に対して、1〜80質量部(固形分)、好ましくは3〜40質量部(固形分)とすることが好ましい。固形潤滑剤の配合量が1質量部未満では潤滑効果が乏しく、一方、配合量が80質量部を超えると塗装性が低下するので好ましくない。
有機皮膜中には、さらに必要に応じて、添加剤として、有機着色顔料(例えば、縮合多環系有機顔料、フタロシアニン系有機顔料など)、着色染料(例えば、有機溶剤可溶性アゾ系染料、水溶性アゾ系金属染料など)、無機顔料(例えば、酸化チタンなど)、キレート剤(例えば、チオールなど)、導電性顔料(例えば、亜鉛、アルミニウム、ニッケルなどの金属粉末、リン化鉄、アンチモンドープ型酸化錫など)、カップリング剤(例えば、シランカップリング剤、チタンカップリング剤など)、メラミン・シアヌル酸付加物などの1種または2種以上を添加することができる。
有機皮膜の乾燥膜厚は0.1〜5μm、好ましくは0.3〜3μm、さらに好ましくは0.5〜2μmとする。有機皮膜の膜厚が0.1μm未満では耐食性が不十分であり、一方、膜厚が5μmを超えると湿潤環境下での耐変色性が低下する。
以上述べた第2層皮膜である有機皮膜の防食機構については、次のように考えられる。
すなわち、OH基および/またはCOOH基を有する有機高分子樹脂(α)(好ましくは熱硬化性樹脂、さらに好ましくはエポキシ樹脂および/または変性エポキシ樹脂)が架橋剤との反応により緻密なバリア皮膜を形成し、このバリア皮膜は、酸素などの腐食因子の透過抑制能に優れているため、優れた耐食性(バリア性)が得られるものと考えられる。
そして、本発明では、そのような有機皮膜自体の優れた耐食性(バリア性)に加えて、有機皮膜を構成する有機高分子樹脂中のOH基やCOOH基により第1層皮膜との強固な結合力が得られるため、特に優れた耐食性(バリア性)が得られるものと考えられる。したがって、これらの効果と亜鉛めっき表層のAl酸化物層及び第1層皮膜による耐食性向上効果が複合的に得られるため、非常に優れた耐食性が得られるものと考えられる。
また、本発明では上記のような特定の有機高分子樹脂からなる有機皮膜中に、
(a)リン酸塩
(b)Caイオン交換シリカ
(c)モリブデン酸塩
(d)酸化ケイ素
(e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
の中から選ばれる1種以上の防錆添加成分(β)(自己補修性発現物質)を適量配合することにより、特に優れた防食性能(自己修復効果)を得ることができる。この特定の有機皮膜中に上記(a)〜(e)の成分を配合したことにより得られる防食機構は以下のように考えられる。
まず、上記(a)の成分は、腐食環境化において加水分解によってリン酸イオンに解離し、溶出金属と錯形成反応を起こすことにより保護皮膜を形成する。
また、上記(b)の成分の場合は、腐食環境下でNaイオンなどのカチオンが侵入すると、イオン交換作用によりシリカ表面のCaイオンが放出され、さらに、腐食環境下でのカソード反応によりOHイオンが生成してめっき界面近傍のpHが上昇すると、Caイオン交換シリカから放出されたCaイオンがCa(OH)としてめっき界面近傍に沈殿し、緻密で難溶性の生成物として欠陥を封鎖し、腐食反応を抑制する。また、溶出した亜鉛イオンはCaイオンと交換されてシリカ表面に固定される効果も考えられる。
また、上記(c)の成分は、不動態化効果によって自己補修性を発現する。すなわち、腐食環境下で溶存酸素と共にめっき皮膜表面に緻密な酸化物を形成し、これが腐食起点を封鎖することによって腐食反応を抑制する。
また、上記(d)の成分は、腐食環境下において緻密で安定な亜鉛の腐食生成物の生成に寄与し、この腐食生成物がめっき表面に緻密に形成されることによって、腐食の促進を抑制する。
また、上記(e)の成分は吸着効果によって自己補修性を発現する。すなわち、腐食によって溶出した亜鉛やアルミニウムが、上記(e)の成分が有する窒素や硫黄を含む極性基に吸着して不活性皮膜を形成し、これが腐食起点を封鎖することによって腐食反応を抑制する。
一般の有機皮膜中に上記(a)〜(e)の成分を配合した場合でも、ある程度の防食効果は得られるが、本発明のように特定の有機高分子樹脂からなるバリア性に優れた有機皮膜中に上記(a)〜(e)の自己補修性発現物質を配合したことにより、両者の効果(バリア性と自己補修性)が複合化し、これにより極めて優れた防食効果が発揮されるものと考えられる。
また、上記(a)の成分とともにカルシウム化合物を複合添加した場合には、カルシウム化合物は、腐食環境下においてめっき金属よりも優先的に溶出することにより、めっき金属の溶出をトリガーとせずにリン酸イオンと錯形成反応を起こして緻密で難溶性の保護皮膜を形成し、腐食反応を抑制する。
なお、以上述べた(a)〜(e)の成分のうちの2種以上を複合添加すれば、各々の成分による腐食抑制作用が複合化されるため、より優れた耐食性が得られる。
有機皮膜(第2層皮膜)は、上述したような有機高分子樹脂(α)と防錆添加成分(β)を含有し、さらに必要に応じて他の成分を含有する塗料組成物を表面処理皮膜の表面に塗布し、加熱乾燥することにより形成される。有機皮膜用の塗料組成物を塗布する方法としては、ロールコート法、バーコート法、浸漬法、スプレー塗布法などの任意の方法を採ることができる。処理される溶融亜鉛めっき鋼板の形状等によって適宜最適な方法を選択すればよい。例えば、処理される溶融亜鉛めっき鋼板がシート状であれば、ロールコート法やバーコート法、或いは、表面処理液を溶融亜鉛めっき鋼板表面(表面処理皮膜の表面)にスプレーした後、ロール絞りや気体を高圧で吹きかけて塗布量を調整するスプレー塗布法を用いるのが適当である。また、溶融亜鉛めっき鋼板が成型品の場合は、表面処理液に浸漬して引き上げ、必要に応じて圧縮エアーで余分な表面処理液を吹き飛ばして塗布量を調整する方法などが適当である。
塗料組成物の塗布後、通常は水洗することなく、加熱乾燥を行うが、塗料組成物の塗布後に水洗工程を実施しても構わない。加熱乾燥処理には、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができるが、耐食性の観点からは高周波誘導加熱炉が特に好ましい。加熱処理は、到達板温で40〜350℃の範囲で行うことが望ましい。加熱乾燥温度が40℃未満では皮膜の架橋が進行せず、耐食性が不十分となるおそれがある。また、加熱乾燥温度が350℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じて耐食性が低下するおそれがある。
本発明の表面処理溶融亜鉛めっき鋼板は種々の用途に適用することができ、例えば、建築、電気、自動車等の各種分野で使用される材料などに好適に用いられる。
(1)供試板(溶融亜鉛めっき鋼板)
下記の市販の溶融亜鉛めっき鋼板を供試板として用いた。
(i)溶融亜鉛めっき鋼板(GI):板厚0.8mm、めっき目付量60/60(g/m
(ii)合金化溶融亜鉛めっき鋼板(GA):板厚0.8mm、めっき目付量40/40(g/m
なお、めっき目付量は鋼板両面の各めっき付着量であり、例えば、めっき目付量60/60(g/m)とは、鋼板の両面のそれぞれに60g/mのめっき層を有することを意味する。
なお、めっき表層のAl酸化物層の厚さは、下記するように前処理のアルカリ脱脂液濃度および処理時間を調整することにより調整した。
(2)供試板の前処理(洗浄)
上記供試板(溶融亜鉛めっき鋼板)の表面にアルカリ脱脂(日本パーカライジング(株)製「ファインクリーナーE6406」を使用説明書に基づいて処理)を施し、表面の油分や汚れを取り除くとともに、Al酸化物層の厚さを調整した。具体的には、めっき表層にAl酸化物層が形成されためっき鋼板をアルカリ脱脂するに当たり、アルカリ脱脂液濃度が高いほど、また処理時間が長いほど、Al酸化物層の厚さは小さくなるので、表5の条件でアルカリ脱脂を行い、Al酸化物層の厚さを調整した。次に、水道水で水洗して供試板の表面が水で100%濡れることを確認した後、純水(脱イオン水)を流しかけ、次いで、100℃雰囲気のオーブンで水分を乾燥し、これを試験板として使用した。
(3)表面処理皮膜(第1層皮膜)用の表面処理液
(3-1)表面処理液用の化合物
表面処理液用の化合物としては、以下のものを用いた。
(3-1-1)シラン化合物(A)の製造
・製造例1(シラン化合物A1)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランと脱イオン水とを混合し、アンモニア水を滴下し、シラン化合物を沈殿させた。脱イオン水で洗浄後、ホスホン酸としてニトリロトリス(メチレンスルホン酸)を加えてかき混ぜ、シラン化合物A1を得た。
・製造例2(シラン化合物A2)
3−グリシドキシプロピルトリメトキシシランとテトラエトキシシランの混合物を、脱イオン水にホスホン酸としてヒドリキシエチレンジホスホン酸を混合した混合液中に、20℃で1時間かけて撹拌しながら滴下した。その後25℃で2時間熟成し、シラン化合物A2を得た。
・製造例3(シラン化合物A3)
製造例2のシラン化合物A2を、さらに80℃で1時間熟成し、シラン化合物A3を得た。
(3-1-2)炭酸ジルコニウム化合物(B)
B1:炭酸ジルコニウムアンモニウム
B2:炭酸ジルコニウムナトリウム
(3-1-3)バナジン酸化合物(C)
C1:メタバナジン酸アンモニウム
C2:バナジルアセチルアセトネート(V:19.2質量%)
(3-2)表面処理液の調製
上記化合物を表1に示す割合にて水中で混合し、固形分が15質量%の表面処理液を得た。
(4)有機皮膜(第2層皮膜)用の塗料組成物
(4-1)塗料組成物用の成分
塗料組成物用の有機高分子樹脂(基体樹脂)、防錆添加成分としては、以下のものを用いた。
(4-1-1)有機高分子樹脂(α)
α1:エポキシ樹脂
α2:ウレタン樹脂
(4-1-2)防錆添加成分(β)
β1:Caイオン交換シリカ
β2:リン酸Zn
β3:リンモリブデン酸Al
β4:コロイダルシリカ
β5:テトラエチルチウラムジスルフィド
(4-2)塗料組成物の調製
上記有機高分子樹脂(α)に表2〜表4に示す割合で上記防錆添加成分(β)を配合し、塗料組成物を得た。
(5)表面処理方法
上記表面処理皮膜(第1層皮膜)用の表面処理液をバーコート処理またはスプレー処理により各試験板に塗布し、その後、水洗することなく、そのまま熱風炉で乾燥させ、表面処理皮膜(第1層皮膜)を形成させた。乾燥条件は、炉雰囲気温度と炉に入れている時間により調節した。
バーコート処理とスプレー処理は、以下のように行った。
・バーコート処理:表面処理液を試験板に滴下して、#3〜5バーコーターで処理した。使用したバーコーターの番手と表面処理液の固形分濃度を変化させることにより、所定の皮膜付着量となるように調整した。
・スプレー処理:表面処理液を試験板にスプレー処理し、ロールコーターにて皮膜付着量の調整を行った。ロールコーターの条件と表面処理液の固形分濃度を変化させることにより、所定の皮膜付着量となるように調整した。
次いで、上記有機皮膜(第2層皮膜)用の塗料組成物をロールコーターにより塗布した後、熱風乾燥炉において種々の温度で加熱乾燥した。皮膜厚は、塗料組成物の固形分(加熱残分)または塗布条件(ロールの圧下力、回転速度など)により調整した。
(6)評価試験の方法
(6-1)耐食性
発明例および比較例の試験板から70mm×150mmのサイズの試験片を切り出し、この試験片の裏面と端部をビニールテープでシールして、JIS−Z−2371−2000に準拠した塩水噴霧試験(SST)を実施した。塩水噴霧試験における白錆発生面積率が5%となるまでの時間を測定し、耐食性を以下のように評価した。
◎:白錆発生面積率が5%となるまでの時間が480時間以上
○:白錆発生面積率が5%となるまでの時間が360時間以上、480時間未満
△:白錆発生面積率が5%となるまでの時間が240時間以上、360時間未満
×:白錆発生面積率が5%となるまでの時間が240時間未満
(6-2)湿潤環境下での耐変色性
発明例および比較例の試験板から70mm×150mmのサイズの試験片を2枚切り出し、対象面を重ね合わせてトルク強度20kgfで締め付けたものを、50℃、98%RHの恒温槽に4週間保持し、保持前後の試験片の色調を評価した。保持前後の試験片の色調を分光色彩計で測定し、その色調をLab表色系のL値で表し、保持前後のL値の差ΔLで耐変色性を以下のように評価した。
◎:ΔL≧−2
○:−2>ΔL≧−5
△:−5>ΔL≧−10
×:ΔL<−10
(7)Al酸化物層の厚さの測定
試験板の断面をTEMで観察してAl酸化物層の厚さを測定し、無作為に選択された5箇所の測定値の平均値をもって、Al酸化物層の厚さとした。
以上の評価試験の結果を、溶融亜鉛めっき鋼板の種類・構成、表面処理液の組成、表面処理条件、有機皮膜の形成条件とともに、表1〜表5に示す。なお、乾燥温度は試験板表面の到達温度である。
本発明条件を満足しない比較例は、耐食性、湿潤環境下での耐変色性のいずれかが不十分である。これに対して本発明例は、表面処理皮膜および有機皮膜中にクロム化合物を含有することなく、優れた耐食性および湿潤環境下での耐変色性が得られている。
Figure 2017066446
Figure 2017066446
Figure 2017066446
Figure 2017066446
Figure 2017066446

Claims (2)

  1. 亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iv)の条件を満足する表面処理液を塗布し、乾燥することにより形成された、片面当たりの付着量が100〜800mg/mの表面処理皮膜を有し、
    (i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
    (ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
    (iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
    その上部に第2層皮膜として、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する、膜厚が0.1〜5μmの有機皮膜を有することを特徴とする表面処理溶融亜鉛めっき鋼板。
    (a)リン酸塩
    (b)Caイオン交換シリカ
    (c)モリブデン酸塩
    (d)酸化ケイ素
    (e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
  2. 亜鉛めっき層の表層に厚さが0.5nm以上10.0nm未満のAl酸化物層が形成された溶融亜鉛めっき鋼板の表面に、グリシジル基を有するシランカップリング剤(a1)、テトラアルコキシシラン(a2)およびホスホン酸(a3)から得られる、加水分解性基を有するシラン化合物(A)と、炭酸ジルコニウム化合物(B)と、バナジン酸化合物(C)と、水を含有し、下記(i)〜(iv)の条件を満足する表面処理液を塗布し、乾燥することにより、片面当たりの付着量が100〜800mg/mの表面処理皮膜を形成し、
    (i)シラン化合物(A)が表面処理液の全固形分中で30〜70質量%
    (ii)炭酸ジルコニウム化合物(B)のZrO換算質量とシラン化合物(A)の質量の比(B/A)が0.3〜2.0
    (iii)バナジン酸化合物(C)のV換算質量とシラン化合物(A)の質量の比(C/A)が0.010〜0.15
    その表面処理皮膜の表面に、OH基および/またはCOOH基を有する有機高分子樹脂(α)を基体樹脂とし、該基体樹脂100質量部(固形分)に対して下記(a)〜(e)の中から選ばれる1種以上の防錆添加成分(β)を合計で1〜100質量部(固形分)含有する塗料組成物を塗布し、加熱乾燥することにより、膜厚が0.1〜5μmの有機皮膜を形成することを特徴とする表面処理溶融亜鉛めっき鋼板の製造方法。
    (a)リン酸塩
    (b)Caイオン交換シリカ
    (c)モリブデン酸塩
    (d)酸化ケイ素
    (e)トリアゾール類、チオール類、チアジアゾール類、チアゾール類、チウラム類の中から選ばれる1種以上の有機化合物
JP2015190563A 2015-09-29 2015-09-29 耐食性に優れた表面処理溶融亜鉛めっき鋼板 Active JP6323424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190563A JP6323424B2 (ja) 2015-09-29 2015-09-29 耐食性に優れた表面処理溶融亜鉛めっき鋼板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190563A JP6323424B2 (ja) 2015-09-29 2015-09-29 耐食性に優れた表面処理溶融亜鉛めっき鋼板

Publications (2)

Publication Number Publication Date
JP2017066446A true JP2017066446A (ja) 2017-04-06
JP6323424B2 JP6323424B2 (ja) 2018-05-16

Family

ID=58491829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190563A Active JP6323424B2 (ja) 2015-09-29 2015-09-29 耐食性に優れた表面処理溶融亜鉛めっき鋼板

Country Status (1)

Country Link
JP (1) JP6323424B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050370A (ja) * 2019-09-20 2021-04-01 Jfeスチール株式会社 表面処理皮膜付き亜鉛系めっき鋼板及びその製造方法
CN114289281A (zh) * 2021-12-02 2022-04-08 烨辉(中国)科技材料有限公司 制备抗黑变的铝锌镁产品的方法和用该方法制得的产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002171A (ja) * 2004-06-15 2006-01-05 Jfe Steel Kk 耐食性、導電性および皮膜外観に優れた表面処理鋼板
JP2013060647A (ja) * 2011-09-14 2013-04-04 Jfe Steel Corp 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002171A (ja) * 2004-06-15 2006-01-05 Jfe Steel Kk 耐食性、導電性および皮膜外観に優れた表面処理鋼板
JP2013060647A (ja) * 2011-09-14 2013-04-04 Jfe Steel Corp 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021050370A (ja) * 2019-09-20 2021-04-01 Jfeスチール株式会社 表面処理皮膜付き亜鉛系めっき鋼板及びその製造方法
JP7099424B2 (ja) 2019-09-20 2022-07-12 Jfeスチール株式会社 表面処理皮膜付き亜鉛系めっき鋼板及びその製造方法
CN114289281A (zh) * 2021-12-02 2022-04-08 烨辉(中国)科技材料有限公司 制备抗黑变的铝锌镁产品的方法和用该方法制得的产品

Also Published As

Publication number Publication date
JP6323424B2 (ja) 2018-05-16

Similar Documents

Publication Publication Date Title
CN102991023B (zh) 抗蚀性、导电性及被膜外观优良的表面处理钢板
KR101471948B1 (ko) 아연계 도금 강판
US9051654B2 (en) Galvanized steel sheet
KR101560929B1 (ko) 우수한 내식성을 부여하는 아연도금강판용 표면처리 조성물 및 이를 이용하여 표면처리된 아연도금강판
KR102376587B1 (ko) 아연 도금 강재용의 금속 표면 처리제, 피복 방법 및 피복 강재
JP3911965B2 (ja) 耐食性に優れた有機被覆鋼板
KR102314431B1 (ko) 우수한 내흑변성 및 내알칼리성을 부여하는 삼원계 용융아연합금 도금강판용 표면처리 용액 조성물, 이를 이용하여 표면처리된 삼원계 용융아연합금 도금강판 및 그 제조 방법
JP4844128B2 (ja) 高耐食性表面処理鋼板およびその製造方法
JP2011068996A (ja) 金属材料表面処理用組成物及び処理方法
JP2002053979A (ja) 耐食性に優れた有機被覆鋼板およびその製造方法
JP3903740B2 (ja) 耐食性に優れた有機被覆鋼板
JP6569194B2 (ja) 耐食性に優れた表面処理溶融亜鉛めっき鋼板
JP2005048199A (ja) 耐食性、導電性および皮膜外観に優れる表面処理鋼板
JP2011195941A (ja) 表面処理鋼板
JP6323424B2 (ja) 耐食性に優れた表面処理溶融亜鉛めっき鋼板
JP4517737B2 (ja) 耐食性、導電性および皮膜外観に優れた表面処理鋼板
JP2002363766A (ja) 耐食性と導電性に優れた有機被覆鋼板
JP2009287078A (ja) 高耐食性表面処理鋼板
JP4123702B2 (ja) 耐食性に優れた有機被覆鋼板
JP2002363768A (ja) 高温多湿環境下での耐食性に優れた有機被覆鋼板
JP5441109B2 (ja) 高耐食性表面処理鋼板
JP4419533B2 (ja) 耐食性、導電性および皮膜外観に優れた表面処理鋼板
JP3911966B2 (ja) 耐食性に優れた有機被覆鋼板
JP3412541B2 (ja) 耐食性に優れた有機被覆鋼板
JPH10315390A (ja) 耐食性、アルカリ脱脂後の耐食性、塗装性に優れた有機被覆鋼板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180326

R150 Certificate of patent or registration of utility model

Ref document number: 6323424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250