[go: up one dir, main page]

JP2016098383A - Plasma reaction device - Google Patents

Plasma reaction device Download PDF

Info

Publication number
JP2016098383A
JP2016098383A JP2014233732A JP2014233732A JP2016098383A JP 2016098383 A JP2016098383 A JP 2016098383A JP 2014233732 A JP2014233732 A JP 2014233732A JP 2014233732 A JP2014233732 A JP 2014233732A JP 2016098383 A JP2016098383 A JP 2016098383A
Authority
JP
Japan
Prior art keywords
electrode
plasma
cylindrical
cathode electrode
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014233732A
Other languages
Japanese (ja)
Other versions
JP6411869B2 (en
Inventor
健二 平栗
Kenji Hirakuri
健二 平栗
圭祐 柴
Keisuke Shiba
圭祐 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2014233732A priority Critical patent/JP6411869B2/en
Publication of JP2016098383A publication Critical patent/JP2016098383A/en
Application granted granted Critical
Publication of JP6411869B2 publication Critical patent/JP6411869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】簡易な構成によって、プラズマを利用した基材の加工を促進できるプラズマ反応装置を提供する。【解決手段】プラズマ反応装置の一例としての高周波プラズマCVD装置1は、原料ガスを導入する反応室2と、平板状に形成され相互に対向する対向面6a,7aが設けられるアノード電極6及びカソード電極7を有し、反応室2の内部に配置される電極部5と、カソード電極7の対向面7aに基材11と共に設置され、基材11の周囲を包囲する筒型電極10と、高周波を電極部5に発生させる高周波電源9と、を備える。高周波プラズマCVD装置1は、高周波により炭化水素系ガスをプラズマ化させ、炭化水素系ガスの化学反応を活性化させることで、反応室2内に設置され筒型電極10に包囲される基材11の表面にDLC膜を形成する。【選択図】図1A plasma reaction apparatus capable of accelerating processing of a substrate using plasma with a simple configuration. A high-frequency plasma CVD apparatus 1 as an example of a plasma reaction apparatus includes a reaction chamber 2 for introducing a raw material gas, and an anode electrode 6 and a cathode that are formed in a flat plate shape and are opposed to each other. An electrode portion 5 having an electrode 7 and disposed inside the reaction chamber 2; a cylindrical electrode 10 which is installed on a facing surface 7a of the cathode electrode 7 together with the base material 11 and surrounds the periphery of the base material 11; And a high frequency power source 9 for generating the voltage at the electrode unit 5. The high-frequency plasma CVD apparatus 1 converts the hydrocarbon gas into plasma by high frequency and activates the chemical reaction of the hydrocarbon gas, so that the base material 11 is installed in the reaction chamber 2 and surrounded by the cylindrical electrode 10. A DLC film is formed on the surface. [Selection] Figure 1

Description

本発明は、プラズマ反応装置に関する。   The present invention relates to a plasma reactor.

ダイヤモンド状炭素(Diamond−Like Carbon:DLC)膜は、高硬度であり、生体適合性、耐摩耗性、耐腐食性などに優れ、物理的及び化学的に安定した特性を有することから、医療分野や工業分野などの様々な分野での応用が期待されている。例えば、切削工具や金型、建築部材などの表面をDLC膜でコーティングすることにより、製品寿命を延ばすことが期待できる。また、人工関節などの医療器具をDLC膜でコーティングすることによりこれらの医療器具の生体適合性を向上させることが期待できる。   Diamond-like carbon (DLC) film has high hardness, is excellent in biocompatibility, wear resistance, corrosion resistance, etc., and has physical and chemical stable characteristics. Applications in various fields such as industrial fields are expected. For example, it can be expected to extend the product life by coating the surface of a cutting tool, a mold, a building member or the like with a DLC film. In addition, it is expected that the biocompatibility of these medical devices can be improved by coating medical devices such as artificial joints with a DLC film.

DLC膜は、高周波プラズマ化学気相成長(Chemical Vapor Deposition:CVD)装置などのプラズマ反応装置を利用することで基材の表面に形成することができる。プラズマ反応装置によるDLC膜の成膜手法において、形成するDLC膜と基材との間の密着性の向上が望まれており、例えば基材の上にシリコンを主成分とする中間層を形成して、この中間層の上にDLC膜を形成する手法が提案されている(例えば特許文献1,2参照)。   The DLC film can be formed on the surface of the substrate by using a plasma reactor such as a high-frequency plasma chemical vapor deposition (CVD) apparatus. In the DLC film formation method using a plasma reactor, it is desired to improve the adhesion between the DLC film to be formed and the substrate. For example, an intermediate layer mainly composed of silicon is formed on the substrate. Thus, a method of forming a DLC film on the intermediate layer has been proposed (see, for example, Patent Documents 1 and 2).

特開2000−178737号公報JP 2000-178737 A 特開2010−106311号公報JP 2010-106311 A

しかしながら、特許文献1,2に記載されている従来のプラズマ反応装置によるDLC膜の成膜手法では、中間層を形成する必要があるため、成膜プロセスの複雑化や処理時間の増大などの問題がある。このため、中間層を設けなくても、迅速にDLC膜を形成でき、かつ、形成されるDLC膜の密着性を向上できるように、簡易な構成でプラズマ反応を利用したDLC膜の成膜を促進できることが望ましい。   However, in the conventional DLC film deposition method described in Patent Documents 1 and 2, it is necessary to form an intermediate layer, which causes problems such as a complicated deposition process and increased processing time. There is. Therefore, it is possible to form a DLC film using a plasma reaction with a simple structure so that a DLC film can be formed quickly and an adhesion of the formed DLC film can be improved without providing an intermediate layer. It is desirable to be able to promote.

ところで、プラズマ化させた反応ガスを利用して基材の表面を加工するプラズマ反応装置という括りでは、上記のDLC膜の成膜以外でも、例えば反応性イオンエッチングなどの様々な加工手法が適用されている。プラズマ反応装置を用いたこれらの多種の加工手法においても、上記のDLC膜の成膜手法と同様に、簡易な構成でもプラズマを利用した基材の加工を促進させる点でさらなる改善の余地があった。   By the way, in the conclusion of a plasma reactor that processes the surface of a substrate using a plasma reaction gas, various processing techniques such as reactive ion etching are applied in addition to the above DLC film formation. ing. Even in these various processing methods using a plasma reactor, there is room for further improvement in that the processing of a substrate using plasma is promoted even with a simple configuration, similar to the DLC film forming method described above. It was.

本発明は、上記に鑑みてなされたものであって、簡易な構成によって、プラズマを利用した基材の加工を促進できるプラズマ反応装置を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the plasma reactor which can accelerate | stimulate the process of the base material using a plasma by simple structure.

上記課題を解決するために、本発明に係るプラズマ反応装置は、反応ガスを導入する反応室と、平板状に形成され相互に対向する対向面が設けられるアノード電極及びカソード電極を有し、前記反応室の内部に配置される電極部と、前記カソード電極の前記対向面に基材と共に設置され、前記基材の周囲を包囲する筒型電極と、電磁波を前記電極部に発生させる電源と、を備え、前記電源により前記電極部の前記アノード電極と前記カソード電極との間に前記電磁波を発生し、前記反応室内に導入される前記反応ガスを前記電磁波によりプラズマ化させることで、前記プラズマ化させた反応ガスを利用して、前記反応室内に設置され前記筒型電極に包囲される前記基材の表面を加工することを特徴とする。   In order to solve the above problems, a plasma reaction apparatus according to the present invention includes a reaction chamber for introducing a reaction gas, and an anode electrode and a cathode electrode that are formed in a flat plate shape and are provided with opposing surfaces facing each other, An electrode part disposed inside the reaction chamber, a cylindrical electrode installed together with a base material on the opposite surface of the cathode electrode, surrounding the periphery of the base material, and a power source for generating electromagnetic waves in the electrode part, The electromagnetic wave is generated between the anode electrode and the cathode electrode of the electrode unit by the power source, and the reaction gas introduced into the reaction chamber is converted into plasma by the electromagnetic wave, thereby generating the plasma. The surface of the base material, which is installed in the reaction chamber and surrounded by the cylindrical electrode, is processed using the reacted reaction gas.

また、上記のプラズマ反応装置において、前記反応室に導入される前記反応ガスが原料ガスであり、前記電磁波により前記原料ガスをプラズマ化させ、前記原料ガスの化学反応を活性化させることで、前記反応室内に設置され前記筒型電極に包囲される前記基材の表面に薄膜を形成することが好ましい。   In the plasma reaction apparatus, the reaction gas introduced into the reaction chamber is a raw material gas, and the raw material gas is turned into plasma by the electromagnetic wave, thereby activating a chemical reaction of the raw material gas, It is preferable to form a thin film on the surface of the substrate that is installed in the reaction chamber and surrounded by the cylindrical electrode.

また、上記のプラズマ反応装置において、前記薄膜がダイヤモンド状炭素(Diamond−Like Carbon:DLC)膜であることが好ましい。   In the plasma reaction apparatus, the thin film is preferably a diamond-like carbon (DLC) film.

また、上記のプラズマ反応装置において、前記電極部は、前記反応室内において、前記アノード電極が鉛直方向の上方側に配置され、前記カソード電極が前記鉛直方向の下方側に配置され、前記筒型電極は、前記カソード電極の前記対向面上に載置されることが好ましい。   Further, in the above plasma reaction apparatus, the electrode unit is configured such that, in the reaction chamber, the anode electrode is disposed on the upper side in the vertical direction, the cathode electrode is disposed on the lower side in the vertical direction, and the cylindrical electrode Is preferably placed on the facing surface of the cathode electrode.

また、上記のプラズマ反応装置において、前記筒型電極は、前記電極部の前記カソード電極の前記対向面に複数個設置されることが好ましい。   In the plasma reaction apparatus, it is preferable that a plurality of the cylindrical electrodes are provided on the facing surface of the cathode electrode of the electrode portion.

また、上記のプラズマ反応装置において、前記筒型電極が前記カソード電極に設置されている状態において、前記筒型電極の高さ寸法は、前記アノード電極と前記カソード電極との間の電極間距離に対して12.5%〜50%であることが好ましい。   In the above plasma reactor, in the state where the cylindrical electrode is installed on the cathode electrode, the height dimension of the cylindrical electrode is the distance between the anode electrode and the cathode electrode. On the other hand, it is preferably 12.5% to 50%.

また、上記のプラズマ反応装置において、前記筒型電極が前記カソード電極に設置されている状態において、前記筒型電極の断面積は、前記カソード電極の前記対向面の面積に対して1%であることが好ましい。   In the plasma reaction apparatus, in a state where the cylindrical electrode is installed on the cathode electrode, a cross-sectional area of the cylindrical electrode is 1% with respect to an area of the facing surface of the cathode electrode. It is preferable.

本発明に係るプラズマ反応装置は、基材の周囲を包囲する筒型電極を設置することで、筒型電極の内部、すなわち基材の周囲のプラズマ強度を増大させることができるので、簡易な構成によって、プラズマを利用した基材の加工を促進できるという効果を奏する。   Since the plasma reactor according to the present invention can increase the plasma intensity inside the cylindrical electrode, that is, around the base material by installing the cylindrical electrode surrounding the base material, it has a simple configuration. Thus, it is possible to promote the processing of the base material using plasma.

図1は、本発明の一実施形態に係るプラズマ反応装置の一例としての高周波プラズマ化学気相成長(CVD)装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a high-frequency plasma chemical vapor deposition (CVD) apparatus as an example of a plasma reaction apparatus according to an embodiment of the present invention. 図2は、図1中のカソード電極及び筒型電極を拡大視した図である。FIG. 2 is an enlarged view of the cathode electrode and the cylindrical electrode in FIG. 図3は、図2に示すカソード電極及び筒型電極の平面図である。FIG. 3 is a plan view of the cathode electrode and the cylindrical electrode shown in FIG. 図4は、筒型電極の変形例の一例を示す平面図である。FIG. 4 is a plan view showing an example of a modification of the cylindrical electrode. 図5は、実施例1、比較例1について、形成されたDLC膜の成膜レートを示す図である。FIG. 5 is a diagram showing the deposition rate of the formed DLC film for Example 1 and Comparative Example 1. 図6は、実施例1にて成膜処理が施された前後のSUS基板表面の化学的組成評価を示す図である。FIG. 6 is a diagram showing the chemical composition evaluation of the surface of the SUS substrate before and after the film formation process is performed in the first embodiment. 図7は、実施例1にて形成された薄膜の構造評価を示す図である。FIG. 7 is a diagram showing the structural evaluation of the thin film formed in Example 1. 図8は、実施例2〜4、比較例2におけるDLC膜の密着性評価の結果を示す図である。FIG. 8 is a diagram showing the results of evaluating the adhesion of the DLC film in Examples 2 to 4 and Comparative Example 2. 図9は、実施例2〜4、比較例2におけるラマン分光法による膜の構造評価を示す図である。FIG. 9 is a diagram showing film structure evaluation by Raman spectroscopy in Examples 2 to 4 and Comparative Example 2.

以下に、本発明に係るプラズマ反応装置の実施形態を図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。   Hereinafter, an embodiment of a plasma reactor according to the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.

[実施形態]
プラズマ反応装置は、「反応室内に設置される平行平板電極間に電磁波を発生させ、反応室内に導入される反応ガスをこの電磁波によりプラズマ化させることで、このプラズマ化させた反応ガスを利用して反応室内に設置される基材の表面を加工するための装置」と定義できる。本実施形態では、このようなプラズマ反応装置の一例として高周波プラズマCVD装置1を挙げて説明する。
[Embodiment]
The plasma reactor uses the plasma-converted reaction gas by generating electromagnetic waves between parallel plate electrodes installed in the reaction chamber and converting the reaction gas introduced into the reaction chamber into plasma using the electromagnetic waves. And an apparatus for processing the surface of the base material installed in the reaction chamber. In the present embodiment, a high frequency plasma CVD apparatus 1 will be described as an example of such a plasma reaction apparatus.

図1〜3を参照して、本実施形態に係る高周波プラズマCVD装置1の構成を説明する。図1は、本発明の一実施形態に係るプラズマ反応装置の一例としての高周波プラズマ化学気相成長(CVD)装置の概略構成を示す模式図である。図2は、図1中のカソード電極及び筒型電極を拡大視した図である。図3は、図2に示すカソード電極及び筒型電極の平面図である。なお、以下の説明では、図1の上下方向を「鉛直方向」と表記し、図1中のアノード電極6側を鉛直方向の「上側」と表記し、カソード電極7側を鉛直方向の「下側」と表記する。   With reference to FIGS. 1-3, the structure of the high frequency plasma CVD apparatus 1 which concerns on this embodiment is demonstrated. FIG. 1 is a schematic diagram showing a schematic configuration of a high-frequency plasma chemical vapor deposition (CVD) apparatus as an example of a plasma reaction apparatus according to an embodiment of the present invention. FIG. 2 is an enlarged view of the cathode electrode and the cylindrical electrode in FIG. FIG. 3 is a plan view of the cathode electrode and the cylindrical electrode shown in FIG. In the following description, the vertical direction in FIG. 1 is expressed as “vertical direction”, the anode electrode 6 side in FIG. 1 is expressed as “upper direction” in the vertical direction, and the cathode electrode 7 side is expressed in “down direction” in the vertical direction. "Side".

図1に示す高周波プラズマCVD装置1は、高周波プラズマCVD法により基材11の表面を成膜する装置である。高周波プラズマCVD法は、プラズマを援用する形式の化学気相成長の一種であり、さまざまな物質の薄膜を形成する蒸着手法の一種である。高周波プラズマCVD法は、化学反応を活性化させるため、高周波を印加することで原料ガスをプラズマ化させるのが特徴である。高周波プラズマCVD装置1は、平行平板電極(図1の電極部5)間に発生させる高周波により、反応室2内に導入される原料ガスをプラズマ化させ、原料ガスの化学反応を活性化させることで、反応室2内に設置される基材11の表面に薄膜を形成することができる。本実施形態では、高周波プラズマCVD装置1が、基材11の表面にダイヤモンド状炭素(Diamond−Like Carbon:DLC)膜を形成する成膜手法を一例として挙げて説明する。   A high-frequency plasma CVD apparatus 1 shown in FIG. 1 is an apparatus that forms a surface of a substrate 11 by a high-frequency plasma CVD method. The high-frequency plasma CVD method is a kind of chemical vapor deposition that uses plasma and is a kind of vapor deposition technique for forming thin films of various substances. The high-frequency plasma CVD method is characterized in that the raw material gas is turned into plasma by applying a high frequency in order to activate a chemical reaction. The high-frequency plasma CVD apparatus 1 activates the chemical reaction of the raw material gas by converting the raw material gas introduced into the reaction chamber 2 into plasma by the high frequency generated between the parallel plate electrodes (electrode part 5 in FIG. 1). Thus, a thin film can be formed on the surface of the substrate 11 installed in the reaction chamber 2. In the present embodiment, the high-frequency plasma CVD apparatus 1 will be described by taking as an example a film forming method for forming a diamond-like carbon (DLC) film on the surface of the base material 11.

図1に示すように、高周波プラズマCVD装置1は、反応室2と、電極部5と、整合器8と、高周波電源9(電源)と、筒型電極10と、を備える。   As shown in FIG. 1, the high-frequency plasma CVD apparatus 1 includes a reaction chamber 2, an electrode unit 5, a matching unit 8, a high-frequency power source 9 (power source), and a cylindrical electrode 10.

反応室2(チャンバー)は、基材11を内部に装填して表面にDLC膜の成膜を行うための密閉空間を形成する。反応室2は、導入口3と排出口4とを有する。導入口3は、反応室2の内部に原料ガス(反応ガス)を供給する。なお、DLC膜を成膜する場合には、エチレン(C)、メタン(CH)、プロパン(C)などの炭化水素系ガスが原料ガスとして導入口3から反応室2に供給される。排出口4は、反応室2内の空気を排気する。排出口4には例えば真空ポンプが接続され、この真空ポンプによって排出口4を介して反応室2内の真空排気が行われる。 The reaction chamber 2 (chamber) is filled with the base material 11 and forms a sealed space for forming a DLC film on the surface. The reaction chamber 2 has an inlet 3 and an outlet 4. The introduction port 3 supplies a raw material gas (reaction gas) into the reaction chamber 2. When a DLC film is formed, a hydrocarbon gas such as ethylene (C 2 H 4 ), methane (CH 4 ), propane (C 3 H 8 ) or the like is used as a raw material gas from the inlet 3 through the reaction chamber 2. To be supplied. The discharge port 4 exhausts the air in the reaction chamber 2. For example, a vacuum pump is connected to the discharge port 4, and the reaction chamber 2 is evacuated through the discharge port 4 by this vacuum pump.

電極部5は、反応室2の内部空間に設置される。電極部5は、平板状のアノード電極6及びカソード電極7を有する。アノード電極6とカソード電極7とは、反応室2内にて略平行に配置されている。アノード電極6及びカソード電極7には、それぞれに相互に対向する対向面6a,7aが設けられている。対向面6a,7aは、面積がほぼ同一であり、共に略円形状である。対向面6a,7aは、鉛直方向から視たときにほぼ重複するように配置されている。アノード電極6は接地されており、カソード電極7は、整合器8を介して高周波電源9に接続されている。   The electrode unit 5 is installed in the internal space of the reaction chamber 2. The electrode unit 5 includes a plate-like anode electrode 6 and a cathode electrode 7. The anode electrode 6 and the cathode electrode 7 are arranged substantially in parallel in the reaction chamber 2. The anode electrode 6 and the cathode electrode 7 are provided with facing surfaces 6a and 7a that face each other. The opposing surfaces 6a and 7a have substantially the same area, and are both substantially circular. The facing surfaces 6a and 7a are arranged so as to substantially overlap when viewed from the vertical direction. The anode electrode 6 is grounded, and the cathode electrode 7 is connected to a high frequency power source 9 via a matching unit 8.

電極部5は、反応室2内において、アノード電極6が鉛直方向の上方側に配置され、カソード電極7が鉛直方向の下方側に配置される。つまり、アノード電極6は対向面6aが鉛直下方を向いて配置され、一方、カソード電極7は対向面7aが鉛直上方を向いて配置される。本実施形態では、DLC膜が成膜される基材11は、鉛直方向下側に配置されているカソード電極7の対向面7a上に載置される。   In the electrode section 5, the anode electrode 6 is disposed on the upper side in the vertical direction and the cathode electrode 7 is disposed on the lower side in the vertical direction in the reaction chamber 2. That is, the anode electrode 6 is disposed with the facing surface 6a facing vertically downward, while the cathode electrode 7 is disposed with the facing surface 7a facing vertically upward. In the present embodiment, the base material 11 on which the DLC film is formed is placed on the facing surface 7a of the cathode electrode 7 arranged on the lower side in the vertical direction.

高周波電源9は、高周波(電磁波)を出力する電源装置である。高周波電源9から出力された高周波は、整合器8を介してカソード電極7に印加される。これにより、電極部5は、アノード電極6の対向面6aとカソード電極7の対向面7aとの間に、高周波(電磁波)を発生させることができる。高周波電源9は、例えば13.5MHzの高周波を出力する。   The high frequency power supply 9 is a power supply device that outputs a high frequency (electromagnetic wave). The high frequency output from the high frequency power supply 9 is applied to the cathode electrode 7 via the matching unit 8. Thereby, the electrode part 5 can generate a high frequency (electromagnetic wave) between the opposing surface 6 a of the anode electrode 6 and the opposing surface 7 a of the cathode electrode 7. The high frequency power supply 9 outputs a high frequency of 13.5 MHz, for example.

筒型電極10は、筒型に形成されるステンレス製などの金属部材である。筒型電極10は、例えば図2,3に示すように円筒形状に形成することができる。筒型電極10は、カソード電極7の対向面7aに設置されるものであり、本実施形態では、カソード電極7は対向面7a上に載置されている。筒型電極10は、円筒形状の一対の開口のうち一方の基端側の開口をカソード電極7の対向面7aと対向配置させて対向面7aと接触する状態とし、他方の先端側の開口10aをアノード電極6側の先端部に配置させて、カソード電極7の対向面7aに設置されている。つまり、筒型電極10は、対向面7aから鉛直方向上方側のアノード電極6側に向けて周面を立設させ、アノード電極6側の先端部に開口10aを有するように設置されている。筒型電極10はカソード電極7と導通可能に接触している。   The cylindrical electrode 10 is a metal member made of stainless steel or the like formed in a cylindrical shape. The cylindrical electrode 10 can be formed in a cylindrical shape as shown in FIGS. The cylindrical electrode 10 is installed on the facing surface 7a of the cathode electrode 7, and in this embodiment, the cathode electrode 7 is placed on the facing surface 7a. The cylindrical electrode 10 is configured such that one base end side opening of the pair of cylindrical openings is disposed so as to be opposed to the facing surface 7a of the cathode electrode 7 and is in contact with the facing surface 7a, and the other distal end side opening 10a. Is disposed on the opposite surface 7a of the cathode electrode 7 so as to be disposed at the tip of the anode electrode 6 side. That is, the cylindrical electrode 10 is installed so that the peripheral surface is erected from the opposing surface 7a toward the anode electrode 6 side on the upper side in the vertical direction, and has the opening 10a at the tip portion on the anode electrode 6 side. The cylindrical electrode 10 is in contact with the cathode electrode 7 so as to be conductive.

ここで、上記の基材11は、この筒型電極10の内部に収容されるように載置されている。つまり、筒型電極10は、カソード電極7の対向面7a上に基材11と共に載置され、かつ、基材11の周囲を包囲するように載置されている。   Here, the base material 11 is placed so as to be accommodated inside the cylindrical electrode 10. That is, the cylindrical electrode 10 is placed on the facing surface 7 a of the cathode electrode 7 together with the base material 11 so as to surround the base material 11.

また、本実施形態では、筒型電極10は、電極部5のカソード電極7の対向面7a上に複数個が設置されており、複数の筒型電極10のそれぞれにおいて、その内部に基材11が個別に収容されている。複数の筒型電極10のそれぞれは、カソード電極7の対向面7a上において、隣接する他の筒型電極10とほぼ等間隔で配置されるのが好ましい。図2,3の例では、5個の筒型電極10が単一のカソード電極7に設置され、対向面7aの略中央に1個の筒型電極10が配置され、この筒型電極10を中心として対向面7aの半径方向に略等間隔をとって他の4個の筒型電極10が配置されている。また、これらの4個の筒型電極10は、対向面7aの周方向に沿って略等間隔に配置されている。個々の筒型電極10では、図3に示すように、基材11が筒型電極10の内側の略中央に配置されており、一方の主面が筒型電極10の開口10aからアノード電極6側に露出されている。   In the present embodiment, a plurality of cylindrical electrodes 10 are provided on the facing surface 7 a of the cathode electrode 7 of the electrode portion 5. In each of the plurality of cylindrical electrodes 10, a base material 11 is provided inside thereof. Are individually housed. Each of the plurality of cylindrical electrodes 10 is preferably arranged on the opposing surface 7 a of the cathode electrode 7 at substantially equal intervals with the other adjacent cylindrical electrodes 10. In the example of FIGS. 2 and 3, five cylindrical electrodes 10 are installed on a single cathode electrode 7, and one cylindrical electrode 10 is disposed at the approximate center of the opposing surface 7a. The other four cylindrical electrodes 10 are arranged at substantially equal intervals in the radial direction of the facing surface 7a as the center. Further, these four cylindrical electrodes 10 are arranged at substantially equal intervals along the circumferential direction of the facing surface 7a. In each cylindrical electrode 10, as shown in FIG. 3, the base material 11 is disposed at the approximate center inside the cylindrical electrode 10, and one main surface is from the opening 10 a of the cylindrical electrode 10 to the anode electrode 6. Exposed to the side.

上記のように筒型電極10がカソード電極7に設置されている状態において、筒型電極10の高さ寸法h(図2参照)は、アノード電極6とカソード電極7との間の電極間距離に対して12.5%〜50%(電極間距離が40mmの場合h=5〜20mm)であることが好ましく、25%〜50%(h=10〜20mm)であることがさらに好ましく、25%(h=10mm)であることがより一層好ましい。なお、筒型電極10の高さ寸法hとは、図2に示すように、筒型電極10がカソード電極7の対向面7aからアノード電極6側に立設した状態における、筒型電極10の基端側端部と先端側端部との間の距離である。   In the state where the cylindrical electrode 10 is installed on the cathode electrode 7 as described above, the height dimension h (see FIG. 2) of the cylindrical electrode 10 is the distance between the anode electrode 6 and the cathode electrode 7. Is preferably 12.5% to 50% (h = 5 to 20 mm when the distance between the electrodes is 40 mm), more preferably 25% to 50% (h = 10 to 20 mm), 25 % (H = 10 mm) is even more preferable. As shown in FIG. 2, the height h of the cylindrical electrode 10 refers to the cylindrical electrode 10 in a state where the cylindrical electrode 10 is erected on the anode electrode 6 side from the facing surface 7 a of the cathode electrode 7. This is the distance between the proximal end and the distal end.

また、上記のように筒型電極10がカソード電極7に設置されている状態において、筒型電極10の断面積A(図3参照)は、カソード電極7の対向面7aの面積に対して1%程度(対向面7aの直径が300mmの場合、筒型電極10の開口10aの直径が30mm)の面積であることが好ましい。筒型電極10の断面積Aとは、筒型電極10の鉛直方向に直交する断面の面積であり、図3に示すように、筒型電極10の開口10aの面積である。   Further, in the state where the cylindrical electrode 10 is installed on the cathode electrode 7 as described above, the sectional area A (see FIG. 3) of the cylindrical electrode 10 is 1 with respect to the area of the facing surface 7a of the cathode electrode 7. The area is preferably about% (when the diameter of the facing surface 7a is 300 mm, the diameter of the opening 10a of the cylindrical electrode 10 is 30 mm). The cross-sectional area A of the cylindrical electrode 10 is an area of a cross section perpendicular to the vertical direction of the cylindrical electrode 10, and is an area of the opening 10a of the cylindrical electrode 10 as shown in FIG.

上記の構成を備える高周波プラズマCVD装置1を用いて基材11の表面にDLC膜を成膜する方法について説明する。まず、図1〜3に示すように、反応室2内に設置されている電極部5のうち、カソード電極7の対向面7a上に複数個の筒型電極10が載置され、個々の筒型電極10の内部に1個ずつ基材11が載置される。なお、基材11の材質は、ステンレス(SUS)などの金属材料が好ましいが、例えばガラスなどの絶縁性材料を用いることもできる。   A method for forming a DLC film on the surface of the substrate 11 using the high-frequency plasma CVD apparatus 1 having the above configuration will be described. First, as shown in FIGS. 1 to 3, a plurality of cylindrical electrodes 10 are placed on the facing surface 7 a of the cathode electrode 7 among the electrode portions 5 installed in the reaction chamber 2. The base material 11 is mounted inside the mold electrode 10 one by one. The material of the substrate 11 is preferably a metal material such as stainless steel (SUS), but an insulating material such as glass can also be used.

次に、前処理が行われる。前処理では、例えば、排出口4から反応室2内の空気が排出されて反応室2内が減圧されると共に、導入口3から反応室2内に酸素ガスが導入される。その後に、高周波電源9から出力された高周波が整合器8を介してカソード電極7に印加される。これにより収容室2内で酸素プラズマ処理が行われ、基材11の表面が活性化される。   Next, preprocessing is performed. In the pretreatment, for example, air in the reaction chamber 2 is discharged from the discharge port 4 to reduce the pressure in the reaction chamber 2, and oxygen gas is introduced into the reaction chamber 2 from the introduction port 3. Thereafter, the high frequency output from the high frequency power source 9 is applied to the cathode electrode 7 via the matching unit 8. Thereby, oxygen plasma processing is performed in the storage chamber 2, and the surface of the base material 11 is activated.

次に、成膜処理が行われる。成膜処理では、排出口4から反応室2内の空気が排出されて反応室2内が減圧されると共に、導入口3から反応室2内にメタン(CH)などの炭化水素系ガスが導入される。この後に、高周波電源9から出力された高周波が整合器8を介してカソード電極7に印加される。これにより、図1に示すように、炭化水素系ガスがプラズマ化され、炭化水素系ガスの分子や原子が励起され、化学的に活性となる。励起された炭化水素系ガスの分子や原子は、カソード電極7の方向へ加速されて対向面7aに衝突し、これによりDLC膜が成膜される。このとき、カソード電極7の対向面7a上に載置されている筒型電極10の内部では、その外部と比較してプラズマ強度が増大しており、炭化水素系ガスの分子や原子の活性が促進されている。このため、筒型電極10の内部では、炭化水素系ガスの分子や原子の加速衝突が促進され、内部に載置されている基材11の表面には、より緻密なDLC膜が高速で堆積される。 Next, a film forming process is performed. In the film forming process, air in the reaction chamber 2 is discharged from the discharge port 4 to reduce the pressure in the reaction chamber 2, and hydrocarbon gas such as methane (CH 4 ) is introduced into the reaction chamber 2 from the introduction port 3. be introduced. Thereafter, the high frequency output from the high frequency power source 9 is applied to the cathode electrode 7 via the matching unit 8. As a result, as shown in FIG. 1, the hydrocarbon-based gas is turned into plasma, and the molecules and atoms of the hydrocarbon-based gas are excited and become chemically active. The excited hydrocarbon gas molecules and atoms are accelerated in the direction of the cathode electrode 7 and collide with the opposing surface 7a, whereby a DLC film is formed. At this time, the plasma intensity is increased inside the cylindrical electrode 10 placed on the facing surface 7a of the cathode electrode 7 as compared with the outside, and the activity of the molecules and atoms of the hydrocarbon-based gas is increased. Has been promoted. Therefore, accelerated collision of hydrocarbon gas molecules and atoms is promoted inside the cylindrical electrode 10, and a denser DLC film is deposited on the surface of the substrate 11 placed inside at a high speed. Is done.

次に、本実施形態に係る高周波プラズマCVD装置1の効果を説明する。   Next, the effect of the high frequency plasma CVD apparatus 1 according to the present embodiment will be described.

本実施形態の高周波プラズマCVD装置1は、原料ガスを導入する反応室2と、平板状に形成され相互に対向する対向面6a,7aが設けられるアノード電極6及びカソード電極7を有し、反応室2の内部に配置される電極部5と、カソード電極7の対向面7aに基材11と共に設置され、基材11の周囲を包囲する筒型電極10と、高周波を電極部5に発生させる高周波電源9と、を備える。高周波プラズマCVD装置1は、高周波電源9により電極部5のアノード電極6とカソード電極7との間に高周波を発生し、反応室2内に導入される原料ガスを高周波によりプラズマ化させることで、プラズマ化させた原料ガスを利用して、反応室2内に設置され筒型電極10に包囲される基材11の表面を加工する。より詳細には、高周波プラズマCVD装置1は、高周波により原料ガス(本実施形態では炭化水素系ガス)をプラズマ化させ、原料ガスの化学反応を活性化させることで、反応室2内に設置され筒型電極10に包囲される基材11の表面に薄膜(本実施形態ではDLC膜)を形成する。   The high-frequency plasma CVD apparatus 1 of this embodiment has a reaction chamber 2 for introducing a raw material gas, and an anode electrode 6 and a cathode electrode 7 which are formed in a flat plate shape and are provided with opposing surfaces 6a and 7a facing each other. The electrode unit 5 disposed inside the chamber 2, the cylindrical electrode 10 that is installed on the opposing surface 7 a of the cathode electrode 7 together with the base material 11 and surrounds the periphery of the base material 11, and a high frequency is generated in the electrode unit 5. A high-frequency power source 9. The high-frequency plasma CVD apparatus 1 generates a high frequency between the anode electrode 6 and the cathode electrode 7 of the electrode unit 5 by a high-frequency power source 9 and converts the raw material gas introduced into the reaction chamber 2 into a plasma with a high frequency, The surface of the base material 11 that is installed in the reaction chamber 2 and surrounded by the cylindrical electrode 10 is processed using the plasma-generated source gas. More specifically, the high-frequency plasma CVD apparatus 1 is installed in the reaction chamber 2 by converting the raw material gas (hydrocarbon gas in the present embodiment) into plasma by high frequency and activating the chemical reaction of the raw material gas. A thin film (a DLC film in the present embodiment) is formed on the surface of the base material 11 surrounded by the cylindrical electrode 10.

この構成により、既存の高周波プラズマCVD装置1のカソード電極7の対向面7a上に、基材11の周囲を包囲する筒型電極10を新たに設置するだけで、筒型電極10の内部、すなわち基材11の周囲のプラズマ強度を増大させることができるので、プラズマ反応を利用したDLC膜の成膜を促進できる。また、従来のようにDLC膜と基材との間の密着性を向上させるために中間層を設けなくても、形成されるDLC膜の密着性を向上できるので、成膜プロセスを簡略化でき、また、処理時間を低減できる。したがって、本実施形態の高周波プラズマCVD装置1によれば、簡易な構成によって、プラズマを利用した基材11の加工を促進できる。   With this configuration, it is only necessary to newly install the cylindrical electrode 10 that surrounds the periphery of the base material 11 on the facing surface 7a of the cathode electrode 7 of the existing high-frequency plasma CVD apparatus 1, that is, inside the cylindrical electrode 10, that is, Since the plasma intensity around the substrate 11 can be increased, the formation of a DLC film utilizing a plasma reaction can be promoted. Moreover, since the adhesion of the formed DLC film can be improved without providing an intermediate layer in order to improve the adhesion between the DLC film and the base material as in the prior art, the film forming process can be simplified. In addition, the processing time can be reduced. Therefore, according to the high-frequency plasma CVD apparatus 1 of the present embodiment, processing of the substrate 11 using plasma can be promoted with a simple configuration.

また、本実施形態の高周波プラズマCVD装置1において、電極部5は、反応室2内において、アノード電極6が鉛直方向の上方側に配置され、カソード電極7が鉛直方向の下方側に配置される。筒型電極10は、カソード電極7の対向面7a上に載置される。   Moreover, in the high frequency plasma CVD apparatus 1 of this embodiment, the electrode part 5 has the anode electrode 6 disposed on the upper side in the vertical direction and the cathode electrode 7 disposed on the lower side in the vertical direction in the reaction chamber 2. . The cylindrical electrode 10 is placed on the facing surface 7 a of the cathode electrode 7.

この構成により、鉛直方向上側に向いて設けられるカソード電極7の対向面7a上に筒型電極10を載置するだけで、筒型電極10の接着や締結を特に行わなくても、筒型電極10を対向面7a上の所望の位置に位置決めすることができるので、さらに簡易な構成によってプラズマ反応を利用したDLC膜の成膜を促進できる。   With this configuration, the cylindrical electrode 10 can be simply mounted on the facing surface 7a of the cathode electrode 7 provided on the upper side in the vertical direction, and the cylindrical electrode 10 is not particularly bonded or fastened. 10 can be positioned at a desired position on the opposing surface 7a, so that the DLC film formation utilizing the plasma reaction can be promoted with a simpler configuration.

また、本実施形態の高周波プラズマCVD装置1において、筒型電極10は、電極部5のカソード電極7の対向面7aに複数個設置される。この構成により、高周波プラズマCVD装置1の一連の動作で複数個の基材11の成膜を同時に行うことができるので、DLC膜の成膜作業の作業効率性を向上できる。また、筒型電極10の個数の増減が容易なので、生産性や汎用性も向上できる。   In the high-frequency plasma CVD apparatus 1 of the present embodiment, a plurality of cylindrical electrodes 10 are installed on the facing surface 7 a of the cathode electrode 7 of the electrode portion 5. With this configuration, since a plurality of base materials 11 can be simultaneously formed by a series of operations of the high-frequency plasma CVD apparatus 1, work efficiency of the DLC film forming operation can be improved. Further, since the number of the cylindrical electrodes 10 can be easily increased or decreased, productivity and versatility can be improved.

また、本実施形態の高周波プラズマCVD装置1では、筒型電極10がカソード電極7に設置されている状態において、筒型電極10の高さ寸法hを、アノード電極6とカソード電極7との間の電極間距離に対して12.5%〜50%とすることにより、形成されるDLC膜の密着性をさらに向上できる。同様に、筒型電極10がカソード電極7に設置されている状態において、筒型電極10の断面積Aを、カソード電極7の対向面7aの面積に対して1%とすることにより、形成されるDLC膜の密着性をさらに向上できる。   In the high-frequency plasma CVD apparatus 1 of the present embodiment, the height h of the cylindrical electrode 10 is set between the anode electrode 6 and the cathode electrode 7 in a state where the cylindrical electrode 10 is installed on the cathode electrode 7. By adjusting the distance between the electrodes to 12.5% to 50%, the adhesion of the formed DLC film can be further improved. Similarly, when the cylindrical electrode 10 is installed on the cathode electrode 7, the cross-sectional area A of the cylindrical electrode 10 is set to 1% with respect to the area of the facing surface 7 a of the cathode electrode 7. The adhesion of the DLC film can be further improved.

以上、本発明の実施形態を説明したが、上記実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。上記実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although embodiment of this invention was described, the said embodiment was shown as an example and is not intending limiting the range of invention. The above embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. The above-described embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof, as long as they are included in the scope and gist of the invention.

上記実施形態では、電極部5のアノード電極6が鉛直方向の上方側、カソード電極7が鉛直方向の下方側に配置される構成を例示したが、アノード電極6とカソード電極7の配置を入れ替えてもよい。カソード電極7が鉛直方向の上方側に配置される場合には、筒型電極10は、鉛直方向下側を向くカソード電極7の対向面7aに固定されて吊り下げられる。   In the above-described embodiment, the configuration in which the anode electrode 6 of the electrode unit 5 is arranged on the upper side in the vertical direction and the cathode electrode 7 is arranged on the lower side in the vertical direction is exemplified. However, the arrangement of the anode electrode 6 and the cathode electrode 7 is changed. Also good. When the cathode electrode 7 is arranged on the upper side in the vertical direction, the cylindrical electrode 10 is fixed and suspended on the facing surface 7a of the cathode electrode 7 facing the lower side in the vertical direction.

上記実施形態では、筒型電極10の断面形状が円形のものを例示したが、これ以外の形状でもよい。図4は、筒型電極の変形例の一例を示す平面図である。図4に示すように、本実施形態の高周波プラズマCVD装置1では、円形状の筒型電極10の代わりに、例えば、四角形状の筒型電極20や、楕円形状の筒型電極30、または、六角形状の筒型電極40のように多角形状のものを適用することができる。また、基材11の形状は矩形状以外のものでもよいし、立体形状でもよい。   In the said embodiment, although the cross-sectional shape of the cylindrical electrode 10 illustrated circular shape, shapes other than this may be sufficient. FIG. 4 is a plan view showing an example of a modification of the cylindrical electrode. As shown in FIG. 4, in the high-frequency plasma CVD apparatus 1 of the present embodiment, instead of the circular cylindrical electrode 10, for example, a rectangular cylindrical electrode 20, an elliptical cylindrical electrode 30, or A polygonal one like the hexagonal cylindrical electrode 40 can be applied. Moreover, the shape of the base material 11 may be other than a rectangular shape, or may be a three-dimensional shape.

また、上記実施形態では、高周波プラズマCVD法を適用する高周波プラズマCVD装置1を例示したが、高周波プラズマCVD法以外のプラズマCVD法を適用する装置でもよい。例えば、高周波以外のマイクロ波や直流(DC)を供給することでプラズマ状態を発生させるプラズマCVD法を用いる装置でもよい。   Moreover, in the said embodiment, although the high frequency plasma CVD apparatus 1 which applies high frequency plasma CVD method was illustrated, the apparatus which applies plasma CVD methods other than high frequency plasma CVD method may be used. For example, an apparatus using a plasma CVD method that generates a plasma state by supplying microwaves other than high frequency or direct current (DC) may be used.

また、上記実施形態では、プラズマCVD法を適用する装置を例示したが、プラズマCVD法以外のプラズマ反応を利用したプラズマ反応装置でもよい。このようなプラズマ反応装置としては、例えば、スパッタリング法を用いた成膜装置や、反応性イオンエッチングを行う装置が挙げられる。   Moreover, although the apparatus which applies plasma CVD method was illustrated in the said embodiment, the plasma reaction apparatus using plasma reactions other than plasma CVD method may be sufficient. Examples of such a plasma reaction apparatus include a film formation apparatus using a sputtering method and an apparatus that performs reactive ion etching.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

まず、本発明がプラズマ反応を利用した基材の加工を促進できる点、具体的には基材の表面上へのDLC膜の成膜を促進できる点について、実施例1、実施例1−2、比較例1を挙げて説明する。   First, Example 1 and Example 1-2 regarding the point that the present invention can promote the processing of a base material utilizing a plasma reaction, specifically, the point that the formation of a DLC film on the surface of the base material can be promoted. Comparative example 1 will be described.

(実施例1)
平行平板型電極を有する高周波プラズマCVD装置(PED−401、Canon Anelva Corp.)内のカソード電極上にステンレス(SUS)製の円筒形状の筒型電極を設置し、この筒型電極中に基材としてのシリコン(Si)基板を配置して、以下の条件でDLC膜を成膜し、成膜時間に対する膜厚を計測した。
・筒型電極の断面直径:30mm
・筒型電極高さ:10mm
・Si基板寸法:20mm×20mm×1.0mm
・カソード電極直径:300mm
・電極間距離:40mm
・高周波電力:200W
・ガス圧力:10Pa
・原料ガス:CH(メタンガス)
・成膜時間:15分
Example 1
A cylindrical cylindrical electrode made of stainless steel (SUS) is placed on a cathode electrode in a high-frequency plasma CVD apparatus (PED-401, Canon Anelva Corp.) having a parallel plate type electrode, and a substrate is formed in the cylindrical electrode. A DLC film was formed under the following conditions, and the film thickness with respect to the film formation time was measured.
・ Cross sectional diameter of cylindrical electrode: 30mm
-Cylindrical electrode height: 10mm
・ Si substrate dimensions: 20 mm x 20 mm x 1.0 mm
・ Cathode electrode diameter: 300mm
・ Distance between electrodes: 40mm
・ High frequency power: 200W
・ Gas pressure: 10Pa
・ Raw material gas: CH 4 (methane gas)
・ Deposition time: 15 minutes

(実施例1−2)
実施例1と同一の高周波プラズマCVD装置において、カソード電極上にステンレス(SUS)製の円筒形状の筒型電極を設置し、この筒型電極中に基材としてのSUS基板を配置して、以下の条件でDLC膜を成膜した。そして、成膜処理後の試料表面の基礎物性を、X線光電子分光法(XPS)による表面化学組成評価、ラマン分光法による膜の構造評価にて行った。
・筒型電極の断面直径:30mm
・筒型電極高さ:10mm
・SUS基板寸法:20mm×20mm×2.0mm
・カソード電極直径:300mm
・電極間距離:40mm
・高周波電力:200W
・ガス圧力:10Pa
・原料ガス:CH(メタンガス)
・成膜時間:15分
・前処理条件(高周波電力:200W、ガス圧力:10Pa、原料ガス:Oガス、処理時間:10分)
(Example 1-2)
In the same high-frequency plasma CVD apparatus as in Example 1, a cylindrical cylindrical electrode made of stainless steel (SUS) was placed on the cathode electrode, and a SUS substrate as a base material was placed in the cylindrical electrode. A DLC film was formed under the conditions described above. And the basic physical property of the sample surface after film-forming processing was performed by the surface chemical composition evaluation by X-ray photoelectron spectroscopy (XPS), and the structure evaluation of the film | membrane by Raman spectroscopy.
・ Cross sectional diameter of cylindrical electrode: 30mm
-Cylindrical electrode height: 10mm
・ SUS board dimensions: 20 mm x 20 mm x 2.0 mm
・ Cathode electrode diameter: 300mm
・ Distance between electrodes: 40mm
・ High frequency power: 200W
・ Gas pressure: 10Pa
・ Raw material gas: CH 4 (methane gas)
-Film formation time: 15 minutes-Pretreatment conditions (high frequency power: 200 W, gas pressure: 10 Pa, source gas: O 2 gas, treatment time: 10 minutes)

(比較例1)
実施例1及び実施例1−2と同一の高周波プラズマCVD装置において、筒型電極を設置せず、カソード電極上に基材としてのSi基板(20mm×20mm×1.0mm)を配置して、実施例1と同一条件でDLC膜を成膜し、成膜時間に対する膜厚を計測した。
(Comparative Example 1)
In the same high-frequency plasma CVD apparatus as in Example 1 and Example 1-2, a cylindrical electrode was not installed, and a Si substrate (20 mm × 20 mm × 1.0 mm) as a base material was placed on the cathode electrode, A DLC film was formed under the same conditions as in Example 1, and the film thickness with respect to the film formation time was measured.

上記の実施例1、比較例1について、形成されたDLC膜の成膜レートを図5に示す。図5では、横軸は成膜時間(分)を表し、縦軸は形成されたDLC膜の膜厚(nm)を表す。また、図5では、実施例1、比較例1の成膜時間ごとの膜厚が、それぞれ菱形及び丸形でプロットされ、それぞれの推移が結線されている。図5に示すように、比較例1に対して実施例1の成膜レートが速く、基材の表面上へのDLC膜の成膜を促進できることが確認できた。   FIG. 5 shows the deposition rate of the formed DLC film for Example 1 and Comparative Example 1 described above. In FIG. 5, the horizontal axis represents the film formation time (minutes), and the vertical axis represents the film thickness (nm) of the formed DLC film. Moreover, in FIG. 5, the film thickness for every film-forming time of Example 1 and the comparative example 1 is plotted by the rhombus and the round shape, respectively, and each transition is connected. As shown in FIG. 5, it was confirmed that the film formation rate of Example 1 was faster than that of Comparative Example 1, and the film formation of the DLC film on the surface of the substrate could be promoted.

図6は、実施例1−2にて成膜処理が施された前後のSUS基板表面の化学的組成評価を示す図である。図6では、横軸は結合エネルギー(eV)を表し、縦軸は強度(a.u.)を表す。図6では、成膜処理後の特性がグラフA1,A2,A3で示され、成膜処理前の特性がグラフB1,B2,B3で示されている。図6に示すように、成膜処理が施された前後のSUS基板表面の化学的組成に変化がみられ、特にグラフA1,B1間でピーク位置がシフトしているのを確認できた。そして、成膜処理後のSUS基板表面の化学的組成を示すグラフA1,A2,A3から、実施例1にて成膜処理が施された後のSUS基板表面にDLC膜が形成されていることを確認できた。   FIG. 6 is a diagram showing the chemical composition evaluation of the surface of the SUS substrate before and after the film formation process was performed in Example 1-2. In FIG. 6, the horizontal axis represents binding energy (eV), and the vertical axis represents intensity (au). In FIG. 6, the characteristics after the film forming process are shown by graphs A1, A2, and A3, and the characteristics before the film forming process are shown by graphs B1, B2, and B3. As shown in FIG. 6, the chemical composition of the surface of the SUS substrate before and after the film formation process was changed, and it was confirmed that the peak position was shifted particularly between the graphs A1 and B1. From the graphs A1, A2, and A3 showing the chemical composition of the surface of the SUS substrate after the film formation process, a DLC film is formed on the surface of the SUS substrate after the film formation process is performed in Example 1. Was confirmed.

図7は、実施例1−2にて形成された薄膜の構造評価を示す図である。図7では、横軸はラマンシフト(cm−1)を表し、縦軸はラマン強度を表す。図7に示すように、ラマン分光法による膜の構造評価では、作成された試料において1540cm−1付近にG−バンドのピークを確認でき、また、1340cm−1付近にD−バンドのピークを確認できることから、実施例1にて成膜処理が施された後のSUS基板表面には典型的なDLC膜が形成されていることを確認できた。 FIG. 7 is a diagram showing the structural evaluation of the thin film formed in Example 1-2. In FIG. 7, the horizontal axis represents Raman shift (cm −1 ), and the vertical axis represents Raman intensity. As shown in FIG. 7, in the structure evaluation of the film by Raman spectroscopy, a G-band peak can be confirmed near 1540 cm −1 in the prepared sample, and a D-band peak can be confirmed near 1340 cm −1. Therefore, it was confirmed that a typical DLC film was formed on the surface of the SUS substrate after the film formation process in Example 1 was performed.

また、実施例1による成膜処理中にカソード電極の対向面上に発生するプラズマの発光強度を観測したところ、筒型電極の上端部、すなわち基材の近傍領域におけるプラズマの発光強度は8.7μWであった。一方、比較例1でも同様の観測を行ったところ、筒型電極を設置しない場合にカソード電極の対向面上に発生するプラズマの発光強度は7.4μWであった。したがって、筒型電極を設置した場合(実施例1)では、筒型電極を設置しない場合(比較例1)と比較して、基材の近傍領域におけるプラズマの発光強度が約1.2倍程度に増大していることを確認できた。   Further, when the emission intensity of the plasma generated on the opposite surface of the cathode electrode during the film forming process of Example 1 was observed, the emission intensity of the plasma at the upper end of the cylindrical electrode, that is, in the vicinity of the base material, was 8. 7 μW. On the other hand, when the same observation was made in Comparative Example 1, the emission intensity of the plasma generated on the opposite surface of the cathode electrode when the cylindrical electrode was not installed was 7.4 μW. Therefore, when the cylindrical electrode is installed (Example 1), the plasma emission intensity in the region near the substrate is about 1.2 times as compared with the case where the cylindrical electrode is not installed (Comparative Example 1). It has been confirmed that it has increased.

したがって、図5〜7に示すように、本発明によれば、プラズマ反応を利用した基材の表面上へのDLC膜の成膜を促進できることが確認された。   Therefore, as shown in FIGS. 5-7, according to this invention, it was confirmed that the film-forming of the DLC film on the surface of the base material using a plasma reaction can be accelerated | stimulated.

次に、本発明により形成されるDLC膜の密着性を向上できる点について、実施例2〜4、比較例2を挙げて説明する。   Next, the point which can improve the adhesiveness of the DLC film formed by this invention is demonstrated, giving Examples 2-4 and the comparative example 2. FIG.

(実施例2)
実施例1及び実施例1−2と同一の高周波プラズマCVD装置において、実施例1−2と同一条件でDLC膜を成膜し、スクラッチ試験によりDLC膜の臨界荷重値を3回測定した。その平均値によりSUS基板とDLC膜との間の密着性を評価した。また、試料表面の基礎物性を、ラマン分光法による膜の構造評価にて行った。
(Example 2)
In the same high-frequency plasma CVD apparatus as in Example 1 and Example 1-2, a DLC film was formed under the same conditions as in Example 1-2, and the critical load value of the DLC film was measured three times by a scratch test. The adhesion between the SUS substrate and the DLC film was evaluated based on the average value. The basic physical properties of the sample surface were evaluated by the structure evaluation of the film by Raman spectroscopy.

(実施例3)
筒型電極の高さを20mmとした点以外は実施例2と同様の条件でDLC膜を成膜し、スクラッチ試験による密着性の評価とラマン分光法による膜の構造評価を行った。
(Example 3)
A DLC film was formed under the same conditions as in Example 2 except that the height of the cylindrical electrode was 20 mm, and adhesion evaluation by a scratch test and film structure evaluation by Raman spectroscopy were performed.

(実施例4)
筒型電極の高さを5mmとした点以外は実施例2と同様の条件でDLC膜を成膜し、スクラッチ試験による密着性の評価とラマン分光法による膜の構造評価を行った。
Example 4
A DLC film was formed under the same conditions as in Example 2 except that the height of the cylindrical electrode was 5 mm, and adhesion evaluation by a scratch test and film structure evaluation by Raman spectroscopy were performed.

(比較例2)
筒型電極を設置せず、カソード電極上に基材としてのSUS基板を配置した点以外は実施例2と同様の条件でDLC膜を成膜し、スクラッチ試験による密着性の評価とラマン分光法による膜の構造評価を行った。
(Comparative Example 2)
A DLC film was formed under the same conditions as in Example 2 except that a cylindrical electrode was not installed and a SUS substrate as a base material was disposed on the cathode electrode, and adhesion evaluation and Raman spectroscopy by a scratch test were performed. The structure of the film was evaluated.

図8は、実施例2〜4、比較例2におけるDLC膜の密着性評価の結果を示す図である。図8では、横軸は筒型電極の高さ寸法(mm)を表し、一番左側は筒型電極が設置されていない比較例2を示している。図8の縦軸は計測した臨界荷重の平均値(N)を表す。図8では、実施例2〜4、比較例2のそれぞれの臨界荷重値が棒グラフで表示されている。図8に示すように、筒型電極を用いて成膜を行った実施例2〜4の試料では、筒型電極を設置しない比較例2と比較して、臨界荷重値が増加しており、密着性が向上していることを確認できた。特に、筒型電極の高さ寸法が10mmの実施例2では、平均臨界荷重値が8.5Nまで増加し、筒型電極を使用していない比較例2と比べて2倍近い値が得られた。   FIG. 8 is a diagram showing the results of evaluating the adhesion of the DLC film in Examples 2 to 4 and Comparative Example 2. In FIG. 8, the horizontal axis represents the height dimension (mm) of the cylindrical electrode, and the leftmost side shows Comparative Example 2 in which the cylindrical electrode is not installed. The vertical axis | shaft of FIG. 8 represents the average value (N) of the measured critical load. In FIG. 8, the critical load values of Examples 2 to 4 and Comparative Example 2 are displayed as bar graphs. As shown in FIG. 8, in the samples of Examples 2 to 4 in which the film was formed using the cylindrical electrode, the critical load value was increased as compared with Comparative Example 2 in which the cylindrical electrode was not installed. It was confirmed that the adhesion was improved. In particular, in Example 2 where the height dimension of the cylindrical electrode is 10 mm, the average critical load value increases to 8.5 N, and a value nearly twice as large as that in Comparative Example 2 in which the cylindrical electrode is not used is obtained. It was.

図9は、実施例2〜4、比較例2におけるラマン分光法による膜の構造評価を示す図である。図9の横軸及び縦軸は図7と同一である。図9には、実施例2〜4、比較例2のそれぞれのラマン分光法による構造評価の結果が個別に示されている。図9に示すように、筒型電極の高さ寸法が増えるにつれて、Gバンドのピークが約1564cm−1から約1523cm−1へと低波数側にシフトしていることが確認された。この結果より、膜中のsp/sp比率が増加していることから、DLC膜中のダイヤモンド構造の割合が増加していることが確認された。このような膜構造の変化が、密着性の向上をもたらしたと考えられる。 FIG. 9 is a diagram showing film structure evaluation by Raman spectroscopy in Examples 2 to 4 and Comparative Example 2. The horizontal and vertical axes in FIG. 9 are the same as those in FIG. In FIG. 9, the results of structural evaluation by Raman spectroscopy of Examples 2 to 4 and Comparative Example 2 are individually shown. As shown in FIG. 9, it was confirmed that the peak of the G band was shifted from about 1564 cm −1 to about 1523 cm −1 toward the low wavenumber side as the height of the cylindrical electrode increased. From this result, since the sp 3 / sp 2 ratio in the film was increased, it was confirmed that the ratio of the diamond structure in the DLC film was increased. Such a change in the film structure is considered to have improved the adhesion.

したがって、図8,9に示すように、本発明によれば、基材に形成されるDLC膜の密着性を向上できることが確認された。   Therefore, as shown in FIGS. 8 and 9, it was confirmed that the adhesion of the DLC film formed on the substrate can be improved according to the present invention.

次に、本発明により、基材が金属材料の場合だけではなく絶縁性材料の場合でもその表面に形成されるDLC膜の密着性を向上できる点について、実施例5,6、比較例3,4を挙げて説明する。   Next, with respect to the point that the adhesion of the DLC film formed on the surface can be improved not only in the case where the substrate is a metal material but also in the case of an insulating material according to the present invention, Examples 5 and 6, Comparative Example 3 4 will be described.

(実施例5)
実施例1及び実施例1−2と同一の高周波プラズマCVD装置において、実施例1−2と同一条件でDLC膜を成膜し、テープ試験によりSUS基板とDLC膜との間の密着性を評価した。
(Example 5)
In the same high-frequency plasma CVD apparatus as in Example 1 and Example 1-2, a DLC film was formed under the same conditions as in Example 1-2, and the adhesion between the SUS substrate and the DLC film was evaluated by a tape test. did.

(実施例6)
基材をガラス基板(20mm×20mm×1.0mm)とした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Example 6)
A DLC film was formed under the same conditions as in Example 5 except that the substrate was a glass substrate (20 mm × 20 mm × 1.0 mm), and the adhesion of the DLC film was evaluated by a tape test.

(比較例3)
比較例2と同一の高周波プラズマCVD装置において、比較例2と同一条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Comparative Example 3)
In the same high-frequency plasma CVD apparatus as in Comparative Example 2, a DLC film was formed under the same conditions as in Comparative Example 2, and the adhesion of the DLC film was evaluated by a tape test.

(比較例4)
基材をガラス基板(20mm×20mm×1.0mm)とした点以外は比較例3と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Comparative Example 4)
A DLC film was formed under the same conditions as in Comparative Example 3 except that the substrate was a glass substrate (20 mm × 20 mm × 1.0 mm), and the adhesion of the DLC film was evaluated by a tape test.

実施例5,6、比較例3,4におけるDLC膜の密着性評価の結果を下記の表1に示す。表1では、密着性評価の結果を、より良好なものから順に、二重丸印(◎)、丸印(○)、三角印(△)、バツ印(×)の4段階で表わしている。ここで、二重丸印は、表面全体で剥離が見られず良好な密着性が確認されたもの、丸印は、部分的に良好な密着性が確認されたもの、三角印は、表面全体で剥離が確認されたもの、バツ印は、成膜が不可能だったもの、を密着性評価の各段階の評価基準とした。

Figure 2016098383
The results of evaluating the adhesion of the DLC film in Examples 5 and 6 and Comparative Examples 3 and 4 are shown in Table 1 below. In Table 1, the results of the adhesion evaluation are represented in four stages of a double circle ()), a circle (◯), a triangle (Δ), and a cross (×) in order from the better. . Here, double circles indicate that good adhesion was confirmed without peeling on the entire surface, circles indicate that good adhesion was partially confirmed, triangles indicate the entire surface The case where peeling was confirmed and the cross mark was that film formation was impossible were used as evaluation criteria for each stage of adhesion evaluation.
Figure 2016098383

表1に示すように、実施例5,6の評価結果は、基準の比較例3のものより良好であり、基材の材料が金属材料の場合だけではなくガラスなどの絶縁性材料の場合でも、本発明の手法によって基材の表面に成膜されるDLC膜の密着性を向上できることが確認できた。   As shown in Table 1, the evaluation results of Examples 5 and 6 are better than those of Comparative Example 3 of the reference, and the substrate material is not only a metal material but also an insulating material such as glass. It was confirmed that the adhesion of the DLC film formed on the surface of the substrate can be improved by the method of the present invention.

次に、筒型電極の高さ寸法h(図2参照)の調整によってDLC膜の密着性をさらに向上できる点について、上記の実施例5に加えて実施例7〜9及び比較例5を挙げて説明する。   Next, in addition to Example 5 above, Examples 7 to 9 and Comparative Example 5 are given as regards that the adhesion of the DLC film can be further improved by adjusting the height dimension h (see FIG. 2) of the cylindrical electrode. I will explain.

(実施例7)
筒型電極の高さを5mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Example 7)
A DLC film was formed under the same conditions as in Example 5 except that the height of the cylindrical electrode was 5 mm, and the adhesion of the DLC film was evaluated by a tape test.

(実施例8)
筒型電極の高さを20mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Example 8)
A DLC film was formed under the same conditions as in Example 5 except that the height of the cylindrical electrode was 20 mm, and the adhesion of the DLC film was evaluated by a tape test.

(実施例9)
筒型電極の高さを30mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
Example 9
A DLC film was formed under the same conditions as in Example 5 except that the height of the cylindrical electrode was 30 mm, and the adhesion of the DLC film was evaluated by a tape test.

(比較例5)
筒型電極の高さを35mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Comparative Example 5)
A DLC film was formed under the same conditions as in Example 5 except that the height of the cylindrical electrode was 35 mm, and the adhesion of the DLC film was evaluated by a tape test.

実施例5,7〜9、及び比較例5におけるDLC膜の密着性評価の結果を下記の表2に示す。表2では評価結果を表1と同様の印により4段階で示している。また、表2では、各実施例の筒型電極の高さ寸法を、高周波プラズマCVD装置のアノード電極とカソード電極との電極間距離(40mm)に対する割合でも示している。

Figure 2016098383
The results of the adhesion evaluation of the DLC films in Examples 5 and 7 to 9 and Comparative Example 5 are shown in Table 2 below. In Table 2, the evaluation results are shown in four stages with the same marks as in Table 1. Table 2 also shows the height dimension of the cylindrical electrode of each example as a ratio to the interelectrode distance (40 mm) between the anode electrode and the cathode electrode of the high-frequency plasma CVD apparatus.
Figure 2016098383

表2に示すように、筒型電極の高さ寸法は、アノード電極とカソード電極との間の電極間距離に対して12.5%〜50%(電極間距離が40mmの場合h=5〜20mm)であることが好ましく、25%〜50%(h=10〜20mm)であることがさらに好ましいことが確認できた。さらに、図8に示したDLC膜の密着性評価の結果も併せて考慮すれば、筒型電極の高さ寸法は、アノード電極とカソード電極との間の電極間距離に対して25%(h=10mm)であることがより一層好ましいことが確認できた。   As shown in Table 2, the height of the cylindrical electrode is 12.5% to 50% with respect to the interelectrode distance between the anode electrode and the cathode electrode (h = 5 when the interelectrode distance is 40 mm). 20 mm), preferably 25% to 50% (h = 10 to 20 mm). Further, considering the result of the adhesion evaluation of the DLC film shown in FIG. 8 as well, the height of the cylindrical electrode is 25% (h) relative to the interelectrode distance between the anode electrode and the cathode electrode. = 10 mm) was confirmed to be even more preferable.

したがって、表2及び図8に示すように、本発明では筒型電極の高さ寸法を調整することによってDLC膜の密着性をさらに向上できることが確認された。   Therefore, as shown in Table 2 and FIG. 8, it was confirmed in the present invention that the adhesion of the DLC film can be further improved by adjusting the height dimension of the cylindrical electrode.

次に、筒型電極の断面積A(図3参照)の調整によってDLC膜の密着性をさらに向上できる点について、上記の実施例5に加えて実施例10〜12を挙げて説明する。   Next, the point that the adhesion of the DLC film can be further improved by adjusting the cross-sectional area A (see FIG. 3) of the cylindrical electrode will be described with reference to Examples 10 to 12 in addition to Example 5 described above.

(実施例10)
筒型電極の断面の直径を15mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Example 10)
A DLC film was formed under the same conditions as in Example 5 except that the diameter of the cross section of the cylindrical electrode was 15 mm, and the adhesion of the DLC film was evaluated by a tape test.

(実施例11)
筒型電極の断面の直径を50mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Example 11)
A DLC film was formed under the same conditions as in Example 5 except that the diameter of the cross section of the cylindrical electrode was 50 mm, and the adhesion of the DLC film was evaluated by a tape test.

(実施例12)
筒型電極の断面の直径を75mmとした点以外は実施例5と同様の条件でDLC膜を成膜し、テープ試験によるDLC膜の密着性の評価を行った。
(Example 12)
A DLC film was formed under the same conditions as in Example 5 except that the diameter of the cross section of the cylindrical electrode was 75 mm, and the adhesion of the DLC film was evaluated by a tape test.

実施例5,10〜12におけるDLC膜の密着性評価の結果を下記の表3に示す。表3では評価結果を表1と同様の印により4段階で示している。また、表3では、各実施例の筒型電極の断面積を、高周波プラズマCVD装置のカソード電極との対向面の面積(直径300mmの円形)に対する割合でも示している。

Figure 2016098383
The results of evaluation of the adhesion of the DLC film in Examples 5 and 10 to 12 are shown in Table 3 below. In Table 3, the evaluation results are shown in four stages with the same marks as in Table 1. Table 3 also shows the cross-sectional area of the cylindrical electrode of each example as a ratio with respect to the area (a circle having a diameter of 300 mm) of the surface facing the cathode electrode of the high-frequency plasma CVD apparatus.
Figure 2016098383

表3に示すように、筒型電極の断面積は、カソード電極の対向面の面積に対して1%(対向面の直径が300mmの場合、筒型電極の開口の直径が30mm)の面積であることが好ましいことが確認できた。したがって、表3に示すように、本発明では筒型電極の断面積を調整することよってDLC膜の密着性をさらに向上できることが確認された。   As shown in Table 3, the cross-sectional area of the cylindrical electrode is an area of 1% with respect to the area of the opposing surface of the cathode electrode (when the diameter of the opposing surface is 300 mm, the diameter of the opening of the cylindrical electrode is 30 mm). It was confirmed that it was preferable. Therefore, as shown in Table 3, it was confirmed that the adhesion of the DLC film can be further improved by adjusting the cross-sectional area of the cylindrical electrode in the present invention.

1 高周波プラズマCVD装置(プラズマ反応装置)
2 反応室
5 電極部
6 アノード電極
7 カソード電極
9 高周波電源(電源)
10 筒型電極
11 基材
1 High-frequency plasma CVD equipment (plasma reaction equipment)
2 Reaction chamber 5 Electrode section 6 Anode electrode 7 Cathode electrode 9 High frequency power supply (power supply)
10 Cylindrical electrode 11 Base material

Claims (7)

反応ガスを導入する反応室と、
平板状に形成され相互に対向する対向面が設けられるアノード電極及びカソード電極を有し、前記反応室の内部に配置される電極部と、
前記カソード電極の前記対向面に基材と共に設置され、前記基材の周囲を包囲する筒型電極と、
電磁波を前記電極部に発生させる電源と、
を備え、
前記電源により前記電極部の前記アノード電極と前記カソード電極との間に前記電磁波を発生し、前記反応室内に導入される前記反応ガスを前記電磁波によりプラズマ化させることで、前記プラズマ化させた反応ガスを利用して、前記反応室内に設置され前記筒型電極に包囲される前記基材の表面を加工する、
ことを特徴とするプラズマ反応装置。
A reaction chamber for introducing a reaction gas;
An electrode part having an anode electrode and a cathode electrode formed in a flat plate shape and provided with opposing surfaces facing each other, and disposed inside the reaction chamber;
A cylindrical electrode that is installed together with a base material on the opposite surface of the cathode electrode and surrounds the periphery of the base material;
A power source for generating electromagnetic waves in the electrode part;
With
The electromagnetic wave is generated between the anode electrode and the cathode electrode of the electrode part by the power source, and the reaction gas introduced into the reaction chamber is converted into plasma by the electromagnetic wave, thereby generating the plasma reaction. Processing the surface of the base material that is installed in the reaction chamber and surrounded by the cylindrical electrode using gas,
A plasma reactor characterized by that.
前記反応室に導入される前記反応ガスが原料ガスであり、
前記電磁波により前記原料ガスをプラズマ化させ、前記原料ガスの化学反応を活性化させることで、前記反応室内に設置され前記筒型電極に包囲される前記基材の表面に薄膜を形成する、
請求項1に記載のプラズマ反応装置。
The reaction gas introduced into the reaction chamber is a raw material gas,
By forming the raw material gas into plasma by the electromagnetic wave and activating the chemical reaction of the raw material gas, a thin film is formed on the surface of the base material installed in the reaction chamber and surrounded by the cylindrical electrode.
The plasma reactor according to claim 1.
前記薄膜がダイヤモンド状炭素(Diamond−Like Carbon:DLC)膜である、
請求項2に記載のプラズマ反応装置。
The thin film is a diamond-like carbon (DLC) film,
The plasma reactor according to claim 2.
前記電極部は、前記反応室内において、前記アノード電極が鉛直方向の上方側に配置され、前記カソード電極が前記鉛直方向の下方側に配置され、
前記筒型電極は、前記カソード電極の前記対向面上に載置される、
請求項1〜3のいずれか1項に記載のプラズマ反応装置。
In the reaction chamber, the anode electrode is disposed on the upper side in the vertical direction, and the cathode electrode is disposed on the lower side in the vertical direction in the reaction chamber,
The cylindrical electrode is placed on the facing surface of the cathode electrode.
The plasma reactor according to any one of claims 1 to 3.
前記筒型電極は、前記電極部の前記カソード電極の前記対向面に複数個設置される、
請求項1〜4のいずれか1項に記載のプラズマ反応装置。
A plurality of the cylindrical electrodes are installed on the facing surface of the cathode electrode of the electrode portion,
The plasma reaction apparatus of any one of Claims 1-4.
前記筒型電極が前記カソード電極に設置されている状態において、前記筒型電極の高さ寸法は、前記アノード電極と前記カソード電極との間の電極間距離に対して12.5%〜50%である、
請求項1〜5のいずれか1項に記載のプラズマ反応装置。
In the state where the cylindrical electrode is installed on the cathode electrode, the height dimension of the cylindrical electrode is 12.5% to 50% with respect to the inter-electrode distance between the anode electrode and the cathode electrode. Is,
The plasma reactor according to any one of claims 1 to 5.
前記筒型電極が前記カソード電極に設置されている状態において、前記筒型電極の断面積は、前記カソード電極の前記対向面の面積に対して1%である、
請求項1〜6のいずれか1項に記載のプラズマ反応装置。
In a state where the cylindrical electrode is installed on the cathode electrode, a cross-sectional area of the cylindrical electrode is 1% with respect to an area of the facing surface of the cathode electrode.
The plasma reactor according to any one of claims 1 to 6.
JP2014233732A 2014-11-18 2014-11-18 Plasma reactor Active JP6411869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014233732A JP6411869B2 (en) 2014-11-18 2014-11-18 Plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014233732A JP6411869B2 (en) 2014-11-18 2014-11-18 Plasma reactor

Publications (2)

Publication Number Publication Date
JP2016098383A true JP2016098383A (en) 2016-05-30
JP6411869B2 JP6411869B2 (en) 2018-10-24

Family

ID=56077133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014233732A Active JP6411869B2 (en) 2014-11-18 2014-11-18 Plasma reactor

Country Status (1)

Country Link
JP (1) JP6411869B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147068A (en) * 1987-12-01 1989-06-08 Idemitsu Petrochem Co Ltd Method and apparatus for manufacturing hard carbon film
JPH0270059A (en) * 1987-12-02 1990-03-08 Idemitsu Petrochem Co Ltd Appliance and its production
JPH08260157A (en) * 1995-01-27 1996-10-08 Zexel Corp Plasma cvd device
JP2009035819A (en) * 2007-07-09 2009-02-19 Fukuwauchi Technologies Inc DLC film forming method and film forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147068A (en) * 1987-12-01 1989-06-08 Idemitsu Petrochem Co Ltd Method and apparatus for manufacturing hard carbon film
JPH0270059A (en) * 1987-12-02 1990-03-08 Idemitsu Petrochem Co Ltd Appliance and its production
JPH08260157A (en) * 1995-01-27 1996-10-08 Zexel Corp Plasma cvd device
JP2009035819A (en) * 2007-07-09 2009-02-19 Fukuwauchi Technologies Inc DLC film forming method and film forming apparatus

Also Published As

Publication number Publication date
JP6411869B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP4578412B2 (en) Discharge plasma generation method
EP2383366A1 (en) Method for producing diamond-like carbon membrane
CN103717788B (en) Method for delaminating hard carbon layer
US8691063B2 (en) Methods and apparatus for forming diamond-like coatings
TW201700757A (en) Film forming method and film forming device
US20220127726A1 (en) Methods and apparatuses for deposition of adherent carbon coatings on insulator surfaces
JP6411869B2 (en) Plasma reactor
JP2017002340A (en) Dlc film coating apparatus and method of coating object to be coated by using dlc film coating apparatus
CN101768011A (en) Preparation method of corrosion resistant diamond film
CN113293357B (en) Method for depositing diamond-like coating on inner wall of pulse composite radio frequency enhanced hollow cathode long tube
WO2014103318A1 (en) Method for forming protective film using plasma cvd method
JP5530962B2 (en) Carbon film forming apparatus and carbon film forming method
Oh et al. Localized DLC etching by a non-thermal atmospheric-pressure helium plasma jet in ambient air
JP5904537B2 (en) Method for forming amorphous carbon film
CN206916216U (en) The depositing device of DLC film
RU2656312C1 (en) Method of hard wear resistant nanostructured amorphous diamond-like carbon coating
JP4674091B2 (en) Inner surface coating method and inner surface coating apparatus
CN114892143A (en) Method and device for depositing nano-SiC coating on inner wall of slender stainless steel tube
JP2014080647A (en) Plasma treatment apparatus and method of forming hetero film
WO2016009779A1 (en) Plasma processing device and plasma processing method using said plasma processing device
WO2015119199A1 (en) Generating device for generating plasma in tube-shaped body
JP2011129618A (en) Thin film deposition equipment
CN107043925A (en) Molded article having functional layer, method for producing same, and use thereof
JP3246780B2 (en) Method and apparatus for forming hard carbon film
CN113136562A (en) High-hardness TiN protective coating capable of being coated on deep-hole part and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180927

R150 Certificate of patent or registration of utility model

Ref document number: 6411869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250