[go: up one dir, main page]

JP2016144799A - Hollow fiber type semipermeable membrane and production method for the same - Google Patents

Hollow fiber type semipermeable membrane and production method for the same Download PDF

Info

Publication number
JP2016144799A
JP2016144799A JP2016009477A JP2016009477A JP2016144799A JP 2016144799 A JP2016144799 A JP 2016144799A JP 2016009477 A JP2016009477 A JP 2016009477A JP 2016009477 A JP2016009477 A JP 2016009477A JP 2016144799 A JP2016144799 A JP 2016144799A
Authority
JP
Japan
Prior art keywords
mass
hollow fiber
component
semipermeable membrane
fiber type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016009477A
Other languages
Japanese (ja)
Other versions
JP6649779B2 (en
Inventor
中塚 修志
Nobuyuki Nakatsuka
修志 中塚
智一 綿部
Tomokazu Watabe
智一 綿部
昭夫 稲田
Akio Inada
昭夫 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Original Assignee
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd filed Critical Daicen Membrane Systems Ltd
Publication of JP2016144799A publication Critical patent/JP2016144799A/en
Application granted granted Critical
Publication of JP6649779B2 publication Critical patent/JP6649779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow fiber type semipermeable membrane capable of being used in a water purification plant and the like.SOLUTION: In a hollow fiber type semipermeable membrane obtained from a membrane forming solution composition where (A) a sulfonated polyethersulfone having a sulfonation degree of 0.10-0.20 of 20-40 mass% and (B) a polyethersulfone of 80-60 mass% are dissolved in a solvent as membrane forming components, inner layers having smaller density than dense layers are possessed between the inside dense layer of an inner surface side and the outside dense layer of an outer surface side and between the inside dense layer and the outside dense layer, a pure water permeation coefficient (PWP) is 1,200 L/mh (0.1 MPa) or more, breaking point strength is 250 g/fiber or more and breaking point elongation is 50% or more.SELECTED DRAWING: None

Description

本発明は、海水淡水化の前処理用の膜や浄水場における水処理用の膜として使用できる中空糸型半透膜と、その製造方法に関する。   The present invention relates to a hollow fiber type semipermeable membrane that can be used as a membrane for pretreatment of seawater desalination or a membrane for water treatment in a water purification plant, and a method for producing the same.

水処理手段の一つとしてUF膜(限外濾過膜)などの半透膜が使用されることがある。
特許文献1には、疎水性の芳香族スルホンポリマーと親水性ポリマーからなる限外濾過のための親水性の一体型非対称半透性中空繊維膜の発明が記載されている(請求項1)。
この中空繊維膜は、膜の内側表面に接して開放気孔性の分離層を有し、前記分離層に接して外側表面の方向に非対称のスポンジ状の細孔構造を有し、フィンガーポアがない支持層を有し、さらに前記支持層に接して外側方向に外部層を有している(請求項1)。
疎水性の芳香族スルホンポリマーは、ポリスルホンまたはポリエーテルスルホンが好ましいことが記載されており(段落番号0035)、親水性ポリマーはポリビニルピロリドンなどが例示されており、実施例では、ポリエーテルスルホンとポリビニルピロリドンの併用例のみが記載されている。
また、図1、図2の膜断面の走査型電子顕微鏡写真からは、内側の開放気孔性の分離層と外側のスポンジ層は、内側の開放気孔性の分離層の密度が小さく、外側のスポンジ層の密度が大きいことが確認できる。
A semipermeable membrane such as a UF membrane (ultrafiltration membrane) may be used as one of the water treatment means.
Patent Document 1 describes an invention of a hydrophilic monolithic asymmetric semipermeable hollow fiber membrane for ultrafiltration composed of a hydrophobic aromatic sulfone polymer and a hydrophilic polymer (Claim 1).
This hollow fiber membrane has an open porous separation layer in contact with the inner surface of the membrane, has an asymmetric sponge-like pore structure in contact with the separation layer in the direction of the outer surface, and has no finger pores It has a support layer, and further has an outer layer in contact with the support layer in the outer direction (Claim 1).
It is described that the hydrophobic aromatic sulfone polymer is preferably polysulfone or polyethersulfone (paragraph number 0035), and the hydrophilic polymer is exemplified by polyvinylpyrrolidone. In the examples, polyethersulfone and polyvinylsulfone are exemplified. Only pyrrolidone combination examples are described.
1 and FIG. 2, from the scanning electron micrographs of the membrane cross section, the inner open porosity separation layer and the outer sponge layer have a lower density of the inner open porosity separation layer and the outer sponge. It can be confirmed that the density of the layer is large.

その他、特許文献2、3には、製膜成分としてスルホン化ポリエーテルスルホンとポリスルホンを併用した、高い脱塩能力を有する中空糸型NF膜の発明が記載されている。   In addition, Patent Documents 2 and 3 describe inventions of hollow fiber type NF membranes having high desalting ability using sulfonated polyethersulfone and polysulfone in combination as membrane-forming components.

特許第5065379号Patent No. 5065379 特開2013−215640号公報JP 2013-215640 A 特開2014−568号公報JP 2014-568 A

本発明は、海水淡水化の前処理用の膜や浄水場における水処理用の膜として使用できる中空糸型半透膜とその製造方法を提供することを課題とする。   An object of the present invention is to provide a hollow fiber type semipermeable membrane that can be used as a membrane for pretreatment of seawater desalination or a membrane for water treatment in a water purification plant, and a method for producing the same.

本発明は、製膜成分として、(A)スルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホン20〜40質量%と(B)ポリエーテルスルホン80〜60質量%が溶媒に溶解された製膜溶液組成物から得られる中空糸型半透膜であって、
内表面側の内側緻密層と、外表面側の外側緻密層と、前記内側緻密層と前記外側緻密層の間にそれらの緻密層よりも密度の小さい内部層を有しているものであり、
純水透過係数(PWP)が1200L/m2・h(0.1MPa)以上で、破断点強度が250g/本以上、破断点伸度が50%以上である、中空糸型半透膜を提供する。
In the present invention, (A) 20 to 40% by mass of sulfonated polyethersulfone having a degree of sulfonation of 0.10 to 0.20 and (B) 80 to 60% by mass of polyethersulfone are dissolved in a solvent. A hollow fiber type semipermeable membrane obtained from the prepared membrane-forming solution composition,
The inner dense layer on the inner surface side, the outer dense layer on the outer surface side, and the inner dense layer and the outer dense layer have an inner layer having a smaller density than those dense layers,
Provided is a hollow fiber type semipermeable membrane having a pure water permeability coefficient (PWP) of 1200 L / m 2 · h (0.1 MPa) or more, a breaking strength of 250 g / piece or more, and a breaking elongation of 50% or more. .

さらに本発明は、上記の中空糸型半透膜の製造方法であって、
前記製膜溶液組成物を脱泡後、紡糸して中空糸を得る工程と、
紡糸した中空糸を乾燥する工程を有しているものであり、
前記製膜溶液組成物を脱泡後、紡糸する工程において、内部凝固液として、水、ジエチレングリコールおよびジエチレングリコールモノメチルエーテルの混合溶液を使用する、中空糸型半透膜の製造方法を提供する。
Furthermore, the present invention is a method for producing the above hollow fiber type semipermeable membrane,
Defoaming the film-forming solution composition and then spinning to obtain hollow fibers;
It has a step of drying the spun hollow fiber,
Provided is a method for producing a hollow fiber type semipermeable membrane using a mixed solution of water, diethylene glycol and diethylene glycol monomethyl ether as an internal coagulating liquid in a step of spinning after defoaming the membrane-forming solution composition.

本発明の中空糸型半透膜は、引っ張り強度が大きく糸切れし難く、高い純水透過係数を有していることから、海水淡水化の前処理用の膜、浄水場における浄水用の膜として使用することができる。   Since the hollow fiber type semipermeable membrane of the present invention has high tensile strength and is difficult to break, and has a high pure water permeability coefficient, a membrane for pretreatment of seawater desalination, a membrane for water purification at a water purification plant Can be used as

実施例と比較例における河川水フラックスおよび海水フラックスを測定するための装置のフロー図。The flowchart of the apparatus for measuring the river water flux and seawater flux in an Example and a comparative example. 実施例1の中空糸型半透膜の孔径分布図。2 is a pore size distribution diagram of the hollow fiber type semipermeable membrane of Example 1. FIG. 実施例3の中空糸型半透膜の幅方向断面の膜構造を示すSEM写真。4 is an SEM photograph showing the membrane structure of the cross section in the width direction of the hollow fiber type semipermeable membrane of Example 3. FIG. 実施例3の中空糸型半透膜の孔径分布図。FIG. 6 is a pore size distribution diagram of the hollow fiber type semipermeable membrane of Example 3. 実施例8の中空糸型半透膜の孔径分布図。FIG. 6 is a pore size distribution diagram of the hollow fiber type semipermeable membrane of Example 8. 実施例8の膜構造の全体を示すSEM写真。10 is an SEM photograph showing the entire film structure of Example 8. FIG. 実施例8の膜構造の異なる厚さ位置のSEM写真。FIG. 10 is an SEM photograph of different thickness positions of the film structure of Example 8. FIG.

(1)中空糸型半透膜
<製膜溶液組成物>
本発明の中空糸型半透膜は、製膜成分として、(A)スルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホン20〜40質量%と(B)ポリエーテルスルホン80〜60質量%が溶媒に溶解された製膜溶液組成物から得られるものである。
(1) Hollow fiber type semipermeable membrane <Membrane-forming solution composition>
In the hollow fiber type semipermeable membrane of the present invention, (A) 20-40% by mass of sulfonated polyethersulfone having a degree of sulfonation of 0.10-0.20 and (B) polyethersulfone 80- It is obtained from a film-forming solution composition in which 60% by mass is dissolved in a solvent.

前記製膜溶液組成物は、次の各成分からなるものが好ましい。
(A)スルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホン3〜15質量%
(B)ポリエーテルスルホン10〜30質量%
(C)ポリエチレングリコール5〜30質量%、
(D)残部割合の溶媒を含み、
(A)成分と(B)成分の合計量中の含有割合が、(A)成分15〜45質量%、(B)成分85〜55質量%のもの。
The film-forming solution composition is preferably composed of the following components.
(A) 3-15% by mass of sulfonated polyethersulfone having a degree of sulfonation of 0.10-0.20
(B) 10-30% by mass of polyethersulfone
(C) polyethylene glycol 5-30% by mass,
(D) including the remaining proportion of solvent;
(A) The content rate in the total amount of a component and (B) component is (A) component 15-45 mass%, (B) component 85-55 mass%.

(A)成分のスルホン化ポリエーテルスルホンは、スルホン化度が0.10〜0.20であり、好ましくはスルホン化度が0.14〜0.18である。
スルホン化度が前記範囲内であると、特に純水透過係数を高めることができる。
スルホン化ポリエーテルスルホンは、スルホ基が酸型(−SO3H)のものであり、スルホ基が塩型(−SO3Naなど)のものは含まれない。
スルホン化ポリエーテルスルホンは,例えば特開平02―208322号公報、米国特許4508852明細書に記載の製造方法、特開2013−215640号公報の実施例1〜4に記載の製造方法、特開2014−568号公報の実施例1〜4に記載の製造方法により製造することができる。
(A)成分のスルホン化ポリエーテルスルホンは、重量平均分子量が10万以上であるものが好ましい。
The sulfonated polyethersulfone as component (A) has a sulfonation degree of 0.10 to 0.20, preferably a sulfonation degree of 0.14 to 0.18.
When the sulfonation degree is within the above range, the pure water permeability coefficient can be particularly increased.
The sulfonated polyethersulfone does not include those in which the sulfo group has an acid type (—SO 3 H), and the sulfo group has a salt type (such as —SO 3 Na).
The sulfonated polyethersulfone is produced by, for example, a production method described in JP-A No. 02-208322, US Pat. No. 4,508,852, a production method described in Examples 1 to 4 of JP-A-2013-215640, or JP-A-2014-14. It can manufacture by the manufacturing method as described in Examples 1-4 of 568 gazette.
The sulfonated polyethersulfone as component (A) preferably has a weight average molecular weight of 100,000 or more.

(B)成分のポリエーテルスルホンは、重量平均分子量が1万〜10万のものが好ましい。   The polyethersulfone as component (B) preferably has a weight average molecular weight of 10,000 to 100,000.

(C)成分のポリエチレングリコールは、(A)成分および(B)成分の貧溶媒となるものである。(C)成分のポリエチレングリコールは、分子量100〜400のものが好ましい。   The polyethylene glycol as the component (C) is a poor solvent for the components (A) and (B). The component (C) polyethylene glycol preferably has a molecular weight of 100 to 400.

(D)成分の溶媒は、(A)成分および(B)成分を溶解できるものであり(良溶媒)、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、N、N・ジメチルホルムアミドなどを挙げることができる。
なお、上記の製膜溶液組成物組成物は、上記成分以外にも、少量の塩化リチウム、硝酸リチウムなどを含有することもできる。
The solvent of component (D) can dissolve component (A) and component (B) (good solvent), such as N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, N, N · dimethylformamide, etc. Can be mentioned.
In addition, said film forming solution composition composition can also contain a small amount of lithium chloride, lithium nitrate, etc. besides the said component.

組成物中の各成分の含有割合は、次のとおりである。
(A)成分は、3〜15質量%、好ましくは3〜12質量%、より好ましくは5〜10質量%であり、
(B)成分は、10〜30質量%、好ましくは10〜25質量%、より好ましくは13〜23質量%であり、
(C)成分は、5〜30質量%、好ましくは8〜25質量%、より好ましくは8〜23質量%であり、
(D)成分は、(A)〜(D)成分で合計100質量%となる残部割合である。
The content ratio of each component in the composition is as follows.
(A) A component is 3-15 mass%, Preferably it is 3-12 mass%, More preferably, it is 5-10 mass%,
(B) component is 10-30 mass%, Preferably it is 10-25 mass%, More preferably, it is 13-23 mass%,
(C) component is 5-30 mass%, Preferably it is 8-25 mass%, More preferably, it is 8-23 mass%,
(D) component is a remainder ratio which becomes a total of 100 mass% with (A)-(D) component.

(A)成分と(B)成分の合計量中の含有割合は、
(A)成分は15〜45質量%、好ましくは20〜40質量%、より好ましくは20〜35質量%であり、
(B)成分は、85〜55質量%、好ましくは80〜60質量%、より好ましくは80〜65質量%である。
The content ratio in the total amount of the component (A) and the component (B) is
(A) A component is 15-45 mass%, Preferably it is 20-40 mass%, More preferably, it is 20-35 mass%,
(B) A component is 85-55 mass%, Preferably it is 80-60 mass%, More preferably, it is 80-65 mass%.

製膜溶液組成物の製造方法は、(C)成分と(D)成分からなる混合溶媒に対して、(A)成分と(B)成分を一緒に添加溶解させる方法、(C)成分と(D)成分からなる混合溶媒に対して、先に(A)成分を添加溶解させた後、(B)成分を添加溶解させる方法などを適用することができる。   The method for producing a film-forming solution composition is a method in which (A) component and (B) component are added and dissolved together in a mixed solvent comprising component (C) and component (D), component (C) and ( For example, a method of adding and dissolving the component (B) after adding and dissolving the component (A) can be applied to the mixed solvent comprising the component D).

<中空糸型半透膜の膜構造>
本発明の中空糸型半透膜は、内表面側の内側緻密層(内側スキン層)と、外表面側の外側緻密層(外側スキン層)と、前記内側緻密層と前記外側緻密層の間にそれらの緻密層よりも密度の小さい内部層を有しているものである。
<Membrane structure of hollow fiber type semipermeable membrane>
The hollow fiber type semipermeable membrane of the present invention comprises an inner dense layer (inner skin layer) on the inner surface side, an outer dense layer (outer skin layer) on the outer surface side, and between the inner dense layer and the outer dense layer. And an inner layer having a lower density than those dense layers.

内部層は、内側緻密層から膜の中間厚さまでの内側内部層と、外側緻密層から膜の中間厚さまでの外側内部層を有しているものでもよい。
内部層は、平均孔径が0.2〜1.0μmの孔が分散された網目構造を有している層であるものが好ましい。
内側内部層は、外側内部層の密度よりも大きな密度の層であるものでもよく、そのような場合には、平均孔径が0.5〜1.5μmの孔が分散された層であるものが好ましい。なお、膜に存在している孔の平均孔径が小さいと密度が大きく、平均孔径が大きいと密度が小さくなる。
内側緻密層の密度(D1)と前記外側緻密層の密度(D2)は、D2>D1の関係を有しているものが好ましく、D2/D1は1.1〜10が好ましく、2〜5がより好ましい。
また製造条件を変えることで、D2<D1の関係にすることもできる。
The inner layer may have an inner inner layer from the inner dense layer to the intermediate thickness of the membrane and an outer inner layer from the outer dense layer to the intermediate thickness of the membrane.
The inner layer is preferably a layer having a network structure in which pores having an average pore diameter of 0.2 to 1.0 μm are dispersed.
The inner inner layer may be a layer having a density larger than that of the outer inner layer. In such a case, the inner inner layer may be a layer in which pores having an average pore diameter of 0.5 to 1.5 μm are dispersed. preferable. When the average pore diameter of the pores existing in the membrane is small, the density is large, and when the average pore diameter is large, the density is small.
The density of the inner dense layer (D1) and the density of the outer dense layer (D2) preferably have a relationship of D2> D1, and D2 / D1 is preferably 1.1-10, and 2-5. More preferred.
Further, the relationship of D2 <D1 can be obtained by changing the manufacturing conditions.

本発明の中空糸型半透膜は、内径600〜1000μm、外径1100〜1500μmのものが好ましく、内径650〜900μm、外径1200〜1450μmのものがより好ましい。   The hollow fiber type semipermeable membrane of the present invention preferably has an inner diameter of 600 to 1000 μm and an outer diameter of 1100 to 1500 μm, more preferably an inner diameter of 650 to 900 μm and an outer diameter of 1200 to 1450 μm.

本発明の中空糸型半透膜は、純水透過係数(PWP)が1200L/m2・h(0.1MPa)以上のものであり、好ましくは1300〜2500L/m2・h(0.1MPa)のものである。 The hollow fiber type semipermeable membrane of the present invention has a pure water permeability coefficient (PWP) of 1200 L / m 2 · h (0.1 MPa) or more, preferably 1300 to 2500 L / m 2 · h (0.1 MPa). Is.

本発明の中空糸型半透膜は、破断点強度が250g/本以上のものであり、好ましくは300〜550g/本のものであり、より好ましくは350〜550g/本のものである。
本発明の中空糸型半透膜は、破断点伸度が50%以上のものであり、好ましくは破断点伸度が55%以上のものであり、さらに好ましくは破断点伸度が60%以上のものである。
本発明の中空糸型半透膜は、破断点強度と破断点伸度が高いことから、外力を受けたときに切断し難く、エアーバブリング洗浄ができるようになるため好ましい。
The hollow fiber type semipermeable membrane of the present invention has a breaking strength of 250 g / piece or more, preferably 300 to 550 g / piece, more preferably 350 to 550 g / piece.
The hollow fiber type semipermeable membrane of the present invention has an elongation at break of 50% or more, preferably an elongation at break of 55% or more, and more preferably an elongation at break of 60% or more. belongs to.
The hollow fiber type semipermeable membrane of the present invention is preferable because it has high strength at break and elongation at break, and is difficult to cut when subjected to external force and can be air-bubbled washed.

本発明の中空糸型半透膜は、外圧型のUF膜として適している。
本発明の中空糸型半透膜は、海水淡水化における前処理手段、浄水場における浄水用の膜として使用することができるものであり、浄水用の膜として使用することで細菌、原虫などを除去することができる。
The hollow fiber type semipermeable membrane of the present invention is suitable as an external pressure type UF membrane.
The hollow fiber type semipermeable membrane of the present invention can be used as a pretreatment means in seawater desalination, a membrane for water purification in a water purification plant, and bacteria, protozoa, etc. can be used as a membrane for water purification. Can be removed.

(2)中空糸型半透膜の製造方法
本発明の中空糸型半透膜は、上記した中空糸型半透膜用の製膜溶液組成物を使用して製造する。以下、工程順に説明する。
最初に上記した中空糸型半透膜用の製膜溶液組成物を調製する。
(2) Method for Producing Hollow Fiber Type Semipermeable Membrane The hollow fiber type semipermeable membrane of the present invention is produced using the membrane forming solution composition for the hollow fiber type semipermeable membrane described above. Hereinafter, it demonstrates in order of a process.
First, a membrane-forming solution composition for the hollow fiber type semipermeable membrane described above is prepared.

次に、前記製膜溶液組成物を脱泡した後、紡糸して中空糸膜を得る。
紡糸は二重紡糸ノズルの外周部から製膜溶液を吐出させると同時に、中央孔からは製膜成分の非溶媒(内部凝固液)を吐出させる。
内部凝固液は、水、ジエチレングリコール(DEG)およびジエチレングリコールモノメチルエーテル(DMM)の混合溶液を使用する。
内部凝固液の温度は40〜80℃が好ましく、60〜80℃がより好ましい。
Next, after defoaming the membrane-forming solution composition, spinning is performed to obtain a hollow fiber membrane.
In spinning, a film forming solution is discharged from the outer peripheral portion of the double spinning nozzle, and at the same time, a non-solvent (internal coagulation liquid) as a film forming component is discharged from the central hole.
As the internal coagulation liquid, a mixed solution of water, diethylene glycol (DEG) and diethylene glycol monomethyl ether (DMM) is used.
The temperature of the internal coagulation liquid is preferably 40 to 80 ° C, more preferably 60 to 80 ° C.

内部凝固液の各成分の含有割合は、次のとおりである。
水は、好ましくは3〜20質量%、より好ましくは5〜15質量%、さらに好ましくは5〜12質量%であり、
ジエチレングリコールは、好ましくは17〜45質量%、より好ましくは25〜40質量%、さらに好ましくは27〜35質量%であり、
ジエチレングリコールモノメチルエーテルは、好ましくは40〜80質量%、より50〜70質量%、さらに好ましくは55〜65質量%である。
The content ratio of each component of the internal coagulation liquid is as follows.
Water is preferably 3 to 20% by mass, more preferably 5 to 15% by mass, still more preferably 5 to 12% by mass,
Diethylene glycol is preferably 17 to 45% by mass, more preferably 25 to 40% by mass, still more preferably 27 to 35% by mass,
Diethylene glycol monomethyl ether is preferably 40 to 80% by mass, more preferably 50 to 70% by mass, and still more preferably 55 to 65% by mass.

その後、紡糸した中空糸を二重紡糸ノズルから乾燥空間を通して凝固槽まで導いて凝固させ、中空糸膜を得る。
乾燥空間の温度は、40〜90℃が好ましい。
乾燥空間の距離は、10〜150mmが好ましい。
凝固槽中の凝固液は水を用いることができ、凝固槽の温度(凝固浴の温度)は6040〜90℃が好ましく、40〜60℃がより好ましい。
Thereafter, the spun hollow fiber is guided from the double spinning nozzle to the coagulation tank through the drying space and solidified to obtain a hollow fiber membrane.
The temperature of the drying space is preferably 40 to 90 ° C.
The distance of the drying space is preferably 10 to 150 mm.
As the coagulation liquid in the coagulation tank, water can be used, and the temperature of the coagulation tank (the temperature of the coagulation bath) is preferably 6040 to 90 ° C, more preferably 40 to 60 ° C.

本発明の製造方法により得られた中空糸型半透膜は、上記した製膜溶液組成物に含まれている(A)成分のスルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホンを100(100質量%)としたとき、中空糸型半透膜中に含まれている前記(A)成分の量は10〜40(質量%)の範囲である。
前記(A)成分は製造過程において溶出して減少して行くことが避けられない。
The hollow fiber type semipermeable membrane obtained by the production method of the present invention is a sulfonated polyether in which the degree of sulfonation of the component (A) contained in the membrane-forming solution composition is 0.10 to 0.20. When the sulfone is 100 (100% by mass), the amount of the component (A) contained in the hollow fiber type semipermeable membrane is in the range of 10 to 40 (% by mass).
It is inevitable that the component (A) elutes and decreases during the production process.

(1)スルホン化度(置換度)
精製、乾燥後のスルホン化ポリエーテルスルホンを重水素化ジメチルスルホキシドに溶解し、600MHz H-NMR(BRUKER AVANCE 600)より測定した。1H- NMRスペクトルで得られた芳香環水素のピーク積分値及び下記式より、スルホン化度(置換度)を算出した。
スルホン化度(置換度)
=[8.2〜8.5ppmの積分値(下記化学式中の(1))]/{([6.8〜8.2ppmの積分値(下記化学式中の(2)〜(5))]-[8.2〜8.5ppmの積分値]×2)/4+[8.2〜8.5ppmの積分値]}
(1) Sulfonation degree (substitution degree)
The sulfonated polyethersulfone after purification and drying was dissolved in deuterated dimethylsulfoxide and measured by 600 MHz H-NMR (BRUKER AVANCE 600). The degree of sulfonation (degree of substitution) was calculated from the peak integrated value of the aromatic ring hydrogen obtained from the 1H-NMR spectrum and the following formula.
Sulfonation degree (substitution degree)
= [Integral value of 8.2 to 8.5 ppm ((1) in the following chemical formula)] / {([Integrated value of 6.8 to 8.2 ppm ((2) to (5) in the chemical formula below)]-[8.2 to 8.5 ppm Integral value] × 2) / 4 + [integral value of 8.2 to 8.5 ppm]}

(2)膜構造(平均孔径の測定方法)
中空糸型半透膜の幅方向断面の走査型電子顕微鏡(SEM)画像を得た後、内表面からの各々の距離における近傍の孔50個の平均径を、解析ソフトを用いて求めた。
(2) Membrane structure (Measuring method of average pore diameter)
After obtaining a scanning electron microscope (SEM) image of the cross-section in the width direction of the hollow fiber type semipermeable membrane, the average diameter of 50 neighboring holes at each distance from the inner surface was determined using analysis software.

(2)純水透過係数(PWP)
実施例及び比較例で得た中空糸型半透膜の一端側を閉じた状態で、他端側から純水を0.1MPaで供給し、中空糸膜から一定時間に透過する純水の容量を測定した。この容量を採取時間(h)、中空糸膜内表面の膜面積(m2)で除して、純水透過係数〔L/m2・h(0.1MPa)〕を求めた。
(2) Pure water permeability coefficient (PWP)
The capacity of pure water that is supplied at a rate of 0.1 MPa from the other end side of the hollow fiber type semipermeable membrane obtained in the examples and comparative examples, and permeates from the hollow fiber membrane for a certain period of time. Was measured. This volume was divided by the sampling time (h) and the membrane area (m 2 ) on the inner surface of the hollow fiber membrane to obtain a pure water permeability coefficient [L / m 2 · h (0.1 MPa)].

(4)河川水フラックス(m3/(m2・day)および海水フラックス(m3/(m2・day)
原水として兵庫県揖保川下流域の河川水を用い、膜面積0.13m2の膜モジュールを用いて、図1に示す装置フローの膜濾過装置により1ヶ月間の濾過運転を行った。
まず、原水を原水供給ポンプ11で濾過膜モジュール12に送液し、中空糸の外側を流す外圧クロスフロー濾過を行った。透過水は貯水タンク15に貯水した。濃縮水は、濃縮水返送ライン14で原水の供給ラインに返送した。
濾過運転は定圧濾過であり、モジュール入口圧力は約0.05MPa、クロスフロー線速は0.1m/s、濾過過程の時間は60分であった。
次に、ポンプ16を駆動させて、貯水タンク15内の透過水を逆圧洗浄ライン18から濾過膜モジュール12に供給する逆圧洗浄を1分間、約0.1MPaの圧力で行った。この際、逆洗水は、透過水に次亜塩素酸ナトリウムを有効塩素濃度が3〜5mg/lになるように注入したものを用いた。
濾過過程における単位時間当たりの透過水量および膜間差圧を測定し,透過流束(単位時間、単位膜面積,圧力0.1MPa当たりの透過水量:m3/(m2・h・0.1MPa))を算出した。膜間差圧とは、膜モジュール入口圧力と出口圧力の平均値から透過圧力を引いたものであり、これを水温25℃に換算した値である。
1ヶ月間運転後の1日当たりの平均透過流束を河川水フラックス(m3/(m2・day))とした。
海水フラックスは、原水として広島県大竹市の瀬戸内海水を使用して、図1に示す装置フローの膜濾過装置を使用して4ヶ月間の濾過運転を行い,河川水フラックスと同様に透過流束から算出した。
(4) River water flux (m 3 / (m 2 · day) and sea water flux (m 3 / (m 2 · day)
Using raw river water in the downstream area of the Hinogo River in the Hyogo Prefecture, a membrane module having a membrane area of 0.13 m 2 was used, and the filtration operation was performed for one month using the membrane filtration device of the device flow shown in FIG.
First, the raw water was fed to the filtration membrane module 12 with the raw water supply pump 11 and subjected to external pressure cross flow filtration for flowing the outside of the hollow fiber. The permeated water was stored in the water storage tank 15. The concentrated water was returned to the raw water supply line by the concentrated water return line 14.
The filtration operation was constant pressure filtration, the module inlet pressure was about 0.05 MPa, the cross flow linear velocity was 0.1 m / s, and the filtration process time was 60 minutes.
Next, the pump 16 was driven to perform the reverse pressure cleaning for supplying the permeated water in the water storage tank 15 from the back pressure cleaning line 18 to the filtration membrane module 12 at a pressure of about 0.1 MPa for 1 minute. At this time, the backwash water used was one in which sodium hypochlorite was injected into the permeate so that the effective chlorine concentration was 3 to 5 mg / l.
The amount of permeate per unit time and the transmembrane pressure in the filtration process were measured, and the permeate flux (per unit time, unit membrane area, permeate per unit pressure 0.1 MPa: m 3 / (m 2 · h · 0.1 MPa )) Was calculated. The transmembrane pressure difference is a value obtained by subtracting the permeation pressure from the average value of the inlet pressure and outlet pressure of the membrane module, and is a value converted to a water temperature of 25 ° C.
The average permeation flux per day after operation for one month was defined as river water flux (m 3 / (m 2 · day)).
Seawater flux is seto seawater in Otake City, Hiroshima Prefecture, as raw water, and filtered for 4 months using the membrane filtration device of the device flow shown in Fig. 1. The permeation flux is the same as the river water flux. Calculated from

(5)濾過時の糸切れ(中空糸型半透膜の断線)の有無
河川水フラックスを測定するための濾過運転を1ヶ月行ったときのモジュールの外観検査および解体検査で糸切れの有無を目視により確認した。
(5) Presence of thread breakage during filtration (disconnection of hollow fiber type semipermeable membrane) Presence or absence of thread breakage in the appearance inspection and dismantling inspection of the module when the filtration operation for measuring river water flux is performed for one month It was confirmed visually.

(5)破断点強度(g/本)および破断点伸度(%)
得られた中空糸型半透膜の破断点強度及び伸度は、島津製作所製小型卓上試験機EZTestを用いて測定した。
有効長5cmの中空糸型半透膜に対し,クロスヘッドを10mm/minで移動させた場合の破断点強度及び伸度を測定した。
(5) Strength at break (g / piece) and elongation at break (%)
The breaking strength and elongation of the obtained hollow fiber type semipermeable membrane were measured using a small tabletop tester EZTest manufactured by Shimadzu Corporation.
For a hollow fiber type semipermeable membrane having an effective length of 5 cm, the strength and elongation at break were measured when the crosshead was moved at 10 mm / min.

(A)成分のスルホン化ポリエーテルスルホン(SPES):実施例および比較例の酸型のSPESは、特開2013−215640号公報の実施例1に準じて製造した。
(B)成分のポリエーテルスルホン(PES):住友化学(株)製の住化エクセル5200P(MW30,000)を使用した。
(A) Component Sulfonated Polyethersulfone (SPES): The acid-type SPES of Examples and Comparative Examples were produced according to Example 1 of JP2013-215640A.
(B) Component polyethersulfone (PES): Sumika Excel 5200P (MW30,000) manufactured by Sumitomo Chemical Co., Ltd. was used.

実施例1〜8および比較例1〜3
<製膜溶液組成物>
表1に示すジメチルスルホキシド(DMSO)、ポリエチレングリコール(PEG;MW 200)からなる溶媒に対して、スルホン化ポリエーテルスルホン(SPES)を加え、90℃で約1時間加熱して溶解させた。
次に、前記溶液にポリエーテルスルホン(PES)を加え、90℃で約5時間加熱して溶解して、製膜溶液組成物を得た。
Examples 1-8 and Comparative Examples 1-3
<Film forming solution composition>
To a solvent composed of dimethyl sulfoxide (DMSO) and polyethylene glycol (PEG; MW 200) shown in Table 1, sulfonated polyethersulfone (SPES) was added and heated to dissolve at 90 ° C. for about 1 hour.
Next, polyethersulfone (PES) was added to the solution and dissolved by heating at 90 ° C. for about 5 hours to obtain a film forming solution composition.

<中空糸型半透膜の製造>
上記の製膜溶液組成物を80℃で15時間かけて脱泡した。
脱泡した製膜溶液組成物を用い、二重紡糸ノズルにより実施例1〜6は60℃、実施例7は60℃、実施例8は80℃、比較例1〜3は60℃で紡糸した。表1に示す内部凝固液を使用した。
二重紡糸ノズルから吐出させた後、距離100mmの乾燥空間(70℃)を通して乾燥させ、実施例1〜8と比較例1〜3は表1に示す温度の水(外部凝固液)が入った凝固槽を通過させた。
その後、さらに50℃の水が入った水洗槽を通過させて中空糸型半透膜を巻き取った。
得られた中空糸型半透膜について、上記した各測定を実施した。結果を表1に示す。
<Manufacture of hollow fiber type semipermeable membrane>
The film forming solution composition was degassed at 80 ° C. for 15 hours.
Using the defoamed membrane-forming solution composition, spinning was performed at 60 ° C. in Examples 1 to 6, 60 ° C. in Example 7, 80 ° C. in Example 8 and 60 ° C. in Comparative Examples 1 to 3 by a double spinning nozzle. . The internal coagulation liquid shown in Table 1 was used.
After discharging from the double spinning nozzle, it was dried through a drying space (70 ° C.) at a distance of 100 mm, and Examples 1 to 8 and Comparative Examples 1 to 3 contained water (external coagulation liquid) at the temperature shown in Table 1. The coagulation tank was passed through.
Then, the hollow fiber type semipermeable membrane was wound up by passing through a washing tank containing 50 ° C. water.
Each measurement mentioned above was implemented about the obtained hollow fiber type semipermeable membrane. The results are shown in Table 1.

実施例1の中空糸膜(最大部の厚さ350μm)において、内表面からの距離と平均孔径を測定すると、次のようになっていた。
(内側内部層)
内表面からの距離5μm:平均孔径:0.095μm
内表面からの距離65μm:平均孔径:0.829μm
(外側内部層)
内表面からの距離120μm:平均孔径:0.4782μm
内表面からの距離222μm:平均孔径:0.2794μm
実施例1の中空糸型半透膜の孔径分布を図2に示す。
図2から、内側緻密層の密度(D1)が外側緻密層の密度(D2)よりも大きいこと(D1>D2)が確認された。
In the hollow fiber membrane of Example 1 (maximum thickness 350 μm), the distance from the inner surface and the average pore diameter were measured, and the results were as follows.
(Inner inner layer)
Distance from inner surface 5 μm: Average pore diameter: 0.095 μm
Distance from inner surface 65 μm: Average pore diameter: 0.829 μm
(Outer inner layer)
Distance from inner surface 120 μm: Average pore diameter: 0.4782 μm
Distance from inner surface 222 μm: Average pore diameter: 0.2794 μm
The pore size distribution of the hollow fiber type semipermeable membrane of Example 1 is shown in FIG.
From FIG. 2, it was confirmed that the density (D1) of the inner dense layer was larger than the density (D2) of the outer dense layer (D1> D2).

実施例3の膜構造(SEM写真)を図3に示し、孔径分布曲線を図4に示す。
図3から確認できるとおり、内表面側の内側緻密層と外表面側の外側緻密層の間には内部層があり、内側緻密層側の内部層(内側内部層に相当する)の孔径と外側緻密層側の内部層(外側内部層に相当する)の孔径を比べると、内側緻密層側の内部層の孔径が大きかった(密度が小さかった)。
図4から確認できるとおり、内側内部層の孔径が大きく、外側内部層の孔径が小さくなっていた(密度が大きくなっていた)。
The film structure (SEM photograph) of Example 3 is shown in FIG. 3, and the pore size distribution curve is shown in FIG.
As can be seen from FIG. 3, there is an inner layer between the inner dense layer on the inner surface side and the outer dense layer on the outer surface side, and the pore size and outer side of the inner layer on the inner dense layer side (corresponding to the inner inner layer) When the pore diameter of the inner layer on the dense layer side (corresponding to the outer inner layer) was compared, the pore diameter of the inner layer on the inner dense layer side was large (density was small).
As can be confirmed from FIG. 4, the pore diameter of the inner inner layer was large, and the pore diameter of the outer inner layer was small (density increased).

実施例8の中空糸膜(最大部の厚さ350μm)において、内表面からの距離と平均孔径を測定すると、次のようになっていた。
(内側内部層)
内表面からの距離10μm:平均孔径:0.404μm
内表面からの距離70μm:平均孔径:0.565μm
(外側内部層)
内表面からの距離140μm:平均孔径:0.211μm
内表面からの距離210μm:平均孔径:0.134μm
実施例8の中空糸型半透膜の孔径分布を図5に示す。
実施例8の膜構造(SEM写真)を図6、図7に示す。
実施例8の膜の外側内部層は、内表面からはなれるほど(外表面に近づくほど)密度が大きく(平均孔径が小さく)なっており、外側緻密層の密度(D2)は内側緻密層の密度(D1)よりも大きくなっていた(D2>D1)。
In the hollow fiber membrane of Example 8 (maximum thickness 350 μm), the distance from the inner surface and the average pore diameter were measured, and the results were as follows.
(Inner inner layer)
Distance from inner surface 10 μm: Average pore diameter: 0.404 μm
Distance from inner surface 70 μm: Average pore diameter: 0.565 μm
(Outer inner layer)
Distance from inner surface 140 μm: Average pore diameter: 0.211 μm
Distance from inner surface 210 μm: Average pore diameter: 0.134 μm
The pore size distribution of the hollow fiber type semipermeable membrane of Example 8 is shown in FIG.
The film structure (SEM photograph) of Example 8 is shown in FIGS.
The outer inner layer of the membrane of Example 8 has a higher density (smaller average pore diameter) as it is separated from the inner surface (closer to the outer surface), and the density (D2) of the outer dense layer is that of the inner dense layer. It was larger than the density (D1) (D2> D1).

本発明の中空糸型半透膜は、強伸度が高いため、糸切れが生じ難くなる。
本発明の中空糸型半透膜は、純水透過係数、破断点強伸度の全てが高く、海水及び河川水フラックスも高い事から低ファウリング性を備え、海水淡水化における前処理手段用の膜、浄水場における浄水用の膜として適している。
Since the hollow fiber type semipermeable membrane of the present invention has high tensile elongation, yarn breakage hardly occurs.
The hollow fiber type semipermeable membrane of the present invention has a low pure fouling property because it has a high pure water permeability coefficient, a high elongation at break, and high seawater and river water flux, and is used for pretreatment means in seawater desalination. It is suitable as a membrane for water purification in water purification plants.

本発明の中空糸型半透膜は、海水淡水化における前処理用の膜、飲料水を製造する浄水場における水処理膜として使用することができる。   The hollow fiber type semipermeable membrane of the present invention can be used as a membrane for pretreatment in seawater desalination and a water treatment membrane in a water purification plant for producing drinking water.

10 逆流防止弁
13、17、19 開閉バルブ(電磁弁)
10 Backflow prevention valve 13, 17, 19 Open / close valve (solenoid valve)

Claims (7)

製膜成分として、(A)スルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホン20〜40質量%と(B)ポリエーテルスルホン80〜60質量%が溶媒に溶解された製膜溶液組成物から得られる中空糸型半透膜であって、
内表面側の内側緻密層と、外表面側の外側緻密層と、前記内側緻密層と前記外側緻密層の間にそれらの緻密層よりも密度の小さい内部層を有しているものであり、
純水透過係数(PWP)が1200L/m2・h(0.1MPa)以上で、破断点強度が250g/本以上、破断点伸度が50%以上である、中空糸型半透膜。
As a film-forming component, (A) 20-40% by mass of sulfonated polyethersulfone having a degree of sulfonation of 0.10-0.20 and (B) 80-60% by mass of polyethersulfone dissolved in a solvent A hollow fiber type semipermeable membrane obtained from a solution composition,
The inner dense layer on the inner surface side, the outer dense layer on the outer surface side, and the inner dense layer and the outer dense layer have an inner layer having a smaller density than those dense layers,
A hollow fiber type semipermeable membrane having a pure water permeability coefficient (PWP) of 1200 L / m 2 · h (0.1 MPa) or more, a breaking strength of 250 g / piece or more, and an elongation at break of 50% or more.
前記製膜溶液組成物が、
(A)スルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホン3〜15質量%
(B)ポリエーテルスルホン10〜30質量%
(C)ポリエチレングリコール5〜30質量%、
(D)残部割合の溶媒を含み、
(A)成分と(B)成分の合計量中の含有割合が、(A)成分20〜40質量%、(B)成分80〜60質量%のものである、請求項1記載の中空糸型半透膜。
The film forming solution composition is
(A) 3-15% by mass of sulfonated polyethersulfone having a degree of sulfonation of 0.10-0.20
(B) 10-30% by mass of polyethersulfone
(C) polyethylene glycol 5-30% by mass,
(D) including the remaining proportion of solvent;
The hollow fiber mold according to claim 1, wherein the content ratio in the total amount of the component (A) and the component (B) is 20 to 40% by mass of the component (A) and 80 to 60% by mass of the component (B). Semipermeable membrane.
前記内部層が、前記内側緻密層から膜の中間厚さまでの内側内部層と、前記外側緻密層から膜の中間厚さまでの外側内部層を有しているものであり、
前記内部層の全体が、平均孔径が0.1〜1.0μmの孔が分散された網目構造を有しているものである、
前記内側内部層が、平均孔径が0.2〜1.5μmの孔が分散されたものであり、
前記内側緻密層の密度(D1)と前記外側緻密層の密度(D2)が、D2>D1の関係を有している、請求項1記載の中空糸型半透膜。
The inner layer has an inner inner layer from the inner dense layer to an intermediate thickness of the membrane, and an outer inner layer from the outer dense layer to the intermediate thickness of the membrane;
The entire inner layer has a network structure in which pores having an average pore diameter of 0.1 to 1.0 μm are dispersed.
The inner inner layer has pores with an average pore diameter of 0.2 to 1.5 μm dispersed therein,
The hollow fiber type semipermeable membrane according to claim 1, wherein a density (D1) of the inner dense layer and a density (D2) of the outer dense layer have a relationship of D2> D1.
外圧型の中空糸型UF膜である、請求項1〜3のいずれか1項に記載の中空糸型半透膜。   The hollow fiber type semipermeable membrane according to any one of claims 1 to 3, which is an external pressure type hollow fiber type UF membrane. 請求項1記載の中空糸型半透膜の製造方法であって、
前記製膜溶液組成物を脱泡後、紡糸して中空糸を得る工程と、
紡糸した中空糸を乾燥させた後、40〜90℃の凝固水槽内に通して凝固させる工程を有しているものであり、
前記製膜溶液組成物を脱泡後、紡糸する工程において、内部凝固液として、水、ジエチレングリコールおよびジエチレングリコールモノメチルエーテルの混合溶液を使用する、
前記製膜溶液組成物中の(A)成分の含有量を100質量%としたとき、前記中空糸型半透膜中の(A)成分の含有量が10〜40質量%である、中空糸型半透膜の製造方法。
It is a manufacturing method of the hollow fiber type semipermeable membrane according to claim 1,
Defoaming the film-forming solution composition and then spinning to obtain hollow fibers;
After drying the spun hollow fiber, it has a step of solidifying by passing through a 40 to 90 ° C. coagulation water tank,
In the step of spinning after the defoaming of the film forming solution composition, a mixed solution of water, diethylene glycol and diethylene glycol monomethyl ether is used as an internal coagulating liquid.
A hollow fiber in which the content of the component (A) in the hollow fiber type semipermeable membrane is 10 to 40% by mass, when the content of the component (A) in the membrane-forming solution composition is 100% by mass. A method for producing a mold semipermeable membrane.
請求項3記載の中空糸型半透膜の製造方法であって、
前記製膜溶液組成物を脱泡後、紡糸して中空糸を得る工程と、
紡糸した中空糸を乾燥させた後、40〜60℃の凝固水槽内に通して凝固させる工程を有しているものであり、
前記製膜溶液組成物として、
(A)スルホン化度が0.10〜0.20のスルホン化ポリエーテルスルホン3〜15質量%
(B)ポリエーテルスルホン10〜30質量%
(C)ポリエチレングリコール5〜13質量%、
(D)残部割合の溶媒を含み、
(A)成分と(B)成分の合計量中の含有割合が、(A)成分20〜40質量%、(B)成分80〜60質量%のものを使用し、
前記製膜溶液組成物中の(A)成分の含有量を100質量%としたとき、前記中空糸型半透膜中の(A)成分の含有量が10〜40質量%である、中空糸型半透膜の製造方法。
It is a manufacturing method of the hollow fiber type semipermeable membrane according to claim 3,
Defoaming the film-forming solution composition and then spinning to obtain hollow fibers;
After drying the spun hollow fiber, it has a step of solidifying by passing through a 40-60 ° C. coagulating water tank,
As the film-forming solution composition,
(A) 3-15% by mass of sulfonated polyethersulfone having a degree of sulfonation of 0.10-0.20
(B) 10-30% by mass of polyethersulfone
(C) 5 to 13% by mass of polyethylene glycol,
(D) including the remaining proportion of solvent;
(A) The content ratio in the total amount of a component and (B) component uses what (A) component 20-40 mass%, (B) component 80-60 mass%,
A hollow fiber in which the content of the component (A) in the hollow fiber type semipermeable membrane is 10 to 40% by mass, when the content of the component (A) in the membrane-forming solution composition is 100% by mass. A method for producing a mold semipermeable membrane.
前記内部凝固液が、水3〜15質量%、ジエチレングリコール17〜45質量%およびジエチレングリコールモノメチルエーテル40〜80質量%からなるものである、請求項5または6記載の中空糸型半透膜の製造方法。   The method for producing a hollow fiber type semipermeable membrane according to claim 5 or 6, wherein the internal coagulating liquid comprises 3 to 15% by mass of water, 17 to 45% by mass of diethylene glycol, and 40 to 80% by mass of diethylene glycol monomethyl ether. .
JP2016009477A 2015-01-30 2016-01-21 Hollow fiber type semipermeable membrane and method for producing the same Active JP6649779B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015017087 2015-01-30
JP2015017087 2015-01-30

Publications (2)

Publication Number Publication Date
JP2016144799A true JP2016144799A (en) 2016-08-12
JP6649779B2 JP6649779B2 (en) 2020-02-19

Family

ID=56685208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016009477A Active JP6649779B2 (en) 2015-01-30 2016-01-21 Hollow fiber type semipermeable membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP6649779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552198A (en) * 2019-10-10 2022-12-15 インテグリス・インコーポレーテッド Porous polymer membranes and related filters and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022552198A (en) * 2019-10-10 2022-12-15 インテグリス・インコーポレーテッド Porous polymer membranes and related filters and methods

Also Published As

Publication number Publication date
JP6649779B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
US8931647B2 (en) Highly durable porous PVDF film, method of producing the same and washing method and filtration method using the same
KR101392943B1 (en) Hollow fiber membrane for forward osmotic use, and method for manufacturing the same
US8794451B2 (en) Hollow-fiber ultrafiltration membrane with excellent fouling resistance
JP6694326B2 (en) Composite membrane
JP6343470B2 (en) NF membrane manufacturing method
JP2010240535A (en) Hollow fiber membrane and method for producing the same
WO2015056145A1 (en) Improving the chemical stability of filtration membranes
WO2009125598A1 (en) Hydrophilic polyethersulfone filtration membrane, method for production thereof, and stock solution of production of membrane
JP5964114B2 (en) Internal pressure type hollow fiber NF membrane and manufacturing method thereof
JP6638754B2 (en) Method for producing hollow fiber type semipermeable membrane
JP5952159B2 (en) Separation membrane and manufacturing method thereof
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
JP6070260B2 (en) Hollow fiber type semipermeable membrane, manufacturing method and module thereof
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP6649779B2 (en) Hollow fiber type semipermeable membrane and method for producing the same
JP2020054994A (en) Manufacturing method of polysulfone porous hollow fiber membrane
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
JP6533064B2 (en) Hollow fiber type semipermeable membrane and method for producing the same
JP7095072B2 (en) Hollow fiber membrane and method for manufacturing hollow fiber membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP6707880B2 (en) Hollow fiber membrane and hollow fiber membrane module
JP2001000970A (en) High-degree treatment of wastewater using membrane module
KR102172621B1 (en) Method for preparation of polyketone hollow fiber membrane
JP4164774B2 (en) Method for producing selective separation membrane
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160304

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20181107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6649779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250