JP2016162745A - Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery - Google Patents
Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2016162745A JP2016162745A JP2015044090A JP2015044090A JP2016162745A JP 2016162745 A JP2016162745 A JP 2016162745A JP 2015044090 A JP2015044090 A JP 2015044090A JP 2015044090 A JP2015044090 A JP 2015044090A JP 2016162745 A JP2016162745 A JP 2016162745A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- secondary battery
- active material
- electrode active
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 44
- 239000010409 thin film Substances 0.000 claims abstract description 59
- 239000007774 positive electrode material Substances 0.000 claims abstract description 50
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 238000007716 flux method Methods 0.000 claims description 5
- 229910013716 LiNi Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 42
- 150000001875 compounds Chemical class 0.000 description 33
- 229910001416 lithium ion Inorganic materials 0.000 description 20
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 14
- 239000007773 negative electrode material Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 239000004020 conductor Substances 0.000 description 13
- -1 for example Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 238000007599 discharging Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 229910052744 lithium Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- JBFHTYHTHYHCDJ-UHFFFAOYSA-N gamma-caprolactone Chemical compound CCC1CCC(=O)O1 JBFHTYHTHYHCDJ-UHFFFAOYSA-N 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002608 ionic liquid Substances 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011302 mesophase pitch Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000011331 needle coke Substances 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OGLIVJFAKNJZRE-UHFFFAOYSA-N 1-methyl-1-propylpiperidin-1-ium Chemical compound CCC[N+]1(C)CCCCC1 OGLIVJFAKNJZRE-UHFFFAOYSA-N 0.000 description 1
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RZTOWFMDBDPERY-UHFFFAOYSA-N Delta-Hexanolactone Chemical compound CC1CCCC(=O)O1 RZTOWFMDBDPERY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002992 LiNi0.33Mn0.33Co0.33O2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000003660 carbonate based solvent Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- FYTRVXSHONWYNE-UHFFFAOYSA-N delta-octanolide Chemical compound CCCC1CCCC(=O)O1 FYTRVXSHONWYNE-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】電池電位を高電位化できる非水電解質二次電池用正極及び非水電解質二次電池を提供すること。【解決手段】本発明の非水電解質二次電池用正極(2)は、層状構造のLiNixMnyCozMwO2(x+y+z+w=1,0<x,0<y,0<z,0≦w,M:遷移金属元素及びアルミニウムより選ばれる1種以上)よりなる正極活物質を有する正極活物質層(21)と、正極活物質層の表面に形成された薄膜(22)と、を備えたことを特徴とする。本発明の非水電解質二次電池(1)は、本発明の非水電解質二次電池用正極(2)を用いてなることを特徴とする。【選択図】なしA positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery capable of increasing the battery potential are provided. A positive electrode (2) for a non-aqueous electrolyte secondary battery according to the present invention has a layered structure of LiNixMnyCozMwO2 (x + y + z + w = 1, 0 <x, 0 <y, 0 <z, 0 ≦ w, M: transition metal element) And a positive electrode active material layer (21) having a positive electrode active material composed of one or more selected from aluminum, and a thin film (22) formed on the surface of the positive electrode active material layer. The nonaqueous electrolyte secondary battery (1) of the present invention is characterized by using the positive electrode (2) for a nonaqueous electrolyte secondary battery of the present invention. [Selection figure] None
Description
本発明は、非水電解質二次電池用正極及び非水電解質二次電池に関する。 The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
近年、高エネルギー密度を備える電池として、非水電解質二次電池の使用が携帯電話、ノートパソコン等の小型民生機器に進められている。非水電解質二次電池としては、例えば、リチウムイオン二次電池を例示できる。リチウムイオン二次電池は、近年では、定置型蓄電システム、ハイブリッド自動車、電気自動車などの大型機器への使用が検討されている。大型機器への適用は、小型機器と比較して、高容量や大電流が要求される。 In recent years, the use of non-aqueous electrolyte secondary batteries as batteries having high energy density has been promoted for small consumer devices such as mobile phones and notebook computers. As a nonaqueous electrolyte secondary battery, a lithium ion secondary battery can be illustrated, for example. In recent years, use of lithium ion secondary batteries for large-sized devices such as stationary power storage systems, hybrid vehicles, and electric vehicles has been studied. Application to a large device requires a high capacity and a large current compared to a small device.
リチウムイオン二次電池の容量は、リチウムイオン(Liイオン)を電気化学的に脱挿入する正極活物質の組成により、変化する。正極活物質としては、LiCoO2やLiMn2O4、LiFePO4などの複合酸化物が用いられる。 The capacity of the lithium ion secondary battery varies depending on the composition of the positive electrode active material from which lithium ions (Li ions) are electrochemically desorbed. As the positive electrode active material, composite oxides such as LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 are used.
リチウムイオン二次電池は、一般に、正極活物質を有する正極活物質層を正極集電体の表面に形成した正極と、負極活物質を有する負極活物質層を負極集電体の表面に形成した負極とが、非水電解質を介して接続され、電池ケースに収納される構成を有している。そして、電極活物質層(正極活物質層,負極活物質層)は、電極活物質粉末をバインダや導電材とともに混合してなる合材を集電体の表面に塗布して形成される。
リチウムイオン二次電池では、電池容量等の電池性能の向上が求められている。
Generally, a lithium ion secondary battery has a positive electrode in which a positive electrode active material layer having a positive electrode active material is formed on the surface of the positive electrode current collector, and a negative electrode active material layer having a negative electrode active material in the surface of the negative electrode current collector. The negative electrode is connected via a non-aqueous electrolyte and is housed in a battery case. The electrode active material layer (positive electrode active material layer, negative electrode active material layer) is formed by applying a mixture obtained by mixing electrode active material powder together with a binder or a conductive material to the surface of the current collector.
Lithium ion secondary batteries are required to improve battery performance such as battery capacity.
例えば、特許文献1に、正極と樹脂層(セパレータ)との間に配置され、主成分としてフッ化アルミニウムを含有し、10nm以上1μm以下の厚さを有する絶縁層を備える非水電解質二次電池が開示されている。 For example, Patent Document 1 discloses a non-aqueous electrolyte secondary battery including an insulating layer that is disposed between a positive electrode and a resin layer (separator), contains aluminum fluoride as a main component, and has a thickness of 10 nm to 1 μm. Is disclosed.
特許文献1に記載の二次電池では、正極や樹脂層だけでなく絶縁層も電解液と接触するように構成されている。また、絶縁層は正極表面とセパレータ表面とが接触しない程度の大きさの微細孔があけられている。この構成では正極と電解液と間で電子授受が行われるので、系外に漏れて流れる電流(いわゆる漏洩電流)が生じる。そのため、電池電位を4.5V以上に高電位化するのが困難であった。
本発明は上記実情に鑑みてなされたものであり、電池電位を高電位化できる非水電解質二次電池用正極及び非水電解質二次電池を提供することを目的とする。
In the secondary battery described in Patent Document 1, not only the positive electrode and the resin layer but also the insulating layer is configured to be in contact with the electrolytic solution. In addition, the insulating layer has fine holes with such a size that the positive electrode surface and the separator surface do not contact each other. In this configuration, since electrons are exchanged between the positive electrode and the electrolyte, a current that leaks out of the system (so-called leakage current) is generated. For this reason, it has been difficult to increase the battery potential to 4.5 V or higher.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery capable of increasing the battery potential.
上記課題を解決するために本発明者らは正極の構造について検討を重ねた結果、本発明を完成させた。 In order to solve the above problems, the present inventors have studied the structure of the positive electrode, and as a result, completed the present invention.
すなわち、本発明の非水電解質二次電池用正極は、層状構造のLiNixMnyCozMwO2(x+y+z+w=1,0<x,0<y,0<z,0≦w,M:遷移金属元素及びアルミニウムより選ばれる1種以上)よりなる正極活物質を有する正極活物質層と、正極活物質層の表面に形成された薄膜と、を備えたことを特徴とする。 That is, the positive electrode for a nonaqueous electrolyte secondary battery of the present invention, the layered structure LiNi x Mn y Co z M w O 2 (x + y + z + w = 1,0 <x, 0 <y, 0 <z, 0 ≦ w, M A positive electrode active material layer comprising a positive electrode active material comprising at least one selected from a transition metal element and aluminum, and a thin film formed on the surface of the positive electrode active material layer.
本発明の正極は、LiNixMnyCozMwO2よりなる正極活物質層を有する。この組成のLi複合酸化物は高い電池電位を有する正極活物質であることから、電池性能を高めることができる。また、正極活物質層の表面に薄膜を有することで、正極活物質と非水電解質との間で電子授受が行われることがない。これにより、本発明によると電池性能が向上した非水電解質二次電池が得られる。
薄膜は、フラックス法により結晶が析出されてなることが好ましい。フラックス法によると単層の薄膜を形成することができる。
本発明の非水電解質二次電池は、請求項1〜2のいずれか1項に記載の正極活物質を有する正極を備えたことを特徴とする。
本発明の非水電解質二次電池は、上記の正極活物質を用いてなることを特徴とするものであり、上記の効果を発揮できる。
The positive electrode of the present invention has a positive electrode active material layer made of LiNi x Mn y Co z M w O 2. Since the Li composite oxide having this composition is a positive electrode active material having a high battery potential, battery performance can be improved. In addition, since a thin film is provided on the surface of the positive electrode active material layer, electrons are not exchanged between the positive electrode active material and the nonaqueous electrolyte. Thus, according to the present invention, a nonaqueous electrolyte secondary battery with improved battery performance can be obtained.
The thin film is preferably formed by crystal precipitation by a flux method. According to the flux method, a single layer thin film can be formed.
A non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode having the positive electrode active material according to claim 1.
The nonaqueous electrolyte secondary battery of the present invention is characterized by using the above positive electrode active material, and can exhibit the above-described effects.
以下、実施の形態を用いて本発明を具体的に説明する。
本発明の非水電解質二次電池用正極及び非水電解質二次電池を、正極及びリチウムイオン二次電池を用いて具体的に説明する。
Hereinafter, the present invention will be specifically described with reference to embodiments.
The positive electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of this invention are demonstrated concretely using a positive electrode and a lithium ion secondary battery.
[実施形態]
本形態のリチウムイオン二次電池1は、図1にその概略構成を示した電池である。本形態の二次電池1は、正極2,負極3,非水電解質4,セパレータ5を有する。
[Embodiment]
The lithium ion secondary battery 1 of this embodiment is a battery whose schematic configuration is shown in FIG. The secondary battery 1 of this embodiment includes a positive electrode 2, a negative electrode 3, a nonaqueous electrolyte 4, and a separator 5.
(正極)
正極2は、正極集電体20と、その表面に形成された正極活物質層21と、正極活物質層21の表面に形成された薄膜22と、を有する。正極活物質層21は、正極活物質を結着材(バインダ)や導電材とともに混合してなる正極合材を正極集電体20の表面に塗布・乾燥して形成される。正極活物質層21は、乾燥後に圧縮してもよい。
薄膜22は、それを形成する材質が含まれる溶液を調整し、正極活物質層21の表面に塗布・乾燥して形成される。
(Positive electrode)
The positive electrode 2 includes a positive electrode current collector 20, a positive electrode active material layer 21 formed on the surface thereof, and a thin film 22 formed on the surface of the positive electrode active material layer 21. The positive electrode active material layer 21 is formed by applying and drying a positive electrode mixture formed by mixing a positive electrode active material together with a binder and a conductive material on the surface of the positive electrode current collector 20. The positive electrode active material layer 21 may be compressed after drying.
The thin film 22 is formed by adjusting a solution containing a material for forming the thin film 22 and applying and drying the solution on the surface of the positive electrode active material layer 21.
(正極活物質)
正極活物質は、層状構造のLiNixMnyCozMwO2(x+y+z+w=1,0<x,0<y,0<z,0≦w,M:遷移金属元素及びアルミニウムより選ばれる1種以上)よりなる。この組成の正極活物質は、アルカリ金属(Li)を基準電位として、4.2V以上の電位差でアルカリ金属イオン(Li+)の吸蔵と放出が行える。このことから、正極活物質が上記の組成を有することで、高い電池電圧の二次電池1となる。
(Positive electrode active material)
The positive electrode active material, LiNi x Mn y Co z M w O 2 (x + y + z + w = 1,0 <x, 0 <y, 0 <z, 0 ≦ w layered structure, M: 1 selected from transition metal elements and aluminum More than species). The positive electrode active material having this composition can occlude and release alkali metal ions (Li + ) with a potential difference of 4.2 V or higher with alkali metal (Li) as a reference potential. From this, it becomes the secondary battery 1 of a high battery voltage because a positive electrode active material has said composition.
なお、組成式中のMは遷移金属元素及びアルミニウムより選ばれる一種以上である。遷移金属元素は、周期表で第3族〜第12族に含まれる元素である。好ましい遷移金属としては、Ti,V,Cr,Fe,Cu,Zn,Zr,Nb,Mo,Ta等の元素をあげることができる。 Note that M in the composition formula is at least one selected from a transition metal element and aluminum. The transition metal element is an element included in Group 3 to Group 12 in the periodic table. Preferred transition metals include elements such as Ti, V, Cr, Fe, Cu, Zn, Zr, Nb, Mo, and Ta.
正極活物質は、その製造方法が限定されるものではなく、それぞれの金属元素を含有する化合物(例えば、酸化物や硝酸塩)を混合して焼成することで製造できる。また、薄膜22と同様に、フラックス法で製造しても良い。 The manufacturing method of the positive electrode active material is not limited, and can be manufactured by mixing and firing a compound (for example, oxide or nitrate) containing each metal element. Further, like the thin film 22, it may be manufactured by a flux method.
(導電材)
導電材は、正極2の電気伝導性を確保する。導電材としては、黒鉛の微粒子,アセチレンブラック,ケッチェンブラック,カーボンナノファイバーなどのカーボンブラック,ニードルコークスなどの無定形炭素の微粒子などを使用できるが、これらに限定されない。
(Conductive material)
The conductive material ensures the electrical conductivity of the positive electrode 2. Examples of the conductive material include, but are not limited to, graphite fine particles, acetylene black, ketjen black, carbon black such as carbon nanofiber, and amorphous carbon fine particles such as needle coke.
(結着材)
結着材は、正極活物質粒子や導電材を結着する。結着剤としては、例えば、PVDF,EPDM,SBR,NBR,フッ素ゴムなどを使用できるが、これらに限定されない。
(Binder)
The binder binds the positive electrode active material particles and the conductive material. As the binder, for example, PVDF, EPDM, SBR, NBR, fluororubber, and the like can be used, but are not limited thereto.
(正極合材)
正極合材は、溶媒に分散させて正極集電体20に塗布される。溶媒としては、通常は結着剤を溶解する有機溶媒を使用する。例えば、NMP,ジメチルホルムアミド,ジメチルアセトアミド,メチルエチルケトン,シクロヘキサノン,酢酸メチル,アクリル酸メチル,ジエチルトリアミン,N−N−ジメチルアミノプロピルアミン,エチレンオキシド,テトラヒドロフランなどを挙げることができるが、これらに限定されない。また、水に分散剤、増粘剤などを加えてPTFEなどで正極活物質をスラリー化する場合もある。
(Positive electrode mixture)
The positive electrode mixture is dispersed in a solvent and applied to the positive electrode current collector 20. As the solvent, an organic solvent that normally dissolves the binder is used. Examples thereof include, but are not limited to, NMP, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropylamine, ethylene oxide, and tetrahydrofuran. In some cases, a positive electrode active material is slurried with PTFE or the like by adding a dispersant, a thickener, or the like to water.
正極集電体20は、例えば、アルミニウム,ステンレスなどの金属を加工したもの、例えば板状に加工した箔,網,パンチドメタル,フォームメタルなどを用いることができるが、これらに限定されない。 As the positive electrode current collector 20, for example, a material obtained by processing a metal such as aluminum or stainless steel, for example, a foil processed into a plate shape, a net, a punched metal, a foam metal, or the like can be used, but is not limited thereto.
(薄膜)
薄膜22は、正極活物質層21の表面に形成される。
(Thin film)
The thin film 22 is formed on the surface of the positive electrode active material layer 21.
なお、本形態において薄膜とは、正極活物質層21の表面に形成されたときに正極活物質層21よりも薄く形成された物質を示すものであり、膜状の化合物であっても、正極活物質層21の表面上に積層した層状の化合物であっても、いずれでもよい。 Note that in this embodiment, the thin film refers to a material formed thinner than the positive electrode active material layer 21 when formed on the surface of the positive electrode active material layer 21, and even if it is a film-like compound, Any of the layered compounds laminated on the surface of the active material layer 21 may be used.
ここで、薄膜22は、電池容量を発揮するものではないため、その厚さが薄いことが好ましい。好ましくは、単層の化合物である。 Here, since the thin film 22 does not exhibit battery capacity, it is preferable that the thickness is thin. Preferably, it is a single layer compound.
薄膜22は、その材質が限定されない。なお、薄膜22は、非水電解質4から正極活物質にLiイオンが挿入・脱離することが阻害されない。このような条件を満たす薄膜22を形成する材質としては、NbOx系の酸化物,TiOx系の酸化物,VOx系の酸化物,WOx系の酸化物などの化合物を挙げることができる。 The material of the thin film 22 is not limited. The thin film 22 is not hindered from inserting / extracting Li ions from the nonaqueous electrolyte 4 to the positive electrode active material. Examples of the material for forming the thin film 22 satisfying such conditions include compounds such as NbO x -based oxides, TiO x -based oxides, VO x -based oxides, and WO x- based oxides. .
薄膜22は、その厚さが薄いことが好ましく、単層の化合物から形成されることが好ましい。単層の化合物を形成する方法は限定されるものではないが、フラックス法で層状化合物の結晶を析出し、各層を剥離して製造できる。層状化合物から単層の化合物を剥離する方法は、例えば、層状化合物の結晶の各層の間に嵩高い化合物(例えば、イオン)を挿入することで、生成した層状化合物から単層を剥離できる。 The thin film 22 is preferably thin and is preferably formed from a single layer compound. A method for forming a single layer compound is not limited, but it can be produced by depositing crystals of a layered compound by a flux method and peeling each layer. As a method for peeling a single layer compound from a layered compound, for example, by inserting a bulky compound (for example, ion) between each layer of the layered compound crystal, the single layer can be peeled from the generated layered compound.
薄膜22を、正極活物質層21の表面に形成する方法は限定されるものではなく、例えば、薄膜22を形成する化合物が分散(又は溶解)した溶液を、スピンコート法やスプレー法等で塗布・乾燥させることで形成できる。また、薄膜22は、正極活物質層21の表面上で直接結晶の生成反応を進行する方法で形成してもよい。 The method for forming the thin film 22 on the surface of the positive electrode active material layer 21 is not limited. For example, a solution in which a compound that forms the thin film 22 is dispersed (or dissolved) is applied by a spin coating method, a spray method, or the like. -It can be formed by drying. The thin film 22 may be formed by a method in which a crystal formation reaction proceeds directly on the surface of the positive electrode active material layer 21.
薄膜22をスピンコート法で形成する場合に、薄膜22を形成する化合物が分散(又は溶解)した溶液は、0.1mass%以上で当該化合物を含有することが好ましく、0.5mass%以上で含有することがより好ましい。薄膜22を形成する化合物を多く含有する溶液から薄膜22を形成することで、薄膜22を形成する化合物同士がすき間を生じることなく配されることとなり、薄膜22による正極活物質層21と非水電解質4との間で電子授受を抑制できる効果がより確実に発揮できる。 When the thin film 22 is formed by the spin coating method, the solution in which the compound forming the thin film 22 is dispersed (or dissolved) preferably contains 0.1% by mass or more, and preferably contains 0.5% by mass or more. More preferably. By forming the thin film 22 from a solution containing a large amount of the compound that forms the thin film 22, the compounds that form the thin film 22 are arranged without generating gaps, and the positive electrode active material layer 21 formed by the thin film 22 and the non-water The effect of suppressing the exchange of electrons with the electrolyte 4 can be more reliably exhibited.
(負極)
負極3は、正極2と同様に、負極集電体30と、その表面に形成された負極活物質層31と、を有する。負極活物質層31は、負極活物質のみから形成しても、負極活物質を結着材(バインダ)や導電材とともに混合してなる負極合材を負極集電体30の表面に塗布・乾燥して形成しても、いずれでもよい。負極合材から形成された負極活物質層31は、乾燥後に圧縮してもよい。
(Negative electrode)
Similarly to the positive electrode 2, the negative electrode 3 includes a negative electrode current collector 30 and a negative electrode active material layer 31 formed on the surface thereof. Even if the negative electrode active material layer 31 is formed only from the negative electrode active material, a negative electrode mixture obtained by mixing the negative electrode active material together with a binder or a conductive material is applied to the surface of the negative electrode current collector 30 and dried. It may be formed either. The negative electrode active material layer 31 formed from the negative electrode mixture may be compressed after drying.
(負極活物質)
負極活物質は、Liイオンを吸蔵・放出可能な材料であれば限定されるものではない。例えば、金属リチウム,リチウム合金,金属酸化物,金属硫化物,金属窒化物,炭素材料,シリコン材料などを挙げることができる。
(Negative electrode active material)
The negative electrode active material is not limited as long as it is a material capable of inserting and extracting Li ions. Examples thereof include metal lithium, lithium alloy, metal oxide, metal sulfide, metal nitride, carbon material, and silicon material.
炭素材料は、例えば、黒鉛,コークス,炭素繊維,球状炭素,粒状炭素などの黒鉛系材料もしくは炭素系材料を挙げることができる。炭素材料は、熱硬化性樹脂,等方性ピッチ,メソフェーズピッチ,メソフェーズピッチ系炭素繊維,気相成長系炭素繊維,メソフェーズ小球体などに対して、熱処理を行って得られる黒鉛系材料もしくは炭素系材料であってもよい。シリコン材料としては、例えば、非晶質(アモルファス)シリコン,微結晶シリコン,多結晶シリコンを挙げることができ、これらのうちで二つ以上を組み合わせて用いても良い。シリコン材料では、結晶性が高くなるにつれて電気伝導度も高くなることが知られている。 Examples of the carbon material include graphite-based materials such as graphite, coke, carbon fiber, spherical carbon, and granular carbon, or carbon-based materials. The carbon material is a graphite-based material or carbon-based material obtained by heat-treating thermosetting resin, isotropic pitch, mesophase pitch, mesophase pitch-based carbon fiber, vapor-grown carbon fiber, mesophase microsphere, etc. It may be a material. Examples of the silicon material include amorphous silicon, microcrystalline silicon, and polycrystalline silicon, and two or more of these may be used in combination. It is known that the electrical conductivity of a silicon material increases as the crystallinity increases.
(導電材)
導電材は、負極3の電気伝導性を確保する。導電材としては、正極2の導電材と同様に、黒鉛の微粒子,アセチレンブラック,ケッチェンブラック,カーボンナノファイバーなどのカーボンブラック,ニードルコークスなどの無定形炭素の微粒子などを使用できるが、これらに限定されない。更に、導電性高分子ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセンなどの導電性プラスチックを用いてもよい。
(Conductive material)
The conductive material ensures the electrical conductivity of the negative electrode 3. As the conductive material, graphite fine particles, acetylene black, ketjen black, carbon black such as carbon nanofibers, and amorphous carbon fine particles such as needle coke can be used as the conductive material. It is not limited. Further, conductive plastics such as conductive polymer polyaniline, polypyrrole, polythiophene, polyacetylene, polyacene, etc. may be used.
(結着材)
結着材は、負極活物質粒子や導電材を結着する。結着剤としては、正極2の結着材と同様に、例えば、PVDF,EPDM,SBR,NBR,フッ素ゴムなどを使用できるが、これらに限定されない。
(Binder)
The binder binds the negative electrode active material particles and the conductive material. As the binder, for example, PVDF, EPDM, SBR, NBR, fluororubber, and the like can be used as in the case of the binder of the positive electrode 2, but the binder is not limited thereto.
(負極合材)
負極合材は、溶媒に分散させて負極集電体30に塗布される。溶媒としては、通常は結着剤を溶解する水やNMP等の溶媒を使用する。また、水に分散剤、増粘剤などを加えてPTFEなどで負極活物質をスラリー化する場合もある。
(Negative electrode mixture)
The negative electrode mixture is dispersed in a solvent and applied to the negative electrode current collector 30. As the solvent, a solvent such as water or NMP that dissolves the binder is usually used. In some cases, a negative electrode active material is slurried with PTFE or the like by adding a dispersant, a thickener, or the like to water.
負極集電体30としては、従来の集電体を用いることができ、銅、ステンレス、チタンあるいはニッケルなどの金属を加工したもの、例えば板状に加工した箔,網,パンチドメタル,フォームメタルなどを用いることができるが、これらに限定されない。 As the negative electrode current collector 30, a conventional current collector can be used, which is obtained by processing a metal such as copper, stainless steel, titanium or nickel, for example, a foil, net, punched metal, foam metal processed into a plate shape. However, it is not limited to these.
(非水電解質)
非水電解質4は、正極2と負極3の間でLiイオン(荷電担体)の輸送を行う。非水電解質4は、特に限定されるものではない。二次電池1が使用される雰囲気下で物理的、化学的、電気的に安定して存在でき、二次電池1として一般的に用いられる液体が好ましい。有機溶媒に支持塩を溶解させた非水電解質(非水電解液とも称される)であることが好ましい。
(Non-aqueous electrolyte)
The non-aqueous electrolyte 4 transports Li ions (charge carriers) between the positive electrode 2 and the negative electrode 3. The nonaqueous electrolyte 4 is not particularly limited. A liquid that can exist physically, chemically, and electrically stably in an atmosphere in which the secondary battery 1 is used and is generally used as the secondary battery 1 is preferable. A non-aqueous electrolyte (also referred to as a non-aqueous electrolyte) in which a supporting salt is dissolved in an organic solvent is preferable.
(溶媒)
有機溶媒は、アルカリ金属に溶媒和する一般的な溶媒を用いてよい。例えば、環状炭酸エステル,環状エステル,鎖状エステル,環状エーテル,鎖状エーテル,ニトリル類などを挙げることができる。
(solvent)
As the organic solvent, a general solvent that solvates with an alkali metal may be used. For example, cyclic carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, nitriles and the like can be mentioned.
環状炭酸エステルとしては、プロピレンカーボネート(PC),エチレンカーボネート(EC),ジメチルスルホキシド(DMSO)などを挙げることができる。環状エステルとしては、γ−ブチロラクトン,γ−バレロラクトン,γ−カプロラクトン,δ−ヘキサノラクトン,δ−オクタノラクトンなどを挙げることができる。鎖状エステルとしては、ジメチルカーボネート(DMC),ジエチルカーボネート(DEC),エチルメチルカーボネート(EMC)などを挙げることができる。環状エーテルとしては、オキセタン,テトラヒドロフラン(THF),テトラヒドロピラン(THP)などを挙げることができる。鎖状エーテルとしては、ジメトキシエタン(DME),エトキシメトキシエタン(EME),ジエトキシエタン(DEE)などを挙げることができる。ニトリル類としては、アセトニトリル,プロピオニトリル,グルタロニトリル,メトキシアセトニトリル,3−メトキシプロピオニトリルなどを挙げることができる。その他、ヘキサメチルスルホルトリアミド(HMPA),アセトン(AC),N−メチル−2−ピロリドン(NMP),ジメチルアセトアミド(DMA),ピリジン,ジメチルホルムアミド(DMF),エタノール,ホルムアミド(FA),メタノール,水などを溶媒に用いてもよい。 Examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), and dimethyl sulfoxide (DMSO). Examples of the cyclic ester include γ-butyrolactone, γ-valerolactone, γ-caprolactone, δ-hexanolactone, and δ-octanolactone. Examples of chain esters include dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Examples of the cyclic ether include oxetane, tetrahydrofuran (THF), and tetrahydropyran (THP). Examples of the chain ether include dimethoxyethane (DME), ethoxymethoxyethane (EME), and diethoxyethane (DEE). Examples of nitriles include acetonitrile, propionitrile, glutaronitrile, methoxyacetonitrile, 3-methoxypropionitrile and the like. In addition, hexamethylsulfurtriamide (HMPA), acetone (AC), N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMA), pyridine, dimethylformamide (DMF), ethanol, formamide (FA), methanol, Water or the like may be used as a solvent.
これらの溶媒のうちカーボネート系溶媒を含む電解液を用いることで、高温での安定性が高くなる。ポリエチレンオキサイドなどの固体高分子に上記の電解質を含んだ固体高分子電解質やリチウムイオン伝導性を有するセラミック、ガラス等の固体電解質も使用可能である。 By using an electrolytic solution containing a carbonate-based solvent among these solvents, the stability at a high temperature is increased. A solid polymer electrolyte containing the above electrolyte in a solid polymer such as polyethylene oxide, or a solid electrolyte such as ceramic or glass having lithium ion conductivity can also be used.
有機溶媒には、上記の各溶媒のうち2種以上を混合した混合溶媒を用いてもよい。例えば、誘電率の高い環状エステルと、粘度低減を目的とする鎖状エステルとの混合液などを挙げることができる。サイクル特性の向上を目的として、ビニレンカーボネート(VC),フルオロエチレンカーボネート(FEC)などのような不飽和結合を有する不飽和化合物を添加してもよい。 As the organic solvent, a mixed solvent obtained by mixing two or more of the above-mentioned solvents may be used. For example, a liquid mixture of a cyclic ester having a high dielectric constant and a chain ester for the purpose of viscosity reduction can be used. For the purpose of improving cycle characteristics, an unsaturated compound having an unsaturated bond such as vinylene carbonate (VC) or fluoroethylene carbonate (FEC) may be added.
(支持塩)
支持塩は、支持に適した任意の塩を用いることができる。例えば、アルカリ金属がリチウムの場合は、LiPF6,LiBF4,LiAsF6,LiCF3SO3,LiN(CF3SO2)2,LiC(CF3SO2)3,LiSbF6,LiSCN,LiClO4,LiAlCl4,NaClO4,NaBF4,NaIや、これらの誘導体等の塩化合物などを挙げることができる。電気特性を向上させる観点から、LiPF6,LiBF4,LiClO4,LiAsF6,LiCF3SO3,LiN(CF3SO2)2,LiC(CF3SO2)3,LiN(FSO2)2,LiN(CF3SO2)(C4F9SO2),LiCF3SO3の誘導体,LiN(CF3SO2)2の誘導体,LiC(CF3SO2)3の誘導体からなる群から選ばれる1種以上の塩を用いることが好ましい。
(Supporting salt)
As the supporting salt, any salt suitable for supporting can be used. For example, when the alkali metal is lithium, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiSbF 6 , LiSCN, LiClO 4 , Examples include LiAlCl 4 , NaClO 4 , NaBF 4 , NaI, and salt compounds such as derivatives thereof. From the viewpoint of improving electrical characteristics, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiN (FSO 2 ) 2 , Selected from the group consisting of LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiCF 3 SO 3 derivatives, LiN (CF 3 SO 2 ) 2 derivatives, LiC (CF 3 SO 2 ) 3 derivatives It is preferred to use one or more salts.
また、高負荷放電特性を得るために、エチレンカーボネート(EC)やプロピレンカーボネート(PC)等の比誘電率の大きな物質を含めることが好ましい。 Further, in order to obtain high load discharge characteristics, it is preferable to include a substance having a large relative dielectric constant such as ethylene carbonate (EC) or propylene carbonate (PC).
また、支持塩には、上述した支持塩に代えて(あるいは加えて)、オキサラト錯体やオキサラト誘導体錯体を用いてもよい。オキサラト錯体やオキサラト誘導体錯体として、リチウムビス(オキサラト)ボレート(LiBOB)、リチウムジフルオロ(オキサラト)ボレート(LiFOB)、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムビス(オキサラト)シランなどを挙げることができる。なお、リチウム以外のアルカリ金属(例えばナトリウムやカリウムなど)についても同様の支持塩を用いてよい。 Further, as the supporting salt, an oxalato complex or an oxalato derivative complex may be used instead of (or in addition to) the above-described supporting salt. Examples of the oxalato complex and the oxalato derivative complex include lithium bis (oxalato) borate (LiBOB), lithium difluoro (oxalato) borate (LiFOB), lithium difluorobis (oxalato) phosphate, and lithium bis (oxalato) silane. A similar supporting salt may be used for alkali metals other than lithium (for example, sodium and potassium).
上述した有機溶媒や支持塩に代えて(あるいは加えて)、非水電解質二次電池に用いることができるイオン液体を用いてもよい。イオン液体のカチオン成分としては、N−メチル−N−プロピルピペリジニウムや、ジメチルエチルメトキシアンモニウムカチオンなどが該当する。アニオン成分としては、BF4 −やN(SO2CF3)2−などを挙げることができる。また、非水電解質はゲル化剤を含有させることによりゲル状としてもよい。 Instead of (or in addition to) the organic solvent and the supporting salt described above, an ionic liquid that can be used for a nonaqueous electrolyte secondary battery may be used. Examples of the cation component of the ionic liquid include N-methyl-N-propylpiperidinium and dimethylethylmethoxyammonium cation. Examples of the anion component include BF 4 - and N (SO 2 CF 3 ) 2- . Further, the non-aqueous electrolyte may be gelled by containing a gelling agent.
(セパレータ5)
セパレータ5は、正極2と負極3との間に介在し、正極2と負極3が接触しないように絶縁するとともに、Liイオンの移動を阻害しない状態で非水電解質4(非水電解液)を保持する。セパレータ5は、一般的な多孔質樹脂や、酸化ケイ素,窒化ケイ素などを用いることができる。例えば、多孔質のポリプロピレン樹脂よりなるものを挙げることができる。
(Separator 5)
The separator 5 is interposed between the positive electrode 2 and the negative electrode 3, and insulates the positive electrode 2 and the negative electrode 3 from contacting each other, and the non-aqueous electrolyte 4 (non-aqueous electrolyte solution) in a state that does not inhibit the movement of Li ions. Hold. For the separator 5, a general porous resin, silicon oxide, silicon nitride, or the like can be used. For example, what consists of a porous polypropylene resin can be mentioned.
セパレータ5は、正極2と負極3の絶縁を確実にするために、正極2と負極3の少なくとも一方よりも大きな形状とすることが好ましい。セパレータ5の厚さは限定されるものではなく、任意に設定できる。例えば、1μm以上30μm以下の厚さとすることができる。この場合、1μmよりも薄く成形すると絶縁が不十分になり、30μmよりも厚く成形すると、二次電池内でセパレータ5の占める容積が増加し、正極2と負極3の占める割合が減少する。その結果、二次電池1の体積あたりの電池容量が小さくなる。 The separator 5 preferably has a shape larger than at least one of the positive electrode 2 and the negative electrode 3 in order to ensure insulation between the positive electrode 2 and the negative electrode 3. The thickness of the separator 5 is not limited and can be set arbitrarily. For example, the thickness may be 1 μm or more and 30 μm or less. In this case, if it is formed thinner than 1 μm, the insulation becomes insufficient, and if it is formed thicker than 30 μm, the volume occupied by the separator 5 in the secondary battery increases and the ratio occupied by the positive electrode 2 and the negative electrode 3 decreases. As a result, the battery capacity per volume of the secondary battery 1 is reduced.
[その他の構成]
本形態の二次電池1は、正極2,負極3及び非水電解質4を有する上記の構成を有していれば、具体的な形状については限定されるものではない。例えば、その構成を図2に示したコイン型の二次電池1を挙げることができる。なお、図2中、上記の構成と同一構成の部材は、同じ参照符号を付与している。
図2に示す二次電池1は、正極2,負極3,非水電解質4,セパレータ5を、電池ケース6に封入して形成される。
正極2,負極3,非水電解質4及びセパレータ5は、上記の構成と同様である。
電池ケース6は、ロアーケース60,アッパーケース61から形成され、両ケース60,61の間をシール部材62でシールする。
[Other configurations]
As long as the secondary battery 1 of this embodiment has the above-described configuration including the positive electrode 2, the negative electrode 3, and the nonaqueous electrolyte 4, the specific shape is not limited. For example, the coin-type secondary battery 1 whose configuration is shown in FIG. In FIG. 2, members having the same configurations as those described above are given the same reference numerals.
A secondary battery 1 shown in FIG. 2 is formed by enclosing a positive electrode 2, a negative electrode 3, a nonaqueous electrolyte 4, and a separator 5 in a battery case 6.
The positive electrode 2, the negative electrode 3, the nonaqueous electrolyte 4 and the separator 5 are the same as those described above.
The battery case 6 is formed of a lower case 60 and an upper case 61, and a seal member 62 seals between the cases 60 and 61.
[二次電池の変形形態]
上記した形態では、コイン型の二次電池1を例示したが、本発明の非水電解質二次電池はこの形態に限定されるものではない。
二次電池1は、その形状には特に制限を受けず、円筒型,角型等、種々の形状の電池や、ラミネート外装体に封入した不定形状の電池とすることができる。
[Deformation of secondary battery]
In the above-described embodiment, the coin-type secondary battery 1 is illustrated, but the nonaqueous electrolyte secondary battery of the present invention is not limited to this embodiment.
The secondary battery 1 is not particularly limited in its shape, and can be a battery of various shapes such as a cylindrical shape and a square shape, or an indefinite shape sealed in a laminate outer package.
以下、実施例を用いて本発明を説明する。
本発明の実施例として、正極及びリチウムイオン二次電池を製造した。
Hereinafter, the present invention will be described using examples.
As an example of the present invention, a positive electrode and a lithium ion secondary battery were manufactured.
(実施例)
本例のリチウムイオン二次電池1は、図2にその構成を示したコイン型のリチウムイオン二次電池1と同様の構成である。本例の正極2は、上記の実施形態に記載の図1の構成を備える。本例の正極2は、正極集電体20、正極活物質層21、薄膜22を有する。
(Example)
The lithium ion secondary battery 1 of this example has the same configuration as the coin-type lithium ion secondary battery 1 whose configuration is shown in FIG. The positive electrode 2 of this example has the configuration of FIG. 1 described in the above embodiment. The positive electrode 2 of this example includes a positive electrode current collector 20, a positive electrode active material layer 21, and a thin film 22.
(薄膜の形成)
薄膜22を生成する原料として、K2CO3(0.928g)とNb2O5(5.353g)を準備する。これらの化合物を、5.353gのKClよりなるフラックスとともに十分に混合する。
(Thin film formation)
K 2 CO 3 (0.928 g) and Nb 2 O 5 (5.353 g) are prepared as raw materials for forming the thin film 22. These compounds are mixed thoroughly with a flux consisting of 5.353 g KCl.
混合粉末をアルミナ製のるつぼに投入し、加熱炉で加熱した。加熱炉での加熱は、1000(℃/時間)の昇温速度で、予め設定された温度(800℃)まで加熱・昇温した。そして、この加熱温度で5時間保持した後、250(℃/時間)の降温速度で、300℃まで降温・冷却した。
それから、室温まで放冷し、温水で洗浄してフラックスを除去した。
以上により、本例の薄膜を形成する化合物(薄膜化合物)が製造された。
薄膜化合物について、XRD及びSEMで観察を行った。XRD測定結果を図3に、SEM写真を図4に、それぞれ示した。
図3に示したように、薄膜化合物は、KNb3O8の組成を有していることが確認できた。また、図4に示したように、薄膜化合物は、薄層の形状を有していることが確認できた。
The mixed powder was put into an alumina crucible and heated in a heating furnace. The heating in the heating furnace was performed at a heating rate of 1000 (° C./hour) up to a preset temperature (800 ° C.). And after hold | maintaining for 5 hours at this heating temperature, it cooled and cooled to 300 degreeC with the temperature-fall rate of 250 (degreeC / hour).
Then, it was allowed to cool to room temperature and washed with warm water to remove the flux.
The compound (thin film compound) which forms the thin film of this example was manufactured by the above.
The thin film compound was observed with XRD and SEM. The XRD measurement result is shown in FIG. 3, and the SEM photograph is shown in FIG.
As shown in FIG. 3, it was confirmed that the thin film compound had a composition of KNb 3 O 8 . Moreover, as shown in FIG. 4, it has confirmed that the thin film compound had the shape of the thin layer.
得られた薄膜化合物を、1mol/LのHCl溶液に72時間攪拌・浸漬してプロトン交換を行った。その後、溶液のpHが7になるまで蒸留水で洗浄を繰り返した。そして、Tetrabutylammonium Hydroxide(40wt%水溶液)(TBAOH)に、薄膜化合物を浸漬し、遮光状態で72時間振とうする。
その後、遠心分離操作を行い、コロイド沈殿物を除去する。更に、遠心分離操作を行い、単層のナノシート構造の薄膜化合物の分散溶液を抽出した。
The obtained thin film compound was stirred and immersed in a 1 mol / L HCl solution for 72 hours for proton exchange. Thereafter, washing with distilled water was repeated until the pH of the solution reached 7. Then, the thin film compound is dipped in Tetrabutylammonium Hydroxide (40 wt% aqueous solution) (TBAOH) and shaken in a light-shielded state for 72 hours.
Thereafter, a centrifugal separation operation is performed to remove the colloidal precipitate. Further, a centrifugal separation operation was performed to extract a dispersion solution of a thin film compound having a single-layer nanosheet structure.
抽出された分散溶液は、分散溶液全体の質量を100mass%としたときに、薄膜化合物を0.1mass%,0.5mass%,1mass%で含有する三種類が準備された。 Three types of extracted dispersion solutions containing thin film compounds at 0.1 mass%, 0.5 mass%, and 1 mass% were prepared when the mass of the entire dispersion solution was 100 mass%.
(正極の形成)
抽出した分散溶液を、正極集電体20の表面上に正極活物質層21が形成された正極(市販品,宝泉株式会社製,商品名:HS−LIB−P−NMC−001,正極活物質:LiNi0.33Mn0.33Co0.33O2)の表面に滴下し、2000rpmで60秒間回転した(スピンコート法)。
乾燥工程を施し、本例の正極2が製造された。
製造された本例の正極2は、正極集電体20、その表面上に形成された正極活物質層21の表面上に形成された薄膜22を有する。
(Formation of positive electrode)
The extracted dispersion solution was a positive electrode (commercial product, manufactured by Hosen Co., Ltd., trade name: HS-LIB-P-NMC-001, positive electrode active) in which the positive electrode active material layer 21 was formed on the surface of the positive electrode current collector 20. Material: LiNi 0.33 Mn 0.33 Co 0.33 O 2 ) was dropped onto the surface and rotated at 2000 rpm for 60 seconds (spin coating method).
The drying process was performed and the positive electrode 2 of this example was manufactured.
The manufactured positive electrode 2 of this example includes a positive electrode current collector 20 and a thin film 22 formed on the surface of a positive electrode active material layer 21 formed on the surface thereof.
(その他の二次電池の構成)
負極(対極)には、金属リチウムを用いた。図2中の負極活物質層31に相当する。
非水電解質4は、エチレンカーボネート(EC)30体積%とジエチルカーボネート(DEC)70体積%との混合溶媒に、LiPF6を1モル/リットルとなるように溶解させて調製されたものを用いた。
試験セルは、組み立てられた後に、1/3C×2サイクルの充放電での活性化処理が行われた。
以上により、試験セル(ハーフセル)が製造された。
(Other secondary battery configurations)
Metal lithium was used for the negative electrode (counter electrode). This corresponds to the negative electrode active material layer 31 in FIG.
The non-aqueous electrolyte 4 was prepared by dissolving LiPF 6 in a mixed solvent of 30% by volume of ethylene carbonate (EC) and 70% by volume of diethyl carbonate (DEC) so as to be 1 mol / liter. .
After the test cell was assembled, an activation process was performed by charge / discharge of 1 / 3C × 2 cycles.
The test cell (half cell) was manufactured by the above.
試験セルは、薄膜化合物を1mass%で含む分散溶液から製造された二次電池1を試料1、0.5mass%の分散溶液から製造された二次電池1を試料2、0.1mass%の分散溶液から製造された二次電池1を試料3、薄膜22を形成しない二次電池を試料4とした。 The test cell consists of a secondary battery 1 manufactured from a dispersion solution containing a thin film compound at 1 mass%, a sample 1, a secondary battery 1 manufactured from a 0.5 mass% dispersion solution, a sample 2, a 0.1 mass% dispersion. The secondary battery 1 manufactured from the solution was designated as sample 3, and the secondary battery not formed with the thin film 22 was designated as sample 4.
(充放電試験)
製造された各試料の二次電池1に対し、0.25Cの充放電レートで4.6V−2.8Vの充放電を3サイクル繰り返した。このときの電池容量を図5〜図8に示した。図5は試料1の二次電池1の測定結果を、図6は試料2の二次電池1の測定結果を、図7は試料3の二次電池1の測定結果を、図8は試料4の二次電池1の測定結果を、それぞれ示した。
(Charge / discharge test)
The charging / discharging of 4.6V-2.8V was repeated 3 cycles at the charging / discharging rate of 0.25C with respect to the manufactured secondary battery 1 of each sample. The battery capacity at this time is shown in FIGS. 5 shows the measurement result of the secondary battery 1 of the sample 1, FIG. 6 shows the measurement result of the secondary battery 1 of the sample 2, FIG. 7 shows the measurement result of the secondary battery 1 of the sample 3, and FIG. The measurement results of the secondary battery 1 were respectively shown.
図5〜図7に示したように、正極2の表面に薄膜22が形成された試料1〜3の二次電池1は、薄膜22が形成されていない試料4と比較して、大きな電池容量を備えていることが確認できる。 As shown in FIGS. 5 to 7, the secondary battery 1 of Samples 1 to 3 in which the thin film 22 is formed on the surface of the positive electrode 2 has a larger battery capacity than the sample 4 in which the thin film 22 is not formed. Can be confirmed.
また、試料1〜3の二次電池1の充放電容量の特性は、各サイクルごとの変化が少ない。これに対し、薄膜22が形成されていない試料4では、サイクルごとの充放電容量のズレが大きくなっていることが確認できる。 In addition, the characteristics of the charge / discharge capacity of the secondary batteries 1 of Samples 1 to 3 are less changed for each cycle. On the other hand, in the sample 4 in which the thin film 22 is not formed, it can be confirmed that the deviation of the charge / discharge capacity for each cycle is large.
その上で、図5〜7に示したように、薄膜22の形成量が多くなるほど(薄膜化合物の分散量が大きくなるほど)、電池容量を増加する効果を発揮できることが確認できる。 In addition, as shown in FIGS. 5 to 7, it can be confirmed that the effect of increasing the battery capacity can be exhibited as the formation amount of the thin film 22 increases (as the dispersion amount of the thin film compound increases).
また、薄膜22の形成量が多くなるほど(薄膜化合物の分散量が大きくなるほど)、充放電容量の特性のズレが生じなくなり、電池容量の低下を抑制する効果を発揮できることが確認できる。 Further, it can be confirmed that as the formation amount of the thin film 22 is increased (as the dispersion amount of the thin film compound is increased), the charge / discharge capacity characteristics are not shifted, and the effect of suppressing the decrease in the battery capacity can be exhibited.
(レート試験)
製造された各試料の二次電池1に対し、所定の充放電レートで4.6V−2.8Vの充放電を所定のサイクル数、繰り返した。このときの放電容量を図9に示した。なお、充放電は、0.25C,0.5C,1C,2C,4C,10Cの各レートで行われた。そして、図9には、0.25Cでの1,2,3,19,20,21サイクルでの放電容量,0.5Cでの4,5,6サイクルでの放電容量,1Cでの7,8,9サイクルでの放電容量,2Cでの10,11,12サイクルでの放電容量,4Cでの13,14,15サイクルでの放電容量,10Cでの16,17,18サイクルでの放電容量をそれぞれ示した。
(Rate test)
With respect to the manufactured secondary battery 1 of each sample, charging / discharging of 4.6V-2.8V was repeated for a predetermined number of cycles at a predetermined charging / discharging rate. The discharge capacity at this time is shown in FIG. Charging / discharging was performed at each rate of 0.25C, 0.5C, 1C, 2C, 4C, and 10C. FIG. 9 shows the discharge capacity at 1, 2, 3, 19, 20, and 21 cycles at 0.25 C, the discharge capacity at 4, 5, and 6 cycles at 0.5 C, 7, at 1 C, Discharge capacity at 8, 9 cycles, discharge capacity at 10, 11, 12 cycles at 2C, discharge capacity at 13, 14, 15 cycles at 4C, discharge capacity at 16, 17, 18 cycles at 10C Respectively.
図9に示したように、いずれの二次電池1においても、充放電レートが0.25Cでは、充放電を繰り返しても放電容量の変化(低下)がほとんど生じないことがわかる。 As shown in FIG. 9, it can be seen that in any of the secondary batteries 1, when the charge / discharge rate is 0.25C, the change (decrease) in the discharge capacity hardly occurs even when the charge / discharge is repeated.
そして、充放電レートが高くなるほど、試料1〜3の放電容量と試料4の放電容量の差が大きくなっている。その上で、4Cという高いレートでの充放電では、試料4の放電容量が大きく低下しているのに対し、試料1〜3では実用可能な程度の放電容量を備えていることが確認できる。 And the difference between the discharge capacities of Samples 1 to 3 and the discharge capacities of Sample 4 increases as the charge / discharge rate increases. In addition, in the charge and discharge at a high rate of 4C, it can be confirmed that the discharge capacity of the sample 4 is greatly reduced, whereas the samples 1 to 3 have a practical discharge capacity.
(サイクル試験)
製造された試料1,2,4の二次電池1に対し、1Cの充放電レートで4.6V−2.8Vの充放電を100サイクル繰り返した。このときの放電容量を図10に示した。
(Cycle test)
The manufactured secondary batteries 1 of Samples 1, 2, and 4 were charged and discharged at a charge / discharge rate of 1C at a charge / discharge rate of 4.6V to 2.8V for 100 cycles. The discharge capacity at this time is shown in FIG.
図10に示したように、70サイクル近傍から、薄膜22が形成されていない試料4では、放電容量が大きく低下していることが確認できる。これに対し、薄膜22を有する試料1〜2では、このような放電容量の大きな低下が確認できず、サイクル特性に優れていることも確認できる。 As shown in FIG. 10, it can be confirmed from around 70 cycles that the discharge capacity of the sample 4 in which the thin film 22 is not formed is greatly reduced. On the other hand, in Samples 1 and 2 having the thin film 22, such a large decrease in discharge capacity cannot be confirmed, and it can be confirmed that the cycle characteristics are excellent.
以上に示したように、正極活物質層21の表面にKNb3O8よりなる薄膜22を有する各試料の正極2及び二次電池1は、4.6Vと高い電位での充放電を繰り返しても、電池特性の低下が抑えられている。 As described above, the positive electrode 2 and the secondary battery 1 of each sample having the thin film 22 made of KNb 3 O 8 on the surface of the positive electrode active material layer 21 are repeatedly charged and discharged at a high potential of 4.6 V. However, the deterioration of battery characteristics is suppressed.
このことは、正極活物質に含まれるNiの価数が変化して酸素が脱離しようとしても、薄膜22が当該酸素が非水電解質5に移動することを規制している可能性がある。この酸素の移動の規制により、正極活物質の不可逆容量の発生が抑えられる。この結果、電池特性の低下が抑えられるとも考えられている。 This may cause the thin film 22 to restrict the movement of the oxygen to the nonaqueous electrolyte 5 even if the valence of Ni contained in the positive electrode active material changes and oxygen is desorbed. Due to this restriction of oxygen movement, generation of irreversible capacity of the positive electrode active material is suppressed. As a result, it is considered that deterioration of battery characteristics can be suppressed.
また、薄膜22を形成した正極活物質層21を分析した結果、薄膜22は正極活物質層21の表面だけに存在しているわけではなく、正極活物質層21の空隙に沿って内部の正極活物質や導電材、バインダ表面を覆っていることが確認できた。 Further, as a result of analyzing the positive electrode active material layer 21 on which the thin film 22 is formed, the thin film 22 does not exist only on the surface of the positive electrode active material layer 21, but the internal positive electrode along the gap of the positive electrode active material layer 21. It was confirmed that the active material, the conductive material, and the binder surface were covered.
すなわち、本発明に係る試料1〜3の二次電池1は、電池特性に優れたものとなる効果を発揮する。 That is, the secondary batteries 1 of Samples 1 to 3 according to the present invention exhibit an effect of being excellent in battery characteristics.
1:リチウムイオン二次電池
2:正極
20:正極集電体 21:正極活物質層
3:負極
30:負極集電体 31:負極活物質層
4:非水電解質
5:セパレータ
6:電池ケース
1: Lithium ion secondary battery 2: Positive electrode 20: Positive electrode current collector 21: Positive electrode active material layer 3: Negative electrode 30: Negative electrode current collector 31: Negative electrode active material layer 4: Nonaqueous electrolyte 5: Separator 6: Battery case
Claims (4)
該正極活物質層の表面に形成された薄膜(22)と、
を備えたことを特徴とする非水電解質二次電池用正極(2)。 LiNi x Mn y Co z M w O 2 (x + y + z + w = 1,0 <x, 0 <y, 0 <z, 0 ≦ w, M: 1 or more selected from transition metal elements and aluminum) layered structure consisting of A positive electrode active material layer (21) having a positive electrode active material;
A thin film (22) formed on the surface of the positive electrode active material layer;
A positive electrode (2) for a non-aqueous electrolyte secondary battery, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044090A JP2016162745A (en) | 2015-03-05 | 2015-03-05 | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044090A JP2016162745A (en) | 2015-03-05 | 2015-03-05 | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019209082A Division JP6851647B2 (en) | 2019-11-19 | 2019-11-19 | Manufacturing method of positive electrode for non-aqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016162745A true JP2016162745A (en) | 2016-09-05 |
Family
ID=56847231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015044090A Pending JP2016162745A (en) | 2015-03-05 | 2015-03-05 | Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016162745A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273123A (en) * | 2006-03-30 | 2007-10-18 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
JP2009277597A (en) * | 2008-05-16 | 2009-11-26 | Panasonic Corp | Nonaqueous electrolyte secondary battery |
JP2011243468A (en) * | 2010-05-20 | 2011-12-01 | Sumitomo Electric Ind Ltd | Positive electrode body for nonaqueous electrolyte battery, manufacturing method thereof, and nonaqueous electrolyte battery |
JP2013097912A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Secondary battery |
-
2015
- 2015-03-05 JP JP2015044090A patent/JP2016162745A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007273123A (en) * | 2006-03-30 | 2007-10-18 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery and manufacturing method thereof |
JP2009277597A (en) * | 2008-05-16 | 2009-11-26 | Panasonic Corp | Nonaqueous electrolyte secondary battery |
JP2011243468A (en) * | 2010-05-20 | 2011-12-01 | Sumitomo Electric Ind Ltd | Positive electrode body for nonaqueous electrolyte battery, manufacturing method thereof, and nonaqueous electrolyte battery |
JP2013097912A (en) * | 2011-10-28 | 2013-05-20 | Kyocera Corp | Secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4725594B2 (en) | Method for manufacturing lithium secondary battery | |
CN104835950B (en) | Positive electrode active material, preparation method thereof, and rechargeable lithium battery | |
JP5196118B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
CN110998958B (en) | Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
US11114696B2 (en) | Electrolyte system for lithium-chalcogen batteries | |
JP6544951B2 (en) | Positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP5278994B2 (en) | Lithium secondary battery | |
CN101379653A (en) | Lithium secondary battery using ionic liquid | |
JP6428243B2 (en) | Non-aqueous lithium secondary battery and manufacturing method thereof | |
WO2014133165A1 (en) | Lithium-ion secondary cell | |
KR20150106883A (en) | Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electrical energy storage system, electric tool, and electronic device | |
JP2017174648A (en) | Power storage device | |
KR101897384B1 (en) | Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing same | |
JP7538734B2 (en) | Electrode and lithium ion secondary battery | |
JP2016031852A (en) | Nonaqueous electrolyte secondary battery | |
JP6180895B2 (en) | Secondary battery electrode, method for manufacturing secondary battery electrode, and secondary battery | |
WO2013183524A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2010033830A (en) | Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
WO2019065288A1 (en) | Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same | |
CN116762185A (en) | Positive electrode for secondary battery and secondary battery | |
JP7428346B2 (en) | Lithium secondary battery and method for manufacturing lithium secondary battery | |
JP2019175630A (en) | Positive electrode active material and lithium ion secondary battery | |
JP2022534525A (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP2018097935A (en) | Carbonaceous material, lithium secondary battery, and method of producing carbonaceous material | |
JP6851647B2 (en) | Manufacturing method of positive electrode for non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150318 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170809 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170809 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181025 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190325 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190820 |