JP6070260B2 - Hollow fiber type semipermeable membrane, manufacturing method and module thereof - Google Patents
Hollow fiber type semipermeable membrane, manufacturing method and module thereof Download PDFInfo
- Publication number
- JP6070260B2 JP6070260B2 JP2013033024A JP2013033024A JP6070260B2 JP 6070260 B2 JP6070260 B2 JP 6070260B2 JP 2013033024 A JP2013033024 A JP 2013033024A JP 2013033024 A JP2013033024 A JP 2013033024A JP 6070260 B2 JP6070260 B2 JP 6070260B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- semipermeable membrane
- water
- fiber type
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims description 337
- 239000012510 hollow fiber Substances 0.000 title claims description 189
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 293
- 230000035699 permeability Effects 0.000 claims description 99
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 64
- 239000011550 stock solution Substances 0.000 claims description 53
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 50
- 239000002904 solvent Substances 0.000 claims description 41
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 40
- 239000007864 aqueous solution Substances 0.000 claims description 35
- 238000005406 washing Methods 0.000 claims description 25
- 238000005345 coagulation Methods 0.000 claims description 24
- 230000015271 coagulation Effects 0.000 claims description 24
- 239000013505 freshwater Substances 0.000 claims description 22
- 239000011780 sodium chloride Substances 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 2
- 229920001223 polyethylene glycol Polymers 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 description 57
- 239000000126 substance Substances 0.000 description 42
- 238000011156 evaluation Methods 0.000 description 32
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 31
- 238000000034 method Methods 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 25
- 239000010408 film Substances 0.000 description 24
- 238000000926 separation method Methods 0.000 description 21
- 239000013535 sea water Substances 0.000 description 19
- 229920002284 Cellulose triacetate Polymers 0.000 description 18
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 18
- 239000010410 layer Substances 0.000 description 17
- 239000005711 Benzoic acid Substances 0.000 description 15
- 235000010233 benzoic acid Nutrition 0.000 description 15
- 238000010335 hydrothermal treatment Methods 0.000 description 15
- 239000012466 permeate Substances 0.000 description 12
- 230000003204 osmotic effect Effects 0.000 description 11
- 229920002301 cellulose acetate Polymers 0.000 description 10
- 230000010287 polarization Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000001112 coagulating effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 101100395484 Arabidopsis thaliana HPD gene Proteins 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 102100036218 DNA replication complex GINS protein PSF2 Human genes 0.000 description 2
- 101000736065 Homo sapiens DNA replication complex GINS protein PSF2 Proteins 0.000 description 2
- 101100463166 Oryza sativa subsp. japonica PDS gene Proteins 0.000 description 2
- 101150061817 PDS1 gene Proteins 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 101100234296 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KEX2 gene Proteins 0.000 description 2
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000008400 supply water Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- AOKCDAVWJLOAHG-UHFFFAOYSA-N 4-(methylamino)butyric acid Chemical compound C[NH2+]CCCC([O-])=O AOKCDAVWJLOAHG-UHFFFAOYSA-N 0.000 description 1
- SLXKOJJOQWFEFD-UHFFFAOYSA-N 6-aminohexanoic acid Chemical compound NCCCCCC(O)=O SLXKOJJOQWFEFD-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- -1 Polyethylene Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000008237 rinsing water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、透水性能と分離性能の両方を高いレベルで維持して設置スペースを低減させ、処理効率を向上させることができる中空糸型半透膜及びその製造方法及びモジュールに関するものである。より詳しくは、有価物の濃縮、回収や排水の濃縮による減容化、または、低濃度の水溶液から高濃度かつ加圧状態の水溶液に濃度差を駆動力として水を透過させ、透過した水により増加した高濃度かつ加圧状態の水溶液の流量と圧力でタービンを回すなどしてエネルギーを生成させるものである。特に、海水または濃縮海水と淡水との濃度差を利用して電力などのエネルギーを生成するための水処理などに好適に使用される中空糸型半透膜である。 The present invention relates to a hollow fiber type semipermeable membrane that can maintain both water permeability and separation performance at a high level, reduce installation space, and improve processing efficiency, a method for manufacturing the same, and a module. More specifically, concentration of valuable materials, volume reduction by recovery and concentration of wastewater, or water permeation from a low-concentration aqueous solution to a high-concentration and pressurized aqueous solution as a driving force, and the permeated water Energy is generated by, for example, turning the turbine at the increased flow rate and pressure of the high-concentration and pressurized aqueous solution. In particular, it is a hollow fiber type semipermeable membrane suitably used for water treatment or the like for generating energy such as electric power by utilizing a difference in concentration between seawater or concentrated seawater and fresh water.
膜分離法による液状混合物の分離・濃縮は、蒸留などの分離技術に比べて相変化を伴わないため省エネルギー法であり、かつ物質の状態変化を伴わないことから、果汁の濃縮、ビール酵素の分離などの食品分野、あるいは工業排水からの有機物の回収といった多分野において幅広く利用されており、半透膜による水処理は、最先端技術を支える不可欠のプロセスとして定着している。 Separation / concentration of liquid mixture by membrane separation is an energy-saving method because it does not involve a phase change compared to separation techniques such as distillation, and since it does not involve changes in the state of substances, it concentrates juice and separates beer enzymes. It is widely used in various fields such as food fields such as organic matter recovery from industrial wastewater, and water treatment with semipermeable membranes has become established as an indispensable process that supports state-of-the-art technology.
例えば、半透膜を用いた海水と淡水との濃度差を利用して得られる水によるエネルギーの生成は、クリーンなプロセスであり、再生可能エネルギーとして期待されている。特に中空糸型半透膜は、スパイラル型半透膜に比べ単位膜面積当たりの透水量は小さいが、膜モジュール容積当たりの膜面積を大きくとることができるため、全体として透水量を大きくとることができ、容積効率が非常に高いという利点があり、コンパクト性に優れる。また、高濃度水溶液と淡水の両方をモジュール内に供給して半透膜を介して接触させることにより発生する濃度差を駆動力とする水処理の場合に、スパイラル型に比して、膜表面の濃度分極を小さく抑えられ、濃度差の低下を抑制できる利点がある。 For example, the generation of energy by water obtained by utilizing the difference in concentration between seawater and fresh water using a semipermeable membrane is a clean process and is expected as renewable energy. In particular, hollow fiber type semipermeable membranes have a smaller water permeability per unit membrane area than spiral type semipermeable membranes, but can take a larger membrane area per membrane module volume, so the overall water permeability must be increased. The volumetric efficiency is very high and the compactness is excellent. In addition, in the case of water treatment using a concentration difference generated by supplying both high-concentration aqueous solution and fresh water into the module and bringing them into contact with each other through a semipermeable membrane, the membrane surface is compared to the spiral type. Therefore, there is an advantage that the concentration polarization can be suppressed to be small and the decrease in the concentration difference can be suppressed.
このような中空糸型半透膜は一般に、ポリマー素材として酢酸セルロースを含む製膜原液を調製し、これを紡糸口金から空気中に吐出し、続いて凝固液中で凝固させ、洗浄後に熱水処理して膜収縮させることにより製造される。例えば、特許文献1の実施例では、ポリマー素材としてセルローストリアセテートを使用した製膜原液を吐出、凝固し、水洗後に無緊張下で85℃の熱水処理を20分間施して得られる半透膜が記載されている。この実施例のデータを参照すると、0.2%塩化ナトリウム水溶液を供給水として30kg/cm2の圧力で測定した半透膜の透水量と塩化ナトリウムの除去率がそれぞれ230l/(m2日),99.85%(実施例1)、245l/(m2日),99.87%(実施例3)、250l/(m2日),99.84%(実施例4)であったことが示されている。透水量は有効圧力差に依存するので、上記の実施例の半透膜を、濃度差を駆動力として淡水を透過させる場合など有効圧力差が低い場合、たとえば、半分の圧力15kg/cm2で測定すると、塩化ナトリウムの除去率はあまり影響を受けないが、透水量はほぼ半分の120l/m2日程度に低下する。即ち、特許文献1のような従来の半透膜は、高い熱水処理温度で膜収縮を大きくしているため高い塩除去性能を発揮できるが、低圧で使用すると透水性能が低下する問題があり、濃度差を駆動力とした水処理に用いる場合など、高い圧力を印加することが好ましくない場合などはその処理能力は高くできない。 Such a hollow fiber type semipermeable membrane is generally prepared by preparing a membrane-forming stock solution containing cellulose acetate as a polymer material, discharging it from the spinneret into the air, subsequently coagulating it in the coagulating solution, and washing it with hot water. Manufactured by processing and shrinking the membrane. For example, in the Example of Patent Document 1, a semipermeable membrane obtained by discharging and coagulating a film-forming stock solution using cellulose triacetate as a polymer material, and performing a hydrothermal treatment at 85 ° C. for 20 minutes under no tension after washing with water. Have been described. Referring to the data of this example, the water permeability of the semipermeable membrane and the removal rate of sodium chloride measured at a pressure of 30 kg / cm 2 using 0.2% sodium chloride aqueous solution as the feed water are 230 l / (m 2 days), respectively. 99.85% (Example 1), 245 l / (m 2 days), 99.87% (Example 3), 250 l / (m 2 days), 99.84% (Example 4) It is shown. Since the amount of water permeation depends on the effective pressure difference, when the effective pressure difference is low, such as when the fresh water is permeated through the semipermeable membrane of the above-described embodiment using the concentration difference as a driving force, for example, at a half pressure of 15 kg / cm 2 . When measured, the removal rate of sodium chloride is not significantly affected, but the water permeability decreases to about 120 l / m 2 day, which is almost half. That is, the conventional semipermeable membrane such as Patent Document 1 can exhibit a high salt removal performance because the membrane shrinkage is increased at a high hydrothermal treatment temperature, but there is a problem that the water permeability performance is lowered when used at a low pressure. When it is not preferable to apply a high pressure, such as when used for water treatment using a concentration difference as a driving force, the treatment capacity cannot be increased.
半透膜において透水性能と分離性能の両方を高いレベルで維持しようとしたものとしては、例えば、特許文献2及び3が挙げられる。特許文献2では、液体混合物からの固体分離あるいは溶質分離に利用される中空糸型半透膜モジュールに関する技術が開示されている。しかし、特許文献2の表1の三酢酸セルロースを使用した中空糸膜性能を参酌すると、操作圧力55kg/cm2で測定した透水量(FR1)は22.6〜91.5l/(m2・日)であり、高い透水性能を達成できていない。 Patent Documents 2 and 3 are examples of attempts to maintain both water permeability and separation performance at a high level in a semipermeable membrane. Patent Document 2 discloses a technique related to a hollow fiber type semipermeable membrane module used for solid separation or solute separation from a liquid mixture. However, considering the hollow fiber membrane performance using cellulose triacetate in Table 1 of Patent Document 2, the water permeability (FR1) measured at an operating pressure of 55 kg / cm 2 is 22.6 to 91.5 l / (m 2 · And high water permeability is not achieved.
また、特許文献3には、微多孔性支持体上にポリアミドを主成分とする活性層(薄膜、スキン層)を備えた高塩阻止率と高透過性を併せ持つ平膜タイプの複合半透膜に関する技術が開示されている。特許文献3に記載の半透膜は、実施例1の記載によれば、操作圧力7.5kg/cm2で測定した透過流速が1.0m3/(m2・日)(1000l/m2・日)であることが記載されている。しかし、この半透膜は、平膜形状のため、実際に半透膜を介した濃度差を駆動力とする水処理に用いる膜モジュールでは、モジュールに供給される高濃度水溶液、および、低濃度水溶液(淡水)が、膜前面に有効に均一に分配させることが困難であり、また、供給される水溶液が少ない部分は、特に膜表面の濃度分極が大きくなり、有効に膜を介しての濃度差を確保することが困難で、水処理の効率的が高くできないデメリットがある。また、このようなポリアミド素材からなる膜は、耐塩素性が劣る。また、使用できる殺菌薬品が限られているデメリットがある。 Further, Patent Document 3 discloses a flat membrane type composite semipermeable membrane having both a high salt rejection and a high permeability provided with an active layer (thin film, skin layer) mainly composed of polyamide on a microporous support. Techniques related to this are disclosed. Semipermeable membrane described in Patent Document 3, according to the description of Example 1, permeation rate measured at operating pressure 7.5 kg / cm 2 is 1.0m 3 / (m 2 · day) (1000l / m 2・ It is stated that the date is However, since this semipermeable membrane has a flat membrane shape, in a membrane module used for water treatment that actually uses a concentration difference through the semipermeable membrane as a driving force, a high concentration aqueous solution and a low concentration supplied to the module are used. It is difficult to distribute the aqueous solution (fresh water) effectively and uniformly on the front surface of the membrane, and the portion where the supplied aqueous solution is small has a particularly large concentration polarization on the membrane surface, so that the concentration through the membrane is effective. There are disadvantages that it is difficult to ensure the difference and the efficiency of water treatment cannot be increased. Moreover, the film made of such a polyamide material is inferior in chlorine resistance. Moreover, there is a demerit that the sterilizing chemicals that can be used are limited.
一方、水処理膜プラントの経済性やコンパクト性を重視するユーザーから、中空糸型半透膜の膜面積あたりの処理能力を向上することが強く望まれている。高い圧力を印加せず濃度差を駆動力とする水処理の場合、従来の低圧用半透膜を使用しても高い透水性能が得られず、結局、造水コストや設置スペースを抑えることができないのが現状である。 On the other hand, from users who place importance on the economics and compactness of water treatment membrane plants, it is strongly desired to improve the treatment capacity per membrane area of the hollow fiber type semipermeable membrane. In the case of water treatment that does not apply high pressure and the concentration difference is the driving force, high water permeability cannot be obtained even if a conventional low-pressure semipermeable membrane is used, which ultimately reduces water production costs and installation space. The current situation is not possible.
以上のように、透水性能と分離性能を高いレベルで両立して、少ない設置スペースで、かつ効率的に水処理が可能な酢酸セルロース系中空糸型半透膜は存在しない。 As described above, there is no cellulose acetate-based hollow fiber type semipermeable membrane that can achieve both water permeability performance and separation performance at a high level, and can efficiently perform water treatment with a small installation space.
本発明は、上記の従来技術の現状に鑑み創案されたものであり、その目的は、異なる濃度の液体を半透膜を介して、それらの濃度差を駆動力として低濃度側の水を半透膜を透過させ、高濃度側に透過した水の流量と圧力でエネルギーを生成する水処理において、少ない膜面積、設置スペースで効率良く処理が可能な、透水性能と分離性能を高いレベルで達成した中空糸型半透膜及びその製造方法及びモジュールを提供することにある。特に、本発明の中空糸型半透膜は、塩濃度の高い水(例えば、海水、濃縮海水)とそれより塩濃度の低い水溶液の濃度差を駆動力として供給水から半透膜を透過させて取り出した水でエネルギーを生成する際の水処理用途に好適なものである。 The present invention was devised in view of the current state of the prior art described above, and its purpose is to use different concentrations of liquid through a semipermeable membrane, and use the concentration difference between them as a driving force to reduce the low concentration side water. Achieves a high level of water permeability and separation performance that allows efficient treatment in a small membrane area and installation space in water treatment that generates energy by the flow rate and pressure of water that permeates the high concentration side. An object of the present invention is to provide a hollow fiber type semipermeable membrane, a method of manufacturing the same, and a module. In particular, the hollow fiber type semipermeable membrane of the present invention allows the semipermeable membrane to permeate from the supplied water by using as a driving force the concentration difference between water having a high salt concentration (for example, seawater, concentrated seawater) and an aqueous solution having a lower salt concentration. It is suitable for water treatment use when generating energy with water taken out.
本発明者は、かかる目的を達成するために鋭意検討した結果、中空糸型半透膜において塩分と水の分離機能の役割を有する緻密層を従来より薄くし、非対称性を高めることにより濃度差を駆動力とする透過水を多く得ることでエネルギー生成可能な水と圧力を高いレベルで達成できることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the dense layer having the role of separating salt and water in the hollow fiber type semipermeable membrane is thinner than before and the concentration difference is increased by increasing the asymmetry. As a result, it was found that by obtaining a large amount of permeated water having a driving force as a driving force, water capable of generating energy and pressure can be achieved at a high level, and the present invention has been completed.
即ち、本発明は、以下の(1)〜(3)の構成を有するものである。
(1)25℃の塩化ナトリウム濃度35g/L、圧力1.0MPaの水溶液を、長さが70cmの中空糸型半透膜の外側に流し、25℃の塩化ナトリウム濃度0g/Lの淡水を中空糸型半透膜の一方の開口端部の内側に流して他方の開口端部から10kPa以下で排出させた場合に、濃度差を駆動力として、中空糸型半透膜の内側から外側へ向かって流れる透水量の2倍が外側へ流入する流量であって、かつ中空糸型半透膜の内側から排出の流量が該透水量の10%となる条件での透水量が30〜90L/m2/日であり、塩化ナトリウム濃度1.5g/Lの水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過した際の透水量が100〜300L/m2/日である中空糸型半透膜であって、外径が100〜280μmであり、内径が50〜200μmであり、中空率が24〜42%であることを特徴とする、濃度差を駆動力とした水処理用の中空糸型半透膜。
(2)ポリマーと溶媒と非溶媒を含む製膜原液を調製し、これを紡糸口金から空中走行部を経て凝固液中に吐出して中空糸型半透膜を製造し、この中空糸型半透膜を水洗した後に熱水処理に供して膜を収縮させて得られる(1)に記載の中空糸型半透膜の製造方法であって、製膜原液中のポリマー濃度が40〜45重量%であること、及び製膜原液中の溶媒/非溶媒の重量比が80/20〜95/5であること、及び熱水処理の温度が70℃超80℃以下であること、前記溶媒がN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルスルホキシドから選ばれる1種以上であること、前記非溶媒がエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールから選ばれる1種以上であることを特徴とする方法。
(3)(1)に記載の中空糸型半透膜を組み込んだことを特徴とする中空糸型半透膜モジュール。
That is, the present invention has the following configurations (1) to (3).
(1) An aqueous solution having a sodium chloride concentration of 25 g at 25 ° C. and a pressure of 1.0 MPa is flowed to the outside of a hollow fiber type semipermeable membrane having a length of 70 cm, and fresh water having a sodium chloride concentration of 25 g at 0 ° C./L When flowing inside one open end of the hollow fiber type semipermeable membrane and discharging from the other open end at 10 kPa or less, the concentration difference is used as a driving force to move from the inside to the outside of the hollow fiber type semipermeable membrane. The water flow rate is 30 to 90 L / min under the condition that twice the water flow rate flowing toward the outside flows into the outside and the flow rate from the inside of the hollow fiber type semipermeable membrane is 10% of the water flow rate. The amount of water permeation when an aqueous solution of m 2 / day and a sodium chloride concentration of 1.5 g / L is filtered from the outside to the inside of the hollow fiber type semipermeable membrane at 25 ° C. and a pressure of 1.5 MPa is 100 to 300 L. a hollow fiber semipermeable membrane which is / m 2 / day, an outer diameter of 10 To 2 8 are 0Myu m, inner diameter of 50 to 200 [mu] m, wherein the hollow ratio is 24 to 42%, hollow fiber semipermeable membrane for water treatment for the driving force density differences.
(2) A membrane-forming stock solution containing a polymer, a solvent, and a non-solvent is prepared, and this is discharged from the spinneret through the air running part into the coagulation liquid to produce a hollow fiber type semipermeable membrane. The method for producing a hollow fiber type semipermeable membrane according to (1), which is obtained by rinsing the permeable membrane and then subjecting it to a hydrothermal treatment to shrink the membrane, wherein the polymer concentration in the membrane-forming stock solution is 40 to 45 wt. %, The solvent / non-solvent weight ratio in the membrane forming stock solution is 80/20 to 95/5, and the temperature of the hot water treatment is more than 70 ° C. and 80 ° C. or less, and the solvent It is at least one selected from N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and N, N-dimethylsulfoxide, and the non-solvent is ethylene glycol, diethylene glycol, triethylene glycol , Polyethylene Wherein the at least one selected from glycol.
(3) A hollow fiber type semipermeable membrane module comprising the hollow fiber type semipermeable membrane according to (1).
本発明の中空糸型半透膜は、膜の透水性能が高く、かつ、水と塩の高い分離性能により塩の濃度差を駆動力とした場合の透水量が高くなるように設計されているので、濃度差を駆動力としてエネルギーを生成するための水と圧力を効率良く取り出すことが可能である。 The hollow fiber type semipermeable membrane of the present invention is designed such that the water permeability of the membrane is high and the water permeability is high when the difference in salt concentration is the driving force due to the high separation performance of water and salt. Therefore, it is possible to efficiently extract water and pressure for generating energy using the concentration difference as a driving force.
従来、中空糸型半透膜、特に、塩分と水の高い分離性を有する半透膜は、膜構造の緻密化に主眼がおかれ、基本的には製膜原液中のポリマー濃度を高めに設定し、かつ製膜後の膜に高温の熱水処理を施すことにより膜構造を更に締める方向での開発が行われてきた。このような手法は、高圧の加圧状態で使用する場合の耐久性の付与や高分離性の面では合理的であり、海水を高圧で供給して半透膜でろ過して海水を淡水化する目的の半透膜の開発指向としては妥当である。しかし、供給水に高い圧力を印加せずに、半透膜を介した液体間の濃度差を駆動力として水処理するための半透膜に転用すると、低い有効圧力差(浸透圧差)での処理のために透水量の低いものしか得られないことになる。 Conventionally, hollow fiber type semipermeable membranes, especially semipermeable membranes with high salinity and water separation, have mainly focused on the densification of the membrane structure, basically increasing the polymer concentration in the membrane forming stock solution. Development has been carried out in the direction of further tightening the membrane structure by setting and subjecting the membrane after film formation to high-temperature hydrothermal treatment. Such a method is reasonable in terms of imparting durability and high separability when used in a pressurized state of high pressure, and seawater is supplied at high pressure and filtered through a semipermeable membrane to desalinate the seawater. It is reasonable as a development oriented semi-permeable membrane. However, if a high pressure is not applied to the supply water and the concentration difference between the liquids through the semipermeable membrane is used as a driving force to divert to a semipermeable membrane for water treatment, a low effective pressure difference (osmotic pressure difference) Only a low water permeability can be obtained for the treatment.
本発明者は、塩と水の高い分離性と高い透水性の両立を図るべく、従来の半透膜の開発指向から脱却し、新しい膜設計の概念を取り入れて膜構造の改良を進めてきた。すなわち、中〜高圧で供給水を供給して処理する半透膜よりも更に構造の非対称性を高めるとともに、分離活性層(緻密層)を薄く緻密なものとすることにより、水と塩の分離性と透水性のバランスを高めることができると考えた。また、支持層部での拡散が促進される構造とすることにより、支持層部の濃度分極を低減し、有効な濃度差を確保できるものと考えた。さらに、十分な耐久性を具備しながら最大限のパフォーマンスを発揮する膜モジュール設計については、中空部を流れる流体の流動圧損とモジュール容積あたりの膜面積との関係より中空糸型半透膜の外径と中空率の最適化に着目した。本発明は、これらの技術思想の具現化に向けて試行錯誤を繰り返して完成したものである。 In order to achieve both high separation of salt and water and high water permeability, the present inventor has moved away from the development direction of the conventional semipermeable membrane and has improved the membrane structure by adopting a new membrane design concept. . In other words, separation of water and salt is achieved by increasing the asymmetry of the structure even more than the semipermeable membrane that is processed by supplying supply water at medium to high pressure, and making the separation active layer (dense layer) thin and dense. We thought that the balance of water permeability and water permeability could be improved. Moreover, it was thought that the concentration polarization of the support layer portion can be reduced and an effective concentration difference can be ensured by adopting a structure that promotes diffusion in the support layer portion. Furthermore, regarding membrane module design that exhibits maximum performance while having sufficient durability, the relationship between the flow pressure loss of the fluid flowing through the hollow part and the membrane area per module volume is outside of the hollow fiber type semipermeable membrane. We focused on optimization of diameter and hollowness. The present invention has been completed through repeated trial and error toward the realization of these technical ideas.
本発明の半透膜は、中空糸型の膜であり、素材として酢酸セルロースを採用するのが好ましい。酢酸セルロースは、殺菌剤である塩素に対する耐性があり、微生物の増殖を容易に抑制することができる。従って、膜面での微生物汚染を効果的に抑制できる特長がある。酢酸セルロースの中では、耐久性の点で三酢酸セルロースが好ましい。中空糸型の膜は、スパイラル型の膜と比べてモジュールあたりの膜面積を多くとることができ、中空糸型半透膜の大きさにもよるが、ほぼ同サイズのモジュールの場合、スパイラル型のおよそ10倍の膜面積を得ることができる。従って、中空糸型の膜は、同じ透水量を得る際に単位膜面積あたりの処理量が極めて少なくて良く、供給水が膜を透水する際に生じる膜面の汚れを減少でき、膜の洗浄までの運転時間を長くとることができる。 The semipermeable membrane of the present invention is a hollow fiber type membrane, and it is preferable to employ cellulose acetate as a material. Cellulose acetate is resistant to chlorine, which is a bactericide, and can easily suppress the growth of microorganisms. Therefore, there is a feature that microbial contamination on the film surface can be effectively suppressed. Among cellulose acetates, cellulose triacetate is preferable from the viewpoint of durability. The hollow fiber type membrane can take more membrane area per module than the spiral type membrane, and depending on the size of the hollow fiber type semipermeable membrane, the spiral type About 10 times as large as the membrane area can be obtained. Therefore, the hollow fiber type membrane may have a very small amount of treatment per unit membrane area when obtaining the same water permeability, and can reduce the contamination of the membrane surface that occurs when the feed water permeates the membrane, and the membrane can be washed. The driving time up to can be taken longer.
本発明の半透膜は、低濃度水溶液と高濃度水溶液を膜を介して接触させた際の溶液の濃度差を駆動力として低濃度側から高濃度側に水を透過させて、加圧状態の水を得る。得られた加圧状態の水を用いてエネルギーを生成する方法は特に限定されないが、一例として、水流発電機など、水流でタービンを回転させ、その回転を発電機により電力に変換する方法があげられる。したがって、操作時には高濃度側はタービンを回すために、加圧状態で保持される。この圧力は濃度差が有する浸透圧差より小さく、通常は浸透圧の約半分に設定され、この濃度差(浸透圧差)は淡水が膜を透過する駆動力であり、加圧状態を保持するために、加圧分の圧力を差し引いた値となる。高濃度水溶液の塩濃度は一般に広く存在する海水が代表的であり、高塩濃度域の海水を含めると、3.5%〜7%程度であることから、前記、加圧圧力は0.5〜3MPa程度の範囲が妥当である。一方、低濃度水溶液とは、塩分濃度として、代表的な高濃度水溶液である一般海水の1/10以下の濃度であり、TDS(蒸発残留物濃度)であれば3500mg/L以下であり、浸透圧では0.3MPa以下である。たとえば、河川水、湖沼水や水道水、工業用水、排水処理水などがこれに相当する。 The semipermeable membrane of the present invention is a pressurized state in which water is permeated from the low concentration side to the high concentration side by using the concentration difference between the low concentration aqueous solution and the high concentration aqueous solution through the membrane as a driving force. Get the water. The method of generating energy using the obtained pressurized water is not particularly limited, but as an example, a method of rotating a turbine with a water flow, such as a water flow generator, and converting the rotation into electric power with a generator is given. It is done. Accordingly, during operation, the high concentration side is held in a pressurized state in order to turn the turbine. This pressure is smaller than the osmotic pressure difference of the concentration difference, and is usually set to about half of the osmotic pressure. This concentration difference (osmotic pressure difference) is a driving force through which fresh water permeates the membrane, and maintains the pressurized state. The value obtained by subtracting the pressure for the pressurization is obtained. The salt concentration of the high-concentration aqueous solution is typically seawater that is widely present. When seawater in a high-salt concentration region is included, it is about 3.5% to 7%. A range of about ~ 3 MPa is reasonable. On the other hand, the low-concentration aqueous solution is a concentration of 1/10 or less of general seawater, which is a typical high-concentration aqueous solution, as a salinity concentration, and 3500 mg / L or less for TDS (evaporation residue concentration). The pressure is 0.3 MPa or less. For example, river water, lake water, tap water, industrial water, wastewater treatment water, and the like correspond to this.
半透膜は一般に、操作圧力で分類されるが、5〜8MPaの操作圧力で使用する高圧用の膜は、海水淡水化に使用され、海水の浸透圧を超える圧力に耐えるように非常に緻密な構造を有する。これに対して、本発明の半透膜は濃度差を駆動力として水を透過させるものであり、海水など高濃度側の溶液の浸透圧より低い3MPa以下の操作圧力で使用される。従来の高圧用の膜は、耐圧性を付与するために膜全体が相対的に緻密な構造を有するので、有効圧力差を低下させると、透水量が圧力に比例して低下する。透水量を高めるために膜全体の構造を粗くすると、分離性が低下する。また、従来の低圧用の膜は、中高圧膜をベースとして開発されているためか高い透水性を達成できる構造を有していない。本発明の半透膜は、低圧の有効圧力差で透水性と分離性を高いレベルで達成しており、さらに、濃度差を駆動力として膜に水を透過させる場合に高い透水性能レベルを得る、従来に存在しない設計思想のものである。 Semipermeable membranes are generally classified by operating pressure, but high-pressure membranes used at operating pressures of 5-8 MPa are used for seawater desalination and are very dense to withstand pressures exceeding the osmotic pressure of seawater. It has a simple structure. On the other hand, the semipermeable membrane of the present invention allows water to permeate by using a concentration difference as a driving force, and is used at an operation pressure of 3 MPa or less, which is lower than the osmotic pressure of a high concentration side solution such as seawater. Since the conventional high pressure membrane has a relatively dense structure in order to impart pressure resistance, when the effective pressure difference is reduced, the water permeability decreases in proportion to the pressure. When the structure of the entire membrane is roughened to increase the amount of water permeation, the separability decreases. Further, the conventional low-pressure membrane does not have a structure capable of achieving high water permeability because it has been developed based on a medium-high pressure membrane. The semipermeable membrane of the present invention achieves a high level of water permeability and separability with a low effective pressure difference, and further obtains a high water permeability performance level when water is permeated through the membrane using the concentration difference as a driving force. The design philosophy does not exist in the past.
本発明の半透膜は、25℃の塩化ナトリウム濃度35g/L、圧力1.0MPaの水溶液を、長さが約70cmの中空糸型半透膜の外側に流入させ、25℃の塩化ナトリウム濃度0g/Lの淡水を中空糸型半透膜の一方の開口端部より導入して他方の開口端部より10kPa以下で排出させた場合に、濃度差を駆動力として、中空糸型半透膜の内側から外側へ向かって水が透過する場合、その透水量の2倍が中空糸型半透膜の外側に流れる流量であって、かつ、中空糸型半透膜の他端部の開口部から排出する流量が該透水量の10%となる条件での膜面積あたりの該透水量が30〜90L/m2/日であり、塩化ナトリウム濃度1.5g/Lの水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過した際の透水量が100〜300L/m2/日であり、外径が100〜280μmであり、内径が50〜200μmであり、中空率が24〜42%であることを特徴とする。塩化ナトリウム濃度を35g/Lとしたのは、自然界に豊富に存在する海水と淡水との濃度差での使用を意図したものであり、34.5g/L〜35.4g/Lの範囲である。また、淡水側の塩化ナトリウム濃度が0g/Lとしたのは、自然界で容易に得られる低浸透圧の淡水を想定したものであり、200mg/L以下を意味する。圧力が1.0MPaとは、0.95〜1.04MPaの範囲であり、また、淡水側の出口圧は実質大気圧を意味するが実用上生じる圧力損失等を考慮し10kPa以下とした。この値に設定したのは、海水と淡水の濃度差から得られる水量と圧力から最も効率的にエネルギーが生成される圧力領域であるためである。また、濃度差を駆動力として得られる透水量は、膜表面の塩濃度や濃度分極の影響を受けるため、透水量の値を規定する条件を、その透水量の2倍が中空糸型半透膜の外側に流れる流量であって、かつ中空糸型半透膜の他端部の開口部から排出する流量が該透水量の10%となる条件に実用面を考慮して設定した。10%とは9.5%〜10.4%の範囲である。また、中空糸型半透膜の長さにより、中空内部の流速や、圧力損失が異なるため、透水量規定時の中空糸型半透膜の長さを約70cmと規定した。透水量は、必要膜面積の低減や処理量の増大を図るために高い方がよく、従来の中空糸型やスパイラル型に対する競争力の点から40L/m2/日以上が好ましく、より好ましくは50L/m2/日以上であり、さらに好ましくは60L/m2/日以上である。透水量は高すぎても問題は生じないが、達成すべき分離性能とのバランスからみて上限値は90L/m2/日である。また、濃度差による透水量は、一般には圧力差による透水量が高い膜ほど高い傾向があり、これは膜の内部を水が透過する場合の流動抵抗が小さいためと考えられるが、塩の除去性能が高くない場合や、膜の内部の塩分の拡散が小さい膜構造のため分離機能を有する膜表面での濃度分極が大きい場合は、膜を介する有効な濃度差が低くなり、たとえ、圧力による透水量が高くても、濃度差による透水量が低くなる場合が存在する。
本発明おける中空糸型半透膜の場合は、塩の低濃度溶液側への漏洩が小さいレベルであり、膜を介しての濃度差が塩分の漏洩により低下することなく、安定して確保されており、膜内部の塩分の拡散が確保されて濃度分極が小さいと予想されるため、圧力差による透水量が高く透過抵抗が小さいほど、濃度差による透水量も大きくなる。
なお、濃度差を駆動力として淡水を透過させる場合、淡水を透過させる方向が中空糸型半透膜の外側から内側に向かっての場合と中空糸型半透膜の内側から外側に向かっての場合が考えられる。高濃度溶液の溶質の濃度、特性や流量レベル等を考慮して適宜設定することが可能である。
The semipermeable membrane of the present invention is an aqueous solution having a sodium chloride concentration of 35 g / L at 25 ° C. and a pressure of 1.0 MPa, which flows outside the hollow fiber type semipermeable membrane having a length of about 70 cm. When 0 g / L of fresh water is introduced from one open end of the hollow fiber type semipermeable membrane and discharged at 10 kPa or less from the other open end, the hollow fiber type semipermeable membrane is obtained using the concentration difference as a driving force. When water permeates from the inner side to the outer side, the amount of water permeation is twice the flow rate flowing to the outside of the hollow fiber type semipermeable membrane, and the opening at the other end of the hollow fiber type semipermeable membrane The water flow rate per membrane area under the condition that the flow rate discharged from the water flow rate is 10% of the water flow rate is 30 to 90 L / m 2 / day, and an aqueous solution having a sodium chloride concentration of 1.5 g / L is 25 ° C. When filtering from the outside to the inside of the hollow fiber type semipermeable membrane at a pressure of 1.5 MPa Water is at 100~300L / m 2 / day, an outer diameter of 100~280Myuemu, inner diameter of 50 to 200 [mu] m, hollow ratio is characterized in that it is a 24 to 42%. The sodium chloride concentration of 35 g / L is intended for use in a concentration difference between seawater and fresh water that are abundant in nature, and is in the range of 34.5 g / L to 35.4 g / L. . The sodium chloride concentration on the fresh water side of 0 g / L is assumed to be fresh water with low osmotic pressure that can be easily obtained in nature, and means 200 mg / L or less. The pressure of 1.0 MPa is in the range of 0.95 to 1.04 MPa, and the outlet pressure on the fresh water side is substantially atmospheric pressure, but it is set to 10 kPa or less in consideration of pressure loss that occurs in practice. This value is set because it is a pressure region where energy is generated most efficiently from the amount and pressure of water obtained from the difference in concentration between seawater and fresh water. In addition, the water permeability obtained by using the concentration difference as the driving force is affected by the salt concentration and concentration polarization on the membrane surface. Therefore, the condition that defines the value of the water permeability is twice that of the water permeability. The flow rate that flows to the outside of the membrane and the flow rate that is discharged from the opening at the other end of the hollow fiber type semipermeable membrane was set to 10% of the water permeability in consideration of practical aspects. 10% is in the range of 9.5% to 10.4%. Moreover, since the flow velocity and pressure loss inside the hollow differ depending on the length of the hollow fiber type semipermeable membrane, the length of the hollow fiber type semipermeable membrane when the water permeation amount is defined is defined as about 70 cm. The water permeability is preferably high in order to reduce the required membrane area and increase the throughput, and is preferably 40 L / m 2 / day or more, more preferably from the viewpoint of competitiveness with the conventional hollow fiber type or spiral type. 50 L / m 2 / day or more, more preferably 60 L / m 2 / day or more. Although there is no problem even if the water permeability is too high, the upper limit is 90 L / m 2 / day in view of the balance with the separation performance to be achieved. In addition, the water permeability due to the concentration difference generally tends to be higher as the membrane has a higher water permeability due to the pressure difference. This is thought to be because the flow resistance when water permeates inside the membrane is small, but the removal of salt When the performance is not high, or when the concentration polarization on the surface of the membrane having a separation function is large due to the membrane structure with small salt diffusion inside the membrane, the effective concentration difference through the membrane is low, even depending on the pressure Even if the water permeability is high, there are cases where the water permeability due to the concentration difference is low.
In the case of the hollow fiber type semipermeable membrane in the present invention, the leakage of the salt to the low-concentration solution side is a small level, and the concentration difference through the membrane is not lowered due to the leakage of the salt, and can be secured stably. Since the diffusion of salt inside the membrane is ensured and the concentration polarization is expected to be small, the greater the amount of water permeation due to the pressure difference and the smaller the permeation resistance, the greater the amount of water permeation due to the concentration difference.
In addition, when allowing fresh water to permeate using the concentration difference as a driving force, the direction in which fresh water permeates is from the outside to the inside of the hollow fiber type semipermeable membrane and from the inside to the outside of the hollow fiber type semipermeable membrane. There are cases. It can be set as appropriate in consideration of the concentration, characteristics, flow rate level, etc. of the solute of the high concentration solution.
本発明の半透膜は、濃度差を駆動力とした水処理に用いた場合に最大のパフォーマンスを発現できるように設計されたものであるが、比較的低い圧力差を駆動力とした水処理においても優れた選択透過性能を有するものである。塩化ナトリウム濃度1.5g/Lの水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過した際の透水量が100〜300L/m2/日であり、塩除去率が96.0〜99.9%を発現することが可能である。圧力1.5MPaでの濾過時の値を規定したのは、本発明の半透膜が低圧の操作圧力での使用を意図しているからである。透水量は、水処理時の設置スペースの低減や処理量の増大を図るために高い方がよく、従来の中空糸型やスパイラル型に対するコンパクト性のメリットの点から好ましくは120L/m2/日以上、より好ましくは140L/m2/日以上である。透水量は高すぎても問題は生じないが、達成すべき塩除去率とのバランスからみて上限値は300L/m2/日である。塩除去率は、達成すべき透水量とのバランスから考慮すべきであり、96.0〜99.9%、好ましくは97.0〜99.5%、より好ましくは98.0〜99.0%である。 The semipermeable membrane of the present invention is designed so that the maximum performance can be exhibited when used for water treatment with concentration difference as driving force, but water treatment with relatively low pressure difference as driving force. Also has excellent selective permeation performance. The water permeability when an aqueous solution with a sodium chloride concentration of 1.5 g / L is filtered from the outside to the inside of the hollow fiber type semipermeable membrane at 25 ° C. and a pressure of 1.5 MPa is 100 to 300 L / m 2 / day. It is possible to express a salt removal rate of 96.0 to 99.9%. The value at the time of filtration at a pressure of 1.5 MPa was defined because the semipermeable membrane of the present invention is intended for use at a low operating pressure. The water permeation amount is preferably high in order to reduce the installation space during water treatment and increase the treatment amount, and is preferably 120 L / m 2 / day from the viewpoint of the advantage of compactness over the conventional hollow fiber type and spiral type. As mentioned above, More preferably, it is 140 L / m < 2 > / day or more. Although there is no problem if the water permeability is too high, the upper limit is 300 L / m 2 / day in view of the balance with the salt removal rate to be achieved. The salt removal rate should be considered from the balance with the water permeability to be achieved, and is 96.0 to 99.9%, preferably 97.0 to 99.5%, and more preferably 98.0 to 99.0. %.
本発明の半透膜は、外表面近傍に緻密層を有し、該緻密層の厚みが0.1〜7μmであることが好ましい。実質の分離活性層である緻密層の厚みは薄い方が、透水抵抗が小さくなるため好ましく、6μm以下がより好ましく、5μm以下がさらに好ましい。しかし、緻密層が薄すぎると、潜在的な膜構造の欠陥が顕在化しやすくなり、1価イオンの漏出を抑えることが困難になるとか、膜の耐久性が低下するなどの問題が発生することがある。したがって、緻密層の厚みは0.5μm以上がより好ましく、1μm以上がさらに好ましい。また、従来の圧力差をドライビングフォースとした逆浸透膜においては、膜表面の濃度分極が膜性能に大きな影響を与えるが、濃度差をドライビングフォースとする本発明の膜開発においては、膜内部での濃度分極の影響を考慮する必要があり、改良している。 The semipermeable membrane of the present invention preferably has a dense layer near the outer surface, and the dense layer preferably has a thickness of 0.1 to 7 μm. The dense layer, which is a substantial separation active layer, is preferably as thin as possible because the water permeation resistance is small, preferably 6 μm or less, and more preferably 5 μm or less. However, if the dense layer is too thin, potential defects in the membrane structure are likely to be manifested, and it becomes difficult to suppress the leakage of monovalent ions, or the durability of the membrane may decrease. There is. Therefore, the thickness of the dense layer is more preferably 0.5 μm or more, and further preferably 1 μm or more. In reverse osmosis membranes using a conventional pressure difference as the driving force, the concentration polarization on the membrane surface has a significant effect on the membrane performance. The effect of concentration polarization must be taken into account and improved.
本発明の半透膜は、濃度差を駆動力として低濃度水溶液から膜を介して加圧状態の高濃度水溶液へ水を透過させるため、従来の高圧タイプの半透膜のような耐圧性は必要としないが、ある程度の耐圧性は長期に安定的に使用するために必要な特性である。一般的に、高分子からなる半透膜は、加圧下状態では膜の圧密化が生じ透水性能が低下する。その経時変化は一般的には時間の負の指数関数で近似され、運転初期の変化率は大きいが、時間と共に安定化する。よって、運転初期の透水性能の変化率を長期の性能安定性の推定指標とすることができる。たとえば、24時間経過時の透水量と初期(1時間経過時)の透水量の比率で表される透水量比は耐圧性を示す性能保持率となりうる。これが0.7以上であることが好ましく、0.85以上がより好ましく、0.9以上がさらに好ましい。また、耐圧性の評価圧力は実際の運転条件(0.5〜3MPa)を考慮して3MPaを設定している。ここでの運転条件では、高濃度側にはタービンを回すために、加圧状態で保持され、この圧力は濃度差が有する浸透圧差より小さく、通常は浸透圧の約半分に設定される。高濃度側の塩濃度としては一般に広く存在する海水が代表的であり、高塩濃度地域の海水を含めると、3.5%〜7%程度であることから、その浸透圧3MPa〜6MPaを考慮すれば、運転条件での加圧圧力の最大値は3MPa程度であり、3MPa程度の耐圧性、耐久性を確保すれば実用的である。 Since the semipermeable membrane of the present invention allows water to permeate from the low concentration aqueous solution through the membrane to the pressurized high concentration aqueous solution using the concentration difference as a driving force, the pressure resistance as in the conventional high pressure type semipermeable membrane is not Although not required, a certain level of pressure resistance is a characteristic necessary for stable use over a long period of time. In general, a semipermeable membrane made of a polymer causes the membrane to be consolidated in a state under pressure, resulting in a decrease in water permeability. The change with time is generally approximated by a negative exponential function of time, and the rate of change at the beginning of operation is large, but stabilizes with time. Therefore, the rate of change in water permeability performance at the initial stage of operation can be used as an estimation index for long-term performance stability. For example, the water permeability ratio represented by the ratio of the water permeability at the time of 24 hours and the initial water permeability (at the time of 1 hour) can be a performance retention ratio indicating pressure resistance. This is preferably 0.7 or more, more preferably 0.85 or more, and even more preferably 0.9 or more. The pressure resistance evaluation pressure is set to 3 MPa in consideration of actual operating conditions (0.5 to 3 MPa). Under the operating conditions here, in order to rotate the turbine on the high concentration side, it is held in a pressurized state, and this pressure is smaller than the osmotic pressure difference that the concentration difference has, and is usually set to about half of the osmotic pressure. As the salt concentration on the high concentration side, seawater that is widely present is typical, and when including seawater in areas with high salt concentration, it is about 3.5% to 7%, so the osmotic pressure of 3 MPa to 6 MPa is considered. In this case, the maximum value of the pressurizing pressure under the operating conditions is about 3 MPa, and it is practical if pressure resistance and durability of about 3 MPa are ensured.
本発明の半透膜の内径は、50〜200μm、好ましくは65〜190μm、より好ましくは75〜160μmである。内径が上記範囲より小さいと、中空部を流れる流体の圧力損失が一般に大きくなるため、中空糸型半透膜の長さを比較的長くした場合に所望の淡水流量を流す場合に過大に高い圧力が必要となり、エネルギーロスの原因となり好ましくない。一方、内径が上記範囲より大きいと、中空率とモジュール膜面積がトレードオフの関係となり、使用圧力における耐久性または単位容積あたりの膜面積のいずれかを犠牲にする必要が生じる。 The inner diameter of the semipermeable membrane of the present invention is 50 to 200 μm, preferably 65 to 190 μm, more preferably 75 to 160 μm. If the inner diameter is smaller than the above range, the pressure loss of the fluid flowing through the hollow portion is generally increased. Therefore, if the length of the hollow fiber type semipermeable membrane is relatively long, an excessively high pressure is applied when a desired flow rate of fresh water flows. This is not preferable because it causes energy loss. On the other hand, when the inner diameter is larger than the above range, the hollow ratio and the module membrane area are in a trade-off relationship, and it is necessary to sacrifice either the durability at the working pressure or the membrane area per unit volume.
本発明の半透膜の外径は、100〜280μm、好ましくは115〜270μm、より好ましくは120〜250μmである。外径が上記範囲より小さいと、必然的に内径も小さくなるため、上述の内径と同じ問題が生じる。一方、外径が上記範囲より大きいと、モジュールにおける単位容積あたりの膜面積を大きくすることができなくなり、中空糸型半透膜モジュールのメリットの一つであるコンパクト性が損なわれる。 The outer diameter of the semipermeable membrane of the present invention is 100 to 280 μm, preferably 115 to 270 μm, more preferably 120 to 250 μm. If the outer diameter is smaller than the above range, the inner diameter inevitably becomes smaller, so the same problem as the above-mentioned inner diameter occurs. On the other hand, if the outer diameter is larger than the above range, the membrane area per unit volume in the module cannot be increased, and the compactness, which is one of the merits of the hollow fiber type semipermeable membrane module, is impaired.
本発明の半透膜の中空率は、24〜42%が好ましく、25〜40%がより好ましく、26〜38%がさらに好ましい。中空率が上記範囲より小さいと、膜抵抗が大きくなり、所望の透水量が得られない可能性がある。また、中空率が上記範囲より大きいと、低圧処理での使用であっても十分な耐圧性を確保できない可能性がある。
なお、中空率(%)は下記式により求めることができる。
中空率(%)=(内径/外径)2×100
The hollowness of the semipermeable membrane of the present invention is preferably 24 to 42%, more preferably 25 to 40%, and still more preferably 26 to 38%. When the hollow ratio is smaller than the above range, the membrane resistance increases and the desired water permeability may not be obtained. Moreover, when the hollow ratio is larger than the above range, there is a possibility that sufficient pressure resistance cannot be ensured even when used in low pressure processing.
The hollow ratio (%) can be obtained by the following formula.
Hollow ratio (%) = (inner diameter / outer diameter) 2 × 100
本発明の半透膜の長さは、15〜500cmが好ましく、20〜400cmがより好ましく、25〜300cmがさらに好ましい。この長さは、中空糸型半透膜モジュールで一般に使用される可能性のある範囲である。但し、長さが上記範囲を逸脱すると、低い運転コストで透水性と塩除去性を両立することが困難になる可能性がある。 The length of the semipermeable membrane of the present invention is preferably 15 to 500 cm, more preferably 20 to 400 cm, and even more preferably 25 to 300 cm. This length is a range which may be generally used in a hollow fiber type semipermeable membrane module. However, if the length deviates from the above range, it may be difficult to achieve both water permeability and salt removability at a low operating cost.
次に、本発明の半透膜の製造方法の一例について説明する。本発明の半透膜は、図1に示すように、製膜原液を紡糸口金から空中走行部を経て凝固浴中に吐出して中空糸型半透膜を製造し、この中空糸型半透膜を水洗した後に熱水処理に供して膜を収縮させることによって製造される。本発明の半透膜の製造方法は、膜の非対称化を促進するために、製膜原液中のポリマー濃度を比較的高めに設定するとともに溶媒/非溶媒比を高めに設定したことを特徴とする。このような特徴の製膜原液を高温のノズルより吐出すると、空中走行部でより多くの溶媒が蒸発するのでポリマーの凝集(核化)が起こる。続く凝固浴においては、溶媒濃度を低く設定しているので、相分離が進行するよりも早く凝固が完了するため、中空糸型半透膜の外表面構造がより薄く緻密化されることになる。一方、内表面側(中空部側)は閉鎖系であり溶媒蒸発が制限されているので、空中走行部から凝固浴にかけてポリマーの核化→成長(相分離の進行)が進み、よって非対称化が促進する。このようにして得られた中空糸型半透膜を、特定の範囲の温度条件で熱水処理することにより適度な膜収縮を生じさせて外表面層の緻密化を行うとともに、支持層部がややルーズな状態で膜構造の固定を行う。 Next, an example of the manufacturing method of the semipermeable membrane of the present invention will be described. As shown in FIG. 1, the semipermeable membrane of the present invention is a hollow fiber type semipermeable membrane produced by discharging a membrane forming stock solution from a spinneret through an aerial running section into a coagulation bath. The membrane is produced by washing the membrane with water and then subjecting it to a hydrothermal treatment to shrink the membrane. The method for producing a semipermeable membrane of the present invention is characterized in that, in order to promote asymmetry of the membrane, the polymer concentration in the membrane forming stock solution is set relatively high and the solvent / non-solvent ratio is set high. To do. When the film-forming stock solution having such characteristics is discharged from a high-temperature nozzle, a larger amount of solvent evaporates in the aerial traveling section, so that polymer aggregation (nucleation) occurs. In the subsequent coagulation bath, since the solvent concentration is set low, the solidification is completed faster than the phase separation proceeds, so that the outer surface structure of the hollow fiber type semipermeable membrane is made thinner and denser. . On the other hand, since the inner surface side (hollow part side) is a closed system and evaporation of the solvent is restricted, polymer nucleation → growth (progress of phase separation) proceeds from the aerial traveling part to the coagulation bath, and asymmetry is thus reduced. Facilitate. The hollow fiber type semipermeable membrane thus obtained is subjected to hydrothermal treatment under a specific range of temperature conditions to cause appropriate membrane shrinkage and densify the outer surface layer. Fix the membrane structure in a slightly loose state.
製膜原液としては、膜素材の酢酸セルロースと溶媒と非溶媒を含むものを使用し、必要により有機酸および/または有機アミンを加えたものを使用する。酢酸セルロースは、三酢酸セルロースを使用することが好ましい。溶媒は、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N−ジメチルスルホキシドから選ばれる1種以上を使用することが好ましい。より好ましくは、N−メチル−2−ピロリドンである。非溶媒は、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコールから選ばれる1種以上を使用することが好ましい。より好ましくは、エチレングリコールである。有機酸は、アミノ酸、芳香族カルボン酸、ヒドロキシ酸、アルコキシ酸、二塩基酸またはそのヒドロキシモノエステルが好ましい。より好ましくは、フタル酸、酒石酸、ε−アミノ−n−カプロン酸、安息香酸、4−メチルアミノ酪酸、p−オキシ安息香酸、マレイン酸であり、1種以上を混合して使用することができる。有機アミンは、一級、二級、三級ヒドロキシアルキルアミンのいずれでも使用できる。具体的には、モノエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミンが好ましい。トリイソプロパノールアミンが特に好ましい。 As the membrane forming stock solution, a membrane material containing cellulose acetate, a solvent and a non-solvent is used, and if necessary, an organic acid and / or an organic amine is added. Cellulose acetate is preferably cellulose triacetate. The solvent is preferably one or more selected from N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and N, N-dimethylsulfoxide. More preferred is N-methyl-2-pyrrolidone. The non-solvent is preferably one or more selected from ethylene glycol, diethylene glycol, triethylene glycol, and polyethylene glycol. More preferably, it is ethylene glycol. The organic acid is preferably an amino acid, an aromatic carboxylic acid, a hydroxy acid, an alkoxy acid, a dibasic acid or a hydroxy monoester thereof. More preferably, they are phthalic acid, tartaric acid, ε-amino-n-caproic acid, benzoic acid, 4-methylaminobutyric acid, p-oxybenzoic acid, and maleic acid, and one or more kinds can be mixed and used. . As the organic amine, any of primary, secondary, and tertiary hydroxyalkylamine can be used. Specifically, monoethanolamine, triethanolamine, diisopropanolamine, and triisopropanolamine are preferable. Triisopropanolamine is particularly preferred.
製膜原液中の酢酸セルロースの濃度は40〜45重量%であることが好ましい。酢酸セルロースの濃度が上記範囲より低いと、中空糸型半透膜構造が粗くなりすぎて十分な分離性能および膜強度が得られないことがあり、上記範囲より高いと、製膜原液の粘度が高くなり、製膜の安定性が得られないとか、得られる膜の透水性を高めることができなくなる可能性がある。また、製膜原液中の溶媒/非溶媒の重量比は80/20〜95/5であることが好ましい。溶媒/非溶媒の重量比が上記範囲より低いと、溶媒蒸発が進行しないため膜表面の構造が緻密化せず、透水性は大きく変化しないが分離性能が低いものとなり、上記範囲より高いと、極端な非対称膜化が進行して膜強度が得られない可能性がある。 The concentration of cellulose acetate in the film-forming stock solution is preferably 40 to 45% by weight. If the concentration of cellulose acetate is lower than the above range, the hollow fiber type semipermeable membrane structure may become too coarse, and sufficient separation performance and membrane strength may not be obtained. There is a possibility that the stability of the film formation cannot be obtained or the water permeability of the obtained film cannot be increased. Moreover, it is preferable that the weight ratio of the solvent / non-solvent in the film-forming stock solution is 80/20 to 95/5. If the solvent / non-solvent weight ratio is lower than the above range, the evaporation of the solvent does not proceed, the membrane surface structure is not densified, and the water permeability does not change greatly, but the separation performance is low. There is a possibility that the film strength cannot be obtained due to the progress of extreme asymmetric film formation.
次に、上記のようにして得られた製膜原液を90〜190℃に加熱して溶解し、得られた製膜原液を150〜180℃に加熱したアーク型、C型、チューブインオリフィス型ノズルより押出す。チューブインオリフィス型ノズルを使用する場合は、中空形成材として空気、窒素、二酸化炭素、アルゴンなどを使用することが好ましい。押出された製膜原液は、0.02〜0.4秒間、空中走行部(気体雰囲気中)を通過した後、続いて水性凝固浴に浸漬して凝固される。 Next, the film-forming stock solution obtained as described above is dissolved by heating to 90 to 190 ° C., and the obtained film-forming stock solution is heated to 150 to 180 ° C., arc type, C type, tube-in-orifice type Extrude from nozzle. When a tube-in-orifice type nozzle is used, it is preferable to use air, nitrogen, carbon dioxide, argon or the like as the hollow forming material. The extruded film-forming stock solution passes through the aerial traveling part (in the gas atmosphere) for 0.02 to 0.4 seconds, and then is immersed in an aqueous coagulation bath to be solidified.
凝固浴は、製膜原液に使用した溶媒、非溶媒と同一組成のものを使用することが好ましい。凝固浴の組成割合は、溶媒/非溶媒/水(重量比)=0〜15/0〜8/100〜77が好ましい。水の比率が低すぎると、膜の相分離が進行し、細孔径が大きくなりすぎることがある。水100%でも良いが、連続製膜において凝固浴からの廃液の量が多くなる。 It is preferable to use a coagulation bath having the same composition as the solvent and non-solvent used in the film-forming stock solution. The composition ratio of the coagulation bath is preferably solvent / non-solvent / water (weight ratio) = 0 to 15/0 to 8/100 to 77. If the water ratio is too low, phase separation of the membrane proceeds and the pore size may become too large. Although 100% water may be used, the amount of waste liquid from the coagulation bath increases in continuous film formation.
凝固浴から引き上げた中空糸型半透膜は、残存する溶媒、非溶媒等を水で洗浄除去する。水洗方式としては、例えば、長尺傾斜樋に水洗水を流下させ、その水洗水中に中空糸型半透膜を通して水洗する多段傾斜樋水洗方式、また2本の長尺ローラーに互いに角度をもたせ、ローラーに中空糸型半透膜を何重にも捲き上げるネルソンローラーにおいて、ネルソンローラー表面を常に水洗水で濡らし、該水洗水と中空糸型半透膜との接触で水洗するネルソンローラー水洗方式、更にネット上に中空糸型半透膜を振り落し、シャワー水によって水洗するネットシャワー水洗方式、また中空糸型半透膜を直接深槽水洗水中に浸漬水洗する浸漬水洗方式等がある。本発明においては、いずれの水洗方式で水洗してもよい。 The hollow fiber type semipermeable membrane pulled up from the coagulation bath is washed away with residual solvent, non-solvent and the like with water. As the water washing method, for example, flush water is allowed to flow through a long sloping bowl, and the multi-stage sloping water washing system in which the water is washed through the hollow fiber type semipermeable membrane in the washing water, and the two long rollers have an angle with each other, In the Nelson roller where the hollow fiber type semipermeable membrane is rolled up several times on the roller, the surface of the Nelson roller is always wetted with washing water, and the water is washed by contact with the washing water and the hollow fiber type semipermeable membrane. Further, there are a net shower rinsing method in which the hollow fiber type semipermeable membrane is shaken off on the net and washed with shower water, and an immersion water rinsing method in which the hollow fiber type semipermeable membrane is directly immersed in deep bath rinsing water. In the present invention, water may be washed by any washing method.
水洗処理を施した中空糸型半透膜は、無緊張状態で水中に浸漬し、70℃より高く80℃以下の温度で5〜60分間、熱水処理を行うことが好ましい。より好ましくは72〜80℃でさらに好ましくは74〜80℃で熱水処理を施すことによって、膜構造の固定化や寸法安定性の向上、熱安定性の向上を図ることができる。このような目的のため、通常、熱水処理は、ガラス転移温度よりも高く融点よりも低い温度が採用される。酢酸セルロースを使用する場合においても、一般的に湿潤状態において90℃以上の熱水処理温度が採用されるが、本発明においては、70℃超80℃以下の特定の範囲の処理温度を採用することにより膜構造の過度の緻密化を抑制している。 It is preferable that the hollow fiber type semipermeable membrane subjected to the water washing treatment is immersed in water in an unstrained state and subjected to hot water treatment at a temperature higher than 70 ° C. and not higher than 80 ° C. for 5 to 60 minutes. More preferably, the hydrothermal treatment is performed at 72 to 80 ° C., and more preferably at 74 to 80 ° C., thereby fixing the membrane structure, improving the dimensional stability, and improving the thermal stability. For this purpose, the hot water treatment is usually performed at a temperature higher than the glass transition temperature and lower than the melting point. Even when cellulose acetate is used, a hydrothermal treatment temperature of 90 ° C. or higher is generally adopted in a wet state, but in the present invention, a treatment temperature in a specific range of more than 70 ° C. and 80 ° C. or less is adopted. This suppresses excessive densification of the film structure.
熱水処理温度が上記範囲より高いと、膜構造の緻密化が進みすぎて塩除去性と透水性のバランスが崩れることがあり、逆に、上記範囲より低いと、膜構造の非対称性が十分でなく、所望の塩除去性能が得られないことがある。熱水処理時間は、通常5〜60分である。処理時間が短すぎると、十分な熱水処理効果が得られない可能性がある。また、膜構造に不均一が生じることがある。処理時間が長すぎると、製造コストアップに繋がるだけでなく、膜が緻密化しすぎて所望の性能バランスが得られないことがある。 If the hydrothermal treatment temperature is higher than the above range, the membrane structure may become too dense and the balance between salt removal and water permeability may be lost. Conversely, if the temperature is lower than the above range, the asymmetry of the membrane structure is sufficient. In addition, the desired salt removal performance may not be obtained. The hot water treatment time is usually 5 to 60 minutes. If the treatment time is too short, a sufficient hydrothermal treatment effect may not be obtained. In addition, non-uniformity may occur in the film structure. If the treatment time is too long, not only will the production cost increase, but the membrane may become too dense, and the desired performance balance may not be obtained.
上記のようにして得られた本発明の中空糸型半透膜は、中空糸型半透膜モジュールとして組み込まれる。一例として、従来公知の方法による半透膜の組み込み方法があり、例えば、特許4412486号公報、特許4277147号公報、特許3591618号公報、特許3008886号公報などに記載されているように、例えば、中空糸型半透膜を45〜90本集めて1つの中空糸型半透膜集合体とし、さらにこの中空糸型半透膜集合体を複数横に並べて偏平な中空糸型半透膜束として、多数の孔を有する芯管にトラバースさせながら巻き付ける。この時の巻き付け角度は5〜60度とし、巻き上げ体の特定位置の周面上に交差部が形成するように巻き上げる。次に、この巻き上げ体の両端部を接着した後、片側のみ/または両側を切削して中空糸開口部を形成させ中空糸型半透膜エレメントを作成する。得られた中空糸型半透膜エレメントを圧力容器に挿入して中空糸型半透膜モジュールを組立てる。 The hollow fiber type semipermeable membrane of the present invention obtained as described above is incorporated as a hollow fiber type semipermeable membrane module. As an example, there is a method of incorporating a semipermeable membrane by a conventionally known method. For example, as described in Japanese Patent No. 4421486, Japanese Patent No. 4277147, Japanese Patent No. 3591618, Japanese Patent No. 3008886, etc. 45 to 90 thread type semipermeable membranes are collected to form one hollow fiber type semipermeable membrane assembly, and a plurality of hollow fiber type semipermeable membrane assemblies are arranged side by side as a flat hollow fiber type semipermeable membrane bundle. Wrap while traversing around a core tube with many holes. The winding angle at this time is set to 5 to 60 degrees, and the winding body is wound up so that the intersecting portion is formed on the peripheral surface of the specific position. Next, after bonding both ends of the wound body, only one side or both sides are cut to form a hollow fiber opening to form a hollow fiber type semipermeable membrane element. The obtained hollow fiber type semipermeable membrane element is inserted into a pressure vessel to assemble a hollow fiber type semipermeable membrane module.
本発明の中空糸型半透膜を用いたモジュールは、0.5〜3.0MPaの加圧状態の高濃度水溶液に濃度差を駆動力として低濃度側の水溶液から淡水を透過させて、増加した加圧水を利用してエネルギーを生成する用途に好適である。好ましい高濃度水溶液には、自然界に豊富に存在する海水、濃縮海水、または人工的に得られる高濃度水溶液であり、好ましい高濃度水溶液の濃度は高いほど良く、その浸透圧は溶質の分子量にもよるが、0.5〜10MPaであり、好ましくは1〜7MPa、より好ましくは2〜6MPaである。本発明の中空糸型半透膜を用いたモジュールによれば、膜の透水性能が高く、かつ水と塩の高い分離性により塩の濃度差を駆動力とした場合に透水量が高くなるように設計されているので、濃度差を駆動力として加圧状態の水を効率良く得ることが可能である。 The module using the hollow fiber type semipermeable membrane of the present invention increases the concentration of a high-concentration aqueous solution in a pressurized state of 0.5 to 3.0 MPa by allowing fresh water to permeate from the low-concentration aqueous solution using a concentration difference as a driving force. It is suitable for an application for generating energy using the pressurized water. Preferred high-concentration aqueous solutions include seawater that is abundant in nature, concentrated seawater, or artificially-obtained high-concentration aqueous solutions. The higher the concentration of the preferred high-concentration aqueous solution, the better, and the osmotic pressure also depends on the molecular weight of the solute. However, it is 0.5 to 10 MPa, preferably 1 to 7 MPa, and more preferably 2 to 6 MPa. According to the module using the hollow fiber type semipermeable membrane of the present invention, the water permeability is high when the membrane has high water permeability and the difference in salt concentration is used as the driving force due to the high separation between water and salt. Therefore, it is possible to efficiently obtain pressurized water using the concentration difference as a driving force.
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で測定された特性値の測定は、以下の方法に従った。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measurement of the characteristic value measured in the Example followed the following method.
(1)内径、外径、中空率
中空糸型半透膜の内径、外径および膜厚は、中空糸型半透膜をスライドグラスの中央に開けられたφ3mmの孔に中空糸型半透膜が抜け落ちない程度に適当本数通し、スライドグラスの上下面に沿ってカミソリにより中空糸型半透膜をカットし、中空糸型半透膜断面サンプルを得た後、投影機Nikon PROFILE PROJECTOR V−12を用いて中空糸型半透膜断面の短径、長径を測定することにより得られる。中空糸型半透膜断面1個につき2方向の短径、長径を測定し、それぞれの算術平均値を中空糸型半透膜断面1個の内径および外径とし、膜厚は(外径−内径)/2で算出した。5つの断面について同様に測定を行い、平均値を内径、外径、膜厚とした。
中空率は(内径/外径)2×100で算出した。
(1) Inner diameter, outer diameter, and hollow ratio The inner diameter, outer diameter, and film thickness of the hollow fiber type semipermeable membrane are determined by inserting the hollow fiber type semipermeable membrane into a hole of φ3 mm formed in the center of the slide glass. A suitable number of membranes are passed so that the membrane does not fall off, and the hollow fiber type semipermeable membrane is cut with a razor along the upper and lower surfaces of the slide glass to obtain a hollow fiber type semipermeable membrane cross-section sample, and then the projector Nikon PROFILE PROJECTOR V- 12 is used to measure the minor axis and major axis of the cross section of the hollow fiber type semipermeable membrane. For each cross section of the hollow fiber type semipermeable membrane, the minor axis and the long axis are measured in two directions, and the arithmetic average values thereof are taken as the inner diameter and the outer diameter of one cross section of the hollow fiber type semipermeable membrane. (Inner diameter) / 2. The same measurement was performed for the five cross sections, and the average values were taken as the inner diameter, outer diameter, and film thickness.
The hollow ratio was calculated by (inner diameter / outer diameter) 2 × 100.
(2)圧力差による透水量
中空糸型半透膜を束ねて、プラスチック製スリーブに挿入した後、熱硬化性樹脂をスリーブに注入し、硬化させ封止した。熱硬化性樹脂で硬化させた中空糸型半透膜の端部を切断することで中空糸型半透膜の開口面を得て、外径基準の膜面積がおよそ0.1m2の評価用モジュールを作製した。この評価用モジュールを供給水タンク、ポンプからなる膜性能試験装置に接続し、性能評価した。
塩化ナトリウム濃度1.5g/Lの供給水溶液を、25℃、圧力1.5MPaで中空糸型半透膜の外側から内側へ向かって濾過して1時間運転する。その後、中空糸型半透膜の開口面より膜透過水を採取して、電子天秤(島津製作所 LIBROR EB−3200D)で透過水重量を測定した。透過水重量は、下記式にて25℃の透過水量に換算した。
透過水量(L)=透過水重量(kg)/0.99704(kg/L)
透水量(FR)は下記式より算出する。
FR[L/m2/日]=透過水重量[L]/外径基準膜面積[m2]/採取時間[分]×(60[分]×24[時間])
また、上記の条件で運転圧力を3.0MPaとして透水量を同様に測定し、また、24時間後の透水量の測定値との比を膜の耐圧性として下記の式より算出する。
透水量比[−]=24時間後の3.0MPaでの透水量/1時間後の3.0MPaでの透水量
(2) Water permeability due to pressure difference The hollow fiber type semipermeable membrane was bundled and inserted into a plastic sleeve, and then a thermosetting resin was injected into the sleeve, cured and sealed. By cutting the end of a hollow fiber type semipermeable membrane cured with a thermosetting resin, an opening surface of the hollow fiber type semipermeable membrane is obtained, and the membrane area on the basis of the outer diameter is about 0.1 m 2 A module was produced. This evaluation module was connected to a membrane performance testing device consisting of a feed water tank and a pump, and the performance was evaluated.
A supply aqueous solution having a sodium chloride concentration of 1.5 g / L is filtered from the outside to the inside of the hollow fiber type semipermeable membrane at 25 ° C. and a pressure of 1.5 MPa, and is operated for 1 hour. Thereafter, the membrane permeated water was collected from the opening surface of the hollow fiber type semipermeable membrane, and the weight of the permeated water was measured with an electronic balance (Shimadzu Corporation LIBROR EB-3200D). The permeated water weight was converted to a permeated water amount of 25 ° C. by the following formula.
Permeated water amount (L) = Permeated water weight (kg) /0.99704 (kg / L)
The water permeability (FR) is calculated from the following formula.
FR [L / m 2 / day] = weight of permeate [L] / outer diameter reference membrane area [m 2 ] / collection time [min] × (60 [min] × 24 [hour])
Further, the water permeability is measured in the same manner under the above conditions with the operating pressure of 3.0 MPa, and the ratio with the measured value of the water permeability after 24 hours is calculated from the following formula as the pressure resistance of the membrane.
Permeability ratio [−] = water permeability at 3.0 MPa after 24 hours / water permeability at 3.0 MPa after 1 hour
(3)圧力差による塩除去率
前記透水量測定で採取した膜透過水と、同じく透水量の測定で使用した塩化ナトリウム濃度1.5g/L供給水溶液を電気伝導率計(東亜ディーケーケー社CM−25R)を用いて塩化ナトリウム濃度を測定する。
塩除去率は下記式より算出する。
塩除去率[%]=(1−膜透過水塩濃度[mg/L]/供給水溶液塩濃度[mg/L])×100
(3) Salt removal rate due to pressure difference Membrane permeated water collected in the above-mentioned water permeation measurement and a sodium chloride concentration 1.5 g / L aqueous solution used in the same water permeation measurement were measured with an electric conductivity meter (Toa DKK Corporation CM- 25R) is used to measure the sodium chloride concentration.
The salt removal rate is calculated from the following formula.
Salt removal rate [%] = (1-membrane permeated water salt concentration [mg / L] / feed aqueous solution salt concentration [mg / L]) × 100
(4)濃度差による透水量
(中空糸型半透膜エレメントの作製)
これらの中空糸型半透膜を多孔管からなる供給流体分配管の周りに交差状に配置させ、中空糸型半透膜の集合体を形成させた。供給流体分配管をその軸を中心に回転させながら中空糸型半透膜の束をトラバースさせ、供給流体分配管の周りに捲きつけることにより中空糸型半透膜が交差状に配置される。最外層における中空糸型半透膜は軸方向に対して約41度であった。この中空糸型半透膜の集合体の両端部をエポキシ樹脂でポッティングさせて固定させた後、両端を切断して中空糸型半透膜の中空孔を開口させて中空糸型半透膜エレメントを作製した。この中空糸型半透膜エレメントの中空糸型半透膜集合体の外径は117mm、開口端部間の軸方向の長さは58cmであった。また、中空糸型半透膜の有効長の平均長さは約70cmであった。また、有効膜面積は、中空糸型半透膜の外径基準で約67m2であった。
(モジュールの透水量測定)
このエレメントを圧力容器に装填して、中空糸型半透膜のそれぞれの開口部に連通するノズルのうち、一方のノズルより塩化ナトリウム濃度0g/Lの淡水を供給ポンプで供給し、他方のノズルから淡水を流出させた。塩化ナトリウム濃度35g/Lの高濃度水溶液を中空糸型半透膜の外側に連通する供給流体分配管に供給ポンプで供給し、中空糸型半透膜の外側を通過させた後、中空糸型半透膜集合体の外側に連通する圧力容器の側面に存在するノズルから流出させ、流量調整バルブで、圧力と流量を調整する。高濃度水溶液の供給圧力をPDS1(MPa)、供給流量をQDS1(L/min)、高濃度水溶液の排出水量をQDS2(L/min)、淡水の供給流量をQFS1(L/min)、淡水の流出流量をQFS2(L/min)、淡水の流出圧力をPFS2(kPa)とした場合、モジュールの透水量(QDS2−QDS1)と、圧力、流量が下記の条件となるように、各供給ポンプの流量と圧力を調整し、その条件での高濃度水溶液の流量増分(QDS2−QDS1)をモジュール透水量として測定した。
PDS1=1.0MPa
PFS2=10kPa以下
QDS1/(QDS2−QDS1)=2
QFS2/(QDS2−QDS1)=0.1
濃度による透水量(FR)は下記式より算出する。
FR[L/m2/日]=モジュール透水量[L/min]/外径基準膜面積[m2]×(60[分]×24[時間])
(4) Water permeability due to concentration difference (production of hollow fiber type semipermeable membrane element)
These hollow fiber type semipermeable membranes were arranged in an intersecting manner around a supply fluid distribution pipe made of a porous tube to form an aggregate of hollow fiber type semipermeable membranes. The hollow fiber type semipermeable membrane is arranged in an intersecting manner by traversing the bundle of hollow fiber type semipermeable membranes while rotating the supply fluid distribution tube about its axis, and striking around the supply fluid distribution tube. The hollow fiber type semipermeable membrane in the outermost layer was about 41 degrees with respect to the axial direction. Both ends of this hollow fiber type semipermeable membrane aggregate are fixed by potting with an epoxy resin, then both ends are cut to open the hollow holes of the hollow fiber type semipermeable membrane, and the hollow fiber type semipermeable membrane element Was made. The hollow fiber type semipermeable membrane assembly of this hollow fiber type semipermeable membrane assembly had an outer diameter of 117 mm and an axial length between the open ends of 58 cm. The average effective length of the hollow fiber type semipermeable membrane was about 70 cm. The effective membrane area was about 67 m 2 on the basis of the outer diameter of the hollow fiber type semipermeable membrane.
(Measurement of water permeability of module)
This element is loaded into a pressure vessel, and among the nozzles communicating with the respective openings of the hollow fiber type semipermeable membrane, fresh water having a sodium chloride concentration of 0 g / L is supplied from one nozzle by a supply pump, and the other nozzle From which fresh water was allowed to flow. A high-concentration aqueous solution having a sodium chloride concentration of 35 g / L is supplied to a supply fluid distribution pipe communicating with the outside of the hollow fiber type semipermeable membrane by a supply pump, and after passing through the outside of the hollow fiber type semipermeable membrane, the hollow fiber type It flows out from the nozzle which exists in the side surface of the pressure vessel connected to the outside of the semipermeable membrane assembly, and the pressure and the flow rate are adjusted by the flow rate adjusting valve. The supply pressure of the high concentration aqueous solution is PDS1 (MPa), the supply flow rate is QDS1 (L / min), the amount of discharged water of the high concentration aqueous solution is QDS2 (L / min), the supply flow rate of fresh water is QFS1 (L / min), When the outflow flow rate is QFS2 (L / min) and the freshwater outflow pressure is PFS2 (kPa), the water permeability of the module (QDS2-QDS1), the pressure, and the flow rate are set to satisfy the following conditions. The flow rate and pressure were adjusted, and the flow rate increment (QDS2-QDS1) of the high-concentration aqueous solution under the conditions was measured as the module water permeability.
PDS1 = 1.0 MPa
PFS2 = 10 kPa or less QDS1 / (QDS2-QDS1) = 2
QFS2 / (QDS2-QDS1) = 0.1
The water permeability (FR) by concentration is calculated from the following formula.
FR [L / m 2 / day] = module water permeability [L / min] / outer diameter reference membrane area [m 2 ] × (60 [min] × 24 [hour])
(5)緻密層厚み
評価する中空糸型半透膜を水洗した後、25℃の2-プロパノール(ナカライテスク社)、シクロヘキサン(ナカライテスク社)の順に1時間ずつ浸漬して溶媒置換を行う。溶媒置換後の中空糸型半透膜を液切りし、庫内温度50℃、庫内圧力−40Paの真空乾燥機(Yamato VacuumDryingOven DP41)で24時間乾燥する。
乾燥して得られた中空糸型半透膜を樹脂包埋して中空糸型半透膜断面が観察できるようにミクロトーム(REICHERT-NISSEI ULTRACUT)を用い切片を切り出す。
切り出した切片を微分干渉顕微鏡(Nikon社製 OPTIPHOT鏡基、反射型微分干渉装置NR)で観察する。
得られた顕微鏡画像より、10ヵ所の緻密層厚みを測定し、それらの平均値を緻密層厚みとした。
(5) Dense layer thickness After the hollow fiber type semipermeable membrane to be evaluated is washed with water, the solvent is replaced by immersion in an order of 25 ° C. 2-propanol (Nacalai Tesque) and cyclohexane (Nacalai Tesque) for 1 hour each. The hollow fiber type semipermeable membrane after solvent replacement is drained and dried for 24 hours in a vacuum dryer (Yamato Vacuum Drying Oven DP41) having an internal temperature of 50 ° C. and an internal pressure of −40 Pa.
The hollow fiber type semipermeable membrane obtained by drying is embedded in a resin, and a section is cut out using a microtome (REICHERT-NISSEI ULTRACUT) so that the cross section of the hollow fiber type semipermeable membrane can be observed.
The cut section is observed with a differential interference microscope (OPTIPHOT mirror base, reflective differential interference device NR, manufactured by Nikon).
From the obtained microscope image, the dense layer thickness at 10 locations was measured, and the average value thereof was defined as the dense layer thickness.
(実施例1)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)49.9重量%、エチレングリコール(EG、三菱化学社)8.8重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を75℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
Example 1
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41 wt%, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 49.9 wt%, ethylene glycol (EG, Mitsubishi Chemical) 8.8 wt% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 75 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(実施例2)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)44重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)47.3重量%、エチレングリコール(EG、三菱化学社)8.4重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を72℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
(Example 2)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 44% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 47.3% by weight, ethylene glycol (EG, Mitsubishi Chemical) 8.4% by weight % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 72 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(実施例3)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)47.0重量%、エチレングリコール(EG、三菱化学社)11.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を80℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
(Example 3)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41 wt%, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical Corp.) 47.0 wt%, ethylene glycol (EG, Mitsubishi Chemical Corp.) 11.7 wt% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 80 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(実施例4)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)52.8重量%、エチレングリコール(EG、三菱化学社)5.9重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を72℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
Example 4
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41 wt%, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 52.8 wt%, ethylene glycol (EG, Mitsubishi Chemical) 5.9 wt% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 72 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(実施例5)
実施例1と同様にして、内径が76μm、外径が120μm、中空率が40%の中空糸型半透膜を得た。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
(Example 5)
In the same manner as in Example 1, a hollow fiber type semipermeable membrane having an inner diameter of 76 μm, an outer diameter of 120 μm, and a hollow ratio of 40% was obtained.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(実施例6)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)52.8重量%、エチレングリコール(EG、三菱化学社)5.9重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を71℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が170μm、外径が270μm、中空率が40%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
(Example 6)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41 wt%, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 52.8 wt%, ethylene glycol (EG, Mitsubishi Chemical) 5.9 wt% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 71 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 170 μm, an outer diameter of 270 μm, and a hollow ratio of 40%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(実施例7)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)43重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)51.0重量%、エチレングリコール(EG、三菱化学社)5.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を72℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が158μm、外径が250μm、中空率が40%であった。
本実施例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表1にまとめる。
(Example 7)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 43 wt%, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical Corp.) 51.0 wt%, ethylene glycol (EG, Mitsubishi Chemical Corp.) 5.7 wt% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 72 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 158 μm, an outer diameter of 250 μm, and a hollow ratio of 40%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of the present example, and the water permeation performance due to the pressure difference, the salt removal rate, and the water permeation amount ratio were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 1.
(比較例1)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)49.9重量%、エチレングリコール(EG、三菱化学社)8.8重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を40℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 1)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41 wt%, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 49.9 wt%, ethylene glycol (EG, Mitsubishi Chemical) 8.8 wt% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 40 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例2)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)38重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)52.4重量%、エチレングリコール(EG、三菱化学社)9.3重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を60℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 2)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 38% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 52.4% by weight, ethylene glycol (EG, Mitsubishi Chemical) 9.3% % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 60 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例3)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)41.1重量%、エチレングリコール(EG、三菱化学社)17.6重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を60℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 3)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 41.1% by weight, ethylene glycol (EG, Mitsubishi Chemical) 17.6% by weight % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 60 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例4)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)47重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)44.8重量%、エチレングリコール(EG、三菱化学社)7.9重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を98℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 4)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 47% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 44.8% by weight, ethylene glycol (EG, Mitsubishi Chemical) 7.9% by weight % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 98 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例5)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)38重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)43.2重量%、エチレングリコール(EG、三菱化学社)18.5重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を88℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 5)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 38% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 43.2% by weight, ethylene glycol (EG, Mitsubishi Chemical) 18.5% by weight % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 88 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例6)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)41.1重量%、エチレングリコール(EG、三菱化学社)17.6重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を82℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 6)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 41.1% by weight, ethylene glycol (EG, Mitsubishi Chemical) 17.6% by weight % And benzoic acid (Nacalai Tesque) 0.3% by weight were uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 82 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例7)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)43重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)56.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を65℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が158μm、外径が250μm、中空率が40%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 7)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 43% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 56.7% by weight, benzoic acid (Nacalai Tesque) 0.3% by weight A film-forming stock solution was obtained by uniform dissolution at 180 ° C. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 65 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 158 μm, an outer diameter of 250 μm, and a hollow ratio of 40%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
(比較例8)
三酢酸セルロース(CTA、ダイセル化学工業社、LT35)38重量%、N−メチル−2−ピロリドン(NMP、三菱化学社)61.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸型半透膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸型半透膜を65℃の水に浸漬し、40分間アニール処理を行った。
得られた中空糸型半透膜は、内径が100μm、外径が175μm、中空率が33%であった。
本比較例の中空糸型半透膜を用いて長さ約100cmの評価用モジュールを作製し、圧力差による透水性能、塩除去率と透水量比を測定した。また、中空糸型半透膜の有効長が約70cmの濃度差による透水量測定用のエレメントを作製し、透水量を測定した。評価結果を表2にまとめる。
(Comparative Example 8)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 38% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 61.7% by weight, benzoic acid (Nacalai Tesque) 0.3% by weight A film-forming stock solution was obtained by uniform dissolution at 180 ° C. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber type semipermeable membrane was washed by a multi-stage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber type semipermeable membrane was immersed in water at 65 ° C. and annealed for 40 minutes.
The obtained hollow fiber type semipermeable membrane had an inner diameter of 100 μm, an outer diameter of 175 μm, and a hollow ratio of 33%.
An evaluation module having a length of about 100 cm was produced using the hollow fiber type semipermeable membrane of this comparative example, and the water permeability, salt removal rate and water permeability ratio by pressure difference were measured. In addition, an element for measuring the amount of water permeation with a concentration difference of about 70 cm in effective length of the hollow fiber type semipermeable membrane was produced, and the amount of water permeation was measured. The evaluation results are summarized in Table 2.
以上の結果から明らかなように、実施例1〜7の中空糸型半透膜はいずれも、濃度差を駆動力とする透水性能が高い値を有しているので、少ない設置スペースで濃度差を駆動力としてエネルギーを生成するための水と圧力を効率良く得ることが可能である。これに対して、比較例1は、熱水処理温度が低いため、膜構造の緻密化、固定化が不十分となり、加圧による透水性は高いが、塩分の除去率が不十分で、濃度差を駆動力とする水処理の場合、漏洩した塩分により半透膜を介した濃度差が十分取れないためか、濃度差を駆動力とする透水性能は低い。比較例2は、ポリマー濃度が低く、また、熱水処理温度も低いため、膜全体として構造の緻密化が不十分となり、加圧による透水性能は高いが濃度差を駆動力とする水処理の場合、塩分が漏洩して、半透膜を介した濃度差が十分取れないため、濃度差を駆動力とする透水性能は低い。比較例3は、溶媒/非溶媒比が大きく、おそらく空中走行部での溶媒蒸発が十分促進されず、よって膜表面の構造が思ったほど緻密化せず、分離性能が高くないため、濃度差を駆動力とする水処理の場合、塩分が漏洩して、半透膜を介した濃度差が十分取れないため、濃度差を駆動力とする透水性能は低い。比較例4は、製膜原液中のポリマー濃度が高く、また、熱水処理温度が高いためか、加圧による透水性は低く、濃度差を駆動力とする水処理の場合の透水性能も低い。比較例5は、製膜原液中のポリマー濃度が低く、溶媒/非溶媒比が大きく、熱水処理温度が高いため、加圧による透水性も低く、また、塩除去率もそれほど高くないため、濃度差を駆動力とする水処理の場合の透水性能は低い。比較例6は、製膜原液中の溶媒/非溶媒比が大きく、熱水処理温度が高いため、加圧による透水性は低く、濃度差を駆動力とする水処理の場合の透水性能は低く、濃度差を駆動力とする水処理時の透水性能は低い。比較例7は、製膜原液中の非溶媒がない系であり、熱水処理温度が低く、中空率が高いため、加圧による透水性は高く、濃度差を駆動力とする水処理の場合の透水性能は非常に高いが、耐圧性は非常に低く、加圧状態の高濃度の溶液について濃度差を利用する場合には実用的ではない。比較例8は、製膜原液中のポリマー濃度は低く、製膜原液中の非溶媒がない系であるが、熱水処理温度が低いため、圧力差による透水量は高いが塩除去率が低く、濃度差を駆動力とする水処理の場合の透水性能は低い。
これらの比較例にも記載したように、圧力による透水量が高くても濃度差による透水量が低い場合が存在する。これは、圧力による透水量が高くても塩の除去性能が十分高くなく、塩の漏出により低濃度側の濃度が増加したことや、低濃度側の膜内での塩の拡散が不十分で濃度分極が大きくなり低濃度側の濃度が増加したことにより、膜を介した濃度差が十分取れなかったためと推察される。
As is clear from the above results, the hollow fiber type semipermeable membranes of Examples 1 to 7 all have high values of water permeability performance with the concentration difference as the driving force. It is possible to efficiently obtain water and pressure for generating energy using as a driving force. On the other hand, in Comparative Example 1, since the hydrothermal treatment temperature is low, the membrane structure is not sufficiently densified and immobilized, and the water permeability by pressurization is high, but the salt removal rate is insufficient, and the concentration In the case of water treatment using the difference as the driving force, the water permeation performance using the concentration difference as the driving force is low because the concentration difference through the semipermeable membrane cannot be sufficiently obtained due to the leaked salt. In Comparative Example 2, since the polymer concentration is low and the hydrothermal treatment temperature is low, the structure as a whole is not sufficiently densified. In this case, since the salt content leaks and the concentration difference through the semipermeable membrane cannot be taken sufficiently, the water permeability performance using the concentration difference as a driving force is low. In Comparative Example 3, the solvent / non-solvent ratio is large, and solvent evaporation in the air travel part is probably not sufficiently promoted. Therefore, the structure of the membrane surface is not densified as expected, and the separation performance is not high. In the case of water treatment using as a driving force, salt leaks and the concentration difference through the semipermeable membrane cannot be taken sufficiently, so the water permeability performance using the concentration difference as the driving force is low. In Comparative Example 4, the polymer concentration in the film-forming stock solution is high, and the hydrothermal treatment temperature is high. Therefore, the water permeability by pressurization is low, and the water permeability performance in the case of water treatment using the concentration difference as the driving force is also low. . Comparative Example 5 has a low polymer concentration in the membrane-forming stock solution, a large solvent / non-solvent ratio, a high hydrothermal treatment temperature, low water permeability due to pressurization, and a high salt removal rate. The water permeability in the case of water treatment using the concentration difference as a driving force is low. Comparative Example 6 has a large solvent / non-solvent ratio in the film-forming stock solution and a high hot water treatment temperature, so that the water permeability by pressurization is low, and the water permeability performance in the case of water treatment using the concentration difference as the driving force is low. The water permeation performance during water treatment using the concentration difference as the driving force is low. Comparative Example 7 is a system having no non-solvent in the film-forming stock solution, and has a low hot water treatment temperature and a high hollowness ratio. Therefore, the water permeability by pressurization is high, and the water treatment uses a concentration difference as a driving force. Although its water permeability is very high, its pressure resistance is very low, and it is not practical when utilizing a concentration difference for a highly concentrated solution in a pressurized state. Comparative Example 8 is a system in which the polymer concentration in the membrane-forming stock solution is low and there is no non-solvent in the membrane-forming stock solution, but since the hydrothermal treatment temperature is low, the water permeation amount due to the pressure difference is high, but the salt removal rate is low. The water permeability in the case of water treatment using the concentration difference as the driving force is low.
As described in these comparative examples, there are cases where the water permeability due to the difference in concentration is low even though the water permeability due to pressure is high. This is because the salt removal performance is not sufficiently high even if the water permeability by pressure is high, the concentration on the low concentration side increased due to salt leakage, and the diffusion of salt in the membrane on the low concentration side is insufficient. It is presumed that the concentration difference through the membrane could not be taken sufficiently because the concentration polarization increased and the concentration on the low concentration side increased.
本発明の中空糸型半透膜は、膜の透水性能が高く、かつ、水と塩の高い選択性により塩の濃度差を駆動力とする透水量が高くなるように設計されているので、濃度差を駆動力としてエネルギーを生成する分野において極めて有用である。 The hollow fiber type semipermeable membrane of the present invention is designed so that the water permeability of the membrane is high, and the water permeability with the difference in salt concentration as the driving force is high due to the high selectivity between water and salt. This is extremely useful in the field of generating energy using a concentration difference as a driving force.
Claims (3)
A hollow fiber type semipermeable membrane module comprising the hollow fiber type semipermeable membrane according to claim 1 incorporated therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013033024A JP6070260B2 (en) | 2012-02-24 | 2013-02-22 | Hollow fiber type semipermeable membrane, manufacturing method and module thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012038689 | 2012-02-24 | ||
JP2012038689 | 2012-02-24 | ||
JP2013033024A JP6070260B2 (en) | 2012-02-24 | 2013-02-22 | Hollow fiber type semipermeable membrane, manufacturing method and module thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013198893A JP2013198893A (en) | 2013-10-03 |
JP6070260B2 true JP6070260B2 (en) | 2017-02-01 |
Family
ID=49519545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013033024A Active JP6070260B2 (en) | 2012-02-24 | 2013-02-22 | Hollow fiber type semipermeable membrane, manufacturing method and module thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6070260B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112294078A (en) * | 2020-11-19 | 2021-02-02 | 湖南精创富康食品科技有限公司 | Beverage production device with good filtering effect |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6273982B2 (en) * | 2014-04-04 | 2018-02-07 | 東レ株式会社 | Hollow fiber membrane, method for producing the same, and module using the same |
CA3082459C (en) * | 2017-11-20 | 2022-06-28 | Asahi Kasei Kabushiki Kaisha | System for concentrating solvent-containing articles, and concentrate |
EP3932529A4 (en) | 2019-02-28 | 2022-11-30 | Toyobo Co., Ltd. | Hollow fiber membrane and method for producing hollow fiber membrane |
AU2020283173B2 (en) * | 2019-05-31 | 2023-07-20 | Asahi Kasei Kabushiki Kaisha | Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04225822A (en) * | 1990-12-06 | 1992-08-14 | Dow Chem Co:The | Composition for producing cellulose ester membrane for liquid separation |
WO2000043115A1 (en) * | 1999-01-21 | 2000-07-27 | Ebara Corporation | Ethylene-vinyl alcohol hollow fiber membranes |
US10369530B2 (en) * | 2012-02-09 | 2019-08-06 | Toyobo Co., Ltd. | Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method |
-
2013
- 2013-02-22 JP JP2013033024A patent/JP6070260B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112294078A (en) * | 2020-11-19 | 2021-02-02 | 湖南精创富康食品科技有限公司 | Beverage production device with good filtering effect |
Also Published As
Publication number | Publication date |
---|---|
JP2013198893A (en) | 2013-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5418739B1 (en) | Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method | |
JP4919183B1 (en) | Hollow fiber type reverse osmosis membrane and method for producing the same | |
Han et al. | Robust and high performance pressure retarded osmosis hollow fiber membranes for osmotic power generation | |
KR100980571B1 (en) | Porous membrane and its manufacturing method | |
JP5433921B2 (en) | Polymer porous hollow fiber membrane | |
KR101392943B1 (en) | Hollow fiber membrane for forward osmotic use, and method for manufacturing the same | |
JP6070260B2 (en) | Hollow fiber type semipermeable membrane, manufacturing method and module thereof | |
WO2007125943A1 (en) | Polymeric porous hollow fiber membrane | |
JP6638754B2 (en) | Method for producing hollow fiber type semipermeable membrane | |
Li et al. | Engineering design of outer‐selective tribore hollow fiber membranes for forward osmosis and oil‐water separation | |
JP6365542B2 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
JP6222237B2 (en) | Hollow fiber membrane element and membrane module for forward osmosis | |
JP2008284471A (en) | Polymeric porous hollow fiber membrane | |
JP5630961B2 (en) | Hollow fiber porous membrane and water treatment method | |
JP6922744B2 (en) | Hollow fiber semipermeable membrane for reverse osmosis or forward osmosis | |
JP6649779B2 (en) | Hollow fiber type semipermeable membrane and method for producing the same | |
KR20160034721A (en) | Hollow Fiber Membrane Having Excellent Efficiency of Filtration, and Preparation Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160831 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161219 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6070260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |