JP2016125510A - Hydraulic pressure control device of automatic transmission and hydraulic pressure control method - Google Patents
Hydraulic pressure control device of automatic transmission and hydraulic pressure control method Download PDFInfo
- Publication number
- JP2016125510A JP2016125510A JP2014264103A JP2014264103A JP2016125510A JP 2016125510 A JP2016125510 A JP 2016125510A JP 2014264103 A JP2014264103 A JP 2014264103A JP 2014264103 A JP2014264103 A JP 2014264103A JP 2016125510 A JP2016125510 A JP 2016125510A
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic pressure
- hydraulic
- engine
- supplied
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 7
- 230000008859 change Effects 0.000 claims abstract description 10
- 230000005856 abnormality Effects 0.000 abstract description 16
- 230000004043 responsiveness Effects 0.000 abstract description 8
- 230000002349 favourable effect Effects 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 40
- 241000710013 Lily symptomless virus Species 0.000 description 36
- 238000004502 linear sweep voltammetry Methods 0.000 description 36
- 230000004044 response Effects 0.000 description 30
- 230000001133 acceleration Effects 0.000 description 16
- 239000010720 hydraulic oil Substances 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Images
Landscapes
- Control Of Transmission Device (AREA)
Abstract
Description
本発明は、エンジンにより駆動される機械式オイルポンプ等の第1油圧源と、エンジンとは無関係に作動する電動式オイルポンプやアキュムレータ等の第2油圧源とを備えた自動変速機の油圧制御に関する。 The present invention provides a hydraulic control for an automatic transmission that includes a first hydraulic source such as a mechanical oil pump driven by an engine and a second hydraulic source such as an electric oil pump or an accumulator that operates independently of the engine. About.
近年、信号待ち等のために一時的に停車しているとき、所定の停止条件の成立によりエンジンを自動停止させると共に、所定の再始動条件の成立によりエンジンを自動再始動させる所謂アイドルストップシステムを搭載した車両が実用化されている。 In recent years, when the vehicle is temporarily stopped for waiting for a signal or the like, a so-called idle stop system that automatically stops the engine when a predetermined stop condition is satisfied and automatically restarts the engine when the predetermined restart condition is satisfied. The mounted vehicle has been put into practical use.
ところが、アイドルストップの実行によってエンジンが自動停止されると、エンジンの回転によって駆動される機械式オイルポンプも停止するため、これまで該ポンプからの油圧供給によって締結されていた自動変速機の摩擦締結要素、すなわち、発進変速段で締結される発進用摩擦締結要素が解放されることになる。そうすると、アイドルストップ状態で発進要求があった場合、エンジンが再始動してから、機械式オイルポンプの吐出圧が立ち上がり、作動油が油路を介して発進用摩擦締結要素に供給されるまでに時間がかかるため、該摩擦締結要素の締結が遅れ、発進応答性が悪くなる問題がある。 However, when the engine is automatically stopped by executing the idle stop, the mechanical oil pump driven by the rotation of the engine is also stopped. Therefore, the friction engagement of the automatic transmission that has been fastened by the hydraulic supply from the pump until now is stopped. The element, that is, the starting frictional engagement element that is engaged at the starting shift speed is released. Then, if there is a start request in the idle stop state, after the engine restarts, the discharge pressure of the mechanical oil pump rises and the hydraulic oil is supplied to the start frictional engagement element through the oil passage. Since it takes time, there is a problem that the fastening of the frictional engagement element is delayed and the start response is deteriorated.
この問題を解消するために、特許文献1等の種々の文献に開示されているように、アイドルストップシステムを搭載した車両には、発進要求に応じてエンジンが再始動するときに発進用摩擦締結要素を速やかに締結するための電動式オイルポンプが搭載されるのが通例である。この場合、アイドルストップ中には、エンジンと共に停止している機械式オイルポンプの代わりに、電動式オイルポンプによって発進用摩擦締結要素に油圧を供給することができ、これにより、良好な発進応答性が得られる。
In order to solve this problem, as disclosed in various documents such as
通常、アイドルストップシステム搭載車に設けられる上記の電動式オイルポンプは、専らエンジン再始動時の発進応答性を確保するために用いられるものであるから、例えば該ポンプの小容量化や油圧回路の簡素化等のために、発進用摩擦締結要素にのみ油圧を供給できるように構成される。 Normally, the electric oil pump provided in the vehicle equipped with the idle stop system is used exclusively to ensure the start response at the time of restarting the engine. For example, the capacity of the pump or the hydraulic circuit can be reduced. For simplification and the like, the hydraulic pressure can be supplied only to the starting frictional engagement element.
しかしながら、このようにすると、例えば、油圧回路の異常等により、電動式オイルポンプで生成した油圧を発進用摩擦締結要素に供給できない異常が発生すると、電動式オイルポンプの代わりに機械式オイルポンプが用いられることになるが、この場合、上記のようにエンジンが再始動してから機械式オイルポンプの吐出圧が立ち上がって発進用摩擦締結要素が締結されるまでには時間がかかり、或いは、機械式オイルポンプによっても発進用摩擦締結要素に油圧を供給できないような異常時には、該摩擦締結要素を締結できないため、いずれにしても発進応答性が悪くなる問題がある。 However, if an abnormality occurs in which the hydraulic pressure generated by the electric oil pump cannot be supplied to the starting frictional engagement element due to, for example, an abnormality in the hydraulic circuit, the mechanical oil pump is replaced with the electric oil pump. In this case, it takes time from when the engine is restarted as described above until the discharge pressure of the mechanical oil pump rises and the starting frictional engagement element is fastened. Even when the oil pressure cannot be supplied to the starting frictional engagement element even with the oil pump, the frictional engagement element cannot be engaged.
そこで、本発明は、例えばアイドルストップ時等のエンジン停止状態で作動する電動式オイルポンプ等の油圧源から発進用摩擦締結要素への油圧供給に異常が生じた場合にも、エンジン停止中における発進要求に対する良好な応答性を確保することを課題とする。 Therefore, the present invention provides a start during engine stop even when an abnormality occurs in the hydraulic supply from a hydraulic source such as an electric oil pump that operates in an engine stop state such as an idle stop to the start frictional engagement element. The task is to ensure good responsiveness to requests.
前記課題を解決するため、本発明に係る自動変速機の油圧制御装置および油圧制御方法は、次のように構成したことを特徴とする。 In order to solve the above-described problems, a hydraulic control device and a hydraulic control method for an automatic transmission according to the present invention are configured as follows.
まず、本願の請求項1に記載の発明は、
エンジンにより駆動される第1油圧源と、前記エンジンとは無関係に作動する第2油圧源と、該第2油圧源で生成された油圧を発進用の第1変速比を実現するための第1摩擦締結要素に供給する第1油圧供給手段とを有する自動変速機の油圧制御装置であって、
前記第2油圧源で生成された油圧を前記第1変速比とは異なる第2変速比を実現するための第2摩擦締結要素に供給する第2油圧供給手段を備えたことを特徴とする。
First, the invention according to
A first hydraulic pressure source driven by the engine; a second hydraulic pressure source that operates independently of the engine; and a first hydraulic pressure ratio for realizing the first gear ratio for starting the hydraulic pressure generated by the second hydraulic pressure source. A hydraulic control device for an automatic transmission having a first hydraulic pressure supply means for supplying the frictional engagement element,
A second hydraulic pressure supply means is provided for supplying the hydraulic pressure generated by the second hydraulic pressure source to a second frictional engagement element for realizing a second gear ratio different from the first gear ratio.
また、請求項2に記載の発明に係る自動変速機の油圧制御装置は、前記請求項1に記載の発明において、
前記第1摩擦締結要素は少なくとも2つの摩擦締結要素を含み、
前記第2変速比は、前記第1摩擦締結要素のうちの少なくとも1つの所定摩擦締結要素と前記第2摩擦締結要素の締結により実現されることを特徴とする。
A hydraulic control device for an automatic transmission according to the invention described in
The first frictional engagement element comprises at least two frictional engagement elements;
The second speed ratio is realized by fastening at least one predetermined friction fastening element of the first friction fastening elements and the second friction fastening element.
さらに、請求項3に記載の発明に係る自動変速機の油圧制御装置は、前記請求項1または請求項2に記載の発明において、
前記第2油圧源で生成された油圧を前記第1油圧供給手段によって前記第1摩擦締結要素に供給する第1状態と、前記第2油圧源で生成された油圧を前記第2油圧供給手段によって前記第2摩擦締結要素に供給する第2状態との間での切り換えを行う切換手段を備えたことを特徴とする。
Furthermore, the hydraulic control device for an automatic transmission according to the invention described in
A first state in which the hydraulic pressure generated by the second hydraulic power source is supplied to the first frictional engagement element by the first hydraulic pressure supply means; and a hydraulic pressure generated by the second hydraulic power source by the second hydraulic pressure supply means. Switching means for switching between the second state supplied to the second frictional engagement element is provided.
また、請求項4に記載の発明に係る自動変速機の油圧制御装置は、前記請求項3に記載の発明において、
前記第1摩擦締結要素は、
前記第2油圧源で生成された油圧が前記第1油圧供給手段によって供給される第1油圧室と、該第1油圧室とは異なる第2油圧室とを有すると共に、該両油圧室に油圧が供給されたときに締結される摩擦締結要素を含み、
前記第2油圧室には、前記第2油圧源で生成された油圧を導く油圧供給経路が接続され、
前記切換手段は、
前記第1状態では、前記第1油圧供給手段による前記第1油圧室への油圧の供給を許容すると共に、前記第2油圧供給手段による前記第2摩擦締結要素への油圧の供給を遮断し、且つ、
前記第2状態では、前記第1油圧供給手段による前記第1油圧室への油圧の供給を遮断すると共に、前記第2油圧供給手段による前記第2摩擦締結要素への油圧の供給を許容するように構成されていることを特徴とする。
A hydraulic control device for an automatic transmission according to a fourth aspect of the invention is the invention according to the third aspect,
The first frictional engagement element is:
The hydraulic pressure generated by the second hydraulic pressure source includes a first hydraulic pressure chamber supplied by the first hydraulic pressure supply means, and a second hydraulic pressure chamber different from the first hydraulic pressure chamber. Including a frictional fastening element that is fastened when supplied
A hydraulic pressure supply path for guiding the hydraulic pressure generated by the second hydraulic pressure source is connected to the second hydraulic pressure chamber,
The switching means is
In the first state, the hydraulic pressure supply to the first hydraulic chamber by the first hydraulic pressure supply means is allowed, and the hydraulic pressure supply to the second frictional engagement element by the second hydraulic pressure supply means is interrupted, and,
In the second state, the supply of hydraulic pressure to the first hydraulic chamber by the first hydraulic supply means is interrupted, and the supply of hydraulic pressure to the second frictional engagement element by the second hydraulic supply means is allowed. It is comprised by these.
さらに、請求項5に記載の発明に係る自動変速機の油圧制御装置は、前記請求項4に記載の発明において、
前記切換手段は、前記油圧供給経路から分岐した第1分岐経路を介して油圧が供給されることにより該切換手段を前記第1状態とする切換ポートと、前記第1分岐経路から更に分岐した第2分岐経路を介して油圧が供給される第1入力ポートと、前記各経路とは独立した油圧供給経路を介して油圧が供給される第2入力ポートとを備え、
前記第1油圧供給手段は、前記切換手段の前記第1状態において前記第1入力ポートに供給された油圧を前記第1油圧室に供給するように構成され、
前記第2油圧供給手段は、前記切換手段の前記第2状態において前記第2入力ポートに供給された油圧を前記第2摩擦締結要素に供給するように構成されていることを特徴とする。
Furthermore, the hydraulic control device for an automatic transmission according to the invention of
The switching means is supplied with hydraulic pressure via a first branch path branched from the hydraulic pressure supply path, thereby switching the switching means to the first state, and a second branch further branched from the first branch path. A first input port to which hydraulic pressure is supplied via a two-branch path, and a second input port to which hydraulic pressure is supplied via a hydraulic pressure supply path that is independent of each path;
The first hydraulic pressure supply means is configured to supply the hydraulic pressure supplied to the first input port to the first hydraulic chamber in the first state of the switching means;
The second hydraulic pressure supply means is configured to supply the hydraulic pressure supplied to the second input port to the second frictional engagement element in the second state of the switching means.
また、本願の請求項6に記載の発明は、
エンジンの運転中に発進用の第1変速比を実現するときには、前記エンジンにより駆動される第1油圧源で生成された油圧を、前記第1変速比を実現するための第1摩擦締結要素に供給し、
前記エンジンの停止中に前記第1変速比を実現するときには、前記エンジンとは無関係に作動する第2油圧源で生成された油圧を前記第1摩擦締結要素に供給する自動変速機の油圧制御方法であって、
前記エンジンの停止中に所定の状態となったとき、前記第2油圧源で生成された油圧を、前記第1変速比とは異なる第2変速比を実現するための第2摩擦締結要素に供給することを特徴とする。
The invention according to
When the first gear ratio for starting is realized during operation of the engine, the hydraulic pressure generated by the first hydraulic pressure source driven by the engine is used as the first friction engagement element for realizing the first gear ratio. Supply
When the first speed ratio is realized while the engine is stopped, the hydraulic control method for the automatic transmission supplies the first friction engagement element with the hydraulic pressure generated by the second hydraulic source that operates independently of the engine. Because
When a predetermined state is reached while the engine is stopped, the hydraulic pressure generated by the second hydraulic pressure source is supplied to a second frictional engagement element for realizing a second gear ratio different from the first gear ratio. It is characterized by doing.
なお、以上の請求項1〜6に記載の発明における「自動変速機」は、複数の摩擦締結要素を有するものであれば、有段式または無段式のいずれであってもよい。また、「第1油圧源」の具体例としては、エンジンによって回転駆動される機械式オイルポンプが挙げられ、「第2油圧源」の具体例としては、電動式オイルポンプ、又は、第1油圧源の作動によって蓄圧されると共に第1油圧源の停止時に放圧するアキュムレータ等が挙げられる。 The “automatic transmission” according to the first to sixth aspects of the present invention may be a stepped type or a stepless type as long as it has a plurality of frictional engagement elements. In addition, a specific example of the “first hydraulic power source” includes a mechanical oil pump that is rotationally driven by an engine, and a specific example of the “second hydraulic power source” includes an electric oil pump or a first hydraulic pressure. Examples thereof include an accumulator that accumulates pressure by operating the power source and releases pressure when the first hydraulic pressure source is stopped.
さらに、上記の請求項6に記載の発明における「所定の状態」の具体例としては、第2油圧源から第1摩擦締結要素への油圧の供給に異常が生じた状態が挙げられる。ただし、このような異常時以外にも、例えば、車両走行中にアイドルストップが行われる場合において、車両走行中にエンジンが再始動するときの運転状態に対応する変速段が、少なくとも第2摩擦締結要素を締結することで実現されるものであるとき、当該変速段を実現するために、第2油圧源で生成された油圧を第2摩擦締結要素に供給するようにしてもよい。
Further, a specific example of the “predetermined state” in the invention described in
まず、請求項1に記載の発明によれば、アイドルストップの実行等によりエンジンと共に第1油圧源が停止した停車状態において車両の発進が要求されたとき、例えば第1油圧供給手段の故障等により、第2油圧源で生成された油圧を第1摩擦締結要素に供給できない異常時にも、その油圧を第2油圧供給手段によって第2摩擦締結要素に供給することで、発進用の第1変速比とは異なる第2変速比を実現して、第2変速比での発進を行うことができる。第2油圧源は、エンジンとは無関係に作動することから、エンジン停止中に予め作動させておくことができるため、発進要求に応じてエンジンが再始動するとき、予め作動された第2油圧源で生成された油圧を利用して第2変速比が速やかに実現されることで、良好な発進応答性が得られる。 First, according to the first aspect of the present invention, when the vehicle is requested to start in a stop state in which the first hydraulic power source is stopped together with the engine due to execution of idle stop or the like, for example, due to a failure of the first hydraulic pressure supply means or the like. Even when the hydraulic pressure generated by the second hydraulic pressure source cannot be supplied to the first frictional engagement element, the hydraulic pressure is supplied to the second frictional engagement element by the second hydraulic pressure supply means, so that the first gear ratio for starting A second gear ratio different from the above can be realized to start at the second gear ratio. Since the second hydraulic power source operates independently of the engine, the second hydraulic power source can be operated in advance while the engine is stopped. Therefore, when the engine is restarted in response to the start request, the second hydraulic power source that has been operated in advance. By using the hydraulic pressure generated in step (2), the second gear ratio is quickly realized, so that a good start response can be obtained.
請求項2に記載の発明によれば、第2油圧源で生成された油圧によって第2変速比を実現するためには、第2油圧源から第1摩擦締結要素のうちの所定摩擦締結要素までの油路と、第2油圧源から第2摩擦締結要素までの油路とが用いられるが、第2油圧源から前記所定摩擦締結要素までの油路は、第1変速比を実現するときにも用いられる共通の油路である。そのため、エンジン停止中において従来から実現可能であった第1変速比に加えて新たに第2変速比の実現も可能にする油圧回路を構築するにあたって、第2油圧源から第2摩擦締結要素までの油路のみを従来の油圧回路に追加すればよいため、当該油路の簡素化ないし短縮を図りやすい。したがって、第2油圧源の小容量化を図ることができ、これにより、第2油圧源の小型化、及び、第2油圧源が電動式である場合には消費電力の低減を図ることができる。 According to the second aspect of the present invention, in order to realize the second speed change ratio by the hydraulic pressure generated by the second hydraulic pressure source, from the second hydraulic pressure source to the predetermined frictional engagement element among the first frictional engagement elements. And the oil passage from the second hydraulic source to the second frictional engagement element are used when the oil passage from the second hydraulic source to the predetermined frictional engagement element realizes the first gear ratio. Is a common oil passage that is also used. Therefore, from the second hydraulic power source to the second frictional engagement element in constructing a hydraulic circuit that can newly realize the second gear ratio in addition to the first gear ratio that can be realized while the engine is stopped. Since only this oil path needs to be added to the conventional hydraulic circuit, it is easy to simplify or shorten the oil path. Therefore, it is possible to reduce the capacity of the second hydraulic power source, thereby reducing the size of the second hydraulic power source and reducing power consumption when the second hydraulic power source is an electric type. .
また、エンジン停止中に第2油圧源が作動された状態において第1変速比と第2変速比との間での切り換えを行う場合、両変速比での共通の油圧供給先である前記所定摩擦締結要素への油圧供給を維持しつつ、共通しない摩擦締結要素のみについて油圧供給先を切り換えればよいため、この切り換えにより締結される摩擦締結要素の締結応答性の向上、ひいては、発進応答性の向上を図ることができる。 In addition, when switching between the first gear ratio and the second gear ratio in a state where the second hydraulic power source is operated while the engine is stopped, the predetermined friction which is a common hydraulic pressure supply destination in both gear ratios. Since it is only necessary to switch the hydraulic pressure supply destination for only the friction engagement elements that are not common while maintaining the hydraulic supply to the engagement elements, the improvement of the engagement response of the friction engagement elements that are engaged by this change, and thus the start response Improvements can be made.
請求項3に記載の発明によれば、切換手段の作動によって、第2油圧源で生成された油圧を第1油圧供給手段によって第1摩擦締結要素に供給する第1状態と、第2油圧供給手段によって第2摩擦締結要素に供給する第2状態との間での切り換えが行われるため、第1摩擦締結要素と第2摩擦締結要素が同時に締結されることが防止され、変速機構のインターロック等の原因となる摩擦締結要素の多重結合が確実に防止される。したがって、上述のように第1油圧供給手段によって第1摩擦締結要素を締結できない異常時には、切換手段を作動させることによって、変速機構のインターロックを確実に防止しつつ、第2油圧供給手段によって第2摩擦締結要素を締結して第2変速比を実現できる。 According to the third aspect of the present invention, the first state in which the hydraulic pressure generated by the second hydraulic pressure source is supplied to the first frictional engagement element by the first hydraulic pressure supply unit by the operation of the switching unit, and the second hydraulic pressure supply Since the switching between the second state to be supplied to the second frictional engagement element is performed by the means, the first frictional engagement element and the second frictional engagement element are prevented from being simultaneously engaged, and the transmission mechanism is interlocked. Thus, the multiple coupling of the frictional engagement elements that causes the above-mentioned causes is reliably prevented. Therefore, when the first friction engagement element cannot be engaged by the first hydraulic pressure supply unit as described above, the switching unit is operated to reliably prevent the speed change mechanism from being interlocked, and the second hydraulic pressure supply unit to prevent the first friction engagement element from being engaged. A 2nd gear ratio can be implement | achieved by fastening 2 friction fastening elements.
また、請求項4に記載の発明を請求項3に記載の発明に適用すれば、切換手段の作動によって、第2油圧源で生成された油圧が第1油圧室に供給されることで第1摩擦締結要素を締結可能な第1状態と、第2油圧源で生成された油圧の供給により第2摩擦締結要素を締結可能な第2状態との切り換えが行われるため、第1油圧室と第2油圧室の両方に油圧が供給されることで締結される第1摩擦締結要素を用いるものにおいて、上述した摩擦締結要素の多重結合の防止を実現できる。
Further, when the invention according to
さらに、請求項5に記載の発明を請求項4に記載の発明に適用すれば、第1摩擦締結要素の第2油圧室に油圧が供給されるときに、該第2油圧室に接続された油圧供給経路から分岐した第1分岐経路を介して、切換手段の切換ポートに油圧が供給されることで、切換手段が第1状態に切り換えられて、第1状態における切換手段の第1入力ポートを経由した第1油圧室への油圧の供給が可能になる。また、第2油圧室に油圧が供給されないときは、切換ポートに油圧が供給されないことにより切換手段は第2状態となり、第2状態における切換手段の第2入力ポートを経由した第2摩擦締結要素への油圧の供給が可能になる。このように、切換手段の第1状態と第2状態との切り換えを、第2油圧室への油圧の給排に連動させることができる。特に、第2油圧室をクリアランス調整用油圧室、第1油圧室を締結用油圧室とした場合、第1摩擦締結要素を、予めクリアランスが調整された上で締結することが可能になるため、該第1摩擦締結要素の締結応答性が向上する。
Further, when the invention according to
請求項6に記載の発明によれば、例えば、第1油圧供給手段の故障等により、停車中のアイドルストップ状態で第2油圧源から第1摩擦締結要素への油圧の供給に異常が生じるなど、エンジンの停止中に所定の状態となったとき、第2油圧源で生成された油圧を第2油圧供給手段によって第2摩擦締結要素に供給することで、発進用の第1変速比とは異なる第2変速比を実現することができる。したがって、エンジン停止中に第2油圧供給手段によって第2摩擦締結要素に油圧を予め供給しておくことで、発進要求に応じてエンジンが再始動するとき、第2変速比での発進を速やかに行うことができ、良好な発進応答性を得ることができる。 According to the sixth aspect of the present invention, for example, an abnormality occurs in the supply of hydraulic pressure from the second hydraulic power source to the first frictional engagement element in the idling stop state when the vehicle is stopped due to a failure of the first hydraulic pressure supply means or the like. What is the first gear ratio for starting by supplying the hydraulic pressure generated by the second hydraulic pressure source to the second frictional engagement element by the second hydraulic pressure supply means when a predetermined state is reached while the engine is stopped? Different second gear ratios can be realized. Therefore, when the engine is restarted in response to the start request, the start at the second gear ratio is promptly performed by supplying the hydraulic pressure to the second friction engagement element in advance by the second hydraulic pressure supply means while the engine is stopped. It is possible to obtain a good start response.
以下、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
[自動変速機の構成]
図1は、本発明の実施形態に係る油圧制御装置を備えた自動変速機4の構成を示す骨子図であって、この自動変速機4は、変速機ケース5内に入力軸7と出力ギヤ8とを有する横置き式の自動変速機である。
[Configuration of automatic transmission]
FIG. 1 is a skeleton diagram showing a configuration of an
入力軸7は、車体幅方向に延びるように配置されており、入力軸7の図の右側端部は、トルクコンバータ3を介してエンジン1のクランクシャフト2に連結されている。出力ギヤ8は、入力軸7と同一軸線上に配置されている。出力ギヤ8は、デファレンシャル機構(図示せず)を介して車軸(図示せず)に連結されており、これにより、エンジン1の動力は、自動変速機4によって変速された後、走行状況に応じた回転差で左右の車軸に伝達される。
The
トルクコンバータ3は、クランクシャフト2に連結されたケース3aと該ケース3a内に固設されたポンプ3bと、該ポンプ3bに対向配置されて該ポンプ3bにより作動油を介して駆動されるタービン3cと、該ポンプ3bとタービン3cとの間に介設され、かつ、変速機ケース5にワンウェイクラッチ3dを介して支持されてトルク増大作用を行うステータ3eと、ケース3aとタービン3cとの間に設けられ、該ケース3aを介してクランクシャフト2とタービン3cとを直結するロックアップクラッチ3fとを備えている。そして、タービン3cの回転は、入力軸7を介して自動変速機4に伝達されるようになっている。
The
自動変速機4とトルクコンバータ3との間には、該トルクコンバータ3を介してエンジン1により駆動される機械式オイルポンプ(以下、「機械ポンプ」という)6が配置されている。機械ポンプ6は、クランクシャフト2の回転によって駆動されるように設けられており、エンジン1の駆動中において、該機械ポンプ6によって、自動変速機4を制御するための油圧回路に油圧が供給される。
A mechanical oil pump (hereinafter referred to as “mechanical pump”) 6 driven by the
自動変速機4の入力軸7上には、エンジン1側(トルクコンバータ3側)から、第1、第2、第3プラネタリギヤセット(以下、「第1、第2、第3ギヤセット」という)10,20,30が配置されている。
First, second, and third planetary gear sets (hereinafter referred to as “first, second, and third gear sets”) 10 are provided on the
また、入力軸7上には、ギヤセット10,20,30で構成される動力伝達経路を切り換えるための摩擦締結要素として、入力軸7からの動力をギヤセット10,20,30側へ選択的に伝達するロークラッチ40及びハイクラッチ50が配置されている。さらに、入力軸7上には、各ギヤセット10,20,30の所定の回転要素を固定するLR(ローリバース)ブレーキ60、26ブレーキ70、及び、R35ブレーキ80が、エンジン1側からこの順序で配置されている。
On the
前記第1〜第3ギヤセット10,20,30のうち、第1ギヤセット10と第2ギヤセット20はシングルピニオン型のプラネタリギヤセットであって、サンギヤ11,21と、これらのサンギヤ11,21に噛み合った各複数のピニオン12,22と、これらのピニオン12,22をそれぞれ支持するキャリヤ13,23と、ピニオン12,22に噛み合ったリングギヤ14,24とで構成されている。
Of the first to third gear sets 10, 20, 30, the first gear set 10 and the second gear set 20 are single pinion type planetary gear sets, and are engaged with the sun gears 11, 21 and these sun gears 11, 21. The plurality of
また、第3ギヤセット30はダブルピニオン型のプラネタリギヤセットであって、サンギヤ31と、該サンギヤ31に噛み合った複数の第1ピニオン32aと、該第1ピニオン32aに噛み合った第2ピニオン32bと、これらのピニオン32a,32bを支持するキャリヤ33と、第2ピニオン32bに噛み合ったリングギヤ34とで構成されている。
The third gear set 30 is a double pinion type planetary gear set, and includes a
そして、第3ギヤセット30のサンギヤ31には入力軸7が直接連結されている。第1ギヤセット10のサンギヤ11と第2ギヤセット20のサンギヤ21とは、互いに結合されて、ロークラッチ40の出力部材41に連結されている。第2ギヤセット20のキャリヤ23にはハイクラッチ50の出力部材51が連結されている。
The
また、第1ギヤセット10のリングギヤ14と第2ギヤセット20のキャリヤ23とは、互いに結合されており、LRブレーキ60を介して変速機ケース5に断接可能に連結されている。第2ギヤセット20のリングギヤ24と第3ギヤセット30のリングギヤ34とは、互いに結合されており、26ブレーキ70を介して変速機ケース5に断接可能に連結されている。第3ギヤセット30のキャリヤ33は、R35ブレーキ80を介して変速機ケース5に断接可能に連結されている。そして、第1ギヤセット10のキャリヤ13には出力ギヤ8が連結されている。
Further, the ring gear 14 of the first gear set 10 and the
以上の構成により、自動変速機4は、上記の摩擦締結要素(ロークラッチ40、ハイクラッチ50、LRブレーキ60、26ブレーキ70及びR35ブレーキ80)の締結状態の組み合わせにより、図2の締結表に示すように、Dレンジでの1〜6速と、Rレンジでの後退速とが形成されるようになっている。
With the above-described configuration, the
[自動変速機の油圧制御]
自動変速機4は、上記の摩擦締結要素40,50,60,70,80に締結用の油圧を選択的に供給して上記変速段を実現するための油圧回路を備えており、該油圧回路の油圧制御によって自動変速機4の変速が制御される。
[Hydraulic control of automatic transmission]
The
エンジン1の駆動中には、該エンジン1の回転によって駆動される機械ポンプ6で生成された油圧が、上記の摩擦締結要素40,50,60,70,80に選択的に供給されるが、エンジン1のアイドルストップ中には、エンジン1と共に機械ポンプ6が停止するため、モータ105によって駆動される電動式オイルポンプ(以下、「電動ポンプ」という)106で生成された油圧を用いて、自動変速機4の油圧制御が行われる。以下、エンジン1のアイドルストップ中における自動変速機4の油圧制御について、実施形態毎に説明する。
While the
[第1実施形態]
図3は、第1実施形態における自動変速機4の油圧回路100において、エンジン1のアイドルストップ中の油圧制御に関連する部分を示す回路図である。
[First Embodiment]
FIG. 3 is a circuit diagram illustrating a portion related to hydraulic control during idle stop of the
図3に示すように、油圧回路100は、エンジン1の停止中にモータ105によって駆動されて油圧を生成する電動ポンプ106からの油圧と、エンジン1に駆動されて油圧を生成する機械ポンプ6からの油圧との供給を受ける。
As shown in FIG. 3, the
油圧回路100には、運転者のレンジ選択操作によって作動するマニュアルバルブ112と、電動ポンプ106又は機械ポンプ6のいずれを油圧源とするかを切り換える油圧源切換バルブ114と、LRブレーキ60の油圧室に接続されたLRブレーキライン141を開閉する開閉バルブ116とが設けられている。
The
また、油圧回路100には、油圧制御弁として、前記開閉バルブ116よりも下流側においてLRブレーキライン141上に設けられた第1リニアソレノイドバルブ(以下、「第1LSV」と記す)101と、ハイクラッチ50の油圧室に接続されたハイクラッチライン143上に設けられた第2リニアソレノイドバルブ(以下、「第2LSV」と記す)102と、ロークラッチ40の油圧室に接続されたロークラッチライン142上に設けられた第3リニアソレノイドバルブ(以下、「第3LSV」と記す)103と、前記開閉バルブ116を制御するノーマルオープンタイプのオンオフソレノイドバルブ(以下、「オンオフSV」と記す)104とが設けられている。
The
第1LSV101、第2LSV102及び第3LSV103は、出力圧を制御可能な電磁弁であり、オンオフSV104は、開閉のみを制御可能な電磁弁である。
The
油圧源切換バルブ114の両端には、スプール115の位置を切り換えるための第1、第2切換ポートA1,A2が設けられている。第1切換ポートA1には、機械ポンプ6からライン圧が供給される第1メインライン120が接続され、第2切換ポートA2には、電動ポンプ106で生成された油圧が供給される第2メインライン130が接続されている。
At both ends of the hydraulic pressure
機械ポンプ6の作動時には、該機械ポンプ6から第1メインライン120を経由して第1切換ポートA1に油圧が導入され、電動ポンプ106の作動時には、該電動ポンプ106から第2メインライン130を経由して第2切換ポートA2に油圧が導入される。
When the
スプール115の位置は、これら第1、第2切換ポートA1,A2の入力圧によって作用する力と、第1切換ポートA1の入力圧による力と同方向に作用するスプリングの弾性力との関係によって決まる。つまり、両者の力のうち、第1切換ポートA1の入力圧によって作用する力とスプリングの弾性力との合力が、第2切換ポートA2の入力圧によって作用する力よりも大きいとき、スプール115は図中左側の第1位置に位置し、第2切換ポートA2の入力圧によって作用する力が、第1切換ポートA1の入力圧によって作用する力とスプリングの弾性力との合力よりも大きいとき、スプール115は図中右側の第2位置に位置する。
The position of the
また、油圧源切換バルブ114は、第1〜第4入力ポートB1〜B4と、第1及び第2出力ポートC1,C2を更に備えている。
The hydraulic power
第1入力ポートB1には、機械ポンプ6から第1メインライン120及びDレンジ位置のマニュアルバルブ112を介してライン圧が供給される第1入力ライン122が接続され、第2入力ポートB2には、マニュアルバルブ112よりも下流側において第1メインライン120から分岐した第2入力ライン123が接続されている。また、第3、第4入力ポートB3,B4には、第2メインライン130からそれぞれ分岐した第3、第4入力ライン131,132が接続されている。
The first input port B1 is connected to the
第1出力ポートC1にはロークラッチライン142が接続されており、第2出力ポートC2には、開閉バルブ116の開放状態においてLRブレーキライン141に作動油を供給するベースライン140が接続されている。
A low
油圧源切換バルブ114のスプール115が第1位置(図中左側の位置)にあるとき、第1、第2出力ポートC1,C2には、機械ポンプ6側に接続された第1、第2入力ポートB1,B2がそれぞれ連通し、機械ポンプ6で生成された油圧が第1、第2出力ポートC1,C2からそれぞれロークラッチライン142及びベースライン140に供給される。
When the
一方、油圧源切換バルブ114のスプール115が第2位置(図中右側の位置)にあるとき、第1、第2出力ポートC1,C2には、電動ポンプ106側に接続された第3、第4入力ポートB3,B4がそれぞれ連通し、電動ポンプ106で生成された油圧が第1、第2出力ポートC1,C2からそれぞれロークラッチライン142及びベースライン140に供給される。
On the other hand, when the
開閉バルブ116の図中左側の端部には、スプール117の位置を切り換えるための切換ポートD1が設けられている。切換ポートD1には、オンオフSV104を介して、ベースライン140から分岐した開閉制御ライン144が接続されている。
A switching port D1 for switching the position of the
オンオフSV104はノーマルオープンタイプであるため、オンオフSV104がオンされて閉じているとき、開閉バルブ116の切換ポートD1に油圧が導入されないことにより、スプール117は図中左側の第1位置に位置することになる。一方、オンオフSV104がオフであり開かれているとき、開閉制御ライン144から切換ポートD1に油圧が導入されることにより、スプール117は図中右側の第2位置に位置する。
Since the on / off
また、開閉バルブ116は、入力ポートE1及び出力ポートF1を備えている。入力ポートE1にはベースライン140が接続され、出力ポートF1にはLRブレーキライン141が接続されている。
The on-off
開閉バルブ116のスプール117が第1位置(図中左側の位置)にあるとき、入力ポートE1は出力ポートF1に連通し、開閉バルブ116が開かれた状態となる。一方、スプール117が第2位置(図中右側の位置)にあるとき、入力ポートE1と出力ポートF1との間はスプール117によって遮断され、開閉バルブ116は閉じた状態となる。
When the
LRブレーキライン141上には、第1LSV101よりも下流側において油圧スイッチ170が設けられており、該油圧スイッチ170によって、LRブレーキ60の油圧室における油圧の給排状態が検出される。
A
以上の油圧回路100の構成によれば、エンジン1の駆動中に1速を形成するときには、オンオフSV104をオンにして閉じることで開閉バルブ116を開くと共に、第1LSV101及び第3LSV103を開くことによって、機械ポンプ6で生成された油圧が、ロークラッチ40及びLRブレーキ60の油圧室に供給され、これにより、1速を実現可能となる。
According to the configuration of the
また、アイドルストップ状態では、機械ポンプ6の吐出圧が低下すると共に電動ポンプ106の吐出圧が立ち上げられることで油圧源切換バルブ114のスプール115の位置が切り換えられ、これにより油圧源が電動ポンプ106に切り換えられる点を除けば、油圧制御弁がエンジン1の駆動中と同様に制御されることにより、ロークラッチ40及びLRブレーキ60の油圧室に油圧が供給され、1速の形成が可能となる。したがって、アイドルストップ中にロークラッチ40及びLRブレーキ60の油圧室に予め油圧を供給しておくことで、発進要求に応じてエンジン1が再始動するとき、良好な発進応答性が得られる。
Further, in the idle stop state, the discharge pressure of the
そして、本実施形態の油圧回路100では、ハイクラッチライン143が、第3LSV103よりも上流側においてロークラッチライン142から分岐している。これにより、ハイクラッチライン143は、ロークラッチライン142を介して油圧源切換バルブ114の第1出力ポートC1に接続されており、油圧源切換バルブ114の第1出力ポートC1から出力された油圧をハイクラッチ50の油圧室に供給することが可能となっている。
In the
そのため、エンジン1の駆動中には機械ポンプ6で生成された油圧が、アイドルストップ中には電動ポンプ106で生成された油圧が、油圧源切換バルブ114の第1出力ポートC1からロークラッチライン142及びハイクラッチライン143を経由してハイクラッチ50へ供給され得る構成となっている。
Therefore, the hydraulic pressure generated by the
かかる油路構成により、アイドルストップ中に電動ポンプ106を作動させると共に第2LSV102及び第3LSV103を開くことによって、電動ポンプ106で生成された油圧を、ロークラッチ40及びハイクラッチ50の油圧室に供給することが可能になる。これにより、従来は1速しか実現できなかったアイドルストップ状態において、ロークラッチ40及びハイクラッチ50の締結により4速を実現することが可能になる(図2参照)。
With such an oil path configuration, the
したがって、例えば、オンしても閉じることができなくなるようなオンオフSV104の開故障によって、開閉バルブ116のスプール117がLRブレーキライン141を閉じる第2位置(図中右側の位置)に固定されること等により、アイドルストップ中に電動ポンプ106で生成された油圧をLRブレーキ60の油圧室に供給できない異常が発生した場合、ロークラッチ40及びLRブレーキ60の締結により1速を実現する代わりに、上記のようにロークラッチ40及びハイクラッチ50の締結により4速を実現することで、発進要求に応じてエンジン1が再始動するとき、4速での発進が可能になる。
Therefore, for example, the
また、電動ポンプ106は、エンジン1の回転に関係なく駆動可能であるため、アイドルストップ中において、電動ポンプ106の吐出圧をエンジン1の再始動前に予め立ち上げておくことができる。そのため、発進要求に応じてエンジン1が再始動するとき、予め立ち上げられた電動ポンプ106の吐出圧を利用して4速が実現されることで、吐出圧の立ち上がりを待つことなく速やかな発進を行うことができる。そのため、上記のような異常が発生しても、そのことによる発進性の悪化を抑制することができる。
Further, since the
さらに、本実施形態の油圧回路100では、電動ポンプで生成された油圧を発進用の摩擦締結要素のみに供給可能な従来の油圧回路と同様、電動ポンプ106からロークラッチ40及びLRブレーキ60までの各油路は短く簡素に構成されている。
Further, in the
また、本実施形態では、1速と4速のいずれにおいてもロークラッチ40が締結されるため、アイドルストップ中に4速を実現可能な油路構成を構築するために追加された油路は、電動ポンプ106で生成された油圧をハイクラッチ50に導く部分のみである。具体的に、本実施形態では、ロークラッチライン142からハイクラッチライン143を分岐させるという簡素な構成により、電動ポンプ106からハイクラッチ50へ油圧を供給可能な油路が形成されている。
In this embodiment, since the low clutch 40 is engaged in both the first speed and the fourth speed, the oil path added to construct the oil path configuration capable of realizing the fourth speed during the idle stop is This is only the part that guides the hydraulic pressure generated by the
したがって、電動ポンプ106からロークラッチ40及びハイクラッチ50までの各油路を短く簡素に形成することができるため、電動ポンプ106の容量の増大を抑制できる。そのため、電動ポンプ106の小型化が図られることで、エンジンルーム等への電動ポンプ106の搭載性が向上すると共に、アイドルストップ中における電力消費を抑制できる。
Therefore, since each oil path from the
[制御システム]
図4に示すように、エンジン1及び自動変速機4に関連する各種制御は制御装置150によって行われる。制御装置150は、例えば、エンジン1に搭載されたECU(Engine Control Unit)151と、自動変速機4に搭載されたTCM(Transmission Control Module)152とを備えており、ECU151とTCM152とは、例えばCAN通信を介して互いに電気的に接続されている。
[Control system]
As shown in FIG. 4, various controls related to the
ECU151には、アクセルペダルの踏み込み量(アクセル開度)を検出するアクセルセンサ160、エンジン1の回転数を検出するエンジン回転数センサ161、及び、ブレーキペダルの踏み込みを検出するブレーキスイッチ162等からの信号が入力される。
The
ECU151は、これらの入力信号に基づき、エンジン1の燃料供給装置90、点火装置92及び始動装置94に制御信号を出力して、エンジン1のアイドルストップ制御における自動停止または自動再始動など、エンジン1の動作に関する各種制御を行う。また、ECU151は、アイドルストップ制御を行うとき、電動ポンプ106を駆動するモータ105に制御信号を出力する。ただし、該モータ105は、TCM152によって制御されてもよい。
The
TCM152には、自動変速機4が搭載された車両の速度を検出する車速センサ163からの信号と、運転者によって選択されている自動変速機4のレンジを検出するレンジセンサ164からの信号と、トルクコンバータ3のタービン3cの回転数を検出するタービン回転数センサ165からの信号と、油圧回路100のLRブレーキライン141に設けられた油圧スイッチ170からの信号とが入力される。
The
そして、これらの入力信号に基づき、TCM152は、油圧回路100に設けられた上述のオンオフSV104及び第1〜第3LSV101〜103を含む各油圧制御弁に制御信号を出力する。これにより、選択されたレンジや車両の運転状態に応じて各油圧制御弁の開閉ないし出力圧が制御され、各摩擦締結要素40,50,60,70,80への油圧供給が制御されることで、図2の締結表に従って各変速段が実現されるように変速制御が行われる。
Based on these input signals, the
[停車時アイドルストップ制御の動作例]
図5に示すフローチャートと、図6に示すタイムチャートを併せて参照しながら、停車状態又は極低車速状態でエンジン1を自動停止させる停車時アイドルストップ制御に関するエンジン1及び自動変速機4の動作例を説明する。
[Example of idle stop control operation when stopped]
While referring to the flowchart shown in FIG. 5 and the time chart shown in FIG. Will be explained.
図5に示す制御動作は、Dレンジが選択された停車状態又は極低車速状態でエンジン1の所定の自動停止条件が成立したときに、制御装置150によって実行される。
The control operation shown in FIG. 5 is executed by the
停車時アイドルストップ制御における自動停止条件は、車速が所定車速以下の極低車速状態又は停車状態であること、バッテリの残容量が所定量以上であること、エンジン水温が所定温度以上であること、アクセルペダルが離されていること、及び、ブレーキペダルが踏み込まれていること等の複数の所定条件を含み、全ての所定条件を満たしたときに、自動停止条件が成立する。 The automatic stop condition in the idle stop control at the time of stop is that the vehicle speed is an extremely low vehicle speed state or a stopped state below a predetermined vehicle speed, the remaining capacity of the battery is a predetermined amount or more, the engine water temperature is a predetermined temperature or more, The automatic stop condition is satisfied when all predetermined conditions are satisfied, including a plurality of predetermined conditions such as the accelerator pedal being released and the brake pedal being depressed.
自動停止条件が成立すると、先ず、ステップS1で、エンジン1の自動停止が実行されるとともに、ステップS2で、モータ105に作動信号が出力されることで、電動ポンプ106の作動が開始される。具体的に、ステップS1では、エンジン1の燃焼が停止されることで、エンジン1が自動停止する。図6の符号aに示すように、エンジン1の燃焼が停止されると、エンジン1の回転数の低下と共に、機械ポンプ6から出力されるライン圧が低下し、図6の符号bに示すように、電動ポンプ106の駆動が開始されると、電動ポンプ106の吐出圧が上昇する。
When the automatic stop condition is satisfied, first, the automatic stop of the
ステップS1におけるエンジン1の燃焼停止と、ステップS2における電動ポンプ106の駆動開始を行うタイミングは限定されるものでないが、図6に示す動作例では、エンジン1の燃焼停止が行われる前に電動ポンプ106の駆動が開始され、電動ポンプ106の吐出圧の立ち上がりが完了するタイミングでエンジン1の燃焼が停止される。
The timing for stopping the combustion of the
この結果、油圧源切換バルブ114の第2切換ポートA2に入力される電動ポンプ106からの油圧によってスプール115に作用する力が、油圧源切換バルブ114の第1切換ポートA1に入力されるライン圧による力及びスプリングの弾性力に打ち勝つと、ステップS3で、油圧源切換バルブ114のスプール115が機械ポンプ6側(図3の左側の第1位置)から電動ポンプ106側(図3の右側の第2位置)に移動する(図6の符号c参照)。以後、アイドルストップ中は、電動ポンプ106で生成された油圧による油圧制御が行われる。
As a result, the force acting on the
ステップS3において油圧源切換バルブ114が機械ポンプ6側から電動ポンプ106側に切り換えられると、ステップS4において、電動ポンプ106で生成された油圧がLRブレーキ60及びロークラッチ40の各油圧室に供給される。つまり、アイドルストップが実行されると、油圧源が機械ポンプ6から電動ポンプ106に切り換えられた上で、LRブレーキ60及びロークラッチ40の各油圧室への油圧の供給は継続して行われる。
When the hydraulic
具体的に、ステップS4において、LRブレーキ60への油圧の供給は、オンオフSV104がオンされて閉じられることで開閉バルブ116が開かれると共に、LRブレーキライン141上の第1LSV101の出力圧が制御されることで行われ、ロークラッチ40への油圧の供給は、ロークラッチライン142上の第3LSV103の出力圧が制御されることで行われる。なお、このとき、ハイクラッチライン143上の第2LSV102は閉じられており、ハイクラッチ50への油圧の供給は行われない。
Specifically, in step S4, the hydraulic pressure is supplied to the
ステップS4で行われるアイドルストップ中におけるLRブレーキ60及びロークラッチ40の各油圧室への油圧の供給は、LRブレーキ60及びロークラッチ40の両方を完全に締結するように行ってもよいし、一方を締結しつつ他方を締結準備したり、両方を締結準備したりするようにしてもよい。なお、第1実施形態において、「締結準備」とは、油圧室に油圧をプリチャージすることでクラッチクリアランスを詰めておくことを意味する。
Supply of hydraulic pressure to the hydraulic chambers of the
続くステップS5では、油圧スイッチ170の出力信号に基づいて、LRブレーキ60の油圧室への油圧の供給が正常に行われているか否かが判定される。ステップS5の判定の結果、油圧スイッチ170がオンであり、LRブレーキ60の油圧室に正常に油圧が供給されていれば、ステップS6で、エンジン1の所定の再始動条件が成立したか否かが判定される。
In the subsequent step S5, it is determined based on the output signal of the
再始動条件としては、例えば、ブレーキペダルが離されるなどの発進要求がなされること、バッテリ残容量が所定量以下であること、カーエアコン等の車両搭載機器の電力消費量が所定量以上であること、又は、ディーゼル自動車の場合においてディーゼル微粒子フィルタ(DPF)の再生を開始することなどが挙げられる。 As restart conditions, for example, a start request such as releasing the brake pedal is made, the remaining battery capacity is a predetermined amount or less, and the power consumption of a vehicle-mounted device such as a car air conditioner is a predetermined amount or more. Or, in the case of a diesel vehicle, starting regeneration of a diesel particulate filter (DPF).
ステップS5及びステップS6の判定は、LRブレーキ60へ油圧が正常に供給される限り、エンジン1の再始動条件が成立するまで繰り返し実行される。
The determinations in steps S5 and S6 are repeated until the restart condition of the
ステップS5の判定の結果、油圧スイッチ170がオフであり、LRブレーキ60の油圧室に油圧が供給されない異常が生じている場合、ステップS10で、ロークラッチ40への油圧の供給が継続されつつ、図6の符号eに示すようにハイクラッチ50へ油圧が供給されるように第2LSV102が制御され、これにより、アイドルストップ状態での4速の実現が可能になる。また、このとき、LRブレーキ60への油圧の供給が停止されるように第1LSV101が閉じられる。
If the result of determination in step S5 is that the
LRブレーキ60へ油圧を供給できなくなる異常は、例えば、図6の符号dに示すようにオンオフSV104の開故障によって開閉バルブ116のスプール117がLRブレーキライン141を閉じる第2位置に固定されること等によって生じる。
For example, an abnormality in which the hydraulic pressure cannot be supplied to the
ステップS10で行われるハイクラッチ50及びロークラッチ40の各油圧室への油圧の供給は、ハイクラッチ50及びロークラッチ40の両方を完全に締結するように行ってもよいし、一方を締結しつつ他方を締結準備したり、両方を締結準備したりするようにしてもよい。
The supply of hydraulic pressure to the hydraulic chambers of the
続くステップS11では、ステップS6と同様、エンジン1の再始動条件が成立したか否かが判定される。ステップS11の判定は、再始動条件が成立するまで繰り返し実行される。
In subsequent step S11, as in step S6, it is determined whether or not the restart condition of
ステップS6又はステップS11の判定の結果、エンジン1の再始動条件が成立すると、ステップS7で、エンジン1の燃焼が再開されることで、エンジン1が再始動される。
If the restart condition of the
例えば、図6の符号fで示すようにブレーキペダルが離されると、この発進要求に応じてエンジン1が再始動される。このとき、正常時には、ステップS4においてアイドルストップ中にロークラッチ40及びLRブレーキ60が予め締結又は締結準備されていることにより、通常通り、1速での発進が速やかに行われ、異常時には、上述のようにステップS10においてアイドルストップ中にロークラッチ40及びハイクラッチ50が予め締結又は締結準備されていることにより、4速での発進が速やかに行われる。したがって、正常時は勿論、異常時においても、発進要求に応じてエンジン1が再始動されるときに良好な応答性が得られる。
For example, when the brake pedal is released as indicated by reference numeral f in FIG. 6, the
ステップS7におけるエンジン1の再始動によって、エンジン1の回転数と共に機械ポンプ6の吐出圧が立ち上がると、ステップS8で、油圧源切換バルブ114のスプール115が電動ポンプ106側(図3の右側の第2位置)から機械ポンプ6側(図3の左側の第1位置)に移動し(図6の符号g参照)、以後は、機械ポンプ6で生成された油圧による油圧制御が行われる。
When the discharge pressure of the
その後、所定時間が経過すると、ステップS9で、モータ105に停止信号が出力されることで、電動ポンプ106の作動が停止される。
Thereafter, when a predetermined time has elapsed, a stop signal is output to the
なお、図5に示す制御動作は停車時アイドルストップ制御の一例に過ぎず、具体的な制御動作については種々の変更が可能である。 Note that the control operation shown in FIG. 5 is merely an example of the stop-time idle stop control, and various changes can be made to the specific control operation.
例えば、図5に示す例では、ステップS10において、ロークラッチ40及びハイクラッチ50の両方の油圧室に油圧が供給されることでこれらのクラッチ40,50が締結又は締結準備されるが、ハイクラッチ50の油圧室のみに油圧を供給して、ロークラッチ40を解放しておいてもよい。この場合にも、エンジン1の再始動時にはハイクラッチ50が予め締結されているか又は締結準備状態から速やかに締結されるため、エンジン1の再始動により立ち上げられる機械ポンプ6の吐出圧によってロークラッチ40のみを締結すればよいため、両方のクラッチ40,50を機械ポンプ6の吐出圧によって締結する場合に比べて、良好な発進応答性が得られる。
For example, in the example shown in FIG. 5, in step S10, the hydraulic pressure is supplied to the hydraulic chambers of both the low clutch 40 and the
また、図5に示す例では、ステップS5で異常判定されると、異常の有無が再度診断されることなく、直ちにステップS10でハイクラッチ50に油圧が供給されるが、異常判定がなされた後に再度診断を行うようにした上で、異常判定が所定回数なされたときに初めてステップS10が実行されるようにしてもよい。 Further, in the example shown in FIG. 5, when an abnormality is determined in step S5, the hydraulic pressure is immediately supplied to the high clutch 50 in step S10 without diagnosing the presence or absence of the abnormality again. After the diagnosis is performed again, step S10 may be executed only when the abnormality determination is made a predetermined number of times.
[走行時アイドルストップ制御]
近年、エンジンの燃費性能を更に向上させるために、広く実用化された上記の停車時アイドルストップ制御に加えて、例えば高速道路でのコースティング走行中など、アクセルペダルが離されているか又は僅かに踏み込まれているような加速要求のない比較的高車速での走行中において、エンジンの燃焼を停止すると共に自動変速機をニュートラル状態にすることでエンジンを自動停止させる走行時アイドルストップ制御の実用化が検討されている。
[Idle stop control during driving]
In order to further improve the fuel efficiency performance of the engine in recent years, in addition to the above-described idling stop control at the time of stoppage, the accelerator pedal has been released or slightly applied, for example, during coasting running on a highway. Practical use of running idle stop control that automatically stops the engine by stopping the combustion of the engine and setting the automatic transmission to the neutral state while driving at a relatively high vehicle speed without requiring acceleration such as being depressed Is being considered.
しかしながら、このような走行時アイドルストップ制御が実行されている状態で再加速が要求されたとき、この加速要求に応じてエンジンが再始動してから、機械ポンプの吐出圧が立ち上がり、運転状態に応じた変速段を実現するための複数の摩擦締結要素に作動油が供給されるまでに時間がかかるため、これらの摩擦締結要素の締結が遅れ、加速応答性が悪くなる問題がある。 However, when re-acceleration is requested in such a state where the idling stop control at the time of running is being executed, the discharge pressure of the mechanical pump rises after the engine restarts in response to the acceleration request, and the operation state is entered. Since it takes time until the hydraulic oil is supplied to the plurality of frictional engagement elements for realizing the corresponding shift speed, there is a problem that the engagement of these frictional engagement elements is delayed and acceleration response is deteriorated.
また、走行時アイドルストップ制御の実行中に電動ポンプで生成された油圧を摩擦締結要素に供給しておくことで、再加速要求に対する応答性を向上させることも考えられるが、比較的高車速での走行中に低変速段が実現されるとエンジンのオーバレブが生じる可能性があるため、従来のアイドルストップシステム搭載車のように電動ポンプで生成された油圧を発進用摩擦締結要素にしか供給できない油路構成では、そのような制御を採用できない。 It is also conceivable to improve the responsiveness to the reacceleration request by supplying the hydraulic pressure generated by the electric pump to the friction engagement element during execution of the idle stop control during traveling, but at a relatively high vehicle speed. If a low gear position is achieved while the vehicle is running, the engine may be over-revised, so that the hydraulic pressure generated by the electric pump can be supplied only to the starting frictional engagement element as in conventional vehicles with an idle stop system. Such control cannot be adopted in the oil passage configuration.
これに対して、上述した本実施形態の油圧回路100の構成によれば、電動ポンプ106で生成された油圧を、ロークラッチ40及びLRブレーキ60だけでなく、ハイクラッチ50にも供給可能である。そのため、走行時アイドルストップ制御によるアイドルストップ中にハイクラッチ50の油圧室に油圧を供給して締結又は締結準備状態としておくことで、加速要求に応じてエンジン1が再始動されるとき、ハイクラッチ50が既に締結されているか又は速やかに締結されると共に、機械ポンプ6で生成された油圧の供給によって他の1つの摩擦締結要素が締結されることで、4速以上の変速段(図2参照)を速やかに形成できる。これにより、運転状態に応じた変速段が速やかに形成されて車両が加速されるため、エンジン1のオーバレブを抑制しつつ、良好な加速応答性を得ることが可能になる。
On the other hand, according to the configuration of the
[走行時アイドルストップ制御の動作例]
図7及び図8に示すフローチャートと、図9に示すタイムチャートを併せて参照しながら、走行時アイドルストップ制御に関するエンジン1及び自動変速機4の動作例を説明する。
[Operation example of idle stop control during driving]
With reference to the flowcharts shown in FIGS. 7 and 8 and the time chart shown in FIG.
図7及び図8に示す制御動作は、Dレンジが選択された車両走行状態でエンジン1の所定の自動停止条件が成立したときに、制御装置150によって実行される。また、図9は、アクセルペダルが僅かに踏み込まれた6速でのコースティング走行中に自動停止条件が成立し、図7及び図8に示す制御動作が実行される例を示している。
The control operation shown in FIGS. 7 and 8 is executed by the
走行時アイドルストップ制御における自動停止条件は、車速が所定車速以上の車両走行状態であること、アクセル開度が所定開度未満である状態が所定時間継続すること、バッテリの残容量が所定量以上であること、及び、エンジン水温が所定温度以上であること等の複数の所定条件を含み、全ての所定条件を満たしたときに、自動停止条件が成立する。 The automatic stop condition in the idling stop control during running is that the vehicle speed is a vehicle running state where the vehicle speed is equal to or higher than a predetermined vehicle speed, the state where the accelerator opening is less than the predetermined opening continues for a predetermined time, and the remaining capacity of the battery is equal to or more than a predetermined amount And the automatic stop condition is satisfied when all the predetermined conditions are satisfied, including a plurality of predetermined conditions such as that the engine water temperature is equal to or higher than the predetermined temperature.
自動停止条件が成立すると、先ず、ステップS21で、エンジン1の燃焼が停止されると共に自動変速機4がニュートラル状態とされることで、エンジン1が自動停止され、ステップS22で、モータ105に作動信号が出力されることで、電動ポンプ106の作動が開始される。
When the automatic stop condition is satisfied, first, in step S21, the combustion of the
ステップS21に関して、図9に示す例では、ハイクラッチ50への油圧の供給を維持しつつ、符号pに示すように26ブレーキ70を解放することによってニュートラル状態を実現している。これにより、燃焼停止状態のエンジン1は、駆動輪との連結が遮断されるため、図9の符号qに示すようにエンジン1の回転数が急低下して、その後、エンジン1の回転は完全に停止する。エンジン回転数の低下に伴って、図9の符号rに示すように、機械ポンプ6から出力されるライン圧も低下し、その後、機械ポンプ6は完全に停止する。
With respect to step S21, in the example shown in FIG. 9, the neutral state is realized by releasing the 26
ステップS21によるライン圧の低下と、ステップS22による電動ポンプ106の吐出圧の上昇によって、油圧源切換バルブ114の第2切換ポートA2に入力される電動ポンプ106からの油圧によってスプール115に作用する力が、油圧源切換バルブ114の第1切換ポートA1に入力されるライン圧による力及びスプリングの弾性力に打ち勝つと、図7のステップS23で、油圧源切換バルブ114のスプール115が機械ポンプ6側(図3の左側の第1位置)から電動ポンプ106側(図3の右側の第2位置)に移動する(図9の符号s参照)。以後、アイドルストップ中は、電動ポンプ106で生成された油圧による油圧制御が行われる。
The force acting on the
続くステップS24では、自動停止条件が成立したときの車両の運転状態に対応する変速段が4速以上であるか否かが判定される。 In the subsequent step S24, it is determined whether or not the gear position corresponding to the driving state of the vehicle when the automatic stop condition is satisfied is 4th speed or higher.
ステップS24の判定の結果、4速以上の変速段に対応する比較的高車速の運転状態であれば、ステップS25において、電動ポンプ106で生成された油圧がハイクラッチ50へ供給されるように油圧制御が行われ、ハイクラッチ50は締結又は締結準備状態となる。このとき、他の摩擦締結要素、すなわち、ロークラッチ40及びLRブレーキ60への油圧の供給は行われず、これにより、自動変速機4はニュートラル状態に維持される。
If the result of determination in step S24 is that the vehicle is operating at a relatively high vehicle speed corresponding to the fourth speed or higher, the hydraulic pressure generated by the
一方、ステップS24の判定の結果、3速以下の変速段に対応する比較的低車速の運転状態であれば、図8のステップS35において、電動ポンプ106で生成された油圧がロークラッチ40に供給されるように油圧制御行われ、ロークラッチ40は締結又は締結準備状態となる。このとき、他の摩擦締結要素、すなわち、ハイクラッチ50及びLRブレーキ60への油圧の供給は行われず、これにより、自動変速機4はニュートラル状態に維持される。
On the other hand, if the result of determination in step S24 is that the vehicle is operating at a relatively low vehicle speed corresponding to the third gear or lower, the hydraulic pressure generated by the
ステップS25又はステップS35が実行されると、図7のステップS26又は図8のステップS36において、エンジン1の所定の再始動条件が成立したか否かが判定される。走行時アイドルストップ制御の再始動条件としては、例えば、アクセル開度が所定開度以上になるなどの加速要求がなされること、バッテリ残容量が所定量以下であること、カーエアコン等の車両搭載機器の電力消費量が所定量以上であること、又は、ディーゼル自動車の場合においてディーゼル微粒子フィルタ(DPF)の再生を開始することなどが挙げられる。
When step S25 or step S35 is executed, it is determined in step S26 in FIG. 7 or step S36 in FIG. 8 whether or not a predetermined restart condition for the
ステップS26又はステップS36の判定の結果、再始動条件が成立していない場合は、図7のステップS34又は図8のステップS40において停車したか否かが判定される。図7のステップS26及びステップS34の各判定、又は、図8のステップS36及びステップS40の各判定は、停車しない限り、再始動条件が成立するまで繰り返し実行され、ステップS34又はステップS40の判定の結果、停車した場合は、図7のステップS41に進んで、先に説明した図5に示す停車時アイドルストップ制御が開始されて、図7及び図8に示す走行時アイドルストップ制御は終了する。 If the restart condition is not satisfied as a result of the determination in step S26 or step S36, it is determined whether or not the vehicle has stopped in step S34 of FIG. 7 or step S40 of FIG. Each determination in step S26 and step S34 in FIG. 7 or each determination in step S36 and step S40 in FIG. 8 is repeatedly executed until the restart condition is satisfied unless the vehicle stops, and the determination in step S34 or step S40 is performed. As a result, when the vehicle stops, the routine proceeds to step S41 in FIG. 7, where the above-described idle stop control during stop shown in FIG. 5 is started, and the idle stop control during travel shown in FIGS. 7 and 8 ends.
図7のステップS25によりハイクラッチ50に油圧が供給されている状態でステップS26の判定が行われた結果、エンジン1の再始動条件が成立すると、ステップS27において、エンジン1の再始動時に必要な変速段、具体的には、再始動条件成立時の運転状態に対応する変速段が、4速以上の変速段であるか否かが判定される。
If the restart condition of the
ステップS27の判定の結果、3速以下の変速段に対応する運転状態である場合、当該変速段の実現のためにはハイクラッチ50を締結する必要がなく、その代わりにロークラッチ40を締結する必要があるため(図2参照)、ステップS32で、ハイクラッチ50が解放されるように油圧制御されると共に、ステップS33で、電動ポンプ106で生成された油圧がロークラッチ40に供給され、ロークラッチ40が締結又は締結準備状態とされた上で、ステップS28で、エンジン1が再始動される。一方、ステップS27の判定の結果、4速以上の変速段に対応する運転状態であれば、ハイクラッチ50への油圧の供給が維持されたまま、ステップS28で、エンジン1が再始動される。
If the result of determination in step S27 is that the driving state corresponds to the third gear or lower, the
また、図8のステップS35によりロークラッチ40に油圧が供給されている状態でステップS36の判定が行われた結果、エンジン1の再始動条件が成立すると、ステップS37において、エンジン1の再始動時に必要な変速段、具体的には、再始動条件成立時の運転状態に対応する変速段が、4速以下の変速段であるか否かが判定される。
Further, as a result of the determination in step S36 when the hydraulic pressure is supplied to the low clutch 40 in step S35 of FIG. 8, if the restart condition of the
ステップS37の判定の結果、5速以上の変速段に対応する運転状態である場合、当該変速段の実現のためにはロークラッチ40を締結する必要がなく、その代わりにハイクラッチ50を締結する必要があるため(図2参照)、ステップS38で、ロークラッチ40が解放されるように油圧制御されると共に、ステップS39で、電動ポンプ106で生成された油圧がハイクラッチ50に供給され、ハイクラッチ50が締結又は締結準備状態とされた上で、図7のステップS28で、エンジン1が再始動される。一方、ステップS37の判定の結果、4速以下の変速段に対応する運転状態であれば、ロークラッチ40への油圧の供給が維持されたまま、ステップS28で、エンジン1が再始動される。
If the result of determination in step S37 is that the driving state corresponds to the fifth gear or higher, it is not necessary to engage the low clutch 40 in order to realize the gear, and the
ステップS28におけるエンジン1の再始動によって、エンジン1の回転数と共に機械ポンプ6の吐出圧が立ち上がると、ステップS29で、油圧源切換バルブ114のスプール115が電動ポンプ106側(図3の右側の第2位置)から機械ポンプ6側(図3の左側の第1位置)に移動し(図9の符号t参照)、これにより、機械ポンプ6で生成された油圧による油圧制御に切り換えられる。
When the discharge pressure of the
次のステップS30では、必要な変速段、具体的には、再始動条件成立時の運転状態に対応する変速段が実現されるように、既に油圧が供給されているハイクラッチ50又はロークラッチ40と、もう1つの摩擦締結要素とが締結されるように、機械ポンプ6で生成された油圧による油圧制御が行われる。
In the next step S30, the high clutch 50 or the low clutch 40 to which the hydraulic pressure has already been supplied is realized so as to realize a necessary shift stage, specifically, a shift stage corresponding to the operation state when the restart condition is satisfied. Then, the hydraulic control by the hydraulic pressure generated by the
その後、所定時間が経過すると、ステップS31で、モータ105に停止信号が出力されることで、電動ポンプ106の作動が停止される。
Thereafter, when a predetermined time has elapsed, a stop signal is output to the
図9に示す例では、電動ポンプ106で生成された油圧によってハイクラッチ50が締結された走行時アイドルストップ状態において、符号uで示すようにアクセルペダルの踏み込み量が増大することで、この加速要求に応じてエンジン1が再始動される。このエンジン1の再始動によって機械ポンプ6の吐出圧が立ち上がると、符号vに示すように、ロークラッチ40が締結準備状態を経て締結され、これにより、ショックを抑制しつつ4速が実現される。この例では、エンジン1の再始動によって油圧源が機械ポンプ6に切り換えられた後、新たに油圧が供給されるのはロークラッチ40のみであるため、速やかに4速を実現することができ、加速要求に対する良好な応答性が得られる。
In the example shown in FIG. 9, in the idling stop state when the
なお、図7及び図8に示す制御動作は走行時アイドルストップ制御の一例に過ぎず、具体的な制御動作については種々の変更が可能である。 The control operation shown in FIGS. 7 and 8 is merely an example of the running idle stop control, and various changes can be made to the specific control operation.
例えば、図7及び図8に示す例では、ステップS25においてハイクラッチ50に油圧が供給され、ロークラッチ40及びLRブレーキ60が解放されるが、自動停止条件成立時の運転状態が4速に対応する場合は、速やかに4速を実現可能なニュートラル状態とするために、ハイクラッチ50を締結しつつロークラッチ40を締結準備状態としたり、ハイクラッチ50及びロークラッチ40の両方を締結準備状態としたり、ハイクラッチ50を締結準備状態としつつロークラッチ40を締結したりするようにしてもよく、これにより、その後の加速要求に応じてエンジン1が再始動するときの運転状態が4速に対応する状態のままであれば、速やかな4速の実現により良好な加速応答性が得られる。
For example, in the example shown in FIGS. 7 and 8, the hydraulic pressure is supplied to the
また、図7及び図8に示す例では、エンジン1の再始動時に、再始動条件成立時の運転状態に対応する変速段が形成されるが(ステップS30)、このときの運転状態に関係なく4速を形成するようにしてもよく、例えば、再始動条件成立時の運転状態が5速に対応する場合であっても、再始動時に4速を形成してもよい。この場合、アイドルストップ中に電動ポンプ106で生成された油圧をロークラッチ40及びハイクラッチ50に供給しておくことで、加速要求に応じたエンジン1の再始動時に、動力伝達状態をより迅速に実現することでき、4速での速やかな加速を行うことができる。
In the example shown in FIGS. 7 and 8, when the
[第2実施形態]
続いて、図10〜図12を参照しながら、第2実施形態について説明する。なお、第2実施形態において、第1実施形態と共通する構成については、説明を省略すると共に、図10〜図12において同一の符号を付している。
[Second Embodiment]
Next, the second embodiment will be described with reference to FIGS. In addition, in 2nd Embodiment, while abbreviate | omitting description about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected in FIGS. 10-12.
[タンデムピストン式のLRブレーキ]
図10は、第2実施形態におけるLRブレーキ60の解放状態を示す断面図である。第2実施形態において、LRブレーキ60は、締結時の応答性向上のためのクラッチクリアランス調整機能を有する複動式の油圧アクチュエータ61を備えている。
[Tandem piston type LR brake]
FIG. 10 is a cross-sectional view showing a released state of the
油圧アクチュエータ61は、変速機ケース5に設けられたシリンダ5a内に軸方向に移動可能に嵌合されたクリアランス調整用ピストン62と、該クリアランス調整用ピストン62の内側に設けられたシリンダ62a内に該クリアランス調整用ピストン62に対して軸方向に相対移動可能に嵌合された締結用ピストン63とを備えている。
The hydraulic actuator 61 includes a
変速機ケース5のシリンダ5a内におけるクリアランス調整用ピストン62の背部はクリアランス調整用油圧室(以下、「クリアランス調整室」という)64とされ、クリアランス調整用ピストン62のシリンダ62a内における締結用ピストン63の背部は締結用油圧室(以下、「締結室」という)65とされている。
The back of the
LRブレーキ60を締結するときに、まずクリアランス調整室64に油圧を供給すれば、クリアランス調整用ピストン62は、締結用ピストン63と共に、両ピストン62,63の位置関係を保持しながら、スプリング66の付勢力に抗してストッパ67に当接するまで図の左側にストロークする。これにより、締結用ピストン63は、変速機ケース5と被制動回転部材(図示せず)とに交互に係合された複数の摩擦板68を押圧することなく該摩擦板68に接した状態もしくはほぼ接した状態、即ち、クラッチクリアランスが小さな締結準備状態(小クリアランス状態)となる。
When hydraulic pressure is first supplied to the
そして、この締結準備状態で締結室65に油圧を供給すれば、締結用ピストン63は、既に締結のためのストロークがほぼ終了しているから、クリアランス調整用ピストン62のシリンダ62a内で図の左側へ僅かにストロークするだけで、油圧の供給とほぼ同時に摩擦板68を押圧する。これにより、変速機ケース5に固定されたリテーナ69と締結用ピストン63との間にこれらの摩擦板68が挟み込まれて相対回転不能となることで、LRブレーキ60が応答性良く締結されることになる。
If the hydraulic pressure is supplied to the
なお、図10では、便宜上、最も右側の摩擦板68と締結用ピストン63との間に、LRブレーキ60のクリアランスが集中するように図示されているが、実際には、隣接する摩擦板68間や摩擦板68とリテーナ69との間にもクリアランスは分散される。
In FIG. 10, for the sake of convenience, the clearance of the
以上のように、LRブレーキ60としてタンデムピストン式のブレーキを採用することで、LRブレーキ60の解放状態では大クリアランス状態となることで、潤滑油の粘性による回転抵抗が抑制され、締結時には、小クリアランス状態で締結用ピストン63が作動することで、緻密で応答性の良い締結制御が可能となる。
As described above, by adopting a tandem piston type brake as the
第2実施形態において、自動変速機4におけるLRブレーキ60以外の摩擦締結要素40,50,70,80としては、第1実施形態と同様のシングルピストン式のものが用いられ、図11の締結表に従って各変速段が実現されるように変速制御が行われる。図11の締結表に示すように、LRブレーキ60の締結を必要としない2〜6速は、第1実施形態と同じ締結状態の組み合わせによって形成される。
In the second embodiment, as the
また、図11の締結表に示すように、第2実施形態では、Dレンジでの1速や、Rレンジでの後退速を形成するためにLRブレーキ60を締結するときは、クリアランス調整室64と締結室65の両方に油圧が供給されることになり、Nレンジでのニュートラル状態では、LRブレーキ60のクリアランス調整室64に油圧が供給されることで、LRブレーキ60が締結準備状態とされる。
As shown in the engagement table of FIG. 11, in the second embodiment, when the
[油圧回路]
図12は、第2実施形態における自動変速機4の油圧回路200において、エンジン1のアイドルストップ中の油圧制御に関連する部分を示す回路図である。
[Hydraulic circuit]
FIG. 12 is a circuit diagram showing portions related to hydraulic control during idle stop of the
図12に示す油圧回路200において、機械ポンプ6及び電動ポンプ106で生成された油圧を油圧源切換バルブ114の各切換ポートA1,A2及び各入力ポートB1〜B4に導く油路構成は、第1実施形態における油圧回路100と同様である。また、油圧源切換バルブ114の第1出力ポートC1からロークラッチ40へ作動油を供給する油路構成、並びに、油圧源切換バルブ114の第2出力ポートC2から開閉バルブ116の切換ポートD1及び入力ポートE1へ作動油を供給する油路構成も、第1実施形態の油圧回路100と同様である。以下、油圧回路200において、第1実施形態の油圧回路100と異なる構成について説明する。
In the
LRブレーキ60のクリアランス調整室64は、クリアランス調整ライン242を介して開閉バルブ116の出力ポートF1に接続されている。これにより、開閉バルブ116のスプール117が図中左側の第1位置に位置することでクリアランス調整ライン242がベースライン140に連通するとき、ベースライン140及びクリアランス調整ライン242を介してクリアランス調整室64に作動油を供給可能となる。
The
クリアランス調整ライン242上には油圧スイッチ170が設けられており、該油圧スイッチ170によって、LRブレーキ60のクリアランス調整室64における油圧の給排状態が検出される。
A
また、油圧回路200は、LRブレーキ60の締結室65に作動油を供給する第1状態と、ハイクラッチ50に作動油を供給する第2状態との間での切り換えを行う供給先切換バルブ218を備えている。これにより、LRブレーキ60の締結室65には、第1状態の供給先切換バルブ218を介して作動油を供給可能であり、ハイクラッチ50の油圧室には、第2状態の供給先切換バルブ218を介して作動油を供給可能となっている。
The
供給先切換バルブ218の一端には、スプール219の位置を切り換えるための切換ポートG1が設けられている。切換ポートG1には、クリアランス調整ライン242から分岐した第1分岐ライン251が接続されている。
At one end of the supply
また、供給先切換バルブ218は、第1分岐ライン251から更に分岐した第2分岐ライン252が接続された第1入力ポートH1と、クリアランス調整ライン242、第1分岐ライン251及び第2分岐ライン252とは独立した油圧供給経路である独立ライン243が接続された第2入力ポートH2とを備えている。独立ライン243は、第3LSV103よりも上流側においてロークラッチライン142から分岐しており、独立ライン243には、油圧源切換バルブ114の第1出力ポートC1からロークラッチライン142を介して作動油が供給される。
Further, the supply
さらに、供給先切換バルブ218は、第1入力ポートH1又は第2入力ポートH2から導入された作動油を一旦排出する第1出力ポートI1と、再入力ライン253を介して第1出力ポートI1に接続された第3入力ポートH3と、締結ライン254を介してLRブレーキ60の締結室65に接続された第2出力ポートI2と、ハイクラッチライン255を介してハイクラッチ50の油圧室に接続された第3出力ポートI3とを備えている。再入力ライン253上には、第4リニアソレノイドバルブ(以下、「第4LSV」と記す)204が設けられている。第4LSV204は、開閉のみならず、出力圧を制御可能な電磁弁である。
Further, the supply
クリアランス調整ライン242を介して第1分岐ライン251に供給された油圧が供給先切換バルブ218の切換ポートG1に入力されるとき、供給先切換バルブ218のスプール219が図中右側の第1位置に位置し、これにより、供給先切換バルブ218は第1状態となる。供給先切換バルブ218の第1状態では、クリアランス調整ライン242及び第1分岐ライン251を介して第2分岐ライン252に供給された油圧が、供給先切換バルブ218の第1入力ポートH1及び第1出力ポートI1を通過して再入力ライン253に供給される。このようにして再入力ライン253に供給された油圧は、第4LSV204の出力圧を制御することで、供給先切換バルブ218の第3入力ポートH3及び第2出力ポートI2を通過して、締結ライン254を介してLRブレーキ60の締結室65に供給され得る。
When the hydraulic pressure supplied to the
一方、供給先切換バルブ218の切換ポートG1に油圧が入力されないときは、供給先切換バルブ218のスプール219が図中左側の第2位置に位置し、これにより、供給先切換バルブ218は第2状態となる。供給先切換バルブ218の第2状態では、ロークラッチライン142を介して独立ライン243に供給された油圧が、供給先切換バルブ218の第2入力ポートH2及び第1出力ポートI1を通過して再入力ライン253に供給される。このようにして再入力ライン253に供給された油圧は、第4LSV204の出力圧を制御することで、供給先切換バルブ218の第3入力ポートH3及び第3出力ポートI3を通過して、ハイクラッチライン255を介してハイクラッチ50の油圧室に供給され得る。
On the other hand, when the hydraulic pressure is not input to the switching port G1 of the supply
以上の油圧回路200の構成によれば、第1実施形態と同様、機械ポンプ6又は電動ポンプ106で生成された油圧は、油圧源切換バルブ114の第1及び第2出力ポートC1,C2からロークラッチライン142及びベースライン140にそれぞれ供給される。
According to the configuration of the
第1出力ポートC1からロークラッチライン142に供給された油圧は、第3LSV103を開くことによってロークラッチ40の油圧室に供給可能である。
The hydraulic pressure supplied from the first
第2出力ポートC2からベースライン140に供給された油圧は、オンオフSV104をオンにして閉じることで開閉バルブ116を開くことによって、クリアランス調整ライン242を介してLRブレーキ60のクリアランス調整室64に供給可能である。このとき、クリアランス調整ライン242及び第1分岐ライン251を介して供給先切換バルブ218の切換ポートG1に油圧が導入されることで、供給先切換バルブ218は第1状態となり、この第1状態では、第4LSV204を開くことによってLRブレーキ60の締結室65にも供給可能である。
The hydraulic pressure supplied to the
クリアランス調整室64に油圧を供給するとき、第4LSV204を閉じることで締結室65への油圧供給を停止しておくことで、クリアランス調整室64への作動油の充填が速やかに完了する。これにより、電動ポンプ106の容量を増大させることなく、LRブレーキ60の状態を、クラッチクリアランスが大きな解放状態からクラッチクリアランスが小さな締結準備状態へ速やかに移行させることができる。
When the hydraulic pressure is supplied to the
このようにしてLRブレーキ60の締結準備状態が実現された後、第4LSV204が開かれて、該第4LSV204の出力圧が制御されることで、締結準備状態において締結室65への油圧供給を緻密に制御できる。したがって、LRブレーキ60の締結準備状態において、例えば、締結用ピストン63(図10参照)の位置を微調整することができる。
After the
供給先切換バルブ218の第1状態において、ロークラッチ40が締結されると共にLRブレーキ60が締結準備されているとき、締結室65へ油圧を供給してLRブレーキ60を締結することで、ショックを抑制しつつ速やかに1速を実現できる。
When the low clutch 40 is engaged and the
締結室65への油圧の供給は、必ずクリアランス調整ライン242を経由して行われるため、締結室65に油圧が供給されるときは必ずクリアランス調整室64にも油圧が供給されることになる。したがって、クリアランス調整室64に油圧供給されることなく締結室65に油圧供給されるという異常な給油でのLRブレーキ60の締結を確実に防止できる。
Since the hydraulic pressure is always supplied to the
また、第1状態における供給先切換バルブ218は、上記のようにLRブレーキ60の締結室65への油圧の供給を許容しつつ、ロークラッチライン142、独立ライン243、再入力ライン253及びハイクラッチライン255を介したハイクラッチ50への油圧の供給をスプール219によって遮断する。これにより、LRブレーキ60とハイクラッチ50が同時に締結されることが確実に防止される。
In addition, the supply
一方、オンオフSV104をオフにして開くことで開閉バルブ116を閉じると、そのスプール117によってクリアランス調整ライン242への油圧の供給が遮断され、これにより、供給先切換バルブ218の切換ポートG1に油圧が導入されないため、供給先切換バルブ218は第2状態となる。
On the other hand, when the on-off
供給先切換バルブ218の第2状態では、独立ライン243と再入力ライン253とが連通することでハイクラッチ50への油圧の供給が許容されると共に、第2分岐ライン252と再入力ライン253との連通がスプール219によって遮断されることで、LRブレーキ60の締結室65への油圧の供給が遮断される。したがって、第2状態においても、LRブレーキ60とハイクラッチ50が同時に締結されることが確実に防止される。
In the second state of the supply
このように、供給先切換バルブ218が第1状態又は第2状態のいずれであっても、LRブレーキ60とハイクラッチ50が同時に締結されることが防止されることで、自動変速機4のインターロック等の原因となる摩擦締結要素の多重結合が確実に防止される。
In this way, even if the supply
また、LRブレーキ60の締結室65及びハイクラッチ50の油圧室へ供給される油圧を直接的に制御する油圧制御弁として、第4LSV204が共用されていることにより、部品点数の低減と、油圧制御ユニットの小型化を図ることができる。
Further, since the
供給先切換バルブ218の第2状態において、再入力ライン253に供給された油圧は、第4LSV204を開くことによって、ハイクラッチライン255を介してハイクラッチ50の油圧室に供給される。したがって、供給先切換バルブ218が第2状態であるとき、第3LSV103及び第4LSV204を開いてロークラッチ40及びハイクラッチ50に油圧を供給することで、4速の実現が可能となっている(図11参照)。
In the second state of the supply
以上のように構成された油圧回路200では、エンジン1の駆動中には機械ポンプ6で生成された油圧によって、アイドルストップ中には電動ポンプ106で生成された油圧によって、油圧制御が行われる。特に、上記の油圧回路200は、電動ポンプ106で生成された油圧を、ロークラッチ40とLRブレーキ60だけでなく、ハイクラッチ50にも供給できるように構成されていることにより、アイドルストップ中において、1速だけでなく、4速の実現が可能となっている。
In the
したがって、第1実施形態と同様、オンオフSV104の開故障等によりアイドルストップ中に電動ポンプ106で生成された油圧をLRブレーキ60に供給できない異常が発生した場合であっても、例えば図5に示す制御動作のように停車時アイドルストップ制御が実行されることにより、ロークラッチ40及びLRブレーキ60の締結により1速を実現する代わりに、ロークラッチ40及びハイクラッチ50の締結により4速を実現することで、発進要求に応じてエンジン1が再始動するとき、4速での発進が可能になる。
Therefore, as in the first embodiment, even when an abnormality occurs in which the hydraulic pressure generated by the
また、発進要求に応じてエンジン1が再始動するとき、アイドルストップ中に予め立ち上げられた電動ポンプ106の吐出圧を利用して4速が実現されることで、吐出圧の立ち上がりを待つことなく速やかな発進を行うことができる。そのため、上記のような異常が発生しても、そのことによる発進性の悪化を抑制することができる。
Further, when the
さらに、油圧回路200では、供給先切換バルブ218を設けることにより摩擦締結要素の多重結合を確実に回避しつつ、ロークラッチライン142から分岐した独立ライン243を供給先切換バルブ218の第2入力ポートH2に接続するという簡素な構成により、電動ポンプ106からハイクラッチ50へ油圧を供給可能な油路が形成されている。したがって、電動ポンプ106からロークラッチ40及びハイクラッチ50までの各油路を短く簡素に形成することができるため、電動ポンプ106の容量の増大を抑制できる。そのため、電動ポンプ106の小型化が図られることで、エンジンルーム等への電動ポンプ106の搭載性が向上すると共に、アイドルストップ中における電力消費を抑制できる。
Furthermore, in the
また、第1実施形態と同様、例えば図7及び図8に示す制御動作のように走行時アイドルストップ制御が行われる場合、車両走行中のアイドルストップ状態において、電動ポンプ106で生成された油圧をハイクラッチ50の油圧室に供給して締結又は締結準備状態としておくことが可能である。この場合、加速要求に応じてエンジン1が再始動されるとき、ハイクラッチ50が既に締結されているか又は速やかに締結されると共に、機械ポンプ6で生成された油圧の供給によって他の1つの摩擦締結要素が締結されることで、4速以上の変速段(図11参照)を速やかに形成できる。これにより、運転状態に応じた変速段が速やかに形成されて車両が加速されるため、エンジン1のオーバレブを抑制しつつ、良好な加速応答性を得ることが可能になる。
Similarly to the first embodiment, when the running idle stop control is performed as in the control operation shown in FIGS. 7 and 8, for example, the hydraulic pressure generated by the
[第3実施形態]
図13を参照しながら、第3実施形態について説明する。なお、第3実施形態において、第1又は第2実施形態と共通する構成については、説明を省略すると共に、図13において同一の符号を付している。
[Third Embodiment]
The third embodiment will be described with reference to FIG. Note that in the third embodiment, the description of the configuration common to the first or second embodiment is omitted, and the same reference numerals are given in FIG.
図13は、第3実施形態における自動変速機4の油圧回路300において、エンジン1のアイドルストップ中の油圧制御に関連する部分を示す回路図である。
FIG. 13 is a circuit diagram showing portions related to hydraulic control during idle stop of the
第3実施形態における油圧回路300には、エンジン1の回転とは無関係に作動する油圧源として、第1及び第2実施形態における電動ポンプ106に代えて、機械ポンプ6の作動によって蓄圧されると共に機械ポンプ6の停止時に放圧するアキュムレータ306が設けられている。
In the
また、油圧回路300は、油圧源の変更に伴って、第1及び第2実施形態のものとは異なる油圧源切換バルブ314を備えているが、油圧源切換バルブ314よりも下流側の油路構成は、第2実施形態の油圧回路200と同様である。以下、油圧回路300において、第2実施形態の油圧回路200と異なる構成について説明する。
The
油圧源切換バルブ314の一端には、スプール315の位置を切り換えるための切換ポートJ1が設けられている。切換ポートJ1には、機械ポンプ6からライン圧が供給されるメインライン320が接続されている。
At one end of the hydraulic pressure
エンジン1の駆動中、すなわち機械ポンプ6の作動時には、該機械ポンプ6からメインライン320を経由して切換ポートJ1に油圧が導入されることで、スプール315は図中右側の第1位置に位置し、機械ポンプ6の停止時には、切換ポートJ1に油圧が導入されないことにより、スプール315は図中左側の第2位置に位置する。
When the
また、油圧源切換バルブ314は、第1〜第6入力ポートK1〜K5と、第1及び第2出力ポートL1,L2と、蓄圧ポートM1と、放圧ポートN1とを更に備えている。
The hydraulic pressure
第1入力ポートK1には、機械ポンプ6からメインライン320及びDレンジ位置のマニュアルバルブ112を介してライン圧が供給される第1入力ライン321が接続され、第2、第3入力ポートK2,K3には、マニュアルバルブ112よりも下流側においてメインライン320から分岐した第2、第3入力ライン322,323がそれぞれ接続されている。蓄圧ポートM1は、アキュムレータライン330を介してアキュムレータ306に接続され、放圧ポートN1は、放圧ライン340を介して第4、第5入力ポートK4,K5に接続されている。第1出力ポートL1にはロークラッチライン142が接続されており、第2出力ポートL2にはベースライン140が接続されている。
The first input port K1 is connected to the
エンジン1が駆動されているとき、すなわち、油圧源切換バルブ314のスプール315が第1位置(図中右側の位置)にあるとき、第1、第2出力ポートL1,L2には第1、第2入力ポートK1,K2がそれぞれ連通し、機械ポンプ6で生成された油圧が第1、第2出力ポートL1,L2からそれぞれロークラッチライン142及びベースライン140に供給される。
When the
また、このとき、第3入力ポートK3は蓄圧ポートM1に連通し、これにより、機械ポンプ6で生成された油圧が第3入力ライン323及びアキュムレータライン330を介してアキュムレータ306に供給され、該アキュムレータ306に蓄圧される。
At this time, the third input port K3 communicates with the accumulator port M1, whereby the hydraulic pressure generated by the
一方、エンジン1が自動停止すると、油圧源切換バルブ314のスプール315が第2位置(図中左側の位置)に位置し、蓄圧ポートM1が放圧ポートN1に連通し、第4、第5入力ポートK4,K5が第1、第2出力ポートL1,L2にぞれぞれ連通する。これにより、アキュムレータ306に蓄圧された油圧がアキュムレータライン330に放圧され、放圧ライン340を介して第4、第5入力ポートK4,K5に入力されて、第1、第2出力ポートL1,L2からそれぞれロークラッチライン142及びベースライン140に供給される。
On the other hand, when the
このようにして、エンジン1の自動停止時に、油圧源が機械ポンプ6からアキュムレータ306に自動的に切り換えられることになる。第3実施形態によっても、エンジン1の停止時に、機械ポンプ6の代わりに電動ポンプ106を作動させる第2実施形態と同様の油圧制御を行うことが可能となる。
In this way, when the
したがって、第2実施形態と同様、アイドルストップ中にLRブレーキ60に油圧を供給できない異常時において、ロークラッチ40及びLRブレーキ60の締結により1速を実現する代わりに、ロークラッチ40及びハイクラッチ50の締結により4速を実現することで、発進要求に応じてエンジン1が再始動するとき、4速での発進を応答性良く行うことが可能になる。
Therefore, as in the second embodiment, when the hydraulic pressure cannot be supplied to the
また、アキュムレータ306からロークラッチ40及びハイクラッチ50までの各油路が短く簡素に形成されていることにより、アキュムレータ306の小型化を図ることができる。さらに、アキュムレータ306は電力を消費しないため、アイドルストップ中における電力消費を抑制できる。
In addition, since each oil passage from the
またさらに、走行時アイドルストップ制御が行われる場合、車両走行中のアイドルストップ状態においてアキュムレータ306から放圧された油圧をハイクラッチ50に予め供給しておくことで、加速要求に応じてエンジン1が再始動されるとき、ハイクラッチ50が既に締結されているか又は速やかに締結されると共に、機械ポンプ6で生成された油圧の供給によって他の1つの摩擦締結要素が締結されることで、4速以上の変速段(図11参照)での速やかな加速が可能になる。
Furthermore, when the idling stop control during traveling is performed, the
以上、上述の実施形態を挙げて本発明を説明したが、本発明は上述の実施形態に限定されるものではない。 While the present invention has been described with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments.
例えば、上述の実施形態では、2つの摩擦締結要素の締結によって各変速段が実現される例を説明したが(図2及び図11参照)、3つ以上の摩擦締結要素の締結によって各変速段が実現されるようにしてもよい。また、変速段の実現のために締結される摩擦締結要素の少なくとも1つはワンウェイクラッチであってもよい。 For example, in the above-described embodiment, an example has been described in which each shift stage is realized by fastening two frictional engagement elements (see FIGS. 2 and 11), but each shift stage is achieved by fastening three or more frictional engagement elements. May be realized. Further, at least one of the frictional engagement elements that are engaged for realizing the shift speed may be a one-way clutch.
さらに、上述の実施形態では、第1変速比(1速)の実現のために締結される2つの摩擦締結要素(ロークラッチ40及びLRブレーキ60)のうち、1つの摩擦締結要素(LRブレーキ60)が第2変速比(4速)の実現のために締結される例を説明したが、第1変速比の実現のために3つ以上の摩擦締結要素が締結される場合において、これらのうち2つ以上の摩擦締結要素が第2変速比の実現のためにも締結されるようにしてもよい。 Furthermore, in the above-described embodiment, one frictional engagement element (LR brake 60) among the two frictional engagement elements (low clutch 40 and LR brake 60) that are engaged to achieve the first gear ratio (first speed). ) Has been described in order to achieve the second gear ratio (fourth speed). However, when three or more frictional engagement elements are engaged to achieve the first gear ratio, Two or more frictional engagement elements may be engaged to achieve the second speed ratio.
また、本発明において、第1油圧室と第2油圧室を有する摩擦締結要素は、上述の第2及び第3実施形態で例示したようなクリアランス調整室64と締結室65を有するタンデムピストン式のLRブレーキ60に限られるものでなく、2つの油圧室を有すると共にこれらの油圧室の双方に油圧が供給されたときに締結されるものであれば、タンデムピストン式以外の摩擦締結要素であってもよい。
In the present invention, the frictional engagement element having the first hydraulic chamber and the second hydraulic chamber is a tandem piston type having the
さらに、上述の実施形態では、本発明を有段式の自動変速機に適用する例を説明したが、本発明は、複数の摩擦締結要素を有する無段式の自動変速機にも同様に適用することができる。 Furthermore, in the above-described embodiment, an example in which the present invention is applied to a stepped automatic transmission has been described. However, the present invention is similarly applied to a continuously variable automatic transmission having a plurality of frictional engagement elements. can do.
以上のように、本発明によれば、アイドルストップ状態で作動する電動式オイルポンプ等の油圧源から発進用摩擦締結要素への油圧供給に異常が生じた場合にも、アイドルストップ中における発進要求に対する良好な応答性を確保することが可能となるから、アイドルストップシステムが搭載された車両の製造産業分野において好適に利用される可能性がある。 As described above, according to the present invention, even when an abnormality occurs in the hydraulic pressure supply from the hydraulic source such as an electric oil pump that operates in the idle stop state to the starting frictional engagement element, the start request during the idle stop is generated. Therefore, it may be suitably used in the field of manufacturing industries of vehicles equipped with an idle stop system.
1 エンジン
2 クランクシャフト
3 トルクコンバータ
3f ロックアップクラッチ
4 自動変速機
6 機械ポンプ(第1油圧源)
40 ロークラッチ
50 ハイクラッチ
60 LRブレーキ
62 クリアランス調整用ピストン
63 締結用ピストン
64 クリアランス調整用油圧室(クリアランス調整室)
65 締結用油圧室(締結室)
70 26ブレーキ
80 R35ブレーキ
90 燃料供給装置
92 点火装置
94 始動装置
100 油圧回路
101 第1LSV
102 第2LSV
103 第3LSV
104 オンオフSV
105 モータ
106 電動ポンプ(第2油圧源)
112 マニュアルバルブ
114 油圧源切換バルブ
116 開閉バルブ
120 第1メインライン
130 第2メインライン
140 ベースライン
141 LRブレーキライン
142 ロークラッチライン
143 ハイクラッチライン
144 開閉制御ライン
150 制御装置
160 アクセルセンサ
161 エンジン回転数センサ
162 ブレーキスイッチ
163 車速センサ
164 レンジセンサ
165 タービン回転数センサ
170 油圧スイッチ
200 油圧回路
204 第4LSV
218 供給先切換バルブ(切換手段)
242 クリアランス調整ライン
243 独立ライン
251 第1分岐ライン
252 第2分岐ライン
253 再入力ライン
254 締結ライン
255 ハイクラッチライン
300 油圧回路
306 アキュムレータ(第2油圧源)
314 油圧源切換バルブ
320 メインライン
330 アキュムレータライン
340 放圧ライン
1
40 Low clutch 50 High clutch 60
65 Hydraulic room for fastening (fastening room)
70 26
102 2nd LSV
103 3rd LSV
104 On-off SV
105
112
218 Supply destination switching valve (switching means)
242
314 Hydraulic
Claims (6)
前記第2油圧源で生成された油圧を前記第1変速比とは異なる第2変速比を実現するための第2摩擦締結要素に供給する第2油圧供給手段を備えたことを特徴とする自動変速機の油圧制御装置。 A first hydraulic pressure source driven by the engine; a second hydraulic pressure source that operates independently of the engine; and a first hydraulic pressure ratio for realizing the first gear ratio for starting the hydraulic pressure generated by the second hydraulic pressure source. A hydraulic control device for an automatic transmission having a first hydraulic pressure supply means for supplying the frictional engagement element,
2. An automatic apparatus comprising: a second hydraulic pressure supply unit configured to supply a hydraulic pressure generated by the second hydraulic pressure source to a second frictional engagement element for realizing a second speed ratio different from the first speed ratio. Hydraulic control device for transmission.
前記第2変速比は、前記第1摩擦締結要素のうちの少なくとも1つの所定摩擦締結要素と前記第2摩擦締結要素の締結により実現されることを特徴とする請求項1に記載の自動変速機の油圧制御装置。 The first frictional engagement element comprises at least two frictional engagement elements;
2. The automatic transmission according to claim 1, wherein the second speed change ratio is realized by fastening at least one predetermined friction fastening element of the first friction fastening elements and the second friction fastening element. Hydraulic control device.
前記第2油圧源で生成された油圧が前記第1油圧供給手段によって供給される第1油圧室と、該第1油圧室とは異なる第2油圧室とを有すると共に、該両油圧室に油圧が供給されたときに締結される摩擦締結要素を含み、
前記第2油圧室には、前記第2油圧源で生成された油圧を導く油圧供給経路が接続され、
前記切換手段は、
前記第1状態では、前記第1油圧供給手段による前記第1油圧室への油圧の供給を許容すると共に、前記第2油圧供給手段による前記第2摩擦締結要素への油圧の供給を遮断し、且つ、
前記第2状態では、前記第1油圧供給手段による前記第1油圧室への油圧の供給を遮断すると共に、前記第2油圧供給手段による前記第2摩擦締結要素への油圧の供給を許容するように構成されていることを特徴とする請求項3に記載の自動変速機の油圧制御装置。 The first frictional engagement element is:
The hydraulic pressure generated by the second hydraulic pressure source includes a first hydraulic pressure chamber supplied by the first hydraulic pressure supply means, and a second hydraulic pressure chamber different from the first hydraulic pressure chamber. Including a frictional fastening element that is fastened when supplied
A hydraulic pressure supply path for guiding the hydraulic pressure generated by the second hydraulic pressure source is connected to the second hydraulic pressure chamber,
The switching means is
In the first state, the hydraulic pressure supply to the first hydraulic chamber by the first hydraulic pressure supply means is allowed, and the hydraulic pressure supply to the second frictional engagement element by the second hydraulic pressure supply means is interrupted, and,
In the second state, the supply of hydraulic pressure to the first hydraulic chamber by the first hydraulic supply means is interrupted, and the supply of hydraulic pressure to the second frictional engagement element by the second hydraulic supply means is allowed. The hydraulic control device for an automatic transmission according to claim 3, wherein the hydraulic control device is configured as follows.
前記第1油圧供給手段は、前記切換手段の前記第1状態において前記第1入力ポートに供給された油圧を前記第1油圧室に供給するように構成され、
前記第2油圧供給手段は、前記切換手段の前記第2状態において前記第2入力ポートに供給された油圧を前記第2摩擦締結要素に供給するように構成されていることを特徴とする請求項4に記載の自動変速機の油圧制御装置。 The switching means is supplied with hydraulic pressure via a first branch path branched from the hydraulic pressure supply path, thereby switching the switching means to the first state, and a second branch further branched from the first branch path. A first input port to which hydraulic pressure is supplied via a two-branch path, and a second input port to which hydraulic pressure is supplied via a hydraulic pressure supply path that is independent of each path;
The first hydraulic pressure supply means is configured to supply the hydraulic pressure supplied to the first input port to the first hydraulic chamber in the first state of the switching means;
The second hydraulic pressure supply means is configured to supply the hydraulic pressure supplied to the second input port to the second frictional engagement element in the second state of the switching means. 5. The hydraulic control device for an automatic transmission according to 4.
前記エンジンの停止中に前記第1変速比を実現するときには、前記エンジンとは無関係に作動する第2油圧源で生成された油圧を前記第1摩擦締結要素に供給する自動変速機の油圧制御方法であって、
前記エンジンの停止中に所定の状態となったとき、前記第2油圧源で生成された油圧を、前記第1変速比とは異なる第2変速比を実現するための第2摩擦締結要素に供給することを特徴とする自動変速機の油圧制御方法。 When the first gear ratio for starting is realized during operation of the engine, the hydraulic pressure generated by the first hydraulic pressure source driven by the engine is used as the first friction engagement element for realizing the first gear ratio. Supply
When the first speed ratio is realized while the engine is stopped, the hydraulic control method for the automatic transmission supplies the first friction engagement element with the hydraulic pressure generated by the second hydraulic source that operates independently of the engine. Because
When a predetermined state is reached while the engine is stopped, the hydraulic pressure generated by the second hydraulic pressure source is supplied to a second frictional engagement element for realizing a second gear ratio different from the first gear ratio. A hydraulic control method for an automatic transmission.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014264103A JP6206393B2 (en) | 2014-12-26 | 2014-12-26 | Hydraulic control device and hydraulic control method for automatic transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014264103A JP6206393B2 (en) | 2014-12-26 | 2014-12-26 | Hydraulic control device and hydraulic control method for automatic transmission |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016125510A true JP2016125510A (en) | 2016-07-11 |
JP6206393B2 JP6206393B2 (en) | 2017-10-04 |
Family
ID=56357688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014264103A Expired - Fee Related JP6206393B2 (en) | 2014-12-26 | 2014-12-26 | Hydraulic control device and hydraulic control method for automatic transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6206393B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008057676A (en) * | 2006-08-31 | 2008-03-13 | Fuji Heavy Ind Ltd | Hydraulic control device for vehicle |
JP2009074591A (en) * | 2007-09-19 | 2009-04-09 | Aisin Aw Co Ltd | Vehicular control device |
JP2010209979A (en) * | 2009-03-09 | 2010-09-24 | Aisin Seiki Co Ltd | Hydraulic control device |
JP2012030779A (en) * | 2010-06-28 | 2012-02-16 | Mazda Motor Corp | Idle stop control device of vehicle |
WO2014141590A1 (en) * | 2013-03-12 | 2014-09-18 | マツダ株式会社 | Automatic transmission |
JP2014173705A (en) * | 2013-03-12 | 2014-09-22 | Mazda Motor Corp | Automatic transmission and control method of the same |
-
2014
- 2014-12-26 JP JP2014264103A patent/JP6206393B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008057676A (en) * | 2006-08-31 | 2008-03-13 | Fuji Heavy Ind Ltd | Hydraulic control device for vehicle |
JP2009074591A (en) * | 2007-09-19 | 2009-04-09 | Aisin Aw Co Ltd | Vehicular control device |
JP2010209979A (en) * | 2009-03-09 | 2010-09-24 | Aisin Seiki Co Ltd | Hydraulic control device |
JP2012030779A (en) * | 2010-06-28 | 2012-02-16 | Mazda Motor Corp | Idle stop control device of vehicle |
WO2014141590A1 (en) * | 2013-03-12 | 2014-09-18 | マツダ株式会社 | Automatic transmission |
JP2014173705A (en) * | 2013-03-12 | 2014-09-22 | Mazda Motor Corp | Automatic transmission and control method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP6206393B2 (en) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5323748B2 (en) | Hydraulic control device for automatic transmission | |
US8568274B2 (en) | Hydraulic pressure supply control apparatus for automobile | |
US9267598B2 (en) | Automatic transmission control method, control device, and automatic transmission system | |
US7905807B2 (en) | Hydraulic control apparatus for automatic transmission, and hybrid drive system provided with the same | |
KR101636425B1 (en) | Vehicle control device | |
US9086140B2 (en) | Power transmission device | |
JP6119690B2 (en) | Control device for automatic transmission | |
US20120252631A1 (en) | Hydraulic control device of automatic transmission | |
US9975553B2 (en) | Automatic transmission | |
US10641393B2 (en) | Automatic transmission | |
US10730523B2 (en) | Vehicle drive device and method of controlling vehicle drive device | |
KR20150007307A (en) | Control device for vehicle transmission | |
JP5862789B2 (en) | Vehicle hydraulic control device | |
US20170002899A1 (en) | Transmission and method for operating same | |
JP2012154392A (en) | Controller for automatic transmission | |
JP6206393B2 (en) | Hydraulic control device and hydraulic control method for automatic transmission | |
US10823261B2 (en) | Automatic transmission | |
JP6119694B2 (en) | Hydraulic control device for automatic transmission | |
JP6222005B2 (en) | Powertrain control device | |
JP6137142B2 (en) | Control device for vehicle with multi-stage automatic transmission | |
US10703349B2 (en) | Fluid pressure control device | |
JP6277862B2 (en) | Control device for automatic transmission | |
JP5447415B2 (en) | Fluid pressure control device for automatic transmission | |
JP2021156401A (en) | Drive unit for vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170522 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6206393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |