JP2016183860A - 計測装置及び計測方法 - Google Patents
計測装置及び計測方法 Download PDFInfo
- Publication number
- JP2016183860A JP2016183860A JP2013156252A JP2013156252A JP2016183860A JP 2016183860 A JP2016183860 A JP 2016183860A JP 2013156252 A JP2013156252 A JP 2013156252A JP 2013156252 A JP2013156252 A JP 2013156252A JP 2016183860 A JP2016183860 A JP 2016183860A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- fitting
- measuring device
- measurement
- measurement data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
【課題】試料と試薬の混合反応により、試料に含まれる極微量の信号量を測定する場合に、試料に含まれる測定対象物質の存在有無を判定する、または物質量を定量的に解析する。【解決手段】上述した課題の少なくとも一の課題を解決するための本発明の一態様として、試料から測定される信号量の測定データ点を測定時間に対してプロットしてグラフを生成し、少なくとも一つのカーブフィティング関数で、測定データ点のプロットから構成される反応曲線を近似してフィッティングし、前記フィッティングにより得られたカーブフィティング関数の変数値に基づいて試料の測定を行う構成とした。【選択図】 図1
Description
本発明は、試料に含まれる物質についての検出に関する。特に、試料に含まれる極微量な物質量を高い感度と高い精度で検出するための計測装置及び計測方法に関する。
医薬品工場や飲料工場では、近年、アセプティックシステムと呼ばれる無菌環境を実現する製造施設が設けられ、医薬品や飲料水、清涼飲料水の製造が行われる。アセプティックシステムの無菌環境性の保証や、製品の無菌性保証の検査には、培養法が用いられる。しかしながら、培地を恒温機中にて2〜3日間、場合によっては10日間以上培養した後の発生コロニー数を目視で数えるため、結果を得るのに時間がかかり、製品の出荷にはその結果を待つ必要がある。このような背景から、無菌判定を可能とする迅速測定法の開発が望まれている。
迅速かつ簡便な菌体検出法の1つであるAdenosine triphosphate(ATP)生物発光法(以下、ATP法)は、ホタルの発光反応を利用して、細胞内の物質ATPを光に変換して測定する。ルシフェラーゼ酵素に基質ルシフェリンとATP分子を取り込ませ、ATPの消費とともに酸化されたルシフェリン(オキシルシフェリン)が励起状態から基底状態に遷移するときの発光量を計測する方法で、このとき、ATP1分子の消費が1フォトン(光子)生成に対応するため、光子発生数がATPの個数に比例する。生菌中1個あたりにはエネルギー源として1アトモル(amol=10-18 mol)相当のATP分子が存在するため、測定試料に含まれていたATP発光量から生菌の総数を推定することができる。さらに、生物発光及び化学発光のうちで最も優れた量子効率(ΦBL:≒0.5)であることから、細胞1個を数10万個相当のフォトンとして検出できることになり、発光反応で細胞1個相当の光を検出することは原理的に可能な方法である。
しかしながら、ATP法の検出下限は計測装置の性能だけでなく、環境中に存在するATPの試料への混入やルシフェリン・ルシフェラーゼ試薬、いわゆる発光試薬やその他ATP法に必要な試薬自体にATPが含まれていることが多く、その影響を受けることによるデータの揺らぎにより、一般的に102 amol(amol=10-18 mol)程度と報告されている。それらのデータの揺らぎを防ぐ方法として、特許文献1、2、及び3に開示されるように、近年、外部汚染を防ぐ洗浄機能を具備した分注システムと、光学フィルターを用いた分光による物質種同定システムと、高感度光検出器を同一装置内の遮光かつ外部からの汚染物質の抑制された空間に配置した生物発光検出システムが報告されており、1 amol相当のATP分子量の計測が可能になってきている。
また、計測装置の性能を向上させるには、例えば特許文献4に開示されるように、ランダムノイズ成分や暗電流パルス数の低減を行い、信号成分の揺らぎを抑え、微弱光の信号成分を高い確度で抽出し、検出感度を向上させる手段が採用される。
また、特許文献5には、誤差を表す評価関数を用いてフィッティングを行い、パラメータが目標値より大きく乖離した際に計算を打ち切ることが開示されている。
特許文献1、2、及び3に記載のとおり、ATP法で高い検出感度と高い検出精度を得るためには、測定試料への環境中に存在するATPや菌体、さらに他の不純物の混入を防ぐこと、発光試薬の活性が維持されているかなどの試薬類の状態把握、試薬類へのATPや菌体、その他不純物の混入による汚染、他付随する消耗品の汚染、さらに、計測装置に不具合が生じてないかの状態管理、等を考慮し、測定装置とその周辺が常に安定していることを確認することが重要である。
特に、試薬類に関しては、製造時にATPが混入してしまう場合が多く、これらは、事前に除去不可能なATPであり、発光計測時に常にバックグラウンドとして存在する。このバックグラウンドと測定試料の菌体由来のATPの差分を正確に測定値として示さないと無菌性を示すレベルに近い計測では、偽陽性、偽陰性の判定をしてしまう恐れがある。
上述した課題の少なくとも一の課題を解決するための本発明の一態様として、試料から測定される信号量の測定データ点を測定時間に対してプロットしてグラフを生成し、少なくとも一つのカーブフィティング関数で、測定データ点のプロットから構成される反応曲線を近似してフィッティングし、前記フィッティングにより得られたカーブフィティング関数の変数値に基づいて試料の測定を行う構成とした。
本発明により、信頼性をもって試料中の物質量を計測することができる試料分析装置が提供される。上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
以下、添付図面を参照して本発明の実施形態について説明する。ただし、本実施形態は本発明を実現するための一例に過ぎず、本発明を限定するものではないことに注意すべきである。また、各図において共通の構成については同一の参照番号が付されている。
<実施例1>
図1Aは、試料分析装置とその周辺システム構成を示す1例であり、測定装置1、制御装置2、試料分析装置3で構成される。勿論、試料分析装置3は、制御装置2の機能も含む形態でも良く、さらに、測定装置1と制御装置2と試料分析装置3の全機能を一つの装置として集約した一体化システムの形態でも良い。
図1Aは、試料分析装置とその周辺システム構成を示す1例であり、測定装置1、制御装置2、試料分析装置3で構成される。勿論、試料分析装置3は、制御装置2の機能も含む形態でも良く、さらに、測定装置1と制御装置2と試料分析装置3の全機能を一つの装置として集約した一体化システムの形態でも良い。
本実施例では、本発明の試料分析装置3における測定装置1の測定結果の処理機能について詳細に説明する。よって、本実施例の形態の一例として、制御装置2が制御信号6によって測定装置1の駆動機構の運転制御を行い、試料分析装置3は、測定装置1内の計測器からの信号出力4を処理する構成を用いて説明を行う。なお、本実施例では、制御装置2は、制御装置2と試料分析装置3との間の試料分析装置3の信号取得開始/終了についてのトリガ信号5に基づいて連動して、測定装置1の運転を制御信号6によって制御するものである。
図2は試料分析装置3の構成を示す図である。試料分析装置3は、本体8と、ディスプレイ9で主に構成され、その他、場合によっては、マウス、キーボードなどの手動入力手段10が接続できるようになっている。
図2は、試料分析装置8の処理プログラムをハードウェアの観点から表わしており、本体8は、計測器からの化学発光または生物発光の光信号量を示す信号出力4を取得する測定データ取得部11と、測定データ取得部11で取得した測定データ点を測定時間に対して経時的にプロットして、光信号量の時間変化としてグラフ化するグラフ波形生成部13と、グラフ化されたグラフ波形を近似するための複数のカーブフィティング関数と、複数のカーブフィッティング関数の複数の変数とを蓄積するカーブフィッティング関数記憶部15と、カーブフィッティング関数記憶部15に蓄積された複数のカーブフィッティング関数と複数の変数を順次変更して、測定データ点から構成されるデータ波形フィッティング処理するデータ処理部16と、データ処理部16の処理結果を記憶するデータ記憶部19と、データ記憶部19で記憶された変数値と、任意に設定可能な変数参照値と比較するデータ比較部17と、測定データ点12のフィッティング処理で得られた変数値と予め設定しておいた変数参照値とのズレを判定するデータ判定部20で構成される。
ここで、変数参照値とは、いわゆる閾値であり、ズレの大きさはデータ記憶部19で記憶された変数値と変数参照値との差分で表わされる。例えば、ブランク試料、即ち、測定対象物を含まない溶液に、化学発光または生物発光の専用試薬を反応させた時の光信号量の平均値を変数参照値として設定することで、変数値と変数参照値との差分から対象とする物質量を定量化することも可能である。その際には、図10に示すような対象物質数、または対象物質濃度を横軸に、濃度に応じた光の量を縦軸にして作成する検量線を予め作成しておく。
なお、図2で上述した本体8の制御機能を構成する各機能ブロックは、ソフトウェアモジュールとして実装しても良いしハードウェアで実現してもよい。つまり、各機能ブロックは、本体8内において、それぞれの機能を実現するメモリに格納されたプログラムをプロセッサが解釈して実行することによりソフトウェアで実現することができる。また、各機能ブロックは、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。各機能を実現するプログラム、ファイル、データベース、関数データ、変数データ、等の情報は、例えば、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くこともできる。
以下、図2の試料分析装置3の構成と図3の動作フローチャートを用いて試料分析装置3の動作を説明する。測定装置1の計測器からの信号出力4は、測定データ点として測定データ取得部11で記憶される(S301)。次に、グラフ波形生成部13にて、測定データ取得部11で記憶された測定データ点12からグラフ波形を作成する(S302)。なお、作成されたグラフ波形はデータ記憶部に19にテキストファイル等の方法で記憶されるため、図9のディスプレイ9の表示画面のブランク試料のグラフ表示部35,または測定試料のグラフ表示部36に図4A,図4B等で例示するような表示ができる。表示したい測定データは、第1のグラフ呼び出しのプロダウンメニュー42、第2のグラフ呼び出しのプルダウンメニュー43で選択する。
次に、カーブフィッティング関数記憶部15から、測定対象および測定内容から予め推定されるデータ波形に対応可能と判定されるカーブフィッティング関数群18を呼び出し(S303)、呼び出したカーブフィッティング関数群18の各々の関数を用いて、順番に、フィッティング処理をデータ処理部16で行う(S303)。なお、カーブフィティング関数群18は、関数群設定手段25にて、ユーザーが事前に設定しておく。場合によっては、フィッティング処理時間を短縮するために、フィッティング関数の固定変数を変数固定値設定手段26により決めておいても良い。フィッティング処理は、得られた測定データ点12のグラフ波形に対して、波形の変数であるピーク位置、ピーク高さ、などを逐次反復変化させながら最小自乗規範で一致させていく。例えば、非線形カーブフィットに関しては、Levenberg−Marquardt法で非線形最小二乗問題を解いてフィッティングする。呼び出したカーブフィッティング関数群18全てのカーブフィッティング関数の複数の変数値の結果は、各々のカーブフィッティング関数と関連づけて、データ記憶部19で記憶される(S304)。
なお、各々のカーブフィッティング関数の収束の有無は考慮せず、カーブフィッティング関数群18の何れにおいても、それらの変数値は、データ記憶部19に全て記憶される(S304)。また、収束の有無判定は、フィッティング処理の試行回数を限定することで、処理時間を短縮できる。これらは、フィッティング処理設定手段27にユーザーが事前に決定しておくことができる。また、主に用いられるカーブフィッティング関数群は、指数減衰関数、ローレンツ関数、ガウス関数をベースにしたものである。
データ記憶部19で記憶された変数値群は、次に、データ比較部17にて、変数閾値設定手段28で予め設定しておいた少なくとも一つの比較用変数値群44と比較される(S305)。比較用変数値群24の変数参照値には、少なくとも一つの閾値が設定されているため、閾値の範囲内か、閾値の範囲外かをデータ判定部20にて判定する(S306)。データ判定部での判定結果は、ディスプレイ9の判定結果表示部34に表示される(S307)。
作成されたカーブフィッティング曲線は、データ記憶部に19にテキストファイル等の方法で記憶されているため、図9に示されるように、ディスプレイ9の表示画面のブランク試料のグラフ表示部35,または測定試料のグラフ表示部36に表示できる。表示したい測定データは、第1のグラフ呼び出しのプルダウンメニュー42、第2のグラフ呼び出しのプルダウンメニュー43で選択する。また、測定データ点12のグラフ波形とカーブフィッティング曲線は、後述する図5A、図5B、図5C、図6A、図6B、図6Cに示されるように、1つのグラフ上で重ねて表示することも可能である。
本実施例では、試料分析装置3を用いて測定対象物質の存在有無を判定および存在量を定量分析する1例として、ATP発光測定による無菌検査を例にあげて試料分析装置3の行う処理について詳細に説明する。ただし、試料分析装置3の分析内容については当該検査例に限定されない事はいうまでもない。以下に、ATP発光法を用いた検査方法を簡単に述べる。
ATP法はホタルの発光反応を利用して、細胞、細菌内のATPの数を光の量に変換して測定する。その原理は、ルシフェラーゼ酵素に基質ルシフェリンとATP分子を取り込ませ、ATPの消費とともに酸化されたルシフェリン(オキシルシフェリン)が励起状態から基底状態に遷移するときの発光量を計測する。
このとき、ATP1分子の消費が1フォトン(光子)生成に対応するため、光子発生数がATPの個数に比例する、生きている細菌(生菌)は平均で1アトモルのATPを内胞していることが知られているため、ATPの個数と光子発生数(光信号量)の関係を、予め把握しておくことで、測定試料に含まれていた生菌の総数を推定することができる。生菌数を推定するためのデータベースの作成方法を図10を用いて説明する。まず、ATP数を制御したATPスタンダード溶液を専用の希釈液を用いて作成する。次に、各々の個数で制御されたATPスタンダード溶液を用いて、図1の計測システム45を用いて測定し、光信号量をATP数ごとに整理する。具体的には、ATP数を横軸に、光の量を縦軸にしてATPの検量線39を作成する。検量線から傾きyが求められ、光信号量から、x1=y/aでATP数が算出できる。
次に、生菌数を制御した生菌スタンダード溶液を専用の希釈液を用いて作成する。次に、各々の個数で制御された生菌スタンダード溶液を用いて、図1の計測システム45を用いて測定し、光信号量を生菌数ごとに整理する。具体的には、生菌数を横軸に、光の量を縦軸にして生菌の検量線40を作成する。検量線から傾きyが求められ、光信号量から、x2=y/bでA生菌数が算出できる。以上から、生菌数x2=(a/b)×x1の関係で求められる。
これにより、光信号量から、生菌数が求められる。先に生菌には平均1amolと述べたが、細菌の種類によって異なるため、目的とする対象物がある程度想定できる場合には、図10の方法を用いて、ATP数と生菌数の関係を明瞭にしておいた方が良い。これらの関係式は、図2のデータ比較部17、データ判定部20にて処理され、ディスプレイ9上の判定結果表示部34に表示される。
次に、標準的な生菌内ATP発光測定の測定手順を説明する:
(X)ATP分解酵素による生菌以外の外来ATP分子の除去
(Y)界面活性剤による生菌内ATP分子の抽出
(Z)生菌から抽出されたATP分子と発光試薬との生物発光反応、
の3ステップからなる。
(X)ATP分解酵素による生菌以外の外来ATP分子の除去
(Y)界面活性剤による生菌内ATP分子の抽出
(Z)生菌から抽出されたATP分子と発光試薬との生物発光反応、
の3ステップからなる。
図4A、図4B、図5A、図5B、図5C、図6A、図6B、図6Cは、ステップ(Y)の工程を終了したATP抽出試料を一定量用意し、測定装置1の計測部所定の位置にセットし、ステップ(Z)で、ルシフェリン−ルシフェラーゼ系発光試薬を試料に分注し、ATP抽出試料と混合反応させ、そのATP溶出試料中の生物発光反応量を光検出器で計測した結果と、本実施例の試料分析装置3を用いて分析、即ちカーブフィッティングの結果を示したグラフ波形の典型例である。
光検出器で計測する機構を有する図1で説明した測定装置1および制御装置2の実施形態は、特開2008−268019号公報(特許文献1)に記載されているものが一つの例であり、本発明の明細書にて詳細内容は記載しないが、測定装置1の計測器は、微弱発光を測定するためのフォトンカウンティング方式であり、計測器からの信号出力4は、カウンター基板を用いて処理された1秒間毎のカウント値の合計数が出力され、試料分析装置3に測定データ点として入力される。
図4A、図4Bは、測定装置1からの信号出力4を測定データ取得部11が記憶し(図3のS301)、グラフ波形生成部13が、測定データ取得部11で記憶された測定データ点12から波形(ATP発光データ波形)21を作成する(図3のS302)結果の典型例を示している。これらは、図9のディスプレイ上のブランク試料のグラフ表示部35と測定試料のグラフ表示部36にて表示される。生菌1個に相当するATP量が含まれたATP抽出試料の結果が図4Aであり、試料中にATPが含まれていないブランク試料、つまり、界面活性剤抽出試薬を混合、反応させた結果が図4Bである。
ここで、波形(ATP発光データ波形21)は、図4A、図4Bで、試料と試薬を混合する前の試料バックグラウンド信号22、試料と発光試薬を混合した後の反応により生じたATP発光信号23の2つの領域に区別される。図4Bからわかるように、ブランク試料においても、発光試薬を混合することで、信号量が増加しており、ATP発光と同様な波形が現れている。これは、発光試薬中やその他試薬や消耗品にATPが含まれていることを示していると考察できる。
次に、データ処理部16が、カーブフィッティング関数記憶部15から、測定対象および測定内容から予め推定される波形21に対応可能なカーブフィッティング関数群18を呼び出し、呼び出したカーブフィッティング関数群18の各々を用いて、順番に、フィッティング処理を行う。ここでは、図3のS303で示したフィッティング処理の一例として、関数群として、1つの指数関数減衰項を含むカーブフィッティング関数26、2つの指数関数減衰項を含むカーブフィッティング関数27、3つの指数関数減衰項を含むを含むカーブフィッティング関数28、の3種類を選択する場合について説明する。
(1つの指数関数減衰項を含むカーブフィッティング関数)
y=y0+A1・EXP(-(x-x0)/t1) … 式(1)
(2つの指数関数減衰項を含むカーブフィッティング関数)
y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)
… 式(2)
(3つの指数関数減衰項を含むカーブフィッティング関数)
y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3) … 式(3)
ここで、y0は、試料バックグラウンド22の測定データ点の平均値である。平均値y0は30点以上の測定データ点12、言い換えれば、30秒以上の測定データから算出するのが好適である。x0は、ATP発光信号23の最大値を示した時間である。ATP発光信号23の最大値は、発光開始から、5秒間以内で得られるのが一般的であるため、最大値の検出領域は予め狭めておくこともできる。また、y0は、試料バックグラウンド22の測定データ点12のみを抽出し、フィッティングして算出しても良い。これらの処理は、フィッティング処理設定手段27でユーザーが任意に設定し、データ処理部16で行うことができる。
(1つの指数関数減衰項を含むカーブフィッティング関数)
y=y0+A1・EXP(-(x-x0)/t1) … 式(1)
(2つの指数関数減衰項を含むカーブフィッティング関数)
y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)
… 式(2)
(3つの指数関数減衰項を含むカーブフィッティング関数)
y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3) … 式(3)
ここで、y0は、試料バックグラウンド22の測定データ点の平均値である。平均値y0は30点以上の測定データ点12、言い換えれば、30秒以上の測定データから算出するのが好適である。x0は、ATP発光信号23の最大値を示した時間である。ATP発光信号23の最大値は、発光開始から、5秒間以内で得られるのが一般的であるため、最大値の検出領域は予め狭めておくこともできる。また、y0は、試料バックグラウンド22の測定データ点12のみを抽出し、フィッティングして算出しても良い。これらの処理は、フィッティング処理設定手段27でユーザーが任意に設定し、データ処理部16で行うことができる。
次に、図3のS304で述べた変数値の記憶について例示して説明する。指数関数減衰項のA1、A2、A3は、試料バックグラウンド22の測定データ点の平均値を差し引いたx0秒の時の信号強度に関係する変数である。式(1)では、A1がx0秒の時のATP発光信号値を示し、式(2)では、A1+A2がx0秒の時のATP発光信号値を示し、式(3)では、A1+A2+A3がx0秒の時のATP発光信号値を示している。t1、t2、t3は、ATP発光信号23の減衰率を示す変数である。式(1)のt1は、x0秒からATP―ルシフェラーゼ発光反応の反応過程、いわゆるATPがルシフェラーゼで消費される過程を示している。式(2)のt2も、x0秒からATPがルシフェラーゼで消費される過程を示すものであるが、t1とは異なる反応経路を有すると仮定した場合のもう一つの減衰率を示している。さらに、式(3)のt3は、t1、t2の他に、もう一つの反応経路が存在する仮定した場合のさらに、さらに一つの減衰率を示している。以下にて、データ処理部16による式(1)、(2)、(3)を用いたフィッティング処理を詳細に説明する。
まず、図4A、4Bの試料バックグラウンド22の測定データ点12から、y0を決定する。具体的には、図2のフィッティング処理設定手段27により、80秒から110秒の30秒間の測定データ点12の平均値をデータ処理部16にて計算し、フィッティング処理設定手段27に固定パラメータとしてy0値をデータ記憶部19に記憶させる。
次に、ATP発光信号23から、最大値を抽出し、そのときの時間x0を抽出し、フィッティング処理設定手段27に固定パラメータx0として、データ記憶部19に記憶させる。データ記憶部19に記憶された固定値であるy0、x0は、フィッティング処理設定手段27が呼び出し、呼び出したy0、x0をデータ処理部16に送り、フィッティング処理設定手段27を用いて、式(1)、(2)、(3)の三種類のカーブフィッティング関数を選択し、各々について、データ処理部16にてフィッティングする。波形の変数であるA1、A2、A3、t1、t2、t3を逐次反復変化させながら最小自乗規範で一致させていく。例えば、Levenberg−Marquardt法で非線形最小二乗問題を解いてフィッティングする。呼び出したカーブフィッティング関数群18全てのカーブフィッティング関数のA1、A2、A3、t1、t2、t3の変数値の結果は、各々のカーブフィッティング関数と関連づけて、データ記憶部19に記憶される。
図5A、図5B、図5Cに、ブランク試料において、データ処理部16が式(1)、式(2)、式(3)でそれぞれフィッティングした結果のグラフを示す。図6A、図6B、図6Cは、生菌1個程度のATP含む試料のATP発光の結果を、データ処理部16が式(1)、式(2)、式(3)でそれぞれのフィッティング結果を示している。
式(1)を用いた場合では、フィッティング処理は収束しているが(図5A)、式(2)、式(3)を用いた場合は、どちらもフィッティング処理は収束せず(図5B、図5C)、式(2)のt2、式(3)のt3が無限大に近い値となっている(図5B、図5C)。つまり、ブランク試料の測定データにおいては、1つの指数関数減衰項を含むカーブフィッティング関数(式(1))は、フィッティング関数の選択として適しているが、その他、2つの指数関数減衰項を含むを含むカーブフィッティング関数(式(2))や3つの指数関数減衰項を含むを含むカーブフィッティング関数(式(3))は、フィッティング関数の選択として、不適であることを本結果は示している。不適であることを示す変数値は、図5Bのt2、図5Cのt3であり、それぞれ、9.8811×10の83乗、4.791×10の85乗であり、ほぼ無限大に発散している。このフィッティング結果は、t2、t3を含む項はほぼ0であることが好ましく、t2、t3を含む項がカーブフィッティングに不要であることを示している。
式(1)を用いた場合では、フィッティング処理は収束しているが(図5A)、式(2)、式(3)を用いた場合は、どちらもフィッティング処理は収束せず(図5B、図5C)、式(2)のt2、式(3)のt3が無限大に近い値となっている(図5B、図5C)。つまり、ブランク試料の測定データにおいては、1つの指数関数減衰項を含むカーブフィッティング関数(式(1))は、フィッティング関数の選択として適しているが、その他、2つの指数関数減衰項を含むを含むカーブフィッティング関数(式(2))や3つの指数関数減衰項を含むを含むカーブフィッティング関数(式(3))は、フィッティング関数の選択として、不適であることを本結果は示している。不適であることを示す変数値は、図5Bのt2、図5Cのt3であり、それぞれ、9.8811×10の83乗、4.791×10の85乗であり、ほぼ無限大に発散している。このフィッティング結果は、t2、t3を含む項はほぼ0であることが好ましく、t2、t3を含む項がカーブフィッティングに不要であることを示している。
また、無限大ではなくとも、選択されたカーブフィッティング関数の不適さ、t2、t3の不要さの判断について、x0から100秒後に1CPS未満の減衰しか与えない項は不要だと判断しても良い。図5Bを例に挙げると、A2=53.65076をそのまま引用した場合、t2=5400(5.4×10の4乗)で、100秒後に、0.98CPSの変化量しか与えないため、5.4×10の4乗以上を判定閾値として設定しても良い。同様に、図5CでA3=27.56354をそのまま引用した場合、t2=2800(2.8×10の4乗)の場合、100秒後に、0.96CPSの変化量しか与えないため、2.8×10の4乗以上を閾値として設定すれば良い。つまり、An・EXP(-((x0+100)-x0)/tn)<1の関係から、カーブフィッティング関数の不適さ、t2、t3の不要さの判断に用いるtnの閾値を決めることができ、本実施例のケースでは、より尤度を持って、1×10の5乗以上の場合は、カーブフィッティング関数が不適、t2、またはt3は不要と判断するようにすれば良い。これらの判定閾値を決める処理は、変数閾値設定手段28が担う。
一方、図6A、図6B、図6Cに、生菌1個程度のATPを含む試料において、式(1)、(2)、(3)の何れのカーブフィッティング関数を用いてもフィッティング処理が収束した結果の一例を示す。本結果から、カーブフィティング関数の信号強度に相当する変数値群A1、A1+A2、さらにA1+A2+A3が、図5A、図5B、図5Cで上述したブランク試料よりも生菌1個程度のATPを含む試料の方が大きいことが分かる。また、t1、t2、t3の値に差があり、t2、t3に関しては、フィッティングの収束有無により、これらの変数値がブランク試料と生菌1個程度のATPを含む試料で大きく異なることがわかる。
この結果に基づき、データ判定部20は、以下のような判定基準で、生菌が試料内に1個以上存在するか否かの判定を行う。なお、この場合は、図3のS305の比較処理を行わずに例えば以下の(a)(b)のとおりS306の判定を行う。
(a)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)のカーブフィッティング曲線で収束しない場合は、無菌である。
(b)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3)のカーブフィッティング曲線で収束しない場合は無菌である。
また、判定処理(S306)の前に変数値と比較変数値との比較(S305)を行って判定を行うことも可能である。つまり、比較用変数値群のt2、t3に閾値を設けて、下記(c)(d)のように判定する構成である。ただし、t2、t3の値の判定基準はこれに限定されず、任意に設定可能である。
(c)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)のカーブフィッティング曲線でフィッティングした結果で、t2の値が1×10の5乗以上であれば、無菌である。
(d)y=y0+A1・EXP(-(x-x0)/t1)+A2・EXP(-(x-x0)/t2)+A3EXP(-(x-x0)/t3)のカーブフィッティング曲線でフィッティングした結果で、t3の値が1×10の5乗以上であれば、無菌である。
反対に、上記(a)〜(d)に相当しない場合、即ち、カーブフィッティング曲線が何れも収束した場合や、さらに、t2やt3が1×10の5乗未満であれば、生菌が1個以上存在したという判定が可能となる。
また、さらに、A1とA2の合計、または、A1とA2とA3の合計値から、信号強度を算出し、ATP量を算出することも可能である。
さらに、(a)から(d)に加えて、A1、A2、A3にも閾値を設けても良く、複数の変数の閾値比較により、試料中に生菌が存在するか否かの判定精度を向上させられる。
図7A、図7B、図7C、図7Dは、ブランク試料と生菌1個相当量のATP抽出試料の各々を3回ずつ測定し、試料分析装置3にて、式(2)にてフィッティング処理した結果から、A1とA2、A=A1+A2、t2の変数値についてグラフ表示したものである。図7Aに示されるA1の変数値からは、ブランク試料とATP抽出試料の差を区別することができないのに対して、図7Bに示されるA2、図7Cに示されるA2A=A1+A2、さらに、図7Dに示されるt2の変数比較で、ブランク試料と生菌からのATP抽出試料の信号量の差と、有菌か無菌かを明瞭に判定することが可能であることが確認された。
このように、データ判定部20による生菌の有無判定はt1、t2、t3を用いずにA2またはA=A1+A2でも判定することも可能である。しかし、ブランク試料のA2またはA=A1+A2を用いて判定する場合、偽陽性に注意が必要なため、検出限界や定量限界は踏まえて生菌の有無判定の閾値を決定する必要がある。様々な思想のもとに決められているが、現在最も受け入れられているIUPACとISO(国際標準化機構)で定められた検出下限、定量下限を採用するのが好適である。具体的には、プランク試料の信号量+ブランク試料の信号量の標準偏差(Standard Deviation:SD)の3.3倍の値を検出下限とし、また、標準偏差の10倍以上を定量下限とする。例えば、複数のブランク試料の測定データから、A2の標準偏差(Standard Deviation:SD)を算出し、データ比較用変数値群24の変数参照値にA2+3.3SD(A2)の値を格納しておく。
同様に、A=A1+A2のSDを計算し、データ比較用変数群24の変数参照値にA+3.3SD(A)の値を格納しておく。格納したこれらの変数参照値と比較し、閾値以上か否かでATP抽出試料内に生菌が存在したか否かを判定できる。また、さらに1つの変数参照値をブランク試料の平均値として設定し、測定試料で得られた信号値との差分量から、図10を用いて説明した検量線からの生菌数の算出方法で算出し、検出下限か否かによる生菌有無判定に加えて、生菌数を判定結果として表示しても良い。これらは、何れも判定結果表示部34に表示される。
以上、本実施例では、試料分析装置3のデータ比較部17の変数閾値設定手段28が、t2、A2、Aを変数として選択し、各変数参照値、例えばt2=1×10の5乗、A2=70、A=140と設定して、高い確度で生菌の有無を判定できる。また、Aの閾値として、さらに、プランク試料の平均値を加えることで、生菌数の定量が可能となる。
なお、本実施例で例示した数値はあくまでも実験結果の典型例から見出した値であり、試薬の状況や、測定装置1の性能により変化することは言うまでもない。
<実施例2>
本実施例では、試料分析装置3は、菌の存在有無の判定に加え、測定装置1の不具合による誤計測や消耗品関係の汚染や試薬の活性不具合による誤計測を検知する、いわゆる、測定異常検知も行う実施形態について説明する。
本実施例では、試料分析装置3は、菌の存在有無の判定に加え、測定装置1の不具合による誤計測や消耗品関係の汚染や試薬の活性不具合による誤計測を検知する、いわゆる、測定異常検知も行う実施形態について説明する。
図8は、試料分析装置3の結果から無菌検査の有菌か無菌か、さらに、測定異常による誤計測かを判定するステップを示している。ここでは、式(2)の2つの指数関数減衰項を含むカーブフィッティング関数で判定される例を示している。測定対象は、ATPであり、ATP生物発光の時系列信号値が測定データ点であり、測定データ点を200秒測定し、試料と試薬を混合する前の試料バックグラウンド信号、試料と発光試薬を混合した後の反応により生じたATP発光信号の2つの領域をまとめて測定する。
ここで、本実施例における試料分析装置の表示画面を示す図9を用いて説明する。まず、無菌試料、すなわちブランク試料の測定を測定装置1で行う。測定終了後、試料分析装置3において、指数関数減衰項を含むカーブフィッティング関数群を、図9のディスプレイ上の関数群選択プルダウンメニュー29から選択する(式(4))。
y=y0+ΣAi・EXP(-(x-x0)/ti)(1≦i≦n) …(4)
その後、試料分析開始ボタン30をクリックし、分析を開始する。測定装置1の計測器からの信号出力4を受け取り、測定データ点を記憶し(S801)、グラフ波形の作成を行う(S802)。次に、式(4)のiを1から順番に増加させていきグラフ波形のフィッティング処理を行う(S803)。次に、複数のカーブフィッティング処理結果の変数値を記憶する(S804)。記憶された変数値は、画面上の測定試料変数値表示部32に表示される。測定試料変数値表示部に表示された変数の値は、保存され、任意に呼び出せる。ここでは、実施例1で説明したように、ブランク試料結果をもとに、A、t2の変数値に閾値を設定する。例えば、AAを140、t2を1E5と設定する。これを比較変数群として保存する比較用変数群設定ボタン38をクリックすると、試料分析装置3に記憶される。
その後、試料分析開始ボタン30をクリックし、分析を開始する。測定装置1の計測器からの信号出力4を受け取り、測定データ点を記憶し(S801)、グラフ波形の作成を行う(S802)。次に、式(4)のiを1から順番に増加させていきグラフ波形のフィッティング処理を行う(S803)。次に、複数のカーブフィッティング処理結果の変数値を記憶する(S804)。記憶された変数値は、画面上の測定試料変数値表示部32に表示される。測定試料変数値表示部に表示された変数の値は、保存され、任意に呼び出せる。ここでは、実施例1で説明したように、ブランク試料結果をもとに、A、t2の変数値に閾値を設定する。例えば、AAを140、t2を1E5と設定する。これを比較変数群として保存する比較用変数群設定ボタン38をクリックすると、試料分析装置3に記憶される。
記憶された比較用変数群を試料測定の際に呼び出すと、図9の比較用変数群表示部32に表示される。比較用変数群表示部32は、1列目に変数値の記号が表示され、2列目には、それらの変数値が表示される。それらの変数値をもとに、閾値表示部37に変数参照値として入力する。これらの変数参照値は閾値として、設定される。もちろん、記憶済みの閾値を呼び出して表示することも可能であり、ブランク試料の結果の変数値は、あくまでも参照値であり、閾値の設定値は自由に選択すれば良い。
この状態にした後に、実測定試料の測定を開始する。測定装置1の計測器からの信号出力4を受け取り、測定データ点を記憶し(S801)、グラフ波形の作成を行い(S802)、次に、式(4)のiを1から順番に増加させていきグラフ波形のフィッティング処理を行う(S803)。次に、複数のカーブフィッティング処理結果の変数値を記憶する(S804)。記憶された変数値群は、画面上の測定試料変数値表示部33に表示される。この表示された測定試料変数値と、比較用変数値との比較が次に実施される。まず、A2が閾値以上か閾値未満かの比較1が実施を実施する(S805)。次に、t2が閾値以上か閾値未満かの比較2が実施する(S806、S807)。以上のステップにより、菌の存在の有無、即ち、有菌か無菌か、もしくは測定異常の判定が下る。
具体的な例として、比較1(S805)で閾値以上、つまり、ブランク試料の光信号値の平均値よりも測定試料の光の信号値が大きい場合、または、ブランク試料測定のAの標準偏差SDの3.3倍以上の場合、有菌である可能性が高いと判断し、次に、比較2(S806)に移る。比較2(806)で、閾値未満であった場合、有菌と判定される。有菌と判定された場合、微生物量をカウントすることも可能であり、ATP数、生菌数、各々の光信号量の関係から、測定試料に含まれていた生菌の総数の推定量を算出することができる。
一方、比較1(S805)で閾値以上であったにも関わらず、比較2(806)で、閾値以上であった場合、ATP発光の濃度に応じた減衰曲線が得られていないことを示すため、測定異常と判定される。このような結果が出てしまう測定異常の原因としては、測定装置の遮光性能が損なわれた、または、コンタミによるATP発光以外の定常的な光物質が混入した、等が考えられ、測定中止のメッセージ38が表示され、測定が中止される。
また、比較1(S805)で閾値未満の場合、つまり、ブランク試料の光信号値の平均値よりも測定試料の光の信号値が同等か低い場合、または、ブランク試料測定のAの標準偏差SDの3.3倍未満の場合、無菌である可能性が高いと判断し、次に、比較3(S807)に移る。比較3(806)で、閾値以上であった場合、無菌と判定される。一方、比較3(807)で閾値未満と判定された場合、通常のATP発光の減衰曲線が得られていないことから、測定異常と判定される。測定異常の原因としては、試薬の分注量が設定値よりも少なかった、もしくは試薬が分注されなかった、等が考えられ、測定中止のメッセージ38が表示され、測定が中止される。
図9の画面上では、判定結果表示部34に有菌、無菌の結果、有菌の場合は生菌数、またはATP数が表示され、測定異常の際には、測定異常と表示される。さらに、測定データ点から構成されるグラフ、グラフのフィッティング曲線も表示され、視覚的に解析が順調に進んでいるかを確かめられるようになっている(35、36)。
1…測定装置、2…制御装置、3…試料分析装置、4…計測器からの信号出力、5…トリガ信号、8…本体、9…ディスプレイ、10…手動入力手段11…測定データ取得部、13…グラフ波形生成部、15…カーブフィッティング関数記憶部、16…データ処理部、17…データ比較部、18…カーブフィッティング関数群、19…データ記憶部、20…データ判定部、21…波形(ATP発光データ波形)、22…試料バックグラウンド、23…ATP発光信号、24…比較用変数値群、25…関数群設定手段、26…1つの指数関数減衰項を含むカーブフィッティング関数、27…2つの指数関数減衰項を含むを含むカーブフィッティング関数、28…3つの指数関数減衰項を含むを含むカーブフィッティング関数、29…関数群選択プルダウンメニュー、30…試料分析開始ボタン、31…比較用変数群呼び出しプルダウンメニュー、32…比較用変数群表示部、33…測定試料変数値表示部、34…判定結果表示部、35…ブランク試料のグラフ表示部、36…測定試料のグラフ表示部、37…閾値表示部、38…比較用変数群設定ボタン、38…測定中止のメッセージ、39…ATPの検量線、40…生菌の検量線、41…ATP個数と生菌数の関係、42…第1のグラフ呼び出しのプロダウンメニュー、43…第2のグラフ呼び出しのプロダウンメニュー、44…比較変数値群、45…計測システム、46…カーブフィッティング曲線y=y0+ΣAi・EXP(-(x-x0)/ti)のiの設定ボタン
Claims (10)
- 試料と試薬の反応による信号量の時間変化をもとに、試料に含まれる物質量を計測する計測装置であって、
試料から測定される信号量の測定データ点を取得する測定データ取得部と、
前記測定データ点を測定時間に対してプロットしてグラフを生成するグラフ生成部と、
少なくとも一つのカーブフィティング関数で、前記グラフの前記測定データ点のプロットから構成される反応曲線を近似してフィッティングするデータ処理部と、
前記フィッティングにより得られた前記カーブフィティング関数の変数値に基づいて、前記試料の測定を行う計測部と、を備える、
ことを特徴とする計測装置。 - 請求項1に記載の計測装置であって、
前記計測部は、
前記フィッティングにより得られた変数値を、前記フィッティングに用いたカーブフィティング関数について予め設定された変数の閾値と比較して、前記比較結果に基づいて前記物質量の計測を行う、
ことを特徴とする計測装置。 - 請求項1に記載の計測装置であって、
前記計測部は、
前記カーブフィティング関数の変数値に基づいて、
前記試料に含まれる測定対象物の量を計測する、
ことを特徴とする計測装置。 - 請求項1に記載の計測装置であって、
前記計測部は、
前記カーブフィティング関数の変数値に基づいて、
前記測定の異常の有無を判定する、
ことを特徴とする計測装置。 - 請求項1に記載の計測装置であって、
前記測定データ取得部は、
試薬混合前の試料から測定される信号量及び試薬を混合した後の試料から測定される信号量の測定データ点を取得し、
前記データ処理部は、
前記フィッティングによって、前記試薬を混合した後の反応で生じる信号量の最大値を含む時間からその後の減少する変化曲線を近似する、
ことを特徴とする計測装置。 - 請求項1に記載の計測装置であって、
前記測定データ取得部は、
試薬混合前の試料から測定される信号量及び試薬を混合した後の試料から測定される信号量の測定データ点を取得し、
前記測定データ点は、前記試薬混合前後における化学発光、又は生物発光の光信号量の時間変化である、
ことを特徴とする計測装置。 - 請求項1に記載の計測装置であって、
前記データ処理部は、
前記変数の少なくとも一つに指数関数的減衰項を含むカーブフィティング関数を用いて前記フィッティングを行う、
ことを特徴とする計測装置。 - 請求項7に記載の計測装置であって、
前記測定データ取得部は、
試薬混合前の試料から測定される信号量及び試薬を混合した後の試料から測定される信号量の測定データ点を取得し、
前記データ処理部は、
前記カーブフィティング関数として、y=y0+ΣAi・EXP(-(x-x0)/ti)(1≦i≦n)を用いて前記フィッティングを行い、
前記カーブフィティング関数において、y0は試料と試薬を混合する前のバックグラウンド信号量の平均値であり、x0は試料と試薬を混合した後の信号量の最大値である、
ことを特徴とする計測装置。 - 請求項8に記載の計測装置であって、
前記データ処理部は、
変数t1からtnのうちの少なくとも一つの変数ti、または変数A1からAnのうちの少なくとも一つの変数Ai、または変数A1からAnのうちの少なくとも2つ以上の変数Aiを合計した値、の少なくとも何れかについて前記閾値に設定し、
前記フィッティングにより得られた変数値を、前記閾値と比較して、前記比較結果に基づいて前記物質量の計測を行う、
ことを特徴とする計測装置。 - 試料と試薬の反応による信号量の時間変化をもとに、試料に含まれる物質量を計測する方法において、
ブランク試料を用意し、試薬を混合し、反応させ、信号量の時間的変化である第1の測定データ点を測定データ取得部に取得するステップと、
第1の測定データ点を少なくとも一つのカーブフィッティング曲線でフィッティングするステップと、
フィッティングで得られた第1のカーブフィッティング曲線の第1の変数群を、記憶するステップと、
測定試料を用意し、試薬を混合し、反応させ、信号量の時間的変化である第2の測定データ点を測定データ取得部に取得するステップと、
第2の測定データ点を少なくとも一つのカーブフィッティング曲線でフィッティングするステップと、
フィッティングで得られた第2のカーブフィッティング曲線の第2の変数群を、記憶するステップと、
記憶部に保存された第1の変数群と第2の変数群を比較部にて比較するステップと、を含む計測方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156252A JP2016183860A (ja) | 2013-07-29 | 2013-07-29 | 計測装置及び計測方法 |
PCT/JP2014/065027 WO2015015898A1 (ja) | 2013-07-29 | 2014-06-06 | 計測装置及び計測方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013156252A JP2016183860A (ja) | 2013-07-29 | 2013-07-29 | 計測装置及び計測方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016183860A true JP2016183860A (ja) | 2016-10-20 |
Family
ID=52431443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013156252A Pending JP2016183860A (ja) | 2013-07-29 | 2013-07-29 | 計測装置及び計測方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016183860A (ja) |
WO (1) | WO2015015898A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023001581A (ja) * | 2021-06-21 | 2023-01-06 | 東亜ディーケーケー株式会社 | エンドトキシン測定方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2927479T3 (es) * | 2016-12-09 | 2022-11-07 | Otsuka Pharma Co Ltd | Método de detección de anomalías de medición |
JP6720095B2 (ja) * | 2017-01-16 | 2020-07-08 | 三菱日立パワーシステムズ株式会社 | 冷却塔設備、及びその水質管理方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004212120A (ja) * | 2002-12-27 | 2004-07-29 | Wako Pure Chem Ind Ltd | 測定値推定機能を持つ測定装置及び測定方法 |
AU2005273482B2 (en) * | 2004-08-16 | 2010-12-16 | Bacterioscan | Detection of bacteria in fluids |
JP2006071300A (ja) * | 2004-08-31 | 2006-03-16 | Hitachi Ltd | 生化学物質検出装置 |
AU2006223223B2 (en) * | 2005-03-10 | 2012-04-12 | Gen-Probe Incorporated | Systems and methods to perform assays for detecting or quantifying analytes within samples |
EP2489745B1 (en) * | 2006-06-05 | 2017-01-11 | California Institute Of Technology | Real time micro arrays |
JP5574105B2 (ja) * | 2010-08-16 | 2014-08-20 | 大日本印刷株式会社 | パラメータフィッティング方法 |
JP5591747B2 (ja) * | 2011-03-30 | 2014-09-17 | 株式会社日立製作所 | 発光計測装置及び微生物計数装置 |
JP5932540B2 (ja) * | 2012-07-24 | 2016-06-08 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
-
2013
- 2013-07-29 JP JP2013156252A patent/JP2016183860A/ja active Pending
-
2014
- 2014-06-06 WO PCT/JP2014/065027 patent/WO2015015898A1/ja active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023001581A (ja) * | 2021-06-21 | 2023-01-06 | 東亜ディーケーケー株式会社 | エンドトキシン測定方法 |
JP7323816B2 (ja) | 2021-06-21 | 2023-08-09 | 東亜ディーケーケー株式会社 | エンドトキシン測定方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2015015898A1 (ja) | 2015-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331669B2 (ja) | 電解質分析装置 | |
CN111512143B (zh) | 用于检测污染物存在或不存在的方法和传感器 | |
JP2012505406A5 (ja) | ||
US20090222213A1 (en) | Automatic analyzer | |
JP5965248B2 (ja) | 電解質分析装置 | |
JP4276894B2 (ja) | 異常検出システム及び異常検出方法 | |
JP5793088B2 (ja) | 生体サンプルの細菌検査方法および関連機器 | |
US7727769B2 (en) | Measurement result correction method, urine analysis system, and urine analyzer | |
JP4948020B2 (ja) | 自動分析装置の分析支援用液体の品質管理方法および自動分析装置 | |
JP2019512665A (ja) | 液体試料中の分析物を検出するための電気化学発光方法および装置 | |
WO2015015898A1 (ja) | 計測装置及び計測方法 | |
CN110702767B (zh) | 自动分析装置 | |
JP2016188872A (ja) | 電解質分析装置及び電解質分析方法 | |
JP2015190883A (ja) | 検体分析装置及び検体分析方法 | |
US20160077014A1 (en) | Automatic titrator | |
JP5686710B2 (ja) | 自動分析装置 | |
CN111727366B (zh) | 信号处理装置和信号处理方法 | |
WO2017115775A1 (ja) | 分析装置、分析方法、および、分析システム | |
Bivins et al. | Inherent bias of SARS-CoV-2 RNA quantification for wastewater surveillance due to variable RT-qPCR assay parameters | |
JP2009222610A (ja) | 自動分析装置 | |
JP2008309661A (ja) | 分析装置 | |
JP6039940B2 (ja) | 自動分析装置 | |
US20220364144A1 (en) | Bioluminescent single photon bioreactor and performing absolute quantification of light-producing activity by enzymes | |
JP4287753B2 (ja) | 分析装置 | |
JP5839849B2 (ja) | 自動分析装置 |