JP2016031852A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2016031852A JP2016031852A JP2014154067A JP2014154067A JP2016031852A JP 2016031852 A JP2016031852 A JP 2016031852A JP 2014154067 A JP2014154067 A JP 2014154067A JP 2014154067 A JP2014154067 A JP 2014154067A JP 2016031852 A JP2016031852 A JP 2016031852A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- secondary battery
- electrode active
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 20
- 239000007774 positive electrode material Substances 0.000 claims abstract description 48
- 239000002245 particle Substances 0.000 claims abstract description 40
- 229910012465 LiTi Inorganic materials 0.000 claims abstract description 24
- 239000011247 coating layer Substances 0.000 claims abstract description 17
- 239000013078 crystal Substances 0.000 claims abstract description 12
- 229910052596 spinel Inorganic materials 0.000 claims abstract description 12
- 239000011029 spinel Substances 0.000 claims abstract description 12
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 10
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 9
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 239000006258 conductive agent Substances 0.000 claims description 18
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 12
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 claims description 7
- 230000006866 deterioration Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 description 20
- 239000010410 layer Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 12
- -1 polytetrafluoroethylene Polymers 0.000 description 12
- 229910052718 tin Inorganic materials 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 10
- 239000004698 Polyethylene Substances 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 229920001155 polypropylene Polymers 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 238000007606 doctor blade method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910010199 LiAl Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 1
- 229910011986 LiFe0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910012506 LiSi Inorganic materials 0.000 description 1
- 229910012381 LiSn Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000002388 carbon-based active material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000007610 electrostatic coating method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- IAQLJCYTGRMXMA-UHFFFAOYSA-M lithium;acetate;dihydrate Chemical compound [Li+].O.O.CC([O-])=O IAQLJCYTGRMXMA-UHFFFAOYSA-M 0.000 description 1
- QVXQYMZVJNYDNG-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound [Li+].FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F QVXQYMZVJNYDNG-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 1
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 1
- 239000011834 metal-based active material Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229940078487 nickel acetate tetrahydrate Drugs 0.000 description 1
- OINIXPNQKAZCRL-UHFFFAOYSA-L nickel(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Ni+2].CC([O-])=O.CC([O-])=O OINIXPNQKAZCRL-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- IKNCGYCHMGNBCP-UHFFFAOYSA-N propan-1-olate Chemical compound CCC[O-] IKNCGYCHMGNBCP-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】高い充放電電圧を示す正極活物質を含み、サイクル劣化性及び寿命特性が改善された非水電解液二次電池の提供。
【解決手段】金属リチウム対極電位で4.5V以上の充放電電位を示す遷移金属酸化物から構成された正極活物質粒子を含む正極を有する非水電解質二次電池であって、前記正極活物質が、その表面上に、スピネル型結晶構造を有するLiTi2O4を含む被覆層を有する、非水電解液二次電池。
【選択図】なしA non-aqueous electrolyte secondary battery including a positive electrode active material exhibiting a high charge / discharge voltage and having improved cycle deterioration and life characteristics is provided.
A non-aqueous electrolyte secondary battery having a positive electrode including positive electrode active material particles composed of a transition metal oxide exhibiting a charge / discharge potential of 4.5 V or more as a metal lithium counter electrode potential, the positive electrode active material but on its surface, with a coating layer comprising LiTi 2 O 4 having a spinel crystal structure, a non-aqueous electrolyte secondary battery.
[Selection figure] None
Description
本発明は、非水電解液二次電池に関し、より詳しくは、遷移金属酸化物から構成された正極活物質粒子を含む非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery including positive electrode active material particles composed of a transition metal oxide.
リチウムイオン二次電池用の正極材料として、4.5V以上の高い充放電電圧を示す正極材料が注目されている。かかる高い充放電電圧を示す正極材料としては、例えば、特許文献1及び2に記載されているLiNi0.5Mn1.5O4が知られている。しかし、かかる高い充放電電圧を示す正極材料を含む電池では、高電位で電解液の電解酸化分解が起こることにより電流及び電解液の一部が消費されるとともに、電解酸化分解の副生成物が電極に悪影響を及ぼすことにより放電容量が低下するため、サイクル劣化性が大きく、電池の寿命特性の点で課題がある。 As a positive electrode material for a lithium ion secondary battery, a positive electrode material exhibiting a high charge / discharge voltage of 4.5 V or more has attracted attention. As a positive electrode material exhibiting such a high charge / discharge voltage, for example, LiNi 0.5 Mn 1.5 O 4 described in Patent Documents 1 and 2 is known. However, in a battery including a positive electrode material exhibiting such a high charge / discharge voltage, a current and a part of the electrolytic solution are consumed due to the electrolytic oxidation decomposition of the electrolytic solution at a high potential, and a by-product of the electrolytic oxidation decomposition is generated. Since the discharge capacity is reduced by adversely affecting the electrodes, the cycle deterioration is large, and there is a problem in terms of battery life characteristics.
上記の課題に鑑み、本発明は、高い充放電電圧を示す正極活物質を含む非水電解液二次電池であって、サイクル劣化性を改善し、ひいては寿命特性を改善した非水電解液二次電池を提供することを目的とする。 In view of the above problems, the present invention is a non-aqueous electrolyte secondary battery including a positive electrode active material exhibiting a high charge / discharge voltage, which has improved cycle deterioration and thus improved life characteristics. An object is to provide a secondary battery.
本発明者らは、高電位遷移金属酸化物から構成された正極活物質粒子の表面に、LiTi2O4を含む被覆層を形成することによって、電解液の電解酸化分解を抑制することができることを見出した。電解液の電解酸化分解を抑制できるため、二次電池の充放電サイクルによる劣化は抑制され、二次電池の長寿命化を実現できる。 The present inventors can suppress electrolytic oxidative decomposition of the electrolytic solution by forming a coating layer containing LiTi 2 O 4 on the surface of the positive electrode active material particles composed of the high potential transition metal oxide. I found. Since electrolytic oxidative decomposition of the electrolytic solution can be suppressed, deterioration due to the charge / discharge cycle of the secondary battery is suppressed, and the life of the secondary battery can be extended.
本発明は、一実施形態において、金属リチウム対極電位で4.5V以上の充放電電位を示す遷移金属酸化物から構成された正極活物質粒子を含む正極を有する非水電解液二次電池であって、前記正極活物質粒子が、その表面上に、スピネル型結晶構造を有するLiTi2O4を含む被覆層を有する、非水電解液二次電池である。 In one embodiment, the present invention is a non-aqueous electrolyte secondary battery having a positive electrode including positive electrode active material particles composed of a transition metal oxide exhibiting a charge / discharge potential of 4.5 V or more at a metal lithium counter electrode potential. Then, the positive electrode active material particle is a non-aqueous electrolyte secondary battery having a coating layer containing LiTi 2 O 4 having a spinel crystal structure on the surface thereof.
本発明の非水電解液二次電池において、正極活物質は、金属リチウム対極電位で4.5V以上の充放電電位を示す遷移金属酸化物から構成される。かかる高い充放電電位を示す正極活物質の具体例としては、スピネル型結晶構造を有する正極活物質、例えばLiNi0.5Mn1.5O4、LiFe0.5Mn1.5O4 、LiCo0.5Mn1.5O4 及びLiCr0.5Mn1.5O4 、並びに非スピネル型結晶構造を有する正極活物質、例えばLiCoPO4及びLiNiPO4が挙げられる。正極活物質粒子は、好ましくは0.1〜5μmの平均粒径を有する。ここで、正極活物質の平均粒径は、走査型電子顕微鏡(SEM)の画像解析により求められた面積円相当径の粒度分布における個数基準の50%累積値に相当する粒径d50を意味する。遷移金属酸化物から構成される正極活物質は、固相法、ゾルゲル法、水熱合成法、共沈法などの当該技術分野で知られている方法により製造することができ、特に限定されない。例えば、正極活物質をゾルゲル法により製造する場合、原料を所定の割合で含む溶液を調製し、溶液中で原料を加水分解させ重合させてゾルを形成し、加熱によりさらに加水分解及び重合反応を進行させてゲル化させ、得られた前駆体を仮焼成し、粉砕し、次いで、本焼成することにより正極活物質を得ることができる。本焼成温度は500〜900℃であることが望ましく、600〜800℃であることがさらに望ましい。本焼成時間は、望ましくは0.5〜5時間であり、さらに望ましくは1〜3時間である。焼成温度が高いほど、また、焼成時間が長いほど、粒子が成長する。 In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is composed of a transition metal oxide that exhibits a charge / discharge potential of 4.5 V or more as a metal lithium counter electrode potential. Specific examples of the positive electrode active material exhibiting such a high charge / discharge potential include positive electrode active materials having a spinel crystal structure such as LiNi 0.5 Mn 1.5 O 4 , LiFe 0.5 Mn 1.5 O 4 , LiCo 0.5 Mn 1.5 O 4 and LiCr 0.5. Examples include Mn 1.5 O 4 and positive electrode active materials having a non-spinel crystal structure, such as LiCoPO 4 and LiNiPO 4 . The positive electrode active material particles preferably have an average particle size of 0.1 to 5 μm. Here, the average particle diameter of the positive electrode active material means a particle diameter d50 corresponding to a 50% cumulative value on the basis of the number in the particle size distribution of the area equivalent circle diameter obtained by image analysis of a scanning electron microscope (SEM). . The positive electrode active material composed of the transition metal oxide can be produced by a method known in the technical field such as a solid phase method, a sol-gel method, a hydrothermal synthesis method, and a coprecipitation method, and is not particularly limited. For example, when the positive electrode active material is produced by the sol-gel method, a solution containing the raw material in a predetermined ratio is prepared, the raw material is hydrolyzed and polymerized in the solution to form a sol, and further subjected to hydrolysis and polymerization reaction by heating. The positive electrode active material can be obtained by proceeding to gelation, preliminarily firing and pulverizing the obtained precursor, followed by main firing. The main firing temperature is desirably 500 to 900 ° C, and more desirably 600 to 800 ° C. The firing time is desirably 0.5 to 5 hours, and more desirably 1 to 3 hours. The higher the firing temperature and the longer the firing time, the more the particles grow.
上記の正極活物質粒子は、その表面に、スピネル型結晶構造を有するLiTi2O4を含む被覆層を有する。正極活物質粒子がスピネル型結晶構造を有する遷移金属酸化物から構成される場合、正極活物質粒子を構成する遷移金属酸化物とLiTi2O4が両方ともスピネル型結晶構造を有するため、正極活物質粒子の表面とLiTi2O4を含む被覆層との界面において、正極活物質粒子の表面に対して良好な接合性でLiTi2O4は接合することができ、その結果、Liイオン伝導性を高めることができる。スピネル型結晶構造を有するLiTi2O4を含む被覆層は、好ましくは0.1〜50nmの厚さを有する。ここでスピネル型結晶構造を有するLiTi2O4を含む被覆層を表面に有する正極活物質は、例えば、正極活物質粒子を、チタンテトライソプロポキシドを含むアルコール溶液中に分散させ、チタンテトライソプロポキシドを加水分解させた後、乾燥させ、500℃で1時間焼成することによって得ることができる。 The positive electrode active material particles described above, on the surface thereof, having a coating layer containing the LiTi 2 O 4 having a spinel crystal structure. When the positive electrode active material particles are composed of a transition metal oxide having a spinel crystal structure, both the transition metal oxide and LiTi 2 O 4 constituting the positive electrode active material particles have a spinel crystal structure. at the interface between the coating layer comprising a surface and LiTi 2 O 4 of the material particles, with good bonding properties to the surface of the positive electrode active material particle LiTi 2 O 4 can be joined, as a result, Li ion conductivity Can be increased. The coating layer containing LiTi 2 O 4 having a spinel crystal structure preferably has a thickness of 0.1 to 50 nm. Here, the positive electrode active material having a coating layer containing LiTi 2 O 4 having a spinel crystal structure on the surface, for example, is obtained by dispersing positive electrode active material particles in an alcohol solution containing titanium tetraisopropoxide, Propoxide can be hydrolyzed, dried, and fired at 500 ° C. for 1 hour.
本発明において、LiTi2O4を含む被覆層は、さらに、TiN、TiCまたはそれらの組み合わせから選ばれる導電剤を含むことが好ましい。当該被覆層が、TiN、TiCまたはそれらの組み合わせから選ばれる導電剤を含むことによって、電解液の電解酸化分解を抑制することができるとともに、導電性を向上させることができる。導電剤であるTiN及びTiCは、球状、繊維状などの形態を有するものであることができる。当該導電剤は、球状である場合、好ましくは0.1〜100nmの平均粒径を有する。ここで、導電剤の平均粒径は、走査型電子顕微鏡(SEM)の画像解析により求められた面積円相当径の粒度分布における個数基準の50%累積値に相当する粒径d50を意味する。LiTi2O4を含む被覆層がTiN、TiCまたはそれらの組み合わせから選ばれる導電剤を含む場合、当該導電剤の量は、100質量部の正極活物質に対して、好ましくは0.5〜10質量部である。 In the present invention, the coating layer containing LiTi 2 O 4 preferably further contains a conductive agent selected from TiN, TiC, or a combination thereof. When the coating layer contains a conductive agent selected from TiN, TiC, or a combination thereof, electrolytic oxidation decomposition of the electrolytic solution can be suppressed, and conductivity can be improved. TiN and TiC, which are conductive agents, can have a spherical or fibrous form. When the conductive agent is spherical, it preferably has an average particle size of 0.1 to 100 nm. Here, the average particle diameter of the conductive agent means a particle diameter d50 corresponding to a 50% cumulative value on the basis of the number in the particle size distribution of the equivalent area circle diameter obtained by image analysis of a scanning electron microscope (SEM). When the coating layer containing LiTi 2 O 4 contains a conductive agent selected from TiN, TiC, or a combination thereof, the amount of the conductive agent is preferably 0.5 to 10 with respect to 100 parts by mass of the positive electrode active material. Part by mass.
上記正極活物質の他に、正極合剤は、当該技術分野において知られている任意成分、例えば、TiN及びTiC以外の導電剤、バインダー、固体電解質などを含んでもよい。TiN及びTiC以外の導電剤の例としては、微粒子状又は繊維状の金属、微粒子状又は繊維状の導電性酸化物などが挙げられる。バインダーは、正極に可撓性を付与することができるものであれば特に限定されない。バインダーの例としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)などのフッ素系バインダー、及び、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)などのゴム系バインダー、カルボキシメチルセルロース、ポリアクリル酸、ポリイミド、ポリアミック酸、ポリアミドイミドなどのうちの1種又は2種以上が挙げられる。正極を構成する各成分の比率及び正極合剤層の厚さは特に限定されない。 In addition to the positive electrode active material, the positive electrode mixture may include optional components known in the art, for example, a conductive agent other than TiN and TiC, a binder, a solid electrolyte, and the like. Examples of conductive agents other than TiN and TiC include particulate or fibrous metals, particulate or fibrous conductive oxides, and the like. The binder is not particularly limited as long as it can impart flexibility to the positive electrode. Examples of binders include, for example, fluorine-based binders such as polyvinylidene fluoride (PVdF) and polytetrafluoroethylene (PTFE), rubber-based binders such as styrene butadiene rubber (SBR) and butadiene rubber (BR), and carboxymethyl cellulose. , Polyacrylic acid, polyimide, polyamic acid, polyamideimide and the like. The ratio of each component constituting the positive electrode and the thickness of the positive electrode mixture layer are not particularly limited.
正極は、当該技術分野で知られている任意の方法により正極集電体の少なくとも1つの表面に正極合剤の層を形成することにより得ることができ、正極を形成する方法は特に限定されない。正極集電体は、当該技術分野において集電体として機能できるものとして知られているものであれば特に限定されない。集電体を構成する材料の例としては、例えば、アルミニウム、ステンレス(SUS)、ニッケル、鉄、銅などが挙げられる。正極集電体の厚さは、それらの意図する用途などに応じて変えることができ、特に限定されないが、典型的には5μm〜30μmである。正極合剤は、必要に応じて適切な溶剤を用いて、当該技術分野で知られている任意の方法、例えば、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン法などによって、正極集電体の表面に塗布することができる。例えば、正極活物質と、必要に応じて、任意成分、例えば導電材、バインダーなどと、溶剤を含む正極合剤ペースト又はスラリーを調製し、得られた正極合剤ペースト又はスラリーを正極集電体の表面に塗布した後、乾燥させ、プレスすることにより、正極集電体上に正極合剤層を有する正極を得ることができる。正極集電体上の正極合剤層の密度は1.3〜2.7g/ccであることが好ましい。正極合剤層の密度が低すぎると電子伝導パスを確保することが困難である。正極合剤層の密度が高いほど、正極合剤層中に存在し得る電解液の量がより少なくなるため、電解液と正極活物質粒子の間を移動するLiイオンの量がより少なくなる。従って、正極合剤層の密度は、電極内のLiイオン伝導を律速する。 The positive electrode can be obtained by forming a layer of the positive electrode mixture on at least one surface of the positive electrode current collector by any method known in the art, and the method for forming the positive electrode is not particularly limited. The positive electrode current collector is not particularly limited as long as it is known in the art as being capable of functioning as a current collector. Examples of the material constituting the current collector include aluminum, stainless steel (SUS), nickel, iron, copper, and the like. The thickness of the positive electrode current collector can be changed according to their intended use and is not particularly limited, but is typically 5 μm to 30 μm. The positive electrode mixture may be any method known in the art using an appropriate solvent as necessary, for example, electrostatic coating, dip coating, spray coating, roll coating, doctor blade method. It can be applied to the surface of the positive electrode current collector by a gravure coating method, a screen method or the like. For example, a positive electrode mixture paste or slurry containing a positive electrode active material and, if necessary, optional components such as a conductive material and a binder and a solvent is prepared, and the obtained positive electrode mixture paste or slurry is used as a positive electrode current collector. After being applied to the surface of the substrate, it is dried and pressed to obtain a positive electrode having a positive electrode mixture layer on the positive electrode current collector. The density of the positive electrode mixture layer on the positive electrode current collector is preferably 1.3 to 2.7 g / cc. If the density of the positive electrode mixture layer is too low, it is difficult to ensure an electron conduction path. The higher the density of the positive electrode mixture layer, the smaller the amount of electrolyte solution that can be present in the positive electrode mixture layer, and hence the smaller the amount of Li ions that move between the electrolyte solution and the positive electrode active material particles. Therefore, the density of the positive electrode mixture layer determines the Li ion conduction in the electrode.
負極は、金属リチウム、またはリチウム合金、例えばLiSn合金、LiAl合金、LiSi合金などからなるか、負極集電体の表面に負極合剤層を有するものであることができる。負極合剤は負極活物質を含み、負極活物質としては、当該技術分野において負極活物質として機能することが知られている任意の活物質を使用できる。負極活物質の例としては、金属系活物質、例えばIn、Al、Si、Snなどの元素状金属及びそれらの合金、無機酸化物、例えばLi4Ti5O12など、カーボン系活物質、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボンなどが挙げられる。負極合剤は、負極活物質に加えて、必要に応じて、非水電解液二次電池用の負極合剤の構成成分として当該技術分野で知られている任意成分、例えば、導電剤、バインダー、固体電解質などを含んでもよい。導電剤、バインダー、固体電解質の例としては、正極について先に例示したものが挙げられるが、例示したものに限定されない。負極を構成する各成分の比率及び負極合剤層の厚さは特に限定されない。 The negative electrode can be made of metallic lithium or a lithium alloy such as LiSn alloy, LiAl alloy, LiSi alloy, or the like, or have a negative electrode mixture layer on the surface of the negative electrode current collector. The negative electrode mixture includes a negative electrode active material. As the negative electrode active material, any active material known to function as a negative electrode active material in the technical field can be used. Examples of the negative electrode active material include metal-based active materials such as elemental metals such as In, Al, Si, and Sn and alloys thereof, inorganic oxides such as Li 4 Ti 5 O 12 , carbon-based active materials such as Examples include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon. In addition to the negative electrode active material, the negative electrode mixture is an optional component known in the art as a constituent of the negative electrode mixture for a non-aqueous electrolyte secondary battery, for example, a conductive agent, a binder. In addition, a solid electrolyte may be included. Examples of the conductive agent, the binder, and the solid electrolyte include those exemplified above for the positive electrode, but are not limited to those exemplified. The ratio of each component constituting the negative electrode and the thickness of the negative electrode mixture layer are not particularly limited.
負極集電体は、当該技術分野において集電体として機能できるものとして知られているものであれば特に限定されず、正極集電体について例示したものと同じ材料から構成することができる。負極集電体の厚さは、それらの意図する用途などに応じて変えることができる。負極集電体の表面に塗布する方法としては、例えば、静電塗布法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン法などが挙げられるが、これらに限定されない。負極は、正極を形成する場合と同様に、例えば、負極活物質と、任意成分、例えば導電材、バインダーなどと、溶剤を含む負極合剤ペースト又はスラリーを調製し、得られた負極合剤ペースト又はスラリーを負極集電体の表面に塗布した後、乾燥することにより、負極集電体上に負極合剤層を有する負極層を得ることができる。 The negative electrode current collector is not particularly limited as long as it is known in the technical field as being capable of functioning as a current collector, and can be composed of the same material as exemplified for the positive electrode current collector. The thickness of the negative electrode current collector can be changed according to their intended use. Examples of the method of applying to the surface of the negative electrode current collector include an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen method. It is not limited. As in the case of forming the positive electrode, the negative electrode is prepared by preparing a negative electrode mixture paste or slurry containing, for example, a negative electrode active material, optional components such as a conductive material, a binder, and a solvent, and a solvent. Alternatively, the negative electrode layer having the negative electrode mixture layer on the negative electrode current collector can be obtained by applying the slurry to the surface of the negative electrode current collector and then drying the slurry.
本発明において、非水電解液を構成する電解質は、リチウムイオン伝導性であり、非水溶媒中に溶解するリチウム塩電解質、例えば、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、過塩素酸リチウム(LiClO4)、ヘキサフルオロヒ酸リチウム(LiAsF6)、ビス(ペンタフルオロエタンスルホニル)イミドリチウム(LiN(C2F5SO2)2)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO2)2)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3SO2)3)、塩化リチウム(LiCl)、臭化リチウム(LiBr)などが挙げられる。電解液を構成する非水溶媒としては、非プロトン性極性有機溶媒が望ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの高誘電率、高粘度の環状カーボネート化合物と、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)などの低粘度の鎖状カーボネート化合物が好ましい。電解液中のリチウム塩の濃度は、通常、0.5〜2mol/Lである。 In the present invention, the electrolyte constituting the non-aqueous electrolyte is lithium ion conductive and is dissolved in a non-aqueous solvent, such as a lithium salt electrolyte such as lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate ( LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium bis (pentafluoroethanesulfonyl) imide (LiN (C 2 F 5 SO 2 ) 2 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), bis (trifluoromethanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) 2 ), lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2 ) 3 ), lithium chloride (LiCl) And lithium bromide (LiBr). The non-aqueous solvent constituting the electrolytic solution is preferably an aprotic polar organic solvent. For example, a high-dielectric constant, high-viscosity cyclic carbonate compound such as ethylene carbonate (EC) or propylene carbonate (PC), and dimethyl carbonate ( Low viscosity chain carbonate compounds such as DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) are preferred. The concentration of the lithium salt in the electrolytic solution is usually 0.5 to 2 mol / L.
セパレータは、当該技術分野においてセパレータとして機能することが知られている多孔質膜であれば特に限定されない。セパレータを構成する材料の例としては、有機材料、例えば、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン製の多孔質膜、及び無機材料、例えばセラミック製の多孔質膜が挙げられる。多孔質膜の厚さに特に制限はない。多孔質膜は、1種以上の有機又は無機材料で構成されたものであることができ、有機材料と無機材料から構成された複合膜であってもよい。複合膜を構成する膜の数、材質及び厚さに特に制限はない。セパレータは単層構造又は多層構造を有するものであることができる。多層構造を有するセパレータの例としては、PP/PEの2層構造またはPP/PE/PPもしくはPE/PP/PEの3層構造のセパレータが挙げられる。 A separator will not be specifically limited if it is a porous film | membrane known to function as a separator in the said technical field. Examples of the material constituting the separator include an organic material such as a porous membrane made of polyolefin such as polypropylene (PP) and polyethylene (PE), and an inorganic material such as a porous membrane made of ceramic. There is no restriction | limiting in particular in the thickness of a porous membrane. The porous film may be composed of one or more organic or inorganic materials, and may be a composite film composed of an organic material and an inorganic material. There are no particular restrictions on the number, material, and thickness of the membranes that make up the composite membrane. The separator can have a single layer structure or a multilayer structure. Examples of the separator having a multilayer structure include a PP / PE two-layer structure or a PP / PE / PP or PE / PP / PE three-layer structure separator.
本発明の負極合剤を使用して得られる非水電解液二次電池は、上述した構成部材の他に、正極集電体及び負極集電体に接続された正極端子及び負極端子などを有することができる。負極及び正極の構造は、負極と正極とがセパレータと電解液を介して対向していれば、平板状の正極および負極が交互に積層された積層型構造や、帯状の正極および負極とが重ねられロール状に巻き取られて形成され捲回型構造、いずれの構造をしていてもよい。これらの構成部材の種類及び形状は、非水電解液二次電池の用途に応じて適宜選択することができる。非水電解液二次電池の形状としては、コイン型、円筒型、角型などが挙げられるがこれらに限定されない。 The nonaqueous electrolyte secondary battery obtained by using the negative electrode mixture of the present invention has a positive electrode current collector, a positive electrode terminal connected to the negative electrode current collector, a negative electrode terminal, and the like in addition to the above-described constituent members. be able to. The structure of the negative electrode and the positive electrode can be a stacked structure in which flat positive electrodes and negative electrodes are alternately stacked, or a strip of positive electrodes and negative electrodes can be stacked as long as the negative electrode and the positive electrode face each other with a separator and an electrolyte interposed therebetween. It may be wound into a roll and formed into a wound type structure. The types and shapes of these constituent members can be appropriately selected according to the application of the nonaqueous electrolyte secondary battery. Examples of the shape of the nonaqueous electrolyte secondary battery include, but are not limited to, a coin shape, a cylindrical shape, and a square shape.
以下に示す実施例及び比較例を参照して本発明をさらに詳しく説明するが、本発明の範囲は、これらの実施例によって限定されるものでないことは言うまでもない。 The present invention will be described in more detail with reference to the following Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited by these Examples.
[比較例]
<正極活物質の製造>
ゾルゲル法により粒子状の正極活物質を以下の手順に従って合成した。LiとNiとMnのモル比が1:0.5:1.5となるように秤量した酢酸リチウム・二水和物、酢酸ニッケル・四水和物及び酢酸マンガン・四水和物(いずれもナカライテスク(株)製)を、ビーカー内の1Lの純水に加え、濃硝酸により1.5以下のpHに調整しながら溶解させた。次に、得られた溶液に、目的とするLiNi0.5Mn1.5O4のモル量の5倍量のグリコール酸(ナカライテスク(株)製)を溶解させた。このグリコール酸は、粒子成長の抑制のためのキレート剤として使用した。ビーカーを80℃のオイルバスに浸し、溶液を約20時間撹拌しながら溶液から水分を蒸発させることによりゲル状の活物質前駆体を得た。この前駆体を、80℃の乾燥炉に入れて、さらに24時間乾燥させた。次に、乾燥させた前駆体を、アルゴン雰囲気下で200℃で仮焼成した。得られた粉体を乳鉢で粉砕した後、アルゴン雰囲気下で600℃で1時間本焼成し、粒子状のLiNi0.5Mn1.5O4(平均粒径1μm)得た。比較例では、この粒子を正極活物質として使用した。
<正極の作製>
上記のようにして得られた正極活物質と、導電剤(アセチレンブラック)と、バインダー(ポリフッ化ビニリデン(PVdF))とをN−メチル−2−ピロリドン(ナカライテスク(株)製)に分散させることによりスラリーを得た。正極活物質とアセチレンブラックとPVdFの質量比は、75:20:5であった。得られたスラリーをアルミ箔(厚さ15μm)上にドクターブレード法により塗布し、80℃で30分間乾燥させ、ロールプレス機により乾燥後の塗布層の密度が2g/ccになるようにプレスし、120℃で真空乾燥させ、正極を得た。
<非水電解液の調製>
エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルカーボネート(EMC)を体積比3:3:4で含む混合溶媒に、1mol/Lの割合で電解質としてリチウム塩LiPF6を溶解させることにより非水電解液を調製した。
<負極の作製>
箔状の金属リチウム(厚さ500μm)を、直径16mmの円形に打ち抜いて負極を得た。
<セパレータ>
ポリプロピレン(PP)とポリエチレン(PE)の積層型多孔質フィルム(宇部興産(株)製)をセパレータとして使用した。
<電池の作製>
上記の電池構成部材をステンレス製2032型(直径20mm、厚さ3.2mm)のコインセルに組み込むことによりコイン型リチウム二次電池を作製した。
[Comparative example]
<Manufacture of positive electrode active material>
A particulate positive electrode active material was synthesized by the sol-gel method according to the following procedure. Lithium acetate dihydrate, nickel acetate tetrahydrate and manganese acetate tetrahydrate weighed so that the molar ratio of Li, Ni and Mn is 1: 0.5: 1.5 (all Nacalai Tesque Co., Ltd.) was added to 1 L of pure water in a beaker and dissolved while adjusting the pH to 1.5 or less with concentrated nitric acid. Next, 5 times the amount of glycolic acid (manufactured by Nacalai Tesque Co., Ltd.) as much as the molar amount of the target LiNi 0.5 Mn 1.5 O 4 was dissolved in the obtained solution. This glycolic acid was used as a chelating agent for inhibiting particle growth. A beaker was immersed in an oil bath at 80 ° C., and water was evaporated from the solution while stirring the solution for about 20 hours to obtain a gel-like active material precursor. This precursor was put into a drying oven at 80 ° C. and further dried for 24 hours. Next, the dried precursor was temporarily fired at 200 ° C. in an argon atmosphere. The obtained powder was pulverized in a mortar and then calcined at 600 ° C. for 1 hour in an argon atmosphere to obtain particulate LiNi 0.5 Mn 1.5 O 4 (average particle size 1 μm). In the comparative example, this particle was used as a positive electrode active material.
<Preparation of positive electrode>
The positive electrode active material obtained as described above, a conductive agent (acetylene black), and a binder (polyvinylidene fluoride (PVdF)) are dispersed in N-methyl-2-pyrrolidone (manufactured by Nacalai Tesque). This gave a slurry. The mass ratio of the positive electrode active material, acetylene black, and PVdF was 75: 20: 5. The obtained slurry was applied onto an aluminum foil (thickness 15 μm) by a doctor blade method, dried at 80 ° C. for 30 minutes, and pressed with a roll press so that the density of the coated layer after drying was 2 g / cc. And vacuum drying at 120 ° C. to obtain a positive electrode.
<Preparation of non-aqueous electrolyte>
By dissolving lithium salt LiPF 6 as an electrolyte at a ratio of 1 mol / L in a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl carbonate (EMC) at a volume ratio of 3: 3: 4, non-water An electrolyte solution was prepared.
<Production of negative electrode>
Foil-like metal lithium (thickness: 500 μm) was punched into a circle having a diameter of 16 mm to obtain a negative electrode.
<Separator>
A laminated porous film of polypropylene (PP) and polyethylene (PE) (manufactured by Ube Industries) was used as a separator.
<Production of battery>
A coin-type lithium secondary battery was fabricated by incorporating the battery constituent member into a stainless steel 2032 type (
[実施例1]
比較例に記載したように製造された正極活物質LiNi0.5Mn1.5O4粒子(平均粒径1μm)を、チタンテトライソプロポキシドの無水エタノール溶液に分散させた。得られた分散液に水を加え、80℃で撹拌しながらチタンテトライソプロポキシドの加水分解反応を行った。水が加水分解反応により消費され、完全に消失するまで反応を続けた。チタンテトライソプロポキシドの量は、LiNi0.5Mn1.5O4とチタンテトライソプロポキシドから誘導されるLiTi2O4との質量比が95:5となるのに必要な理論量であった。加水分解反応後、得られた生成物を乾燥させ、500℃で1時間熱処理を行うことによって、LiTi2O4で被覆された正極活物質粒子を得た。正極活物質粒子の表面上のLiTi2O4被覆層の平均厚さは、透過型電子顕微鏡により求めた場合に約10nmであった。得られたLiTi2O4被覆層により被覆された正極活物質粒子を使用して、比較例と同様に二次電池を作製した。
[Example 1]
Cathode active material LiNi 0.5 Mn 1.5 O 4 particles (average particle size 1 μm) produced as described in Comparative Examples were dispersed in an anhydrous ethanol solution of titanium tetraisopropoxide. Water was added to the obtained dispersion, and titanium tetraisopropoxide was hydrolyzed while stirring at 80 ° C. The reaction was continued until water was consumed by the hydrolysis reaction and completely disappeared. The amount of titanium tetraisopropoxide was the theoretical amount necessary for the mass ratio of LiNi 0.5 Mn 1.5 O 4 and LiTi 2 O 4 derived from titanium tetraisopropoxide to be 95: 5. After the hydrolysis reaction, the obtained product was dried and heat-treated at 500 ° C. for 1 hour to obtain positive electrode active material particles coated with LiTi 2 O 4 . The average thickness of the LiTi 2 O 4 coating layer on the surface of the positive electrode active material particles was about 10 nm when determined with a transmission electron microscope. Using the obtained positive electrode active material particles coated with the LiTi 2 O 4 coating layer, a secondary battery was produced in the same manner as in the comparative example.
[実施例2]
実施例1に記載したように製造されたLiTi2O4で被覆された正極活物質粒子を、導電剤としてのTiN微粒子(平均粒径50nm)と、ボールミルにより300rpmで20時間混合した。次に、得られた粉末をアルゴンガス雰囲気下で500℃で1時間焼成することによって、TiN微粒子を含有するLiTi2O4被覆層により被覆された正極活物質粒子を得た。得られた正極活物質粒子を使用して、比較例と同様に二次電池を作製した。
[Example 2]
The positive electrode active material particles coated with LiTi 2 O 4 produced as described in Example 1 were mixed with TiN fine particles (
[実施例3]
導電剤としてTiN微粒子の代わりにTiC微粒子(平均粒径50nm)を使用したことを除いて、実施例2と同様に二次電池を作製した。
[Example 3]
A secondary battery was fabricated in the same manner as in Example 2 except that TiC fine particles (
各例で作製した二次電池について下記の特性評価を行った。
(1)初期放電容量
充放電試験機を用いて、0.1Cの電流値(1Cは1時間で満充電できる電流値)で、5.0Vまで充電を行った後、3.5Vまで、0.1Cの電流で放電を行った。
(2)寿命特性
寿命特性の評価のために、下記のとおり二次電池を充電した後、60℃で7日間保存した後に放電容量を求めた。
二次電池を温度2.5℃で、実容量150mAh/gに対して0.1Cで4.0V上限で定電流・定電圧モードで充電した。その後、充電した二次電池を、60℃で7日間保存した後、0.1Cで3Vまで放電を行い、放電容量を求めた。結果を下記表1に示す。
The following characteristics evaluation was performed about the secondary battery produced in each case.
(1) Initial discharge capacity Using a charge / discharge tester, after charging up to 5.0 V with a current value of 0.1 C (1 C is a current value that can be fully charged in 1 hour), up to 3.5 V, 0 Discharge was performed at a current of 1 C.
(2) Life characteristics In order to evaluate the life characteristics, the secondary battery was charged as follows, and then stored at 60 ° C for 7 days, and then the discharge capacity was determined.
The secondary battery was charged in a constant current / constant voltage mode at an upper limit of 4.0 V at 0.1 C with respect to an actual capacity of 150 mAh / g at a temperature of 2.5 ° C. Thereafter, the charged secondary battery was stored at 60 ° C. for 7 days, and then discharged at 0.1 C to 3 V, and the discharge capacity was determined. The results are shown in Table 1 below.
表1の結果を図1に棒グラフで示し、比較例及び実施例1及び2の二次電池について求められた初期放電容量を図2に示す。
比較例の二次電池は、電解液の分解によりLiが自己放電し、60℃で7日間保存後の放電容量は50mAh/gという低い値であった。実施例1の二次電池は、正極活物質粒子の表面がLiTi2O4により被覆されているために導電性が低下した結果、初期放電容量が図2に示すように低下したものの、正極活物質粒子の表面がLiTi2O4により被覆されているため、電解液の電解酸化分解が抑制され、60℃で7日間保存後の放電容量は70mAh/gという高い値であった。導電剤としてTiN微粒子を含有するLiTi2O4被覆層により正極活物質粒子の表面が被覆された実施例2の二次電池では、初期放電容量と、60℃で7日間保存後の放電容量は、比較例と比べて、両方とも向上した。導電剤としてTiC微粒子を含有するLiTi2O4被覆層により正極活物質粒子の表面が被覆された実施例3の二次電池も、比較例と比べて、60℃で7日間保存後の放電容量が向上した。
これらの結果から、正極活物質と同様にスピネル型結晶構造を有するLiTi2O4などのLiイオン伝導体を使用することによって、寿命特性を向上できることが判る。また、スピネル型結晶構造を有するLiイオン伝導体に、TiN、TiCなどの安定な導電剤を組み合わせることによって、寿命特性をさらに向上できることが判る。
The results of Table 1 are shown as a bar graph in FIG. 1, and the initial discharge capacities obtained for the secondary batteries of Comparative Example and Examples 1 and 2 are shown in FIG.
In the secondary battery of the comparative example, Li self-discharged due to the decomposition of the electrolytic solution, and the discharge capacity after storage at 60 ° C. for 7 days was a low value of 50 mAh / g. In the secondary battery of Example 1, the positive electrode active material particles were coated with LiTi 2 O 4, and as a result, the initial discharge capacity decreased as shown in FIG. Since the surface of the material particles was coated with LiTi 2 O 4 , electrolytic oxidation decomposition of the electrolytic solution was suppressed, and the discharge capacity after storage at 60 ° C. for 7 days was a high value of 70 mAh / g. In the secondary battery of Example 2 in which the surface of the positive electrode active material particles was coated with a LiTi 2 O 4 coating layer containing TiN fine particles as a conductive agent, the initial discharge capacity and the discharge capacity after storage at 60 ° C. for 7 days were Both improved compared to the comparative example. The secondary battery of Example 3 in which the surface of the positive electrode active material particles was coated with a LiTi 2 O 4 coating layer containing TiC fine particles as a conductive agent was also compared with the comparative example in terms of discharge capacity after storage at 60 ° C. for 7 days. Improved.
From these results, it can be seen that the life characteristics can be improved by using a Li ion conductor such as LiTi 2 O 4 having a spinel crystal structure as in the case of the positive electrode active material. It can also be seen that the life characteristics can be further improved by combining a Li ion conductor having a spinel crystal structure with a stable conductive agent such as TiN or TiC.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014154067A JP2016031852A (en) | 2014-07-29 | 2014-07-29 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014154067A JP2016031852A (en) | 2014-07-29 | 2014-07-29 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016031852A true JP2016031852A (en) | 2016-03-07 |
Family
ID=55442123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014154067A Pending JP2016031852A (en) | 2014-07-29 | 2014-07-29 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016031852A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016210268A (en) * | 2015-05-07 | 2016-12-15 | 公益財団法人鉄道総合技術研究所 | Vertical motion damper device, railway vehicle, and vibration control method for railway vehicle |
JP2017212180A (en) * | 2016-05-27 | 2017-11-30 | Dowaエレクトロニクス株式会社 | Positive electrode active material powder and production method thereof |
JP2018110065A (en) * | 2016-12-28 | 2018-07-12 | 株式会社半導体エネルギー研究所 | Active material particles, positive electrode having active material particles, power storage device having positive electrode, and method for manufacturing the same |
JP2018190720A (en) * | 2017-04-28 | 2018-11-29 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery |
WO2021065859A1 (en) * | 2019-09-30 | 2021-04-08 | パナソニックIpマネジメント株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
JP2022084681A (en) * | 2016-12-28 | 2022-06-07 | 株式会社半導体エネルギー研究所 | Secondary battery and module |
-
2014
- 2014-07-29 JP JP2014154067A patent/JP2016031852A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016210268A (en) * | 2015-05-07 | 2016-12-15 | 公益財団法人鉄道総合技術研究所 | Vertical motion damper device, railway vehicle, and vibration control method for railway vehicle |
JP2022022256A (en) * | 2016-05-27 | 2022-02-03 | Dowaエレクトロニクス株式会社 | Positive electrode active material powder |
JP2017212180A (en) * | 2016-05-27 | 2017-11-30 | Dowaエレクトロニクス株式会社 | Positive electrode active material powder and production method thereof |
JP7369170B2 (en) | 2016-05-27 | 2023-10-25 | Dowaエレクトロニクス株式会社 | Cathode active material powder |
JP7016210B2 (en) | 2016-05-27 | 2022-02-04 | Dowaエレクトロニクス株式会社 | Manufacturing method of positive electrode active material powder |
JP2022084681A (en) * | 2016-12-28 | 2022-06-07 | 株式会社半導体エネルギー研究所 | Secondary battery and module |
JP7295984B2 (en) | 2016-12-28 | 2023-06-21 | 株式会社半導体エネルギー研究所 | Secondary battery and module |
JP7493642B2 (en) | 2016-12-28 | 2024-05-31 | 株式会社半導体エネルギー研究所 | Lithium-ion secondary battery and method for manufacturing lithium-ion secondary battery |
JP7383063B2 (en) | 2016-12-28 | 2023-11-17 | 株式会社半導体エネルギー研究所 | How to make a secondary battery |
JP2022081580A (en) * | 2016-12-28 | 2022-05-31 | 株式会社半導体エネルギー研究所 | Manufacture method of secondary battery |
JP2018110065A (en) * | 2016-12-28 | 2018-07-12 | 株式会社半導体エネルギー研究所 | Active material particles, positive electrode having active material particles, power storage device having positive electrode, and method for manufacturing the same |
JP7124167B2 (en) | 2016-12-28 | 2022-08-23 | 株式会社半導体エネルギー研究所 | lithium ion secondary battery |
JP2021120957A (en) * | 2016-12-28 | 2021-08-19 | 株式会社半導体エネルギー研究所 | Lithium ion secondary battery |
JP2023072011A (en) * | 2016-12-28 | 2023-05-23 | 株式会社半導体エネルギー研究所 | Lithium ion secondary battery and manufacturing method thereof |
JP7131056B2 (en) | 2017-04-28 | 2022-09-06 | 住友金属鉱山株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery |
JP2018190720A (en) * | 2017-04-28 | 2018-11-29 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery |
EP4040535A4 (en) * | 2019-09-30 | 2022-11-02 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
CN114467200A (en) * | 2019-09-30 | 2022-05-10 | 松下知识产权经营株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
WO2021065859A1 (en) * | 2019-09-30 | 2021-04-08 | パナソニックIpマネジメント株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
JP7624604B2 (en) | 2019-09-30 | 2025-01-31 | パナソニックIpマネジメント株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
US12315917B2 (en) | 2019-09-30 | 2025-05-27 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5149920B2 (en) | Method for producing electrode for lithium secondary battery | |
JP5662132B2 (en) | Lithium ion secondary battery | |
JPWO2015152113A1 (en) | Graphite negative electrode active material, negative electrode and lithium ion secondary battery | |
JP5278994B2 (en) | Lithium secondary battery | |
JP7135282B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2018186065A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
JP2012079471A (en) | Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2015088266A (en) | Lithium battery | |
JP2016031852A (en) | Nonaqueous electrolyte secondary battery | |
WO2019142744A1 (en) | Non-aqueous electrolyte secondary battery | |
JP2016076342A (en) | Electrode for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP5888512B2 (en) | Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery | |
JPWO2015152115A1 (en) | Lithium ion secondary battery | |
JP2022130698A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
JPWO2018179934A1 (en) | Anode material and non-aqueous electrolyte secondary battery | |
JP2017050204A (en) | Positive electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP5564872B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2018123603A1 (en) | Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery | |
JP5586116B2 (en) | Positive electrode mixture for lithium secondary battery and use thereof | |
WO2018096889A1 (en) | Non-aqueous electrolyte solution and lithium ion secondary battery | |
JP2014192071A (en) | Positive electrode material for lithium secondary battery and manufacturing method therefor | |
JP6119123B2 (en) | Active material, battery, and method for producing active material | |
CN107078274B (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same | |
KR102227102B1 (en) | Method for coating a lithium secondary battery electrode, and lithium secondary battery comprising a electrode using the same | |
JP6143216B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery |