[go: up one dir, main page]

JP2016164490A - Current detector, driving device, and industrial machine - Google Patents

Current detector, driving device, and industrial machine Download PDF

Info

Publication number
JP2016164490A
JP2016164490A JP2015044185A JP2015044185A JP2016164490A JP 2016164490 A JP2016164490 A JP 2016164490A JP 2015044185 A JP2015044185 A JP 2015044185A JP 2015044185 A JP2015044185 A JP 2015044185A JP 2016164490 A JP2016164490 A JP 2016164490A
Authority
JP
Japan
Prior art keywords
current detection
voltage
current
voltage dividing
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015044185A
Other languages
Japanese (ja)
Inventor
拓嗣 川中子
Takuji Kawanakako
拓嗣 川中子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015044185A priority Critical patent/JP2016164490A/en
Publication of JP2016164490A publication Critical patent/JP2016164490A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current detector that is advantageous in current detection accuracy.SOLUTION: There is provided a current detector for detecting current flowing through a load that is driven by a bipolar DC power supply and first and second switching element pairs. The current detector comprises: first and second current detection resistors; a first voltage division path configured by series connecting a plurality of voltage-dividing resistors via a first node, and connected in parallel to a current path including the first current detection resistor and the load; a second voltage division path configured by series connecting the plurality of voltage-dividing resistors via a second node, and connected in parallel to a current path including the second current detection resistor and the load; and an output unit for outputting a voltage corresponding to the current flowing through the load using a voltage from the first node and a voltage from the second node as input.SELECTED DRAWING: Figure 1

Description

本発明は、電流検出装置、駆動装置および産業機械に関する。   The present invention relates to a current detection device, a drive device, and an industrial machine.

一般的に、負荷(モーターなど)に流れる電流は、負荷と直列に接続された電流検出抵抗での電圧降下として検出される。この電圧降下は、電流検出抵抗の両端の電圧を差動増幅器などの検出回路に入力して得られた出力(=差電圧)として求められる。しかし、負荷への印加電圧を上昇させた場合、電流検出抵抗の両端に高い同相電圧が印加されるので、差電圧には検出回路に依存する誤差が含まれてしまう。これに対して、特許文献1は、負荷の両端に電流検出抵抗を挿入し、差動増幅器により各抵抗での差電圧を検出し、これら2つの差電圧を加算することで電流検出精度の悪化を抑制する電流検出装置を開示している。   Generally, a current flowing through a load (such as a motor) is detected as a voltage drop at a current detection resistor connected in series with the load. This voltage drop is obtained as an output (= differential voltage) obtained by inputting the voltage across the current detection resistor to a detection circuit such as a differential amplifier. However, when the voltage applied to the load is increased, a high common-mode voltage is applied to both ends of the current detection resistor, so that the difference voltage includes an error depending on the detection circuit. On the other hand, in Patent Document 1, current detection resistors are inserted at both ends of a load, a differential voltage at each resistor is detected by a differential amplifier, and these two difference voltages are added to deteriorate current detection accuracy. Disclosed is a current detection device that suppresses noise.

特開2008−64506号公報JP 2008-64506 A

しかしながら、特許文献1の装置においても、電流検出抵抗の両端に高い同相電圧が印加されることに変わりはない。したがって、差動増幅器から出力される差電圧には、その性能に依存する誤差が含まれ、電流検出精度の点で不利となりうる。本発明は、例えば、検出精度の点で有利な電流検出装置を提供することを目的とする。   However, even in the apparatus of Patent Document 1, a high common-mode voltage is applied to both ends of the current detection resistor. Therefore, the differential voltage output from the differential amplifier includes an error depending on its performance, which may be disadvantageous in terms of current detection accuracy. An object of the present invention is to provide a current detection device that is advantageous in terms of detection accuracy, for example.

上記課題を解決するために、本発明は、両極性の直流電源と第1および第2スイッチング素子対とにより駆動される負荷に流れる電流を検出する電流検出装置であって、第1および第2電流検出抵抗と、第1接続点を介して複数の分圧抵抗を直列に接続して構成され、第1電流検出抵抗と負荷とを含む電流経路とは並列に接続された第1分圧経路と、第2接続点を介して複数の分圧抵抗を直列に接続して構成され、第2電流検出抵抗と負荷とを含む電流経路とは並列に接続された第2分圧経路と、を有し、第1接続点からの電圧および第2接続点からの電圧を入力として電流に対応した電圧を出力する出力部と、を有することを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a current detection device for detecting a current flowing in a load driven by a bipolar DC power supply and a first and second switching element pair, wherein the first and second A first voltage dividing path configured by connecting a current detecting resistor and a plurality of voltage dividing resistors in series via a first connection point, and the current path including the first current detecting resistor and the load is connected in parallel. And a second voltage dividing path configured by connecting a plurality of voltage dividing resistors in series via the second connection point, and connected in parallel with the current path including the second current detection resistor and the load. And an output unit that outputs the voltage corresponding to the current with the voltage from the first connection point and the voltage from the second connection point as inputs.

本発明によれば、例えば、検出精度の点で有利な電流検出装置を提供することができる。   According to the present invention, for example, a current detection device that is advantageous in terms of detection accuracy can be provided.

第1実施形態に係る電流検出装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric current detection apparatus which concerns on 1st Embodiment. 第2実施形態に係る電流検出装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the electric current detection apparatus which concerns on 2nd Embodiment. 第3実施形態に係る電流検出装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the current detection apparatus which concerns on 3rd Embodiment. 第4実施形態に係る電流検出装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the current detection apparatus which concerns on 4th Embodiment. 本発明の実施形態に係る電流検出装置を使用可能な光走査装置の制御システムを示す概略図である。It is the schematic which shows the control system of the optical scanning device which can use the electric current detection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る電流検出装置を使用可能な駆動装置を示す概略図である。It is the schematic which shows the drive device which can use the electric current detection apparatus which concerns on embodiment of this invention.

以下、本発明を実施するための形態について図面を参照して説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係る電流検出装置の構成を示す回路図である。電流検出装置1は、直流電源2および3と、第1スイッチング素子対8および第2スイッチング素子対9と、直流モータである負荷10とを備える。さらに、負荷10の両端に第1電流検出抵抗11および第2電流検出抵抗12を備え、分圧抵抗13、14、15および16と、出力部(検出回路)19と、を備える。直流電源2および3は、直列に接続されるとともに、その接続点が接地されることで直流電源2が正極、直流電源3が負極の電圧が概略等しい両極性の直流電源として構成される。第1スイッチング素子対8および第2スイッチング素子対9は、直流電源2と3との間に並列に配置される。第1スイッチング素子対8は、FET(電界効果トランジスタ)であるスイッチング素子4と5とを第3接続点を介して直列に接続した構成をしており、一端が直流電源2と接続され他端が直流電源3に接続される。第2スイッチング素子対9の構成および直流電源との接続も同様であり、スイッチング素子6と7とを第4接続点を介して直列に接続した構成をしており、一端が直流電源2と接続され他端が直流電源3に接続される。第1電流検出抵抗11は、負荷10の一端と第3接続点との間に接続される。第2電流検出抵抗12は、負荷10の他端と第4接続点との間に接続される。以上のように各素子を配置することで、この回路は、直流電源2および3と第1スイッチング素子対8および第2スイッチング素子対9を備えた負荷駆動手段により負荷10を駆動するフルブリッジ回路を構成する。
(First embodiment)
FIG. 1 is a circuit diagram showing the configuration of the current detection device according to the first embodiment of the present invention. The current detection device 1 includes DC power supplies 2 and 3, a first switching element pair 8 and a second switching element pair 9, and a load 10 that is a DC motor. Further, the load 10 includes a first current detection resistor 11 and a second current detection resistor 12 at both ends, and voltage dividing resistors 13, 14, 15 and 16, and an output unit (detection circuit) 19. The DC power sources 2 and 3 are connected in series and grounded at their connection point, so that the DC power source 2 is configured as a bipolar DC power source having substantially the same positive and negative voltage. The first switching element pair 8 and the second switching element pair 9 are arranged in parallel between the DC power supplies 2 and 3. The first switching element pair 8 has a configuration in which switching elements 4 and 5 which are FETs (field effect transistors) are connected in series via a third connection point, and one end is connected to the DC power source 2 and the other end. Is connected to the DC power source 3. The configuration of the second switching element pair 9 and the connection to the DC power supply are the same, and the switching elements 6 and 7 are connected in series via the fourth connection point, and one end is connected to the DC power supply 2. The other end is connected to the DC power source 3. The first current detection resistor 11 is connected between one end of the load 10 and the third connection point. The second current detection resistor 12 is connected between the other end of the load 10 and the fourth connection point. By arranging each element as described above, this circuit is a full bridge circuit that drives the load 10 by load driving means including the DC power sources 2 and 3, the first switching element pair 8, and the second switching element pair 9. Configure.

分圧抵抗13および14は、抵抗値が概略等しく、第1接続点17を介して直列に接続された第1分圧経路として構成される。第1分圧経路の一端は第4接続点に接続され、他端が負荷10と第1電流検出抵抗11との接続点に接続される。つまり、第1電流検出抵抗11と負荷10とを含む電流経路とは並列に接続される。この分圧経路と、第1電流検出抵抗11とにより電源電圧が分圧される。同様に、分圧抵抗15および16は、抵抗値が概略等しく、第2接続点18を介して直列に接続されて第2分圧経路として構成される。第2分圧経路の一端は第3接続点に接続され、他端が負荷10と第2電流検出抵抗12との接続点に接続される。つまり、第2電流検出抵抗12と負荷10とを含む電流経路とは並列に接続される。この分圧経路と、第2電流検出抵抗12とにより電源電圧が分圧される。出力部19は、入力電圧を演算して出力する回路であり、本実施形態では差動増幅回路を用いる。分圧抵抗13と14との第1接続点17および分圧抵抗15と16との第2接続点18は、出力部19の入力に接続される。出力部19は、第1接続点17および第2接続点18からの電圧を入力として、負荷10に流れる電流Is1に対応した電圧を出力する。   The voltage dividing resistors 13 and 14 have substantially the same resistance value, and are configured as a first voltage dividing path connected in series via the first connection point 17. One end of the first voltage dividing path is connected to the fourth connection point, and the other end is connected to a connection point between the load 10 and the first current detection resistor 11. That is, the current path including the first current detection resistor 11 and the load 10 is connected in parallel. The power supply voltage is divided by the voltage dividing path and the first current detection resistor 11. Similarly, the voltage dividing resistors 15 and 16 have substantially the same resistance value and are connected in series via the second connection point 18 to be configured as a second voltage dividing path. One end of the second voltage dividing path is connected to the third connection point, and the other end is connected to the connection point between the load 10 and the second current detection resistor 12. That is, the current path including the second current detection resistor 12 and the load 10 is connected in parallel. The power supply voltage is divided by the voltage dividing path and the second current detection resistor 12. The output unit 19 is a circuit that calculates and outputs an input voltage. In the present embodiment, a differential amplifier circuit is used. A first connection point 17 between the voltage dividing resistors 13 and 14 and a second connection point 18 between the voltage dividing resistors 15 and 16 are connected to the input of the output unit 19. The output unit 19 receives the voltage from the first connection point 17 and the second connection point 18 as an input, and outputs a voltage corresponding to the current Is1 flowing through the load 10.

負荷10の駆動状態について説明する。負荷10は前述したフルブリッジ回路により駆動される。ここで、スイッチング素子4、5、6および7は、図示しない制御装置によりオンもしくはオフどちらかの状態に制御される。第1の負荷駆動状態では、スイッチング素子4および7がオン状態に制御され、スイッチング素子5および6がオフ状態に制御される。この第1の負荷駆動状態では、負荷に流れる電流が第1スイッチング素子対8から第2スイッチング素子対9へ向かう方向となる。このとき、スイッチング素子4と5との接続点には最大で直流電源2の電圧+Vpが印加され、スイッチング素子6と7との接続点には最小で直流電源3の電圧−Vpが印加される。第2の負荷駆動状態では、スイッチング素子5および6がオン状態に制御され、スイッチング素子4および7がオフ状態に制御される。この第2の負荷駆動状態では、負荷に流れる電流が第2スイッチング素子対9から第1スイッチング素子対8へ向かう方向となる。このとき、スイッチング素子6と7との接続点には最大で直流電源2の電圧+Vpが印加され、スイッチング素子4と5との接続点には最小で直流電源3の電圧−Vpが印加される。   A driving state of the load 10 will be described. The load 10 is driven by the above-described full bridge circuit. Here, the switching elements 4, 5, 6 and 7 are controlled to be either on or off by a control device (not shown). In the first load driving state, switching elements 4 and 7 are controlled to be in an on state, and switching elements 5 and 6 are controlled to be in an off state. In the first load driving state, the current flowing through the load is directed from the first switching element pair 8 toward the second switching element pair 9. At this time, the voltage + Vp of the DC power supply 2 is applied to the connection point between the switching elements 4 and 5 at the maximum, and the voltage −Vp of the DC power supply 3 is applied to the connection point between the switching elements 6 and 7 at the minimum. . In the second load driving state, switching elements 5 and 6 are controlled to be in an on state, and switching elements 4 and 7 are controlled to be in an off state. In the second load driving state, the current flowing through the load is directed from the second switching element pair 9 toward the first switching element pair 8. At this time, the voltage + Vp of the DC power supply 2 is applied to the connection point between the switching elements 6 and 7 at the maximum, and the voltage −Vp of the DC power supply 3 is applied to the connection point between the switching elements 4 and 5 at the minimum. .

次に、電流検出装置1における電流検出の原理について、第1の負荷駆動状態の場合で説明する。スイッチング素子4と5との接続点電圧を+Vp、スイッチング素子6と7との接続点電圧を−Vpとすると、分圧抵抗の第1接続点17および第2接続点18の電圧V11およびV12はそれぞれ式(1)および(2)で表される。
V11=−1/2(Is1×Rs11+Ib×R) (1)
V12=1/2(Is1×Rs12−Ib×R) (2)
ここで、Is1は負荷10に流れる電流、Rs11およびRs12はそれぞれ第1電流検出抵抗11および第2電流検出抵抗12の抵抗値、Ibは出力部19の入力バイアス電流であり、入力バイアス電流の流れる向きは図1に矢印で示す方向とする。また、Rは分圧抵抗13、14、15および16の抵抗値である。
Next, the principle of current detection in the current detection device 1 will be described in the case of the first load driving state. When the connection point voltage between the switching elements 4 and 5 is + Vp and the connection point voltage between the switching elements 6 and 7 is −Vp, the voltages V11 and V12 at the first connection point 17 and the second connection point 18 of the voltage dividing resistor are They are represented by formulas (1) and (2), respectively.
V11 = −1 / 2 (Is1 × Rs11 + Ib × R) (1)
V12 = 1/2 (Is1 * Rs12-Ib * R) (2)
Here, Is1 is a current flowing through the load 10, Rs11 and Rs12 are resistance values of the first current detection resistor 11 and the second current detection resistor 12, respectively, Ib is an input bias current of the output unit 19, and the input bias current flows. The direction is the direction indicated by the arrow in FIG. R is the resistance value of the voltage dividing resistors 13, 14, 15 and 16.

出力部19からはV11とV12の差電圧と、共通に印加される同相電圧による誤差電圧が出力される。式(1)および(2)から、同相電圧は−1/2(Ib×R)であるので、出力部19の出力電圧Vs1は式(3)で表される。
Vs1=1/2{Is1×(Rs11+Rs12)}−A{1/2(Ib×R)} (3)
第一の項が差電圧であり、第二の項が同相電圧による誤差電圧である。第2の負荷駆動状態においては、差電圧の項の符号が反転する。なお、Aは出力部19の同相電圧除去比であり、例えばA=−80dBの検出回路であれば、同相電圧による誤差電圧は、同相電圧の0.01%に低減される。
The output unit 19 outputs a difference voltage between V11 and V12 and an error voltage due to the common-mode voltage applied in common. From the equations (1) and (2), since the common-mode voltage is −½ (Ib × R), the output voltage Vs1 of the output unit 19 is represented by the equation (3).
Vs1 = 1/2 {Is1 * (Rs11 + Rs12)}-A {1/2 (Ib * R)} (3)
The first term is the differential voltage, and the second term is the error voltage due to the common-mode voltage. In the second load driving state, the sign of the differential voltage term is inverted. A is the common-mode voltage rejection ratio of the output unit 19. For example, if the detection circuit has A = −80 dB, the error voltage due to the common-mode voltage is reduced to 0.01% of the common-mode voltage.

例えば、分圧抵抗13、14、15および16の抵抗値Rを20kΩ、出力部19の入力バイアス電流Ibを10nAとすると、式(3)から同相電圧による誤差電圧は10nVとなる。第1電流検出抵抗11および第2電流検出抵抗12の抵抗値Rs11およびRs12を10mΩ、負荷10に流れる電流Is1を1Aとした場合、差電圧は10mVとなる。この条件では、同相電圧による電流検出誤差が0.0001%であり、通常、検出誤差として無視できる値となる。   For example, if the resistance value R of the voltage dividing resistors 13, 14, 15 and 16 is 20 kΩ, and the input bias current Ib of the output unit 19 is 10 nA, the error voltage due to the common-mode voltage is 10 nV from Equation (3). When the resistance values Rs11 and Rs12 of the first current detection resistor 11 and the second current detection resistor 12 are 10 mΩ and the current Is1 flowing through the load 10 is 1 A, the differential voltage is 10 mV. Under this condition, the current detection error due to the common-mode voltage is 0.0001%, which is normally a value that can be ignored as the detection error.

そして、式(3)から明らかなように、出力電圧Vs1には直流電源2および3の電圧値Vpを含む項がないため、負荷10への印加電圧は、出力部19の出力電圧Vs1と無関係になる。   As apparent from the equation (3), since the output voltage Vs1 has no term including the voltage value Vp of the DC power supplies 2 and 3, the voltage applied to the load 10 is independent of the output voltage Vs1 of the output unit 19. become.

以上のように、本実施形態によれば、負荷への印加電圧を上昇させても電流検出精度の点で有利な電流検出装置を提供することができる。   As described above, according to the present embodiment, it is possible to provide a current detection device that is advantageous in terms of current detection accuracy even when the voltage applied to the load is increased.

(第2実施形態)
図2は本発明の第2実施形態に係る電流検出装置の構成を示す回路図である。図1の電流検出装置1と同じ構成については説明を省略する。電流検出装置1と電流検出装置20との相違点は、電流検出抵抗の個数と接続位置、分圧抵抗の個数と接続位置、および検出回路の個数と構成である。すなわち、電流検出装置20は、第1電流検出抵抗21、第2電流検出抵抗24、第3電流検出抵抗22、第4電流検出抵抗23と、分圧抵抗25〜32と、出力部(検出回路)19、37および38と、を備える。電流検出抵抗21〜24は、それぞれ、直流電源の正極または負極の一方とスイッチング素子対との間に接続される。たとえば、第1電流検出抵抗21は、正極である直流電源2と第1スイッチング素子対8との間に接続される。この場合、電源電圧は、抵抗値が概略等しい分圧抵抗25および26を直列に接続されて構成された第1分圧経路と、第1電流検出抵抗21とにより分圧される。この分圧経路の一端は、直流電源の他方の極である直流電源3に接続され、他端は第1スイッチング素子対8と第1電流検出抵抗21との接続点に接続される。第2電流検出抵抗24は、正極である直流電源2と第2スイッチング素子対9との間に接続される。この場合、電源電圧は、抵抗値が概略等しい分圧抵抗31および32を直列に接続されて構成された第2分圧経路と、第2電流検出抵抗24とにより分圧される。この分圧経路の一端は、直流電源の他方の極である直流電源3に接続され、他端は第2スイッチング素子対9と第2電流検出抵抗24との接続点に接続される。分圧抵抗27および28、29および30も同様にして分圧経路を構成し、その接続位置も同様である。また、スイッチング素子4と5との接続点とスイッチング素子6と7との接続点との間には、負荷10のみが接続される。
(Second Embodiment)
FIG. 2 is a circuit diagram showing a configuration of a current detection device according to the second exemplary embodiment of the present invention. The description of the same configuration as that of the current detection device 1 in FIG. 1 is omitted. The differences between the current detection device 1 and the current detection device 20 are the number and connection positions of current detection resistors, the number and connection positions of voltage dividing resistors, and the number and configuration of detection circuits. That is, the current detection device 20 includes a first current detection resistor 21, a second current detection resistor 24, a third current detection resistor 22, a fourth current detection resistor 23, voltage dividing resistors 25 to 32, and an output unit (detection circuit). ) 19, 37 and 38. The current detection resistors 21 to 24 are respectively connected between one of the positive electrode and the negative electrode of the DC power supply and the switching element pair. For example, the first current detection resistor 21 is connected between the DC power supply 2 that is a positive electrode and the first switching element pair 8. In this case, the power supply voltage is divided by the first current detection resistor 21 and the first voltage dividing path configured by connecting the voltage dividing resistors 25 and 26 having approximately the same resistance value in series. One end of the voltage dividing path is connected to the DC power supply 3 that is the other pole of the DC power supply, and the other end is connected to a connection point between the first switching element pair 8 and the first current detection resistor 21. The second current detection resistor 24 is connected between the DC power source 2 that is a positive electrode and the second switching element pair 9. In this case, the power supply voltage is divided by the second voltage dividing path formed by connecting the voltage dividing resistors 31 and 32 having approximately the same resistance value in series and the second current detection resistor 24. One end of the voltage dividing path is connected to the DC power supply 3 that is the other pole of the DC power supply, and the other end is connected to a connection point between the second switching element pair 9 and the second current detection resistor 24. Similarly, the voltage dividing resistors 27 and 28, 29 and 30 constitute a voltage dividing path, and the connection positions thereof are also the same. Further, only the load 10 is connected between the connection point between the switching elements 4 and 5 and the connection point between the switching elements 6 and 7.

分圧抵抗の接続点33、34および35、36は、それぞれ、加算回路である検出回路37および38に接続される。検出回路37、38の出力電圧は、出力部19に入力され、負荷10に流れる電流Is2に対応した電圧が出力される。   The connection points 33, 34 and 35, 36 of the voltage dividing resistor are connected to detection circuits 37 and 38 which are addition circuits, respectively. The output voltages of the detection circuits 37 and 38 are input to the output unit 19, and a voltage corresponding to the current Is2 flowing through the load 10 is output.

負荷10は、第1実施形態と同様にして駆動される。電流検出装置20における電流検出の原理について、第1の負荷駆動状態の場合で説明する。分圧抵抗の接続点33〜36の電圧をそれぞれV21〜V24とすると、これら電圧は次式で示すことができる。
V21=−{1/2(Is2×Rs21+Ib×R)}
V22=−1/2(Ib×R)
V23=1/2(Is2×Rs23−Ib×R)
V24=−1/2(Ib×R)
ここで、Rs21およびRs23はそれぞれ、第1電流検出抵抗21および第4電流検出抵抗23の抵抗値、Ibは検出回路37および38の入力バイアス電流であり、入力バイアス電流の流れる向きは図2に矢印で示す方向とする。また、Rは分圧抵抗25〜32の抵抗値である。検出回路37および38には、それぞれV21、V22およびV23、V24が入力され、検出回路37および38の出力電圧が出力部19に入力される。出力部19からは、第1実施形態で述べたように、差電圧と、共通に印加される同相電圧による誤差電圧が出力される。よって、出力部19の出力電圧Vs2は次式となる。
Vs2=(V23+V24)−(V21+V22)
=1/2{Is2×(Rs21+Rs23)}−A(Ib×R) (4)
The load 10 is driven in the same manner as in the first embodiment. The principle of current detection in the current detection device 20 will be described in the case of the first load driving state. If the voltages at the connection points 33 to 36 of the voltage dividing resistor are V21 to V24, respectively, these voltages can be expressed by the following equations.
V21 =-{1/2 (Is2 * Rs21 + Ib * R)}
V22 = −1 / 2 (Ib × R)
V23 = 1/2 (Is2 * Rs23-Ib * R)
V24 = −1 / 2 (Ib × R)
Here, Rs21 and Rs23 are the resistance values of the first current detection resistor 21 and the fourth current detection resistor 23, respectively, Ib is the input bias current of the detection circuits 37 and 38, and the direction in which the input bias current flows is shown in FIG. The direction indicated by the arrow. R is the resistance value of the voltage dividing resistors 25-32. V21, V22, V23, and V24 are input to the detection circuits 37 and 38, respectively, and output voltages of the detection circuits 37 and 38 are input to the output unit 19. As described in the first embodiment, the output unit 19 outputs an error voltage due to the differential voltage and the common-mode voltage applied in common. Therefore, the output voltage Vs2 of the output unit 19 is as follows.
Vs2 = (V23 + V24)-(V21 + V22)
= 1/2 {Is2 * (Rs21 + Rs23)}-A (Ib * R) (4)

第2の負荷駆動状態の場合は、V21〜V24の電圧は次式のように表される。
V21=−1/2(Ib×R)
V22=1/2(Is2×Rs22−Ib×R)
V23=−1/2(Ib×R)
V24=−{1/2(Is2×Rs24+Ib×R)}
ここで、Rs22およびRs24はそれぞれ、第3電流検出抵抗22および第2電流検出抵抗24の抵抗値である。上記より、出力部19の出力電圧Vs2は、次式となる。
Vs2=(V23+V24)−(V21+V22)
=−1/2{Is2×(Rs22+Rs24)}−A(Ib×R) (5)
式(5)のRs22およびRs24をRs21およびRs23に置換え、差電圧の項について符号を反転したものが式(4)に相当する。
In the case of the second load driving state, the voltages V21 to V24 are expressed by the following equations.
V21 = −1 / 2 (Ib × R)
V22 = 1/2 (Is2 * Rs22-Ib * R)
V23 = −1 / 2 (Ib × R)
V24 =-{1/2 (Is2 * Rs24 + Ib * R)}
Here, Rs22 and Rs24 are the resistance values of the third current detection resistor 22 and the second current detection resistor 24, respectively. From the above, the output voltage Vs2 of the output unit 19 is expressed by the following equation.
Vs2 = (V23 + V24)-(V21 + V22)
= −1 / 2 {Is2 × (Rs22 + Rs24)} − A (Ib × R) (5)
The expression (4) is obtained by replacing Rs22 and Rs24 in the expression (5) with Rs21 and Rs23 and inverting the sign of the difference voltage term.

第1実施形態と同様に、分圧抵抗25〜32の抵抗値Rを20kΩ、検出回路37および38の入力バイアス電流を10nA、同相電圧除去比Aを−80dBとして、出力部19から出力される誤差電圧を考える。この条件で式(4)に従って誤差電圧を計算すると、その値は20nVとなる。電流検出抵抗21〜24に、10mΩの抵抗値を用いて、負荷に流れる電流を1Aとした場合、差電圧は10mVとなる。この条件では、同相電圧による電流検出誤差が0.0002%であり、通常、検出誤差として無視できる値となる。   As in the first embodiment, the resistance value R of the voltage dividing resistors 25 to 32 is 20 kΩ, the input bias current of the detection circuits 37 and 38 is 10 nA, and the common-mode voltage rejection ratio A is −80 dB. Consider the error voltage. If the error voltage is calculated according to the equation (4) under this condition, the value is 20 nV. When the resistance value of 10 mΩ is used for the current detection resistors 21 to 24 and the current flowing through the load is 1 A, the differential voltage is 10 mV. Under this condition, the current detection error due to the common-mode voltage is 0.0002%, which is normally a value that can be ignored as the detection error.

式(4)または式(5)から明らかなように、出力部19の出力電圧Vs2には直流電源2および3の電圧値Vpの項が含まれないため、電源電圧は出力の誤差電圧に無関係となる。したがって、以上のような電流検出装置によっても、第1実施形態と同様の効果を奏する。   As is clear from the equation (4) or the equation (5), the output voltage Vs2 of the output unit 19 does not include the term of the voltage value Vp of the DC power supplies 2 and 3, so that the power supply voltage is independent of the output error voltage. It becomes. Therefore, the same effect as that of the first embodiment can be obtained by the current detection device as described above.

更に、本実施形態は、負荷10から見て分圧経路を第1スイッチング素子対8および第2スイッチング素子対9よりも直流電源2および3側に接続した構成になっている。これにより、スイッチング素子4〜7のオン/オフ切り替え時に第1スイッチング素子対8と第2スイッチング素子対9との間に発生する過渡的な電圧変動が分圧抵抗の接続点33〜36に印加されることを防ぐことができる。したがって、本実施形態の電流検出装置は、高周波領域での電流検出精度の悪化を抑制する効果も奏する。   Further, in the present embodiment, the voltage dividing path as viewed from the load 10 is connected to the DC power sources 2 and 3 side of the first switching element pair 8 and the second switching element pair 9. As a result, transient voltage fluctuations generated between the first switching element pair 8 and the second switching element pair 9 when the switching elements 4 to 7 are switched on / off are applied to the connection points 33 to 36 of the voltage dividing resistor. Can be prevented. Therefore, the current detection device of the present embodiment also has an effect of suppressing deterioration of current detection accuracy in a high frequency region.

(第3実施形態)
つぎに、図3に基づいて本発明の第3実施形態の電流検出装置について説明する。図3は本発明の第3実施形態の電流検出装置の構成を示す回路図である。図1の電流検出装置と同じ構成については説明を省略する。電流検出装置1と電流検出装置40との相違点は、電流検出抵抗の接続位置と分圧抵抗の接続位置である。すなわち、第1電流検出抵抗41および第2電流検出抵抗42は、それぞれ、直流電源2と第1スイッチング素子対8との間、直流電源2と第2スイッチング素子対9との間に接続される。また、スイッチング素子4と5との接続点とスイッチング素子6と7との接続点との間には、負荷10のみが接続される。
(Third embodiment)
Next, a current detection device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a circuit diagram showing the configuration of the current detection device according to the third embodiment of the present invention. The description of the same configuration as that of the current detection device of FIG. 1 is omitted. The difference between the current detection device 1 and the current detection device 40 is the connection position of the current detection resistor and the connection position of the voltage dividing resistor. That is, the first current detection resistor 41 and the second current detection resistor 42 are respectively connected between the DC power supply 2 and the first switching element pair 8 and between the DC power supply 2 and the second switching element pair 9. . Further, only the load 10 is connected between the connection point between the switching elements 4 and 5 and the connection point between the switching elements 6 and 7.

分圧抵抗43および44は、抵抗値が概略等しく、直列に接続されて第1分圧経路として構成され、一端は第1スイッチング素子対8と第1電流検出抵抗41との接続点に接続され、他端は直流電源3に接続される。同様に、分圧抵抗45および46は、抵抗値が概略等しく、直列に接続されて第2分圧経路として構成され、一端は第2スイッチング素子対9と第2電流検出抵抗42との接続点に接続され、他端は直流電源3に接続される。分圧抵抗の接続点47および48からの電圧V31およびV32は、出力部19に入力され、負荷10に流れる電流Is3に対応した電圧が出力される。   The voltage dividing resistors 43 and 44 have substantially the same resistance value and are connected in series to form a first voltage dividing path. One end of the voltage dividing resistors 43 and 44 is connected to a connection point between the first switching element pair 8 and the first current detection resistor 41. The other end is connected to the DC power source 3. Similarly, the voltage dividing resistors 45 and 46 have substantially the same resistance value and are connected in series to form a second voltage dividing path, one end of which is a connection point between the second switching element pair 9 and the second current detection resistor 42. The other end is connected to the DC power source 3. The voltages V31 and V32 from the connection points 47 and 48 of the voltage dividing resistor are input to the output unit 19, and a voltage corresponding to the current Is3 flowing through the load 10 is output.

負荷10は、第1実施形態と同様にして駆動される。電流検出装置40における電流検出の原理について、第1の負荷駆動状態の場合で説明する。電圧V31およびV32は次式のように表される。
V31=−{1/2(Is3×Rs41+Ib×R)}
V32=−1/2(Ib×R)
ここで、Rs41は第1電流検出抵抗41の抵抗値、Rは分圧抵抗43〜46の抵抗値である。出力部19からはV31とV32の差電圧と、共通に印加される同相電圧による誤差電圧が出力される。よって、出力部19の出力電圧Vs3は次式となる。
Vs3=1/2(Is3×Rs41)−A{1/2(Ib×R)} (6)
The load 10 is driven in the same manner as in the first embodiment. The principle of current detection in the current detection device 40 will be described in the case of the first load driving state. The voltages V31 and V32 are expressed as follows:
V31 = − {1/2 (Is3 × Rs41 + Ib × R)}
V32 = −1 / 2 (Ib × R)
Here, Rs41 is a resistance value of the first current detection resistor 41, and R is a resistance value of the voltage dividing resistors 43 to 46. The output unit 19 outputs a difference voltage between V31 and V32 and an error voltage due to the common-mode voltage applied in common. Therefore, the output voltage Vs3 of the output unit 19 is as follows.
Vs3 = 1/2 (Is3 * Rs41) -A {1/2 (Ib * R)} (6)

第2の負荷駆動状態の場合は、V31およびV32の電圧は次式のように表される。
V31=−1/2(Ib×R)
V32=−{1/2(Is3×Rs42+Ib×R)}
ここで、Rs42は第2電流検出抵抗42の抵抗値である。上記より、出力部19の出力電圧Vs3は、次式となる。
Vs3=−{1/2(Is3×Rs42)}−A{1/2(Ib×R)} (7)
式(7)のRs42をRs41に置換え、差電圧の項について符号を反転したものが式(6)に相当する。
In the case of the second load driving state, the voltages of V31 and V32 are expressed by the following equations.
V31 = −1 / 2 (Ib × R)
V32 = − {1/2 (Is3 × Rs42 + Ib × R)}
Here, Rs42 is the resistance value of the second current detection resistor 42. From the above, the output voltage Vs3 of the output unit 19 is expressed by the following equation.
Vs3 =-{1/2 (Is3 * Rs42)}-A {1/2 (Ib * R)} (7)
The expression (6) is obtained by replacing Rs42 in the expression (7) with Rs41 and inverting the sign of the difference voltage term.

第1実施形態と同様に、分圧抵抗43〜46の抵抗値Rを20kΩ、出力部19の入力バイアス電流を10nA、同相電圧除去比Aを−80dBとして、出力部19から出力される誤差電圧を考える。この条件で式(6)に従って誤差電圧を計算すると、その値は10nVとなる。電流検出抵抗41および42の抵抗値を10mΩ、負荷10に流れる電流を1Aとした場合、差電圧は5mVとなる。この条件では、同相電圧による電流検出誤差が0.0002%であり、通常、検出誤差として無視できる値となる。   Similarly to the first embodiment, the resistance value R of the voltage dividing resistors 43 to 46 is 20 kΩ, the input bias current of the output unit 19 is 10 nA, the common-mode voltage rejection ratio A is −80 dB, and the error voltage output from the output unit 19 think of. When the error voltage is calculated according to the equation (6) under this condition, the value is 10 nV. When the resistance value of the current detection resistors 41 and 42 is 10 mΩ and the current flowing through the load 10 is 1 A, the differential voltage is 5 mV. Under this condition, the current detection error due to the common-mode voltage is 0.0002%, which is normally a value that can be ignored as the detection error.

式(6)または式(7)から明らかなように、出力部19の出力電圧Vs3には直流電源2および3の電圧値Vpの項が含まれないため、電源電圧は出力の誤差電圧に無関係となる。したがって、以上のような電流検出装置によっても、第1実施形態および第2実施形態と同様の効果を奏する。   As is clear from the equation (6) or the equation (7), the output voltage Vs3 of the output unit 19 does not include the term of the voltage value Vp of the DC power supplies 2 and 3, and therefore the power supply voltage is independent of the output error voltage. It becomes. Therefore, the same effects as those of the first and second embodiments can be obtained by the current detection device as described above.

更に、本実施形態は第2実施形態と同様に分圧経路の接続点を第1スイッチング素子対8および第2スイッチング素子対9よりも直流電源2および3側とした構成となっており、高周波領域での電流検出精度の悪化を抑制する効果も奏する。   Further, in the present embodiment, as in the second embodiment, the connection point of the voltage dividing path is configured to be closer to the DC power supplies 2 and 3 than the first switching element pair 8 and the second switching element pair 9. There is also an effect of suppressing deterioration of current detection accuracy in the region.

(第4実施形態)
つぎに、図4に基づいて本発明の第4実施形態の電流検出装置について説明する。図4は本発明の第4実施形態の電流検出装置の構成を示す回路図である。図1の電流検出装置と同じ構成については説明を省略する。電流検出装置1と電流検出装置60との相違点は、電流検出抵抗の接続位置と分圧抵抗の接続位置である。すなわち、第1電流検出抵抗61および第2電流検出抵抗62は、それぞれ、直流電源3と第1スイッチング素子対8との間、直流電源3と第2スイッチング素子対9との間に接続される。また、スイッチング素子4と5との接続点とスイッチング素子6と7との接続点との間には、負荷10のみが接続される。
(Fourth embodiment)
Next, a current detection device according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a circuit diagram showing a configuration of a current detection device according to the fourth exemplary embodiment of the present invention. The description of the same configuration as that of the current detection device of FIG. 1 is omitted. The difference between the current detection device 1 and the current detection device 60 is the connection position of the current detection resistor and the connection position of the voltage dividing resistor. That is, the first current detection resistor 61 and the second current detection resistor 62 are respectively connected between the DC power supply 3 and the first switching element pair 8 and between the DC power supply 3 and the second switching element pair 9. . Further, only the load 10 is connected between the connection point between the switching elements 4 and 5 and the connection point between the switching elements 6 and 7.

分圧抵抗63および64は、抵抗値が概略等しく、直列に接続されて第1分圧経路として構成され、一端は第1スイッチング素子対8と第1電流検出抵抗61の接続点に接続され、他端は直流電源2に接続される。同様に、分圧抵抗65および66は、抵抗値が概略等しく、直列に接続されて第2分圧経路として構成され、一端は第2スイッチング素子対9と第2電流検出抵抗62の接続点に接続され、他端は直流電源2に接続される。分圧抵抗の接続点67および68における電圧V41およびV42は、出力部19に入力され、負荷10に流れる電流Is4に対応した電圧が出力される。   The voltage dividing resistors 63 and 64 have substantially the same resistance value and are connected in series to form a first voltage dividing path. One end of the voltage dividing resistors 63 and 64 is connected to a connection point between the first switching element pair 8 and the first current detection resistor 61. The other end is connected to the DC power source 2. Similarly, the voltage dividing resistors 65 and 66 have substantially the same resistance value and are connected in series to be configured as a second voltage dividing path. One end of the voltage dividing resistors 65 and 66 is connected to the connection point between the second switching element pair 9 and the second current detection resistor 62. The other end is connected to the DC power source 2. The voltages V41 and V42 at the connection points 67 and 68 of the voltage dividing resistor are input to the output unit 19, and a voltage corresponding to the current Is4 flowing through the load 10 is output.

負荷10は、第1実施形態と同様にして駆動される。電流検出装置60における電流検出の原理について、第1の負荷駆動状態の場合で説明する。電圧V41およびV42は次式のように表される。
V41=−1/2(Ib×R)
V42=1/2(Is4×Rs62−Ib×R)
ここで、Rs62は第2電流検出抵抗62の抵抗値、Rは分圧抵抗63〜66の抵抗値である。出力部19からはV41とV42の差電圧と、共通に印加される同相電圧による誤差電圧が出力される。よって、出力部19の出力電圧Vs4は次式となる。
Vs4=1/2(Is4×Rs62)−A{1/2(Ib×R)} (8)
The load 10 is driven in the same manner as in the first embodiment. The principle of current detection in the current detection device 60 will be described in the case of the first load driving state. The voltages V41 and V42 are expressed as follows:
V41 = −1 / 2 (Ib × R)
V42 = 1/2 (Is4 * Rs62-Ib * R)
Here, Rs62 is the resistance value of the second current detection resistor 62, and R is the resistance value of the voltage dividing resistors 63-66. The output unit 19 outputs a difference voltage between V41 and V42 and an error voltage due to the common-mode voltage applied in common. Therefore, the output voltage Vs4 of the output unit 19 is as follows.
Vs4 = 1/2 (Is4 * Rs62) -A {1/2 (Ib * R)} (8)

第2の負荷駆動状態の場合は、V41およびV42の電圧は次式のように表される。
V41=1/2(Is4×Rs61−Ib×R)
V42=−1/2(Ib×R)
ここで、Rs61は第1電流検出抵抗61の抵抗値である。上記より、出力部19の出力電圧Vs4は、次式となる。
Vs4=−{1/2(Is4×Rs61)}−A{1/2(Ib×R)} (9)
式(9)のRs61をRs62に置換え、差電圧の項の符号を反転したものが式(8)に相当する。
In the case of the second load driving state, the voltages of V41 and V42 are expressed by the following equations.
V41 = 1/2 (Is4 × Rs61−Ib × R)
V42 = −1 / 2 (Ib × R)
Here, Rs61 is a resistance value of the first current detection resistor 61. From the above, the output voltage Vs4 of the output unit 19 is expressed by the following equation.
Vs4 =-{1/2 (Is4 * Rs61)}-A {1/2 (Ib * R)} (9)
The expression (8) is obtained by replacing Rs61 in the expression (9) with Rs62 and inverting the sign of the term of the difference voltage.

第1実施形態と同様に、分圧抵抗63〜66の抵抗値Rを20kΩ、出力部19の入力バイアス電流を10nA、同相電圧除去比Aを−80dBとして、出力部19から出力される誤差電圧を考える。この条件で式(8)に従って誤差電圧を計算すると、その値は10nVとなる。電流検出抵抗61および62の抵抗値を10mΩ、負荷10に流れる電流を1Aとした場合、差電圧は5mVとなる。この条件では、同相電圧による電流検出誤差が0.0002%であり、通常、検出誤差として無視できる値となる。   Similarly to the first embodiment, the error voltage output from the output unit 19 is set such that the resistance value R of the voltage dividing resistors 63 to 66 is 20 kΩ, the input bias current of the output unit 19 is 10 nA, and the common-mode voltage rejection ratio A is −80 dB. think of. If the error voltage is calculated according to the equation (8) under this condition, the value is 10 nV. When the resistance value of the current detection resistors 61 and 62 is 10 mΩ and the current flowing through the load 10 is 1 A, the differential voltage is 5 mV. Under this condition, the current detection error due to the common-mode voltage is 0.0002%, which is normally a value that can be ignored as the detection error.

また、式(8)または式(9)から明らかなように、出力部19の出力電圧Vs4には直流電源2および3の電圧値Vpの項が含まれないため、電源電圧は出力の誤差電圧に無関係となる。したがって、以上のような電流検出装置によっても、第1実施形態、第2実施形態および第3実施形態と同様の効果を奏する。   Further, as is clear from the equation (8) or the equation (9), the output voltage Vs4 of the output unit 19 does not include the term of the voltage value Vp of the DC power supplies 2 and 3, so that the power supply voltage is an output error voltage. It becomes irrelevant to. Therefore, the same effects as those of the first embodiment, the second embodiment, and the third embodiment can be obtained by the current detection device as described above.

更に、本実施形態は第2実施形態および第3実施形態と同様に分圧経路の接続点を第1スイッチング素子対8および第2スイッチング素子対9よりも直流電源2および3側とした構成となっており、高周波領域での電流検出精度の悪化を抑制する効果も奏する。   Further, in the present embodiment, as in the second embodiment and the third embodiment, the connection point of the voltage dividing path is set to the DC power sources 2 and 3 side from the first switching element pair 8 and the second switching element pair 9. Thus, the effect of suppressing the deterioration of the current detection accuracy in the high frequency region is also exhibited.

なお、上記の各実施形態において、スイッチング素子又はスイッチング素子対として、BJT(バイポーラ・ジャンクション・トランジスタ)、IGBT(絶縁ゲートバイポーラトランジスタ)、パワーオペアンプなどを用いても良い。また、電流検出抵抗は偶数個であれば何個用いてもよい。この場合、分圧経路は、電流検出抵抗と同数用いる。また、スイッチング素子対はフルブリッジ回路を構成できれば、2つ以上の複数のスイッチング素子対で構成しても良い。さらに、負荷10は直流モータとして構成したが、フルブリッジ回路で駆動できる負荷であれば直流モータ以外の負荷であっても良い。   In each of the above embodiments, BJT (bipolar junction transistor), IGBT (insulated gate bipolar transistor), power operational amplifier, or the like may be used as the switching element or the switching element pair. Any number of current detection resistors may be used as long as they are even numbers. In this case, the same number of voltage dividing paths as the current detection resistors are used. Further, the switching element pairs may be composed of two or more switching element pairs as long as a full bridge circuit can be formed. Furthermore, although the load 10 is configured as a DC motor, it may be a load other than the DC motor as long as it can be driven by a full bridge circuit.

本発明の実施形態に係る電流検出装置は、例えば、光走査装置(ガルバノ装置)の制御システム(駆動装置)に使用することができる。図5は、ガルバノ装置の制御システム70を示す概略図である。制御システム70は、レーザ穴あけ装置、レーザトリマ装置、レーザリペア装置などのレーザ加工装置に適用され、レーザ光を反射して被照射体(加工対象の物品)の目標位置に照射するためのシステムであって、ガルバノ装置72と、制御装置71とを有する。   The current detection device according to the embodiment of the present invention can be used, for example, in a control system (drive device) of an optical scanning device (galvano device). FIG. 5 is a schematic diagram showing a control system 70 of the galvano device. The control system 70 is a system that is applied to a laser processing apparatus such as a laser drilling apparatus, a laser trimmer apparatus, or a laser repair apparatus, and reflects a laser beam to irradiate a target position of an irradiated object (article to be processed). And a galvano device 72 and a control device 71.

ガルバノ装置72は、ミラー721と、モータ722とを含む。ミラー721は、モータ722の回転軸に取り付けられ、レーザ光を被照射体や他のミラーに向けて反射する。モータ722は、対象物としてのミラーを回転させる、即ち、第1の位置(初期状態)から移動させて第2の位置(終端状態)に停止させるDCサーボモータである。ここで、モータ722の位置は、モータ722(の回転軸)の角度も含みうる。   The galvano device 72 includes a mirror 721 and a motor 722. The mirror 721 is attached to the rotating shaft of the motor 722 and reflects the laser light toward the irradiated object and other mirrors. The motor 722 is a DC servo motor that rotates a mirror as an object, that is, moves the mirror from a first position (initial state) and stops it at a second position (terminal state). Here, the position of the motor 722 may also include the angle of the motor 722 (rotational axis thereof).

制御装置71は、ガルバノ装置72(のモータ722)に対して終端状態制御(FSC:Final−State Control)を行う機能を有し、検出部711と、処理部712と、D/A変換部713と、供給部714とを含む。   The control device 71 has a function of performing terminal state control (FSC: Final-State Control) on the galvano device 72 (motor 722 thereof), and includes a detection unit 711, a processing unit 712, and a D / A conversion unit 713. And a supply unit 714.

検出部711は、例えば、モータ722の回転軸に取り付けられたロータリエンコーダで構成され、ミラー721の回転角度(即ち、モータ722の回転軸の回転角度)を検出する。   The detection unit 711 includes, for example, a rotary encoder attached to the rotation shaft of the motor 722, and detects the rotation angle of the mirror 721 (that is, the rotation angle of the rotation shaft of the motor 722).

処理部712は、CPUやメモリなどを含み、検出部711で検出されるミラー721の回転角度が目標角度となるように、モータ722に供給する電流を時系列的に表す電流プロファイルを生成する処理を行う。なお、電流プロファイルは、換言すれば、モータ722を含む制御系を第1状態から第2状態へ遷移させるためにモータ722に供給する電流の時系列データである。処理部712は、メモリに格納されたプログラムを実行して、後述する電流プロファイルを生成するための各処理を行う。但し、外部の情報処理装置(コンピュータなど)で電流プロファイルを生成するための各処理を行って生成された電流プロファイルを処理部712のメモリに格納してもよい。   The processing unit 712 includes a CPU, a memory, and the like, and generates a current profile that represents the current supplied to the motor 722 in time series so that the rotation angle of the mirror 721 detected by the detection unit 711 becomes a target angle. I do. In other words, the current profile is time-series data of current supplied to the motor 722 in order to cause the control system including the motor 722 to transition from the first state to the second state. The processing unit 712 executes a program stored in the memory and performs each process for generating a current profile, which will be described later. However, the current profile generated by performing each process for generating a current profile by an external information processing apparatus (such as a computer) may be stored in the memory of the processing unit 712.

D/A変換部713は、処理部712から入力されるデジタル形式の電流プロファイル(デジタル信号)をアナログ形式の電流プロファイル(アナログ信号)に変換して供給部714に入力する。   The D / A conversion unit 713 converts the digital current profile (digital signal) input from the processing unit 712 into an analog current profile (analog signal) and inputs the analog current profile (analog signal) to the supply unit 714.

供給部714は、例えば、ブリッジ駆動のリニアアンプ(電流アンプ)を含み、処理部712で生成した電流プロファイル(電流指令値iref)に対応する電流iをモータ722に供給する。なお、供給部714は、電流指令値irefとモータ722に供給する電流iとが同じになるように、電流フィードバック制御を行うことが可能である。この電流iの検出に、本発明の実施形態に係る電流検出装置が用いられる。   The supply unit 714 includes, for example, a bridge-driven linear amplifier (current amplifier), and supplies a current i corresponding to the current profile (current command value iref) generated by the processing unit 712 to the motor 722. The supply unit 714 can perform current feedback control so that the current command value iref and the current i supplied to the motor 722 are the same. The current detection device according to the embodiment of the present invention is used to detect the current i.

更に本発明の実施形態に係る電流検出装置は、上記以外の駆動装置にも使用することができる。当該電流検出装置を含む駆動装置は、種々の装置、例えば、ロボットや運輸、工作、加工、計測、製造に係る機械または装置(産業機械または装置)等において有用である。ここでは、一例として、産業機械としてのリソグラフィ装置(露光装置等)に備えられるステージ(XYステージ)装置への適用例を説明する。なお、リソグラフィ装置は、パターンを基板に形成する装置であって、例えば、露光装置、描画装置、インプリント装置として具現化されうる。露光装置は、例えば、(極端)紫外光を用いて基板(上のレジスト)に(潜像)パターンを形成する。また、描画装置は、例えば、荷電粒子線(電子線等)を用いて基板(上のレジスト)に(潜像)パターンを形成する。また、インプリント装置は、基板上のインプリント材を成型して基板上にパターンを形成する。   Furthermore, the current detection device according to the embodiment of the present invention can be used for driving devices other than those described above. The drive device including the current detection device is useful in various devices such as robots, transportation, machining, processing, measurement, manufacturing machines or devices (industrial machines or devices), and the like. Here, as an example, an application example to a stage (XY stage) apparatus provided in a lithography apparatus (exposure apparatus or the like) as an industrial machine will be described. The lithography apparatus is an apparatus for forming a pattern on a substrate, and can be embodied as, for example, an exposure apparatus, a drawing apparatus, or an imprint apparatus. For example, the exposure apparatus forms a (latent image) pattern on a substrate (upper resist) using (extreme) ultraviolet light. The drawing apparatus forms a (latent image) pattern on the substrate (the upper resist) using, for example, a charged particle beam (electron beam or the like). The imprint apparatus forms a pattern on the substrate by molding an imprint material on the substrate.

図6は、本応用例におけるステージ装置80の構成例を示す図である。ステージ装置80は、Y軸方向へのステージ801(可動部)の移動に用いられるY軸モータ802(駆動部)と、X軸方向へのステージ801(可動部)の移動に用いられるX軸モータ803(駆動部)とを有する。ここで、両駆動部は、前述の本発明の実施形態に係る電流検出装置を使用したガルバノ装置72に係る駆動装置(制御システム70)と同様の駆動装置(但し、駆動対象721は除く)を含んで構成されうる。   FIG. 6 is a diagram illustrating a configuration example of the stage apparatus 80 in the application example. The stage device 80 includes a Y-axis motor 802 (driving unit) used for moving the stage 801 (movable unit) in the Y-axis direction and an X-axis motor used for moving the stage 801 (movable unit) in the X-axis direction. 803 (driving unit). Here, both drive units are drive devices similar to the drive device (control system 70) related to the galvano device 72 using the current detection device according to the embodiment of the present invention described above (however, the drive target 721 is excluded). It may be configured to include.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

1 電流検出装置
2、3 直流電源
8 第1スイッチング素子対
9 第2スイッチング素子対
10 負荷
11 第1電流検出抵抗
12 第2電流検出抵抗
13、14、15、16 分圧抵抗
19 出力部
DESCRIPTION OF SYMBOLS 1 Current detection apparatus 2, 3 DC power supply 8 1st switching element pair 9 2nd switching element pair 10 Load 11 1st current detection resistance 12 2nd current detection resistance 13, 14, 15, 16 Voltage dividing resistance 19 Output part

Claims (5)

両極性の直流電源と第1および第2スイッチング素子対とにより駆動される負荷に流れる電流を検出する電流検出装置であって、
第1および第2電流検出抵抗と、
第1接続点を介して複数の分圧抵抗を直列に接続して構成され、前記第1電流検出抵抗と前記負荷とを含む電流経路とは並列に接続された第1分圧経路と、
第2接続点を介して複数の分圧抵抗を直列に接続して構成され、前記第2電流検出抵抗と前記負荷とを含む電流経路とは並列に接続された第2分圧経路と、を有し、
前記第1接続点からの電圧および前記第2接続点からの電圧を入力として前記電流に対応した電圧を出力する出力部と、
を有することを特徴とする電流検出装置。
A current detection device for detecting a current flowing in a load driven by a bipolar DC power supply and a first and second switching element pair,
First and second current sensing resistors;
A first voltage dividing path configured by connecting a plurality of voltage dividing resistors in series via a first connection point, the current path including the first current detection resistor and the load being connected in parallel;
A second voltage dividing path configured by connecting a plurality of voltage dividing resistors in series via a second connection point, the current path including the second current detection resistor and the load being connected in parallel; Have
An output unit that outputs the voltage corresponding to the current by using the voltage from the first connection point and the voltage from the second connection point as inputs; and
A current detection device comprising:
前記第1電流検出抵抗は、前記負荷の一端と、前記第1スイッチング素子対を構成する二つのスイッチング素子の接続される第3接続点との間に接続され、
前記第2電流検出抵抗は、前記負荷の他端と、前記第2スイッチング素子対を構成する二つのスイッチング素子の接続される第4接続点との間に接続され、
前記第1分圧経路の一端は、前記一端に接続され、前記第1分圧経路の他端は、前記第4接続点に接続され、
前記第2分圧経路の一端は、前記他端に接続され、前記第2分圧経路の他端は、前記第3接続点に接続されている、
ことを特徴とする請求項1に記載の電流検出装置。
The first current detection resistor is connected between one end of the load and a third connection point to which two switching elements constituting the first switching element pair are connected,
The second current detection resistor is connected between the other end of the load and a fourth connection point to which two switching elements constituting the second switching element pair are connected,
One end of the first voltage dividing path is connected to the one end, and the other end of the first voltage dividing path is connected to the fourth connection point.
One end of the second voltage dividing path is connected to the other end, and the other end of the second voltage dividing path is connected to the third connection point.
The current detection device according to claim 1.
前記第1電流検出抵抗は、前記直流電源の正極および負極のうちの一方と前記第1スイッチング素子対との間に接続され、
前記第2電流検出抵抗は、前記一方と前記第2スイッチング素子対との間に接続され、
前記第1分圧経路の一端は、前記正極および負極のうちの他方に接続され、前記第1分圧経路の他端は、前記第1電流検出抵抗と前記第1スイッチング素子対との接続点に接続され、
前記第2分圧経路の一端は、前記他方に接続され、前記第2分圧経路の他端は、前記第2電流検出抵抗と前記第2スイッチング素子対との接続点に接続されている、
ことを特徴とする請求項1に記載の電流検出装置。
The first current detection resistor is connected between one of a positive electrode and a negative electrode of the DC power supply and the first switching element pair,
The second current detection resistor is connected between the one and the second switching element pair,
One end of the first voltage dividing path is connected to the other of the positive electrode and the negative electrode, and the other end of the first voltage dividing path is a connection point between the first current detection resistor and the first switching element pair. Connected to
One end of the second voltage dividing path is connected to the other, and the other end of the second voltage dividing path is connected to a connection point between the second current detection resistor and the second switching element pair.
The current detection device according to claim 1.
請求項1乃至3のうちいずれか1項に記載の電流検出装置を含むことを特徴とする駆動装置。   A drive device comprising the current detection device according to claim 1. 請求項4に記載の駆動装置を含むことを特徴とする産業機械。

An industrial machine comprising the drive device according to claim 4.

JP2015044185A 2015-03-06 2015-03-06 Current detector, driving device, and industrial machine Pending JP2016164490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044185A JP2016164490A (en) 2015-03-06 2015-03-06 Current detector, driving device, and industrial machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044185A JP2016164490A (en) 2015-03-06 2015-03-06 Current detector, driving device, and industrial machine

Publications (1)

Publication Number Publication Date
JP2016164490A true JP2016164490A (en) 2016-09-08

Family

ID=56876508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044185A Pending JP2016164490A (en) 2015-03-06 2015-03-06 Current detector, driving device, and industrial machine

Country Status (1)

Country Link
JP (1) JP2016164490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973070B1 (en) * 2018-11-22 2019-04-26 울산과학기술원 Apparatus and method for measuring resistance
WO2022225186A1 (en) * 2021-04-23 2022-10-27 엘에스일렉트릭 주식회사 Current measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630579A (en) * 1992-05-25 1994-02-04 Mitsubishi Electric Corp Current detecting circuit
JP2004048863A (en) * 2002-07-10 2004-02-12 Yaskawa Electric Corp Three-phase current controller
JP2006014392A (en) * 2004-06-22 2006-01-12 Japan Aviation Electronics Industry Ltd DC motor current control circuit and DC motor having this circuit
JP2008064506A (en) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp Current detection device of dc motor and galvano scanner system
US20100295557A1 (en) * 2009-05-22 2010-11-25 Ctc Analytics Ag Method and circuit arrangement for measurement of the current through an inductive load
JP2013176238A (en) * 2012-02-27 2013-09-05 Sumitomo Heavy Ind Ltd Power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630579A (en) * 1992-05-25 1994-02-04 Mitsubishi Electric Corp Current detecting circuit
JP2004048863A (en) * 2002-07-10 2004-02-12 Yaskawa Electric Corp Three-phase current controller
JP2006014392A (en) * 2004-06-22 2006-01-12 Japan Aviation Electronics Industry Ltd DC motor current control circuit and DC motor having this circuit
JP2008064506A (en) * 2006-09-05 2008-03-21 Mitsubishi Electric Corp Current detection device of dc motor and galvano scanner system
US20100295557A1 (en) * 2009-05-22 2010-11-25 Ctc Analytics Ag Method and circuit arrangement for measurement of the current through an inductive load
JP2013176238A (en) * 2012-02-27 2013-09-05 Sumitomo Heavy Ind Ltd Power conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101973070B1 (en) * 2018-11-22 2019-04-26 울산과학기술원 Apparatus and method for measuring resistance
WO2022225186A1 (en) * 2021-04-23 2022-10-27 엘에스일렉트릭 주식회사 Current measuring device
KR20220146113A (en) * 2021-04-23 2022-11-01 엘에스일렉트릭(주) Current Measurement Device
KR102617177B1 (en) 2021-04-23 2023-12-21 엘에스일렉트릭(주) Current Measurement Device

Similar Documents

Publication Publication Date Title
JP6981962B2 (en) Regulator circuit
JP4770894B2 (en) Voltage detector
JP5799786B2 (en) Auto-zero amplifier and feedback amplifier circuit using the amplifier
JP2008058298A (en) Temperature detection circuit, and semiconductor device
JP7106916B2 (en) Operational amplifier circuit and current detection device using the same
JP2019110677A (en) Power conversion device
JP6386328B2 (en) Semiconductor device, resistance measuring system and pressure measuring device including the same
JP2011061337A (en) Hysteresis comparator
JP2016164490A (en) Current detector, driving device, and industrial machine
KR20140104919A (en) Magnetic sensor device
US7411520B2 (en) Encoder
JP5262718B2 (en) Bias circuit
JP2004194124A (en) Hysteresis comparator circuit
CN105850037B (en) Output circuit and device for generating voltage
JP6580847B2 (en) Semiconductor device
CN110612436B (en) Temperature measuring device and temperature measuring method
JP2017112518A (en) Semiconductor device
JP5096459B2 (en) Electronic circuit and method therefor
JPWO2006057054A1 (en) Humidity measuring device
JP2000217347A (en) Current control circuit
JP7241565B2 (en) current generation circuit
JP5811239B2 (en) Integrated circuit device and electronic apparatus
JP6757752B2 (en) Magnetic sensor device, current sensor device, and system
JPH11312931A (en) Gm cell and current interpolation a/d converter using the same
JP2015177205A (en) offset cancellation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702