JP2016111432A - Radiation detection apparatus and radiation detection system - Google Patents
Radiation detection apparatus and radiation detection system Download PDFInfo
- Publication number
- JP2016111432A JP2016111432A JP2014245171A JP2014245171A JP2016111432A JP 2016111432 A JP2016111432 A JP 2016111432A JP 2014245171 A JP2014245171 A JP 2014245171A JP 2014245171 A JP2014245171 A JP 2014245171A JP 2016111432 A JP2016111432 A JP 2016111432A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- detection
- pixel
- radiation
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 316
- 230000005855 radiation Effects 0.000 title claims abstract description 136
- 238000006243 chemical reaction Methods 0.000 claims abstract description 90
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 238000003384 imaging method Methods 0.000 claims description 54
- 238000000034 method Methods 0.000 abstract description 10
- 239000010408 film Substances 0.000 description 62
- 239000010410 layer Substances 0.000 description 31
- 239000011229 interlayer Substances 0.000 description 30
- 230000001681 protective effect Effects 0.000 description 25
- 230000004048 modification Effects 0.000 description 24
- 238000012986 modification Methods 0.000 description 24
- 239000004065 semiconductor Substances 0.000 description 17
- 230000003071 parasitic effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005513 bias potential Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Measurement Of Radiation (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
本発明は、放射線検出装置及び放射線検出システムに関する。 The present invention relates to a radiation detection apparatus and a radiation detection system.
放射線を2次元アレイ状に検出する放射線検出装置が広く利用されている。近年、こうした放射線検出装置の多機能化が検討され、その1つとして自動露出制御(Automatic Exposure Control:AEC)機能の内蔵が検討されている。AEC機能は、放射線源が放射線を照射している間、放射線検出装置が照射情報を取得する手段として利用される。例えば放射線源から放射線が照射される照射開始のタイミングの取得、放射線の照射が停止される照射停止のタイミングの取得、放射線の瞬間照射量や積算照射量の取得などに利用できる。また例えば、積算照射量を監視し、積算照射量が適正量に達したとき、放射線検出装置が放射線源を制御し、放射線の照射を終了させることも可能となる。 Radiation detectors that detect radiation in a two-dimensional array are widely used. In recent years, multi-functionalization of such a radiation detection apparatus has been studied, and as one of them, the incorporation of an automatic exposure control (AEC) function has been studied. The AEC function is used as a means for the radiation detection apparatus to acquire irradiation information while the radiation source is irradiating radiation. For example, it can be used for acquisition of irradiation start timing at which radiation is irradiated from a radiation source, acquisition of irradiation stop timing at which radiation irradiation is stopped, acquisition of instantaneous radiation dose or integrated dose of radiation, and the like. Further, for example, when the integrated irradiation amount is monitored, and the integrated irradiation amount reaches an appropriate amount, the radiation detection device can control the radiation source to end the radiation irradiation.
特許文献1には、放射線を検出する検出領域に、画像取得用の画素と、照射情報取得用の検出画素とをマトリクス状に設けた放射線検出装置が示されている。検出画素によって取得された放射線の照射に基づく照射情報信号は、マトリクス中に配された配線(検出配線)を介して画素領域外に設けられた読出し回路で読み出される。これによって、放射線検出装置は、放射線の照射情報を取得する。 Patent Document 1 discloses a radiation detection apparatus in which pixels for image acquisition and detection pixels for irradiation information acquisition are provided in a matrix in a detection region for detecting radiation. The irradiation information signal based on the radiation irradiation acquired by the detection pixel is read out by a readout circuit provided outside the pixel region via a wiring (detection wiring) arranged in the matrix. Thereby, the radiation detection apparatus acquires radiation irradiation information.
特許文献1の構造において、画像取得用の画素の電荷を読み出すための個別電極と、検出配線との対向する部分が多数存在する。このため、検出配線と個別電極との間の寄生容量が無視できないことを、本発明者は見出した。このような構造を有する放射線検出装置において、放射線照射中に検出画素によって取得された照射情報信号を読み出す場合、放射線照射によって生じる画素の個別電極の電位変動が寄生容量を介して検出配線に伝わる。この結果、検出配線の電位の変動するクロストークが発生する。この寄生容量を介したクロストークによって、放射線照射中の照射情報を正確に取得することが難しい。本発明は、放射線検出装置において、取得する放射線の照射情報の正確性を向上する技術を提供することを目的とする。 In the structure of Patent Document 1, there are a large number of opposing portions between the individual electrode for reading out the charge of the image acquisition pixel and the detection wiring. For this reason, the present inventor has found that the parasitic capacitance between the detection wiring and the individual electrode cannot be ignored. In the radiation detection apparatus having such a structure, when reading the irradiation information signal acquired by the detection pixel during the radiation irradiation, the potential fluctuation of the individual electrode of the pixel caused by the radiation irradiation is transmitted to the detection wiring through the parasitic capacitance. As a result, crosstalk in which the potential of the detection wiring fluctuates occurs. Due to the crosstalk through the parasitic capacitance, it is difficult to accurately obtain irradiation information during radiation irradiation. An object of this invention is to provide the technique which improves the accuracy of the irradiation information of the radiation to acquire in a radiation detection apparatus.
上記課題に鑑みて、本発明の1つの側面は、放射線を検出した画像を取得するための第1の画素と、放射線の照射情報を取得するための第2の画素と、を有する撮影領域を基板上に有する放射線検出装置に係り、第1の画素は、基板の上に配された第1の電極と、第1の電極の上に配された第2の電極と、を含む第1の変換素子を有し、第2の画素は、第2の画素に照射された放射線に基づく信号を生成する、基板の上に配された第2の変換素子を含む変換回路を有し、放射線検出装置は、第1の変換素子及び変換回路を覆う絶縁層と、第1の変換素子を駆動するためのバイアス電源に第2の電極を接続するためのバイアス線と、第2の変換素子が生成した信号を撮影領域の外部の検出回路へ伝達するための検出線と、を更に有し、検出線が、第2の電極に対して第1の電極とは反対側に配されることを特徴とする。 In view of the above problems, one aspect of the present invention provides an imaging region having a first pixel for acquiring an image in which radiation is detected and a second pixel for acquiring radiation irradiation information. A first pixel includes a first electrode disposed on a substrate and a second electrode disposed on the first electrode. The radiation detection apparatus includes: a first electrode disposed on the substrate; The second pixel has a conversion circuit including a second conversion element disposed on the substrate and generates a signal based on the radiation irradiated to the second pixel, and the radiation detection is performed. The device generates an insulating layer covering the first conversion element and the conversion circuit, a bias line for connecting the second electrode to a bias power source for driving the first conversion element, and a second conversion element A detection line for transmitting the processed signal to a detection circuit outside the imaging region, and the detection line The first electrode to the second electrode, characterized in that arranged on the opposite side.
上記手段により、放射線検出装置において、取得する放射線の照射情報の正確性を向上する技術が提供される。 The above means provides a technique for improving the accuracy of the acquired radiation irradiation information in the radiation detection apparatus.
以下、本発明に係る放射線検出装置の具体的な実施形態を、添付図面を参照して説明する。なお、以下の説明及び図面において、複数の図面に渡って共通の構成については共通の符号を付している。そのため、複数の図面を相互に参照して共通する構成を説明し、共通の符号を付した構成については適宜説明を省略する。 Hereinafter, specific embodiments of a radiation detection apparatus according to the present invention will be described with reference to the accompanying drawings. Note that, in the following description and drawings, common reference numerals are given to common configurations over a plurality of drawings. Therefore, a common configuration is described with reference to a plurality of drawings, and a description of a configuration with a common reference numeral is omitted as appropriate.
第1の実施形態
図1から9を参照して、第1の実施形態による放射線検出装置の構造を説明する。図1は、第1の実施形態における放射線検出装置101を模式的に示す全体図である。放射線検出装置101の放射線を検出する撮影領域107に、複数の画素が2次元行列的にアレイ状に配されている。撮影領域107に配された複数の画素は2種類の画素を含む。1つは放射線を検出した画像を取得するための第1の画素である撮像画素110であり、もう1つは放射線の照射情報を取得するための第2の画素である検出画素111である。本実施形態では撮影領域107に2種類の画素のみが配されるが、他の種類の画素が配されてもよい。図1には説明を簡単にするために検出画素111を1つのみ示しているが、撮影領域107には複数の検出画素111が点在していてもよい。また、検出画素111は、行又は列方向に複数接続して配置されていてもよいし、特定の領域に偏るように配置されていてもよい。
First Embodiment With reference to FIGS. 1 to 9, the structure of a radiation detection apparatus according to a first embodiment will be described. FIG. 1 is an overall view schematically showing a radiation detection apparatus 101 according to the first embodiment. A plurality of pixels are arranged in an array in a two-dimensional matrix in the imaging region 107 for detecting radiation of the radiation detection apparatus 101. The plurality of pixels arranged in the imaging region 107 includes two types of pixels. One is an imaging pixel 110 that is a first pixel for acquiring an image in which radiation is detected, and the other is a detection pixel 111 that is a second pixel for acquiring radiation irradiation information. In the present embodiment, only two types of pixels are arranged in the imaging region 107, but other types of pixels may be arranged. Although only one detection pixel 111 is shown in FIG. 1 for ease of explanation, a plurality of detection pixels 111 may be scattered in the imaging region 107. A plurality of detection pixels 111 may be connected in the row or column direction, or may be arranged so as to be biased toward a specific region.
それぞれの撮像画素110は、制御線150、信号線160及びバイアス線190に接続される。制御線150は、行方向に配され、撮像画素110と走査回路102とを接続する。信号線160は、列方向に配され、撮像画素110と読出し回路103とを接続する。バイアス線190は、バイアス電源105に接続され、撮像画素110の変換素子が放射線を電荷に変換するためのバイアス電位を供給する。放射線検出装置101において、走査回路102を駆動することによって、撮像画素110の出力信号が信号線160を介して読出し回路103で読み出される。この結果、診断に用いられる2次元画像が得られる。 Each imaging pixel 110 is connected to a control line 150, a signal line 160, and a bias line 190. The control line 150 is arranged in the row direction and connects the imaging pixel 110 and the scanning circuit 102. The signal line 160 is arranged in the column direction and connects the imaging pixel 110 and the readout circuit 103. The bias line 190 is connected to the bias power source 105 and supplies a bias potential for the conversion element of the imaging pixel 110 to convert radiation into electric charge. In the radiation detection apparatus 101, by driving the scanning circuit 102, the output signal of the imaging pixel 110 is read out by the reading circuit 103 via the signal line 160. As a result, a two-dimensional image used for diagnosis is obtained.
検出画素111は、検出画素用制御線108、検出線161及びバイアス線190に接続される。検出画素用制御線108は、検出画素111と検出画素用走査回路106とを接続する。検出線161は、検出画素111と撮影領域107の外部に配される検出回路である検出画素用読出し回路104とを接続する。バイアス線190は、バイアス電源105に接続され、検出画素111の変換素子を駆動するためのバイアス電位を供給する。検出画素用走査回路106を駆動することによって、検出画素111に照射された放射線に基づき生成された照射情報信号が検出線161を介して検出画素用読出し回路104で読み出される。この検出画素111からの出力信号によって、検出画素111の配された場所に到達した放射線の照射開始や照射停止のタイミング、瞬間照射量、積算照射量などの照射情報が得られる。 The detection pixel 111 is connected to the detection pixel control line 108, the detection line 161, and the bias line 190. The detection pixel control line 108 connects the detection pixel 111 and the detection pixel scanning circuit 106. The detection line 161 connects the detection pixel 111 and the detection pixel readout circuit 104 which is a detection circuit arranged outside the imaging region 107. The bias line 190 is connected to the bias power source 105 and supplies a bias potential for driving the conversion element of the detection pixel 111. By driving the detection pixel scanning circuit 106, an irradiation information signal generated based on the radiation applied to the detection pixel 111 is read out by the detection pixel reading circuit 104 via the detection line 161. With this output signal from the detection pixel 111, irradiation information such as irradiation start and irradiation stop timing, instantaneous irradiation amount, integrated irradiation amount, etc., reaching the place where the detection pixel 111 is arranged can be obtained.
検出線161は、撮像画素110の上を横切るように配されてもよい。図1に示す放射線検出装置101において、撮像画素110のうち、画素の上を検出線161が横切る画素を検出線通過画素112と表す。 The detection line 161 may be arranged so as to cross over the imaging pixel 110. In the radiation detection apparatus 101 illustrated in FIG. 1, among the imaging pixels 110, a pixel that the detection line 161 crosses over the pixel is represented as a detection line passing pixel 112.
本実施形態において、走査回路102、読出し回路103、バイアス電源105及び検出画素用走査回路106は、撮影領域107の外部に配される。また本実施形態において、読出し回路103と検出画素用読出し回路104とは、それぞれ独立した読出し回路として設けられるが、読出し回路103と検出画素用読出し回路104とは、一体の読出し回路であってもよい。 In the present embodiment, the scanning circuit 102, the reading circuit 103, the bias power source 105, and the detection pixel scanning circuit 106 are arranged outside the imaging region 107. In the present embodiment, the readout circuit 103 and the detection pixel readout circuit 104 are provided as independent readout circuits. However, the readout circuit 103 and the detection pixel readout circuit 104 may be an integrated readout circuit. Good.
図2(a)及び図2(b)に、撮像画素110及び検出画素111の等価回路を示す。撮像画素110は、第1の変換素子である光電変換素子120と第1のスイッチ素子であるスイッチ素子130とを備える。光電変換素子120は、第1の電極125、第2の電極126及び変換部124を含む。スイッチ素子130として、例えばトランジスタが用いられる。スイッチ素子130は、ドレイン電極135、ソース電極136及びゲート電極132を含む。第1の電極125は、ドレイン電極135に接続される。第1の電極125は、各画素の光電変換素子120それぞれから信号を読み出す個別の電極であり、第1の電極125からスイッチ素子130及び信号線160を介して読出し回路103に各画素の出力信号が送られる。第2の電極126は、バイアス線190に接続される。第2の電極126は、各画素の光電変換素子それぞれに共通の電極であり、バイアス電源105からバイアス電位が供給される。列方向に配置された撮像画素110のスイッチ素子130のソース電極136は、列方向に共通の信号線160に接続される。行方向に配置された撮像画素110のスイッチ素子130のゲート電極132は、行方向に共通の制御線150に接続されている。ゲート電極132へ印加される電位によって、スイッチ素子130のON、OFFが制御される。なお検出線通過画素112の等価回路は、撮像画素110の等価回路と同じであってよい。 2A and 2B show equivalent circuits of the imaging pixel 110 and the detection pixel 111. FIG. The imaging pixel 110 includes a photoelectric conversion element 120 that is a first conversion element and a switch element 130 that is a first switch element. The photoelectric conversion element 120 includes a first electrode 125, a second electrode 126, and a conversion unit 124. For example, a transistor is used as the switch element 130. The switch element 130 includes a drain electrode 135, a source electrode 136, and a gate electrode 132. The first electrode 125 is connected to the drain electrode 135. The first electrode 125 is an individual electrode that reads a signal from each of the photoelectric conversion elements 120 of each pixel, and an output signal of each pixel from the first electrode 125 to the reading circuit 103 via the switch element 130 and the signal line 160. Will be sent. The second electrode 126 is connected to the bias line 190. The second electrode 126 is a common electrode for each photoelectric conversion element of each pixel, and a bias potential is supplied from the bias power source 105. The source electrodes 136 of the switch elements 130 of the imaging pixels 110 arranged in the column direction are connected to a common signal line 160 in the column direction. The gate electrodes 132 of the switch elements 130 of the imaging pixels 110 arranged in the row direction are connected to a common control line 150 in the row direction. The ON / OFF of the switch element 130 is controlled by the potential applied to the gate electrode 132. The equivalent circuit of the detection line passing pixel 112 may be the same as the equivalent circuit of the imaging pixel 110.
検出画素111は、第2の変換素子である光電変換素子121を含む変換回路と第2のスイッチ素子であるスイッチ素子131とを備える。本実施形態において、変換回路は光電変換素子と第2のスイッチ素子を有する。また変換回路は、例えば増幅回路などを有してもよい。光電変換素子121は、第3の電極1251、第4の電極1261及び変換部1241を含む。スイッチ素子131として、例えばトランジスタが用いられる。スイッチ素子131は、ドレイン電極1351、ソース電極1361及びゲート電極1321を含む。第3の電極1251は、ドレイン電極1351に接続される。第3の電極1251からスイッチ素子131及び検出線161を介して検出画素用読出し回路104に、検出画素111の光電変換素子121に照射された放射線に基づく出力信号が伝達される。第4の電極1261は、バイアス線190に接続される。第4の電極1261は、撮像画素110及び検出線通過画素112の第2の電極126と同様に、バイアス電源105からバイアス電位が供給される。列方向に配置された検出画素111のスイッチ素子131のソース電極1361は、検出線161に接続される。行方向に配置された検出画素111のスイッチ素子131のゲート電極1321は、検出画素用制御線108に接続されている。ゲート電極1321へ印加される電位によって、スイッチ素子131のON、OFFを制御する。 The detection pixel 111 includes a conversion circuit including a photoelectric conversion element 121 that is a second conversion element, and a switch element 131 that is a second switch element. In the present embodiment, the conversion circuit includes a photoelectric conversion element and a second switch element. The conversion circuit may include an amplifier circuit, for example. The photoelectric conversion element 121 includes a third electrode 1251, a fourth electrode 1261, and a conversion unit 1241. For example, a transistor is used as the switch element 131. The switch element 131 includes a drain electrode 1351, a source electrode 1361, and a gate electrode 1321. The third electrode 1251 is connected to the drain electrode 1351. An output signal based on the radiation applied to the photoelectric conversion element 121 of the detection pixel 111 is transmitted from the third electrode 1251 to the detection pixel readout circuit 104 via the switch element 131 and the detection line 161. The fourth electrode 1261 is connected to the bias line 190. The fourth electrode 1261 is supplied with a bias potential from the bias power source 105, similarly to the second electrode 126 of the imaging pixel 110 and the detection line passing pixel 112. The source electrode 1361 of the switch element 131 of the detection pixel 111 arranged in the column direction is connected to the detection line 161. The gate electrode 1321 of the switch element 131 of the detection pixel 111 arranged in the row direction is connected to the detection pixel control line 108. The ON / OFF of the switch element 131 is controlled by the potential applied to the gate electrode 1321.
次にバイアス電源105、読出し回路103及び検出画素用読出し回路104について説明する。撮像画素110の光電変換素子120を光電変換動作させるため、光電変換素子120の第1の電極125と第2の電極126との間に印加される電圧、つまりバイアス電源105と読出し回路103との間の電位差を適切に設定する。具体的には、光電変換素子120の変換部124を構成する例えばPINフォトダイオードやMIS型素子などの半導体層の少なくとも一部に空乏層が形成されるように、この電位差を設定する。また同様に検出画素111の光電変換素子121を光電変換動作させるため、第3の電極1251と第4の電極1261との間に印加される電圧、つまりバイアス電源105と検出画素用読出し回路104との間の電位差を適切に設定する。これらの条件のもと、放射線検出装置101を動作させる際の読出し回路103の基準電位、検出画素用読出し回路104の基準電位及びバイアス電源105の電位は自由に選択してよい。また読出し回路103及び検出画素用読出し回路104での信号の読出しの方式は、電荷読出し方式、電圧読出し方式、電流読出し方式などの、いずれの方式であってもよい。図2(c)に読出し回路103、図2(d)に検出画素用読出し回路104として用いることのできる電荷読出し方式の等価回路の例を示す。読出し回路103及び検出画素用読出し回路104の基準電位は、各積分増幅器の基準電位であり、例えば図2(c)及び図2(d)の場合、接地電位(GND電位)である。この場合、光電変換素子120及び光電変換素子121に印加される電圧は、ともにバイアス電源105とGND電位との間の電位差と等しくなる。 Next, the bias power supply 105, the readout circuit 103, and the detection pixel readout circuit 104 will be described. In order to cause the photoelectric conversion element 120 of the imaging pixel 110 to perform a photoelectric conversion operation, a voltage applied between the first electrode 125 and the second electrode 126 of the photoelectric conversion element 120, that is, between the bias power supply 105 and the readout circuit 103. Set the potential difference between them appropriately. Specifically, this potential difference is set so that a depletion layer is formed in at least a part of a semiconductor layer such as a PIN photodiode or a MIS type element that constitutes the conversion unit 124 of the photoelectric conversion element 120. Similarly, in order to cause the photoelectric conversion element 121 of the detection pixel 111 to perform a photoelectric conversion operation, a voltage applied between the third electrode 1251 and the fourth electrode 1261, that is, the bias power supply 105 and the detection pixel readout circuit 104, The potential difference between is set appropriately. Under these conditions, the reference potential of the readout circuit 103, the reference potential of the detection pixel readout circuit 104, and the potential of the bias power source 105 when operating the radiation detection apparatus 101 may be freely selected. Further, the signal readout method in the readout circuit 103 and the detection pixel readout circuit 104 may be any method such as a charge readout method, a voltage readout method, and a current readout method. FIG. 2C shows an example of an equivalent circuit of a charge readout method that can be used as the readout circuit 103 and FIG. 2D as the detection pixel readout circuit 104. The reference potential of the readout circuit 103 and the detection pixel readout circuit 104 is the reference potential of each integrating amplifier, and is, for example, the ground potential (GND potential) in the case of FIGS. 2 (c) and 2 (d). In this case, the voltages applied to the photoelectric conversion element 120 and the photoelectric conversion element 121 are both equal to the potential difference between the bias power supply 105 and the GND potential.
図3に、検出画素111周辺の平面図を示す。図3は、撮影領域107のうち、2つの撮像画素110、1つの検出画素111及び1つの検出線通過画素112を示す。光電変換素子120及び光電変換素子121の1辺の大きさは、例えば100〜200μm程度であり、互いに隣接する光電変換素子120同士の間隔及び互いに隣接する光電変換素子120と光電変換素子121との間隔は、例えば5〜20μm程度である。 FIG. 3 shows a plan view around the detection pixel 111. FIG. 3 shows two imaging pixels 110, one detection pixel 111, and one detection line passing pixel 112 in the imaging region 107. The size of one side of the photoelectric conversion element 120 and the photoelectric conversion element 121 is, for example, about 100 to 200 μm, and the interval between the adjacent photoelectric conversion elements 120 and the distance between the adjacent photoelectric conversion elements 120 and the photoelectric conversion elements 121. The interval is, for example, about 5 to 20 μm.
図4に、撮像画素110、検出画素111及び検出線通過画素112の断面図を示す。図4(a)から(c)は、図3のA−A’間からC−C’間における各画素の断面図である。撮影領域107の基板100の上に、各画素が形成される。本実施形態において、基板100として絶縁基板を用い、スイッチ素子130、131として、逆スタガ型のアモルファスシリコン薄膜トランジスタ(TFT)を用いる。また変換部124、1241として、PINフォトダイオードを用いる。しかし本発明は、これに限られるものではない。基板100として、例えばガラスやプラスチックなどの絶縁基板を用いてもよいし、例えばシリコンなどを用いた半導体基板や、アルミニウムなどの金属を用いた導電体基板を基板100として用いてもよい。半導体基板や導電体基板を基板100として用いる場合、基板100の表面の一部又は全面を絶縁膜で覆って用いてもよい。また例えばスイッチ素子130、131に、トップゲート型のTFTを用いてもよいし、TFTのチャネル部に多結晶シリコンを用いてもよい。またシリコンなどの半導体基板を用いて、この基板上にトランジスタを形成してもよい。また例えば、変換部124、1241にMIS型素子を用いてもよい。また例えば撮像画素110の変換部124はPINダイオードを用い、検出画素111の変換部1241はMIS型素子を用いるなど、異なる構造の素子を用いてもよい。これら組み合わせは、自由に選択できる。放射線検出装置101の撮影領域107及び撮影領域107の外部に配される画素や素子、回路に応じて適宜選択すればよい。 FIG. 4 shows a cross-sectional view of the imaging pixel 110, the detection pixel 111, and the detection line passage pixel 112. 4A to 4C are cross-sectional views of each pixel from A-A ′ to C-C ′ in FIG. 3. Each pixel is formed on the substrate 100 in the imaging region 107. In this embodiment, an insulating substrate is used as the substrate 100, and inverted staggered amorphous silicon thin film transistors (TFTs) are used as the switch elements 130 and 131. Further, PIN photodiodes are used as the conversion units 124 and 1241. However, the present invention is not limited to this. As the substrate 100, for example, an insulating substrate such as glass or plastic may be used. For example, a semiconductor substrate using silicon or a conductor substrate using metal such as aluminum may be used as the substrate 100. When a semiconductor substrate or a conductor substrate is used as the substrate 100, a part or the entire surface of the substrate 100 may be covered with an insulating film. Further, for example, a top gate type TFT may be used for the switch elements 130 and 131, or polycrystalline silicon may be used for the channel portion of the TFT. Alternatively, a transistor may be formed on a semiconductor substrate such as silicon. Further, for example, MIS type elements may be used for the conversion units 124 and 1241. For example, the conversion unit 124 of the imaging pixel 110 may use a PIN diode, and the conversion unit 1241 of the detection pixel 111 may use an element having a different structure, such as an MIS type element. These combinations can be freely selected. What is necessary is just to select suitably according to the pixel, the element, and the circuit which are arranged outside the imaging region 107 and the imaging region 107 of the radiation detection apparatus 101.
撮像画素110のスイッチ素子130は、基板100の上に形成される。本実施形態において、スイッチ素子130は、第1の電極125の下の層、すなわち第1の電極125よりも基板100に近い位置に形成される。ゲート絶縁膜133は、図4(a)に示すように、撮像画素110全体を覆っていてもよいし、例えばスイッチ素子130のゲート電極132だけを覆っていてもよい。スイッチ素子130の上に、保護膜134及び層間絶縁膜142が、スイッチ素子130、制御線150及び信号線160を覆うように形成される。光電変換素子120は、層間絶縁膜142の上に形成される。光電変換素子120は、基板100に近い側から第1の電極125、第1の不純物半導体層127、真性半導体層128、第1の不純物半導体層127と逆の導電型の第2の不純物半導体層129、第2の電極126の順番に積層される。第1の不純物半導体層127と真性半導体層128と第2の不純物半導体層129とは、PINフォトダイオードを構成し、変換部124を構成する。第1の電極125は、保護膜134及び層間絶縁膜142を貫通したコンタクトホール設けられたコンタクトプラグC1を介して、スイッチ素子130のドレイン電極135に接続される。第2の電極126の上には、保護膜140及び層間絶縁膜143を含む絶縁層が、光電変換素子120を覆うように形成される。層間絶縁膜143の上にはバイアス線190が基板100の表面に平行な方向に延在し、保護膜140及び層間絶縁膜143に設けられたコンタクトプラグC2を介して、第2の電極126に接続される。バイアス線190の上には、保護膜141が形成される。コンタクトプラグC1及びC2には、例えば金属などの導電部材からなる配線が用いられ得る。 The switch element 130 of the imaging pixel 110 is formed on the substrate 100. In the present embodiment, the switch element 130 is formed in a layer below the first electrode 125, that is, a position closer to the substrate 100 than the first electrode 125. As shown in FIG. 4A, the gate insulating film 133 may cover the entire imaging pixel 110, or may cover only the gate electrode 132 of the switch element 130, for example. A protective film 134 and an interlayer insulating film 142 are formed on the switch element 130 so as to cover the switch element 130, the control line 150, and the signal line 160. The photoelectric conversion element 120 is formed on the interlayer insulating film 142. The photoelectric conversion element 120 includes a second impurity semiconductor layer having a conductivity type opposite to that of the first electrode 125, the first impurity semiconductor layer 127, the intrinsic semiconductor layer 128, and the first impurity semiconductor layer 127 from the side close to the substrate 100. 129 and the second electrode 126 are stacked in this order. The first impurity semiconductor layer 127, the intrinsic semiconductor layer 128, and the second impurity semiconductor layer 129 constitute a PIN photodiode and constitute the conversion unit 124. The first electrode 125 is connected to the drain electrode 135 of the switch element 130 via a contact plug C1 provided with a contact hole penetrating the protective film 134 and the interlayer insulating film 142. An insulating layer including the protective film 140 and the interlayer insulating film 143 is formed over the second electrode 126 so as to cover the photoelectric conversion element 120. On the interlayer insulating film 143, a bias line 190 extends in a direction parallel to the surface of the substrate 100, and is connected to the second electrode 126 via a contact plug C 2 provided on the protective film 140 and the interlayer insulating film 143. Connected. A protective film 141 is formed on the bias line 190. For the contact plugs C1 and C2, for example, a wiring made of a conductive member such as metal can be used.
図4(b)は、図3のB−B’間における検出線通過画素112の断面図である。図4(a)に示す撮像画素110と比較して、基板100の表面に平行な方向に延在する検出線161を有することが異なり、他の部分は撮像画素110と同じであってよい。検出線161は、第2の電極126に対して第1の電極125とは反対側に配される。本実施形態において検出線161は、第1の電極125の上に配された第2の電極126の上の、保護膜140及び層間絶縁膜143で構成される絶縁層の上に延在し、保護膜141で覆われる。検出線161は、図4(a)に示すようにバイアス線190の配される層間絶縁膜143と同じ層間絶縁膜の上に配されてもよい。検出線161は、第2の電極126よりも基板100の表面から離れており、第2の電極126の上に配された絶縁層の上に配される。また本実施形態において、検出線通過画素112の検出線161は、基板100の表面に対する平面視において第2の電極126に重なる位置を含む。 FIG. 4B is a cross-sectional view of the detection line passing pixel 112 between B and B ′ in FIG. 3. Compared to the imaging pixel 110 shown in FIG. 4A, it has a detection line 161 extending in a direction parallel to the surface of the substrate 100, and other parts may be the same as the imaging pixel 110. The detection line 161 is arranged on the side opposite to the first electrode 125 with respect to the second electrode 126. In the present embodiment, the detection line 161 extends on the insulating layer composed of the protective film 140 and the interlayer insulating film 143 on the second electrode 126 disposed on the first electrode 125. Covered with a protective film 141. As shown in FIG. 4A, the detection line 161 may be disposed on the same interlayer insulating film as the interlayer insulating film 143 on which the bias line 190 is disposed. The detection line 161 is farther from the surface of the substrate 100 than the second electrode 126 and is disposed on an insulating layer disposed on the second electrode 126. In the present embodiment, the detection line 161 of the detection line passing pixel 112 includes a position overlapping the second electrode 126 in a plan view with respect to the surface of the substrate 100.
図4(c)は、図3のC−C’間における検出画素111の断面図である。検出画素111のスイッチ素子131は、基板100の上に形成される。本実施形態において、スイッチ素子131は、第3の電極1251よりも下の層、すなわち基板100に近い位置に形成される。ゲート絶縁膜133は、撮像画素110と同様に図4(c)に示すように、検出画素111全体を覆っていてもよいし、例えばスイッチ素子131のゲート電極1321だけを覆っていてもよい。スイッチ素子131の上に、保護膜134及び層間絶縁膜142が、スイッチ素子131、制御線150及び信号線160を覆うように形成される。光電変換素子121は、層間絶縁膜142の上に形成される。光電変換素子121は、基板100に近い側から第3の電極1251、第1の不純物半導体層1271、真性半導体層1281、第2の不純物半導体層1291、第4の電極1261の順番に積層される。第1の不純物半導体層1271と真性半導体層1281と第2の不純物半導体層1291とは、PINフォトダイオードを構成し、変換部1241を構成する。ここで変換部1241は、撮像画素110及び112の変換部124と同じ構成であってもよい。第3の電極1251は、保護膜134及び層間絶縁膜142に設けられたコンタクトプラグC3を介して、スイッチ素子131のドレイン電極1351に接続される。第4の電極1261の上には、保護膜140及び層間絶縁膜143を含む絶縁層が、変換回路を構成する光電変換素子121を覆うように形成される。層間絶縁膜143の上にはバイアス線190が延在し、保護膜140及び層間絶縁膜143に設けられたコンタクトプラグC2を介して、第4の電極1261に接続される。検出線161は、保護膜134、140及び層間絶縁膜142、143を貫通したコンタクトホールに設けられたコンタクトプラグC4を介して、変換回路を構成するスイッチ素子131のソース電極1361に接続される。検出線161及びバイアス線190の上には、保護膜141が形成される。ここで、層間絶縁膜142は各画素間のスイッチ素子の上の平坦化膜でありうる。また層間絶縁膜143は、各画素間の光電変換素子の上の平坦化膜でありうる。コンタクトプラグC3及びC4には、例えば金属などの導電部材からなる配線が用いられ得る。 FIG. 4C is a cross-sectional view of the detection pixel 111 between C and C ′ in FIG. 3. The switch element 131 of the detection pixel 111 is formed on the substrate 100. In the present embodiment, the switch element 131 is formed in a layer below the third electrode 1251, that is, a position close to the substrate 100. As shown in FIG. 4C, the gate insulating film 133 may cover the entire detection pixel 111 as in the imaging pixel 110, or may cover only the gate electrode 1321 of the switch element 131, for example. A protective film 134 and an interlayer insulating film 142 are formed on the switch element 131 so as to cover the switch element 131, the control line 150, and the signal line 160. The photoelectric conversion element 121 is formed on the interlayer insulating film 142. The photoelectric conversion element 121 is stacked in the order of a third electrode 1251, a first impurity semiconductor layer 1271, an intrinsic semiconductor layer 1281, a second impurity semiconductor layer 1291, and a fourth electrode 1261 from the side close to the substrate 100. . The first impurity semiconductor layer 1271, the intrinsic semiconductor layer 1281, and the second impurity semiconductor layer 1291 form a PIN photodiode and form the conversion unit 1241. Here, the conversion unit 1241 may have the same configuration as the conversion unit 124 of the imaging pixels 110 and 112. The third electrode 1251 is connected to the drain electrode 1351 of the switch element 131 via a contact plug C3 provided in the protective film 134 and the interlayer insulating film 142. An insulating layer including the protective film 140 and the interlayer insulating film 143 is formed over the fourth electrode 1261 so as to cover the photoelectric conversion element 121 included in the conversion circuit. A bias line 190 extends on the interlayer insulating film 143 and is connected to the fourth electrode 1261 through a contact plug C2 provided in the protective film 140 and the interlayer insulating film 143. The detection line 161 is connected to the source electrode 1361 of the switch element 131 constituting the conversion circuit via a contact plug C4 provided in a contact hole penetrating the protective films 134 and 140 and the interlayer insulating films 142 and 143. A protective film 141 is formed on the detection line 161 and the bias line 190. Here, the interlayer insulating film 142 may be a planarizing film on the switch element between the pixels. The interlayer insulating film 143 can be a planarizing film on the photoelectric conversion elements between the pixels. For the contact plugs C3 and C4, for example, a wiring made of a conductive member such as metal can be used.
ここで、本実施形態の効果について説明する。検出線通過画素112において、検出線161と、検出線通過画素112の読出し回路103に接続される第1の電極125との間で、保護膜や層間絶縁膜などの絶縁層を介した寄生容量が存在する。放射線検出装置101において、放射線の照射中、各画素の光電変換素子で光電変換が起こり、各画素の第1の電極125の電位が変動する。検出線通過画素112の第1の電極125の電位が変化すると、この寄生容量を介したクロストークによって、検出線161の電位が変動する。このため、検出画素111から検出画素用読出し回路104へ伝達される出力信号が変動してしまい、放射線の照射情報を正確に取得することが困難になる。また検出線通過画素112は、検出線161に沿って多数配される。このため、検出線161と第1の電極125との間の寄生容量を介したクロストークの影響が大きくなる。特許文献1に示される検出線161と第1の電極125とが対向する構造は、検出線161と第1の電極125との間の寄生容量が大きくなるため、クロストークの影響を受けやすい。このクロストークを抑制するために、本実施形態では、検出線通過画素112において、検出線161と第1の電極125との間の寄生容量を低減させる。 Here, the effect of this embodiment will be described. In the detection line passing pixel 112, a parasitic capacitance between the detection line 161 and the first electrode 125 connected to the reading circuit 103 of the detection line passing pixel 112 via an insulating layer such as a protective film or an interlayer insulating film. Exists. In the radiation detection apparatus 101, photoelectric conversion occurs in the photoelectric conversion element of each pixel during radiation irradiation, and the potential of the first electrode 125 of each pixel varies. When the potential of the first electrode 125 of the detection line passing pixel 112 changes, the potential of the detection line 161 changes due to the crosstalk via the parasitic capacitance. For this reason, the output signal transmitted from the detection pixel 111 to the detection pixel readout circuit 104 fluctuates, and it becomes difficult to accurately acquire radiation irradiation information. A large number of detection line passing pixels 112 are arranged along the detection line 161. For this reason, the influence of crosstalk through the parasitic capacitance between the detection line 161 and the first electrode 125 is increased. The structure in which the detection line 161 and the first electrode 125 shown in Patent Document 1 are opposed to each other is easily affected by crosstalk because the parasitic capacitance between the detection line 161 and the first electrode 125 is large. In order to suppress this crosstalk, in this embodiment, the parasitic capacitance between the detection line 161 and the first electrode 125 is reduced in the detection line passing pixel 112.
本実施形態において、検出線161は、保護膜140及び層間絶縁膜143を含む絶縁層を介して第2の電極126の上に延在する。放射線検出装置101が動作している間、第2の電極126は、バイアス電源105によって一定の電位に維持され電位の変動を起こさない。また検出線161が第2の電極126に対して第1の電極とは反対側に位置する。つまり検出線161と第1の電極125との間に第2の電極126が配されることによって、検出線161が各画素で個別に電位の変動する第1の電極125から静電遮蔽される。このため検出線通過画素112において、検出線161と第1の電極125との間の寄生容量が低減する。この結果、クロストークを抑制することが可能となり、放射線の照射情報、特に放射線照射中の照射情報を正確に取得することが可能となる。 In the present embodiment, the detection line 161 extends on the second electrode 126 via an insulating layer including the protective film 140 and the interlayer insulating film 143. While the radiation detection apparatus 101 is operating, the second electrode 126 is maintained at a constant potential by the bias power source 105 and does not change in potential. The detection line 161 is positioned on the opposite side of the second electrode 126 from the first electrode. That is, by arranging the second electrode 126 between the detection line 161 and the first electrode 125, the detection line 161 is electrostatically shielded from the first electrode 125 whose potential varies individually in each pixel. . For this reason, in the detection line passing pixel 112, the parasitic capacitance between the detection line 161 and the first electrode 125 is reduced. As a result, crosstalk can be suppressed, and radiation irradiation information, particularly irradiation information during radiation irradiation can be accurately acquired.
上記の効果を得るための検出線通過画素112及び検出画素111の構成は、この実施形態に限られるものではない。以下に、検出線通過画素112及び検出画素111の構成の変形例を述べる。 The configurations of the detection line passing pixel 112 and the detection pixel 111 for obtaining the above effect are not limited to this embodiment. Hereinafter, modified examples of the configuration of the detection line passing pixel 112 and the detection pixel 111 will be described.
図5(a)に、本実施形態の第1の変形例の検出線通過画素112の断面図を示す。検出線161は、バイアス線190の配された層間絶縁膜と異なる保護膜や層間絶縁膜などを含む絶縁層の上に配されてもよい。本変形例において、検出線161は、保護膜141及び層間絶縁膜144で構成された絶縁層の上に形成される。検出線161は、バイアス線190の配された絶縁層よりも上の層に位置し、バイアス線190よりも基板100の表面から離れている。検出線161の上に、保護膜145が配される。このとき検出線161は、保護膜134、140、141及び層間絶縁膜142、143、144に設けられたコンタクトプラグC4を介して、スイッチ素子131のソース電極1361に接続される。本変形例において、検出線161と第1の電極125との間の距離が、第1の実施形態よりも長くなる。このため、第1の実施形態と比較して寄生容量が減少する。この結果、本変形例のクロストーク抑制の効果は、第1の実施形態よりも大きくなる。 FIG. 5A shows a cross-sectional view of the detection line passing pixel 112 of the first modification of the present embodiment. The detection line 161 may be disposed on an insulating layer including a protective film or an interlayer insulating film different from the interlayer insulating film on which the bias line 190 is disposed. In the present modification, the detection line 161 is formed on an insulating layer composed of the protective film 141 and the interlayer insulating film 144. The detection line 161 is located in a layer above the insulating layer on which the bias line 190 is disposed, and is farther from the surface of the substrate 100 than the bias line 190. A protective film 145 is disposed on the detection line 161. At this time, the detection line 161 is connected to the source electrode 1361 of the switch element 131 through the contact plug C4 provided in the protective films 134, 140, 141 and the interlayer insulating films 142, 143, 144. In this modification, the distance between the detection line 161 and the first electrode 125 is longer than that in the first embodiment. For this reason, the parasitic capacitance is reduced as compared with the first embodiment. As a result, the effect of suppressing the crosstalk of this modification is greater than that of the first embodiment.
図5(b)に、本実施形態の第2の変形例の検出線通過画素112の断面図を示す。検出線161は、第2の電極126に対して第1の電極125とは反対側、第1の電極125の上に配された第2の電極126よりも更に上の層に配されていればよい。図5(b)に示すように、基板100の表面に対する平面視において検出線161を、互いに隣接する画素の光電変換素子120の第2の電極126の間の部分を含み配してもよい。この場合、検出線161の両側に位置する画素が検出線通過画素112となる。本変形例のクロストーク抑制の効果は、先述した第1の変形例よりも小さい。しかし、第2の電極126による静電遮蔽の効果を得ることが可能である。また第1の実施形態と比較して、光電変換素子120の上の配線が減少するため、画素の開口率が向上し、放射線検出装置101の感度が向上する。本変形例に限らず、バイアス線190と検出線161との少なくとも一方を、基板100の表面に対する平面視において光電変換素子120と重なる位置に配さないことによって、放射線検出装置101の検出線通過画素112の開口率が向上し、感度が向上する。また例えば、バイアス線190を互いに隣接する画素の光電変換素子120の第2の電極126の間に配し、検出線161を検出線通過画素112の上に配してもよい。この場合、開口率の向上と、第1の実施形態と同等のクロストーク抑制の効果とが得られる。 FIG. 5B shows a cross-sectional view of the detection line passing pixel 112 of the second modification of the present embodiment. The detection line 161 is disposed on the opposite side of the second electrode 126 from the first electrode 125 and in a layer further above the second electrode 126 disposed on the first electrode 125. That's fine. As illustrated in FIG. 5B, the detection line 161 may be arranged so as to include a portion between the second electrodes 126 of the photoelectric conversion elements 120 of the pixels adjacent to each other in a plan view with respect to the surface of the substrate 100. In this case, the pixels located on both sides of the detection line 161 are the detection line passing pixels 112. The effect of suppressing the crosstalk of this modification is smaller than that of the first modification described above. However, the effect of electrostatic shielding by the second electrode 126 can be obtained. Further, compared to the first embodiment, the wiring on the photoelectric conversion element 120 is reduced, so that the aperture ratio of the pixel is improved and the sensitivity of the radiation detection apparatus 101 is improved. Not limited to this modification, at least one of the bias line 190 and the detection line 161 is not disposed at a position overlapping the photoelectric conversion element 120 in a plan view with respect to the surface of the substrate 100, thereby passing the detection line of the radiation detection apparatus 101. The aperture ratio of the pixel 112 is improved and the sensitivity is improved. Further, for example, the bias line 190 may be disposed between the second electrodes 126 of the photoelectric conversion elements 120 of adjacent pixels, and the detection line 161 may be disposed on the detection line passing pixel 112. In this case, the improvement of the aperture ratio and the effect of suppressing the crosstalk equivalent to the first embodiment can be obtained.
図6に、本実施形態の第3の変形例の検出画素111の周辺の平面図を示す。図6は、撮影領域107のうち、1つの検出画素111及び検出線161の両側に配される3つの検出線通過画素112を示す。また図7(a)から(d)は、図6のA−A’間からD−D’間の断面図である。基板100の表面に対する平面視において互いに隣接する検出画素111及び検出線通過画素112の間の部分を含み検出線161及びバイアス線190が配置される。検出線161は、バイアス線190の上に、保護膜141及び層間絶縁膜144を含む絶縁層を隔てて配される。また検出線161とバイアス線190とは、基板100の表面に対する平面視において重なる位置に配されてもよい。本変形例において、検出線161は、第2の電極126のみでなくバイアス線190によって、第1の電極125から静電遮蔽される。また放射線検出装置101が動作している間、バイアス線190は、バイアス電源によって第2の電極126と同様に一定の電位に維持される。この結果、本変形例における検出線通過画素112の検出線161と第1の電極125との間の寄生容量は、第1の変形例と同等となり、クロストークの抑制においても第1の変形例と同等の効果が得られる。また第1の実施形態、第1の変形例及び第2の変形例と比較して、本変形例は撮像画素110及び検出線通過画素112の開口率が向上するため、放射線検出装置101の感度が更に向上する。 FIG. 6 is a plan view of the periphery of the detection pixel 111 according to the third modification of the present embodiment. FIG. 6 shows one detection pixel 111 and three detection line passing pixels 112 arranged on both sides of the detection line 161 in the imaging region 107. FIGS. 7A to 7D are cross-sectional views taken from A-A ′ to D-D ′ in FIG. 6. A detection line 161 and a bias line 190 are arranged including a portion between the detection pixel 111 and the detection line passing pixel 112 adjacent to each other in a plan view with respect to the surface of the substrate 100. The detection line 161 is disposed on the bias line 190 with an insulating layer including the protective film 141 and the interlayer insulating film 144 interposed therebetween. Further, the detection line 161 and the bias line 190 may be arranged at positions overlapping in the plan view with respect to the surface of the substrate 100. In this modification, the detection line 161 is electrostatically shielded from the first electrode 125 not only by the second electrode 126 but also by the bias line 190. In addition, while the radiation detection apparatus 101 is operating, the bias line 190 is maintained at a constant potential by the bias power source, like the second electrode 126. As a result, the parasitic capacitance between the detection line 161 of the detection line passing pixel 112 and the first electrode 125 in the present modification is equivalent to that in the first modification, and the first modification is also effective in suppressing crosstalk. Equivalent effect is obtained. In addition, compared with the first embodiment, the first modified example, and the second modified example, this modified example improves the aperture ratio of the imaging pixel 110 and the detection line passing pixel 112, and thus the sensitivity of the radiation detection apparatus 101. Is further improved.
図8(a)に、本実施形態の第4の変形例の放射線検出装置1011を模式的に示す全体図を示す。検出画素111において、スイッチ素子131を省略してもよい。このため図8(a)に示すように、検出画素用走査回路106及び検出画素用制御線108が不要となり、図1に示す放射線検出装置101と比較して、放射線検出装置の構成が簡略化できる。本変形例において、変換回路は光電変換素子121で構成される。図8(b)に、放射線検出装置1011の検出画素1110の等価回路を示す。放射線検出装置101の検出画素111と比較して、放射線検出装置1011の検出画素1110は、スイッチ素子131を有さず、第3の電極1251は、検出線161に直接接続される。図9に、本実施形態の第4の変形例の検出画素1110の周辺の平面図を示す。また図5(c)は、図9のC−C’間の断面図である。スイッチ素子131に代わり、信号線160の配される層に導電部材139が配される。検出線161は、コンタクトプラグC4、導電部材139及びコンタクトプラグC3を介して第3の電極1251に接続される。また導電部材139を形成せず、第3の電極1251の一部を拡大し、検出線161と第3の電極1251とを、保護膜140及び層間絶縁膜143に設けられたコンタクトプラグ(不図示)を介して直接、接続してもよい。本変形例において、検出線通過画素112の検出線161と第1の電極125との間の寄生容量は、第1の実施形態と同等であり、クロストークの抑制の効果も第1の実施形態と同等である。 FIG. 8A is an overall view schematically showing a radiation detection apparatus 1011 of the fourth modification example of the present embodiment. In the detection pixel 111, the switch element 131 may be omitted. Therefore, as shown in FIG. 8A, the detection pixel scanning circuit 106 and the detection pixel control line 108 are not necessary, and the configuration of the radiation detection apparatus is simplified as compared with the radiation detection apparatus 101 shown in FIG. it can. In this modification, the conversion circuit includes a photoelectric conversion element 121. FIG. 8B shows an equivalent circuit of the detection pixel 1110 of the radiation detection apparatus 1011. Compared with the detection pixel 111 of the radiation detection apparatus 101, the detection pixel 1110 of the radiation detection apparatus 1011 does not have the switch element 131, and the third electrode 1251 is directly connected to the detection line 161. FIG. 9 is a plan view of the periphery of the detection pixel 1110 of the fourth modification example of the present embodiment. FIG. 5C is a cross-sectional view taken along the line C-C ′ in FIG. Instead of the switch element 131, a conductive member 139 is disposed in a layer where the signal line 160 is disposed. The detection line 161 is connected to the third electrode 1251 through the contact plug C4, the conductive member 139, and the contact plug C3. Further, the conductive member 139 is not formed, a part of the third electrode 1251 is enlarged, and the detection line 161 and the third electrode 1251 are contact plugs (not shown) provided in the protective film 140 and the interlayer insulating film 143. ) May be connected directly. In this modification, the parasitic capacitance between the detection line 161 of the detection line passing pixel 112 and the first electrode 125 is equivalent to that of the first embodiment, and the effect of suppressing crosstalk is also the first embodiment. Is equivalent to
第2の実施形態
図10から12を参照して、第2の実施形態による放射線検出装置の構造を説明する。図10(a)及び図10(b)に、撮像画素110及び検出画素111の等価回路を示す。検出画素111において、第4の電極1261が検出線161に接続されること、及びスイッチ素子131のソース電極1361が信号線160に接続されることが、第1の実施形態と異なる。放射線検出装置101の全体の模式図及び図10(a)に示す撮像画素110の等価回路は、第1の実施形態の図1及び図2(a)と同じであってよい。また第1の実施形態と同様に、検出線通過画素112の等価回路は、撮像画素110と同じであってよい。
Second Embodiment With reference to FIGS. 10 to 12, the structure of a radiation detection apparatus according to a second embodiment will be described. 10A and 10B show equivalent circuits of the imaging pixel 110 and the detection pixel 111. FIG. In the detection pixel 111, the fourth electrode 1261 is connected to the detection line 161, and the source electrode 1361 of the switch element 131 is connected to the signal line 160, which is different from the first embodiment. An overall schematic diagram of the radiation detection apparatus 101 and an equivalent circuit of the imaging pixel 110 shown in FIG. 10A may be the same as those in FIGS. 1 and 2A of the first embodiment. Similarly to the first embodiment, the equivalent circuit of the detection line passing pixel 112 may be the same as that of the imaging pixel 110.
光電変換素子120の第1の電極125と第2の電極126との間に印加される電圧は、第1の実施形態と同様にバイアス電源105の電位と読出し回路103の基準電位との間の電位差である。一方、検出画素111の光電変換素子121の第3の電極1251と第4の電極1261との間に印加される電圧は、検出画素用読出し回路104の基準電位と読出し回路103の基準電位との間の電位差である。本実施形態においても、光電変換素子120及び121を駆動し光電変換動作させるため、これらの電位差を適切に設定する。図10(c)に、読出し回路103、図10(d)に、検出画素用読出し回路104として用いることのできる電荷読出し方式の等価回路の例を示す。読出し回路103は、図2(c)に示す読出し回路と同じであってよい。一方、検出画素用読出し回路104は、基準電位を調整するための電源2001を有する。本実施形態において、検出画素111の光電変換素子121に印加される電圧は、検出画素用読出し回路104の基準電位である電源2001の電位と、読出し回路103の基準電位であるGND電位との電位差になる。 The voltage applied between the first electrode 125 and the second electrode 126 of the photoelectric conversion element 120 is between the potential of the bias power source 105 and the reference potential of the readout circuit 103 as in the first embodiment. It is a potential difference. On the other hand, the voltage applied between the third electrode 1251 and the fourth electrode 1261 of the photoelectric conversion element 121 of the detection pixel 111 is the difference between the reference potential of the detection pixel readout circuit 104 and the reference potential of the readout circuit 103. The potential difference between. Also in this embodiment, in order to drive the photoelectric conversion elements 120 and 121 to perform the photoelectric conversion operation, these potential differences are set appropriately. FIG. 10C shows an example of an equivalent circuit of a charge readout method that can be used as the readout circuit 103 and FIG. 10D as the detection pixel readout circuit 104. The read circuit 103 may be the same as the read circuit shown in FIG. On the other hand, the detection pixel readout circuit 104 includes a power supply 2001 for adjusting the reference potential. In this embodiment, the voltage applied to the photoelectric conversion element 121 of the detection pixel 111 is a potential difference between the potential of the power supply 2001 that is the reference potential of the detection pixel readout circuit 104 and the GND potential that is the reference potential of the readout circuit 103. become.
図11に、本実施形態の放射線検出装置101の平面図、また図12(a)から(c)に、図11のA−A’間からC−C’間における断面図を示す。図12(c)に示すように、検出画素111において、スイッチ素子131のドレイン電極1351は、保護膜134及び層間絶縁膜142に設けられたコンタクトプラグC5を介して、第3の電極1251と接続される。また第4の電極1261は、保護膜140及び層間絶縁膜143に設けられたコンタクトプラグC6を介して、検出線161と接続される。また本実施形態の放射線検出装置101は、第1の実施形態で用いたコンタクトプラグC4に相当するコンタクトプラグを有さなくてもよい。これ以外の検出画素111の構成や、図12(a)及び(b)に示す撮像画素110及び検出線通過画素112の構成は、図4(a)及び(b)に示す第1の実施形態と同じであってよい。コンタクトプラグC5及びC6には、例えば金属などの導電部材からなる配線が用いられ得る。 FIG. 11 is a plan view of the radiation detection apparatus 101 of the present embodiment, and FIGS. 12A to 12C are cross-sectional views from A-A ′ to C-C ′ in FIG. 11. As shown in FIG. 12C, in the detection pixel 111, the drain electrode 1351 of the switch element 131 is connected to the third electrode 1251 through a contact plug C5 provided in the protective film 134 and the interlayer insulating film 142. Is done. The fourth electrode 1261 is connected to the detection line 161 through a contact plug C6 provided in the protective film 140 and the interlayer insulating film 143. Further, the radiation detection apparatus 101 of this embodiment may not have a contact plug corresponding to the contact plug C4 used in the first embodiment. Other configurations of the detection pixel 111 and configurations of the imaging pixel 110 and the detection line passing pixel 112 shown in FIGS. 12A and 12B are the first embodiment shown in FIGS. 4A and 4B. May be the same. For the contact plugs C5 and C6, for example, a wiring made of a conductive member such as metal can be used.
本実施形態において、検出線通過画素112の検出線161と第1の電極125との間の寄生容量は、第1の実施形態と同等であり、クロストークの抑制の効果も、第1の実施形態と同等である。一方、本実施形態は、第1の実施形態と比較して検出画素111に配されるコンタクトプラグの数が少ない。更にコンタクトプラグを形成するためのコンタクトホールを開口する保護膜及び層間絶縁膜の層数も少ない。このためコンタクトホールの開口及びコンタクトプラグの形成に必要な製造工程数を削減することが可能になる。この結果、放射線検出装置101の生産性の向上や製造歩留まりの向上が可能となる。 In this embodiment, the parasitic capacitance between the detection line 161 of the detection line passing pixel 112 and the first electrode 125 is equivalent to that of the first embodiment, and the effect of suppressing crosstalk is also the first implementation. It is equivalent to the form. On the other hand, in the present embodiment, the number of contact plugs arranged in the detection pixel 111 is smaller than that in the first embodiment. Further, the number of protective films and interlayer insulating films for opening contact holes for forming contact plugs is also small. For this reason, it is possible to reduce the number of manufacturing steps required for forming contact holes and contact plugs. As a result, the productivity of the radiation detection apparatus 101 can be improved and the manufacturing yield can be improved.
以上、第1及び第2の実施形態について示したが、本発明はこれらの実施形態に限定されるものではない。上述した各実施形態及び変形例は適宜変更、組み合わせが可能である。例えば、第2の実施形態に第1の実施形態で述べた各変形例を適用してもよい。 Although the first and second embodiments have been described above, the present invention is not limited to these embodiments. Each embodiment and modification which were mentioned above can be changed and combined suitably. For example, each modification described in the first embodiment may be applied to the second embodiment.
図13に、放射線源に対する上述した放射線検出装置101の配置の断面模式図を示す。図13(a)において、放射線源3001は、例えばX線3003を被写体3002に向かって放射する。また放射線検出装置101において、光電変換素子120、121の基板100に対向する側に、X線の照射によって可視光を発するシンチレータ3004が配置される。被写体3002を通過したX線によってシンチレータ3004が発光し、この光を光電変換素子120、121において検出することによって、放射線検出装置101は、X線3003を検出する。また基板100がX線3003を透過する場合、図13(b)に示すように基板100の裏面側からX線3003を入射することが好ましい。放射線源3001がX線3003などの放射線と同時に電磁ノイズを放射した場合においても、検出線通過画素112の検出線161は、検出線通過画素112の第2の電極126によって電磁ノイズから静電遮蔽される。このため、検出線161は、放射線源3001からの電磁ノイズの影響を受け難い。この結果、図13(b)に示す放射線検出装置101の配置は、図13(a)に示す配置と比較して照射情報を精度よく取得できる。 FIG. 13 is a schematic cross-sectional view of the arrangement of the radiation detection apparatus 101 described above with respect to the radiation source. In FIG. 13A, the radiation source 3001 emits, for example, X-rays 3003 toward the subject 3002. In the radiation detection apparatus 101, a scintillator 3004 that emits visible light by X-ray irradiation is disposed on the side of the photoelectric conversion elements 120 and 121 that faces the substrate 100. The scintillator 3004 emits light by the X-rays that have passed through the subject 3002, and the radiation detection apparatus 101 detects the X-rays 3003 by detecting this light in the photoelectric conversion elements 120 and 121. When the substrate 100 transmits X-rays 3003, it is preferable that the X-rays 3003 enter from the back side of the substrate 100 as shown in FIG. Even when the radiation source 3001 emits electromagnetic noise simultaneously with radiation such as the X-ray 3003, the detection line 161 of the detection line passing pixel 112 is electrostatically shielded from electromagnetic noise by the second electrode 126 of the detection line passing pixel 112. Is done. For this reason, the detection line 161 is not easily affected by electromagnetic noise from the radiation source 3001. As a result, the arrangement of the radiation detection apparatus 101 shown in FIG. 13B can acquire irradiation information with higher accuracy than the arrangement shown in FIG.
また撮影領域107において、検出画素111は、自由に配置することができる。例えば撮影領域107の一部の領域に注目し、この領域に集中的に検出画素111を設けてもよい。図14(a)のように、撮影領域107上の一部の領域を特定領域4001とし、特定領域4001内に複数の検出画素111を配してもよい。撮影領域107のうち特定領域4001以外の領域には検出画素111が配されなくてもよい。また特定領域4001内に複数備えられた検出画素111を、更に1つ以上の検出画素111を含む複数の系列に分け、検出画素111を系列ごとに読み出す構成にしてもよい。図14(b)に、検出画素用走査回路106が複数の系列の検出画素用制御線108に印加する電圧のタイミング図の例を示す。また図15は、図14(a)の破線で囲んだ部分4002の等価回路の例である。図15において、検出画素111は、4つの系列に分かれ、図14(b)に示す検出画素用走査回路106から検出画素用制御線108を介して送られる駆動信号によって、それぞれの系列ごとに駆動される。 Further, the detection pixels 111 can be freely arranged in the imaging region 107. For example, attention may be paid to a part of the imaging region 107, and the detection pixels 111 may be provided intensively in this region. As shown in FIG. 14A, a part of the area on the imaging area 107 may be a specific area 4001, and a plurality of detection pixels 111 may be arranged in the specific area 4001. The detection pixel 111 may not be arranged in an area other than the specific area 4001 in the imaging area 107. Further, a plurality of detection pixels 111 provided in the specific region 4001 may be further divided into a plurality of series including one or more detection pixels 111, and the detection pixels 111 may be read for each series. FIG. 14B shows an example of a timing diagram of voltages applied to the detection pixel control lines 108 of a plurality of series by the detection pixel scanning circuit 106. FIG. 15 is an example of an equivalent circuit of a portion 4002 surrounded by a broken line in FIG. In FIG. 15, the detection pixels 111 are divided into four series, and are driven for each series by a drive signal sent from the detection pixel scanning circuit 106 via the detection pixel control line 108 shown in FIG. Is done.
特定領域4001において、第1の系列4011に属する検出画素1111、第2の系列4012に属する検出画素1112、第3の系列4013に属する検出画素1113、第4の系列4014に属する検出画素1114が配置されている。各系列の検出画素111は、それぞれスイッチ素子131を有し、そのゲート電極には検出画素用制御線108が系列ごとに共通に接続される。検出画素用走査回路106は、検出画素用制御線108を介して検出画素111を系列ごとに駆動する。検出画素111の配置によって、検出線161は、複数の系列の検出画素用制御線108と交差しうる。本実施形態において、検出線通過画素112の検出線161は、第2の電極126によって検出画素用制御線108から静電遮蔽されている。このため、照射情報を取得し検出画素用読出し回路104に転送する間、図14(b)のように複数の検出画素用制御線108の電位が複雑に変化しても、検出線161は、検出画素用制御線108の電位の変化の影響を受け難い。これによって放射線検出装置は、放射線の照射情報を精度よく取得できる。本例ではこの系列の数を4系列としたが、本発明はこれに限られるものではない。検出画素111を系列ごとに読み出す系列数は、3系列以下であってもよいし、5系列以上であってもよい。 In the specific region 4001, detection pixels 1111 belonging to the first series 4011, detection pixels 1112 belonging to the second series 4012, detection pixels 1113 belonging to the third series 4013, and detection pixels 1114 belonging to the fourth series 4014 are arranged. Has been. Each series of detection pixels 111 has a switch element 131, and a detection pixel control line 108 is commonly connected to the gate electrode of each series. The detection pixel scanning circuit 106 drives the detection pixels 111 for each series via the detection pixel control line 108. Depending on the arrangement of the detection pixels 111, the detection line 161 may intersect with a plurality of series of detection pixel control lines 108. In the present embodiment, the detection line 161 of the detection line passing pixel 112 is electrostatically shielded from the detection pixel control line 108 by the second electrode 126. For this reason, even if the potentials of the plurality of detection pixel control lines 108 change in a complex manner as shown in FIG. 14B while the irradiation information is acquired and transferred to the detection pixel readout circuit 104, the detection line 161 is It is difficult to be affected by the potential change of the detection pixel control line 108. Thereby, the radiation detection apparatus can acquire radiation irradiation information with high accuracy. In this example, the number of series is four, but the present invention is not limited to this. The number of series for reading the detection pixel 111 for each series may be 3 or less, or 5 or more.
以下、図16を参照しながら本発明の放射線検出装置101が組み込まれた放射線検出システムを例示的に説明する。放射線源であるX線チューブ6050で発生したX線6060は、患者又は被験者6061の胸部6062を透過し、本発明の放射線検出装置101を用いた放射線撮像装置6040に入射する。この入射したX線に患者又は被験者6061の体内部の情報が含まれる。放射線撮像装置6040において、X線6060の入射に対応してシンチレータが発光し、これが放射線検出装置101の光電変換素子で光電変換され、電気的情報を得る。この情報は、デジタルに変換され信号処理部としてのイメージプロセッサ6070によって画像処理され、制御室の表示部としてのディスプレイ6080で観察できる。また、この情報は、電話回線6090などの伝送処理部によって遠隔地へ転送できる。これによって別の場所のドクタールームなどの表示部であるディスプレイ6081に表示し、遠隔地の医師が診断することも可能である。また、この情報は、光ディスクなどの記録媒体に記録することができ、またフィルムプロセッサ6100によって記録媒体となるフィルム6110に記録することもできる。 Hereinafter, a radiation detection system incorporating the radiation detection apparatus 101 of the present invention will be described as an example with reference to FIG. X-rays 6060 generated by an X-ray tube 6050 serving as a radiation source pass through a chest 6062 of a patient or subject 6061 and enter a radiation imaging apparatus 6040 using the radiation detection apparatus 101 of the present invention. This incident X-ray includes information inside the body of the patient or subject 6061. In the radiation imaging apparatus 6040, the scintillator emits light in response to the incidence of the X-ray 6060, and this is photoelectrically converted by the photoelectric conversion element of the radiation detection apparatus 101 to obtain electrical information. This information is converted into digital data, image-processed by an image processor 6070 as a signal processing unit, and can be observed on a display 6080 as a display unit of a control room. Further, this information can be transferred to a remote place by a transmission processing unit such as a telephone line 6090. In this way, it can be displayed on a display 6081 which is a display unit such as a doctor room in another place, and a doctor in a remote place can make a diagnosis. In addition, this information can be recorded on a recording medium such as an optical disk, and can also be recorded on a film 6110 serving as a recording medium by the film processor 6100.
100 基板、101 放射線検出装置、104 検出画素用読出し回路、105 バイアス電源、107 撮影領域、110 撮像画素、111 検出画素、120、121 光電変換素子、125 第1の電極、126 第2の電極、140、141 保護膜、143、144 層間絶縁膜、161 検出線、190 バイアス線 DESCRIPTION OF SYMBOLS 100 Board | substrate, 101 Radiation detection apparatus, 104 Reading circuit for detection pixels, 105 Bias power supply, 107 Imaging area, 110 Imaging pixel, 111 Detection pixel, 120, 121 Photoelectric conversion element, 125 1st electrode, 126 2nd electrode, 140, 141 Protective film, 143, 144 Interlayer insulating film, 161 detection line, 190 bias line
Claims (19)
前記第1の画素は、前記基板の上に配された第1の電極と、前記第1の電極の上に配された第2の電極と、を含む第1の変換素子を有し、
前記第2の画素は、前記第2の画素に照射された放射線に基づく信号を生成する、前記基板の上に配された第2の変換素子を含む変換回路を有し、
前記放射線検出装置は、
前記第1の変換素子を駆動するためのバイアス電源に前記第2の電極を接続するためのバイアス線と、
前記第2の変換素子が生成した前記信号を前記撮影領域の外部の検出回路へ伝達するための検出線と、を更に有し、
前記検出線が、前記第2の電極に対して前記第1の電極とは反対側に配されることを特徴とする放射線検出装置。 A radiation detection apparatus having an imaging region on a substrate having a first pixel for acquiring an image in which radiation is detected and a second pixel for acquiring radiation irradiation information,
The first pixel includes a first conversion element including a first electrode disposed on the substrate and a second electrode disposed on the first electrode;
The second pixel includes a conversion circuit including a second conversion element disposed on the substrate, which generates a signal based on radiation applied to the second pixel.
The radiation detection apparatus comprises:
A bias line for connecting the second electrode to a bias power source for driving the first conversion element;
A detection line for transmitting the signal generated by the second conversion element to a detection circuit outside the imaging region;
The radiation detection apparatus, wherein the detection line is arranged on the opposite side of the second electrode with respect to the second electrode.
前記絶縁層を貫通し、前記変換回路と前記検出線とを接続するコンタクトプラグと、を更に有することを特徴とする請求項1に記載の放射線検出装置。 An insulating layer covering the first conversion element and the conversion circuit;
The radiation detection apparatus according to claim 1, further comprising a contact plug that penetrates the insulating layer and connects the conversion circuit and the detection line.
前記検出線が、前記基板の表面に対する平面視において、互いに隣接する前記第1の画素の前記第2の電極の間に位置する部分を含むことを特徴とする請求項2又は3に記載の放射線検出装置。 The radiation detection apparatus includes a plurality of the first pixels,
4. The radiation according to claim 2, wherein the detection line includes a portion located between the second electrodes of the first pixels adjacent to each other in a plan view with respect to a surface of the substrate. Detection device.
前記バイアス線が、前記第1の絶縁層と前記第2の絶縁層との間に配されることを特徴とする請求項2乃至4の何れか1項に記載の放射線検出装置。 The insulating layer includes a first insulating layer and a second insulating layer on the first insulating layer,
5. The radiation detection apparatus according to claim 2, wherein the bias line is disposed between the first insulating layer and the second insulating layer. 6.
前記第1の電極は、第1のスイッチ素子と信号線とを介して、前記画像の転送される前記撮影領域の外部の読出し回路に接続され、
前記第3の電極は、前記検出線及び前記コンタクトプラグを介して前記検出回路に接続され、
前記第4の電極は、前記バイアス線を介して前記バイアス電源に接続され、
前記バイアス電源の電位と、前記検出回路の基準電位と、の差に相当する電圧が前記第2の変換素子に印加されることを特徴とする請求項2乃至7の何れか1項に記載の放射線検出装置。 The second conversion element includes a third electrode disposed on the substrate, and a fourth electrode disposed on the third electrode,
The first electrode is connected to a readout circuit outside the imaging region to which the image is transferred, via a first switch element and a signal line.
The third electrode is connected to the detection circuit via the detection line and the contact plug,
The fourth electrode is connected to the bias power supply through the bias line,
8. The voltage according to claim 2, wherein a voltage corresponding to a difference between a potential of the bias power supply and a reference potential of the detection circuit is applied to the second conversion element. Radiation detection device.
前記第1の電極は、第1のスイッチ素子と第1の信号線とを介して、前記画像の転送される前記撮影領域の外部の読出し回路に接続され、
前記第3の電極は、第2の信号線を介して前記読出し回路に接続され、
前記第4の電極は、前記検出線及び前記コンタクトプラグを介して前記検出回路に接続され、
前記読出し回路の基準電位と、前記検出回路の基準電位と、の差に相当する電圧が前記第2の変換素子に印加されることを特徴とする請求項2乃至7の何れか1項に記載の放射線検出装置。 The second conversion element includes a third electrode disposed on the substrate, and a fourth electrode disposed on the third electrode,
The first electrode is connected to a readout circuit outside the imaging area to which the image is transferred, via a first switch element and a first signal line.
The third electrode is connected to the readout circuit via a second signal line;
The fourth electrode is connected to the detection circuit via the detection line and the contact plug,
8. The voltage according to claim 2, wherein a voltage corresponding to a difference between a reference potential of the readout circuit and a reference potential of the detection circuit is applied to the second conversion element. Radiation detection equipment.
前記放射線検出装置からの信号を処理する信号処理部と、を備えることを特徴とする放射線検出システム。 A radiation detection apparatus according to any one of claims 1 to 18,
And a signal processing unit for processing a signal from the radiation detection apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014245171A JP6530600B2 (en) | 2014-12-03 | 2014-12-03 | Radiation detection apparatus and radiation detection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014245171A JP6530600B2 (en) | 2014-12-03 | 2014-12-03 | Radiation detection apparatus and radiation detection system |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2016111432A true JP2016111432A (en) | 2016-06-20 |
JP2016111432A5 JP2016111432A5 (en) | 2018-01-25 |
JP6530600B2 JP6530600B2 (en) | 2019-06-12 |
Family
ID=56124706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014245171A Active JP6530600B2 (en) | 2014-12-03 | 2014-12-03 | Radiation detection apparatus and radiation detection system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6530600B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186020A1 (en) * | 2017-04-05 | 2018-10-11 | キヤノン株式会社 | Radiation imaging device, radiation imaging system, radiation imaging device control method, and program |
WO2018198491A1 (en) * | 2017-04-27 | 2018-11-01 | キヤノン株式会社 | Radiation imaging device, radiation imaging system, control method for radiation imaging device, and program |
JP2020107668A (en) * | 2018-12-26 | 2020-07-09 | キヤノン株式会社 | Imaging device and imaging system |
US20210389477A1 (en) * | 2020-06-11 | 2021-12-16 | Innocare Optoelectronics Corporation | Radiation detection device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113805221B (en) * | 2020-06-11 | 2024-09-27 | 睿生光电股份有限公司 | Radiation detection device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000156522A (en) * | 1998-11-19 | 2000-06-06 | Canon Inc | Photoelectric converter |
JP2004179537A (en) * | 2002-11-28 | 2004-06-24 | Hamamatsu Photonics Kk | Solid-state imaging device and radiation imaging device |
JP2005147958A (en) * | 2003-11-18 | 2005-06-09 | Canon Inc | Radiation detection instrument and radiation detection system |
JP2012015913A (en) * | 2010-07-02 | 2012-01-19 | Fujifilm Corp | Radiation detection element and radiographic image photographing device |
-
2014
- 2014-12-03 JP JP2014245171A patent/JP6530600B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000156522A (en) * | 1998-11-19 | 2000-06-06 | Canon Inc | Photoelectric converter |
JP2004179537A (en) * | 2002-11-28 | 2004-06-24 | Hamamatsu Photonics Kk | Solid-state imaging device and radiation imaging device |
JP2005147958A (en) * | 2003-11-18 | 2005-06-09 | Canon Inc | Radiation detection instrument and radiation detection system |
JP2012015913A (en) * | 2010-07-02 | 2012-01-19 | Fujifilm Corp | Radiation detection element and radiographic image photographing device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182416A (en) * | 2017-04-05 | 2018-11-15 | キヤノン株式会社 | Radiation imaging apparatus, radiation imaging system, control method and program for radiation imaging apparatus |
CN110809882A (en) * | 2017-04-05 | 2020-02-18 | 佳能株式会社 | Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus, and program |
WO2018186020A1 (en) * | 2017-04-05 | 2018-10-11 | キヤノン株式会社 | Radiation imaging device, radiation imaging system, radiation imaging device control method, and program |
US11090018B2 (en) | 2017-04-05 | 2021-08-17 | Canon Kabushiki Kaisha | Radiation imaging apparatus, radiation imaging system, control method of radiation imaging apparatus, and non-transitory computer-readable storage medium |
CN110574361B (en) * | 2017-04-27 | 2021-12-28 | 佳能株式会社 | Radiation imaging apparatus, radiation imaging system, control method, and storage medium |
WO2018198491A1 (en) * | 2017-04-27 | 2018-11-01 | キヤノン株式会社 | Radiation imaging device, radiation imaging system, control method for radiation imaging device, and program |
JP2018186468A (en) * | 2017-04-27 | 2018-11-22 | キヤノン株式会社 | Radiation imaging device, radiographic imaging system, control method of the radiation imaging device, and program |
CN110574361A (en) * | 2017-04-27 | 2019-12-13 | 佳能株式会社 | Radiation imaging equipment, radiation imaging system, control method and program for radiation imaging equipment |
US11067706B2 (en) | 2017-04-27 | 2021-07-20 | Canon Kabushiki Kaisha | Radiation image sensing apparatus, radiation image sensing system, control method for radiation image sensing apparatus, and non-transitory computer-readable storage medium |
JP6990986B2 (en) | 2017-04-27 | 2022-01-12 | キヤノン株式会社 | Radiation imaging device, radiation imaging system, control method and program of radiation imaging device |
JP2020107668A (en) * | 2018-12-26 | 2020-07-09 | キヤノン株式会社 | Imaging device and imaging system |
US20210389477A1 (en) * | 2020-06-11 | 2021-12-16 | Innocare Optoelectronics Corporation | Radiation detection device |
US11874410B2 (en) * | 2020-06-11 | 2024-01-16 | Innocare Optoelectronics Corporation | Radiation detection device |
Also Published As
Publication number | Publication date |
---|---|
JP6530600B2 (en) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107615750B (en) | Radiation imaging apparatus and radiation imaging system | |
CN104851897B (en) | Radiation detection device and radiation detection system | |
JP6480670B2 (en) | Radiation imaging apparatus and radiation imaging system | |
US9423513B2 (en) | Radiation imaging apparatus and radiation imaging system | |
CN103066083B (en) | Checkout equipment and detection system | |
US20130264485A1 (en) | Method of manufacturing radiation detection apparatus, radiation detection apparatus, and radiation imaging system | |
US8759785B2 (en) | Detection apparatus and radiation detection system | |
US20130299711A1 (en) | Detection device, detection system, and method of manufacturing detection device | |
JP5013754B2 (en) | Electromagnetic wave detection device, radiation detection device, radiation detection system, and laser processing method | |
JP6530600B2 (en) | Radiation detection apparatus and radiation detection system | |
JP6017542B2 (en) | X-ray flat panel detector manufacturing method, X-ray flat panel detector TFT array substrate, and X-ray flat panel detector | |
US10921466B2 (en) | Radiation imaging apparatus and radiation imaging system | |
JP2012079820A (en) | Detector and radiation detection system | |
JP5252817B2 (en) | Imaging device, radiation imaging device, driving method of imaging device, radiation imaging system, and manufacturing method of imaging device | |
JP6282363B2 (en) | Detection device and detection system | |
JP2013033945A (en) | Detection device and detection system | |
US20250151446A1 (en) | Radiation detector, detection unit, and radiation imaging system | |
JP6929327B2 (en) | Radiation imaging device and radiation imaging system | |
JP2018195949A (en) | Radiation imaging device and radiation imaging system | |
JP2025077970A (en) | RADIATION DETECTOR, DETECTION UNIT, AND RADIATION IMAGING SYSTEM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171204 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190517 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6530600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |