[go: up one dir, main page]

JP2016058214A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2016058214A
JP2016058214A JP2014183180A JP2014183180A JP2016058214A JP 2016058214 A JP2016058214 A JP 2016058214A JP 2014183180 A JP2014183180 A JP 2014183180A JP 2014183180 A JP2014183180 A JP 2014183180A JP 2016058214 A JP2016058214 A JP 2016058214A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014183180A
Other languages
Japanese (ja)
Other versions
JP6268537B2 (en
Inventor
森田 昌宏
Masahiro Morita
昌宏 森田
匠 玉木
Takumi Tamaki
匠 玉木
真知子 阿部
Machiko Abe
真知子 阿部
純平 寺島
Junpei Terajima
純平 寺島
哲也 早稲田
Tetsuya Waseda
哲也 早稲田
宏司 鬼塚
Koji Onizuka
宏司 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014183180A priority Critical patent/JP6268537B2/en
Priority claimed from JP2014183180A external-priority patent/JP6268537B2/en
Publication of JP2016058214A publication Critical patent/JP2016058214A/en
Application granted granted Critical
Publication of JP6268537B2 publication Critical patent/JP6268537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】優れた入出力特性と、高い信頼性とを両立した非水電解液二次電池を提供する。【解決手段】非水電解液二次電池は、正極活物質をCuKα線を用いた粉末X線回析して得られるミラー指数(003)面での回析ピークの半価幅が0.06〜0.1deg.であり、クリプトンガスを吸着ガスとして用いた負極活物質のBET比表面積が3.3〜4.7m2/gであり、そして、正極に含まれる正極活物質の総重量WP(mg)と、負極に含まれる負極活物質の総重量WN(mg)の比(WP/WN)が1.2〜1.6である非水電解液二次電池。【選択図】図1A non-aqueous electrolyte secondary battery having both excellent input / output characteristics and high reliability is provided. A non-aqueous electrolyte secondary battery has a half-value width of a diffraction peak on the Miller index (003) plane obtained by powder X-ray diffraction of a positive electrode active material using CuKα rays is 0.06. ~ 0.1 deg. And the negative electrode active material using krypton gas as the adsorption gas has a BET specific surface area of 3.3 to 4.7 m 2 / g, and the total weight WP (mg) of the positive electrode active material contained in the positive electrode, The nonaqueous electrolyte secondary battery in which the ratio (WP / WN) of the total weight WN (mg) of the negative electrode active material contained in the battery is 1.2 to 1.6. [Selection] Figure 1

Description

本発明は、非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池(リチウム二次電池ともいう)等の非水電解液二次電池は、既存の電池に比べて軽量且つエネルギー密度が高いことから、近年、いわゆるポータブル電源や車両駆動用電源として用いられている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両の駆動用高出力電源として好ましく用いられている。   Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries (also called lithium secondary batteries) are lighter and have higher energy density than existing batteries. It is used. Particularly, lithium ion secondary batteries that are lightweight and obtain high energy density are preferably used as high-output power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). Yes.

特開2000−195514号公報JP 2000-195514 A 特開2014−011064号公報JP 2014-011064 A

ところで、上記非水電解液二次電池(特に車両駆動用等の高出力電源用電池)には、より優れた入出力特性と高い電池信頼性との両立が要求される。例えば、上記車両駆動用の高出力電源としては、電池抵抗が6mΩ以下であり且つ過充電時の電池温度が110℃程度またはそれ以下である電池が好適である。
従来は、入出力特性の向上を目的として、例えば比表面積の大きな正負極活物質の使用によって電池抵抗を低減する方策等が講じられてきた。しかし、かかる比表面積の大きな活物質は非水電解液と接する面積が広いため、過充電時における活物質と非水電解液との発熱反応(非水電解液の分解反応)が急速に進行やすいという背反があった。そのため、優れた入出力特性と高い電池信頼性の両方を高レベルで実現し得る技術が求められている。これらに関連する技術として、特許文献1には所定の結晶構造の正極活物質の使用により優れた出力特性を向上し得る旨や、特許文献2には比表面積が大きな負極活物質の使用により入力特性および熱安定性を向上し得る旨が記載されている。しかし、電池の使用条件(特に車両駆動用等の高出力電源用電池)によってはこれらの方策による入出力特性および電池信頼性の改善効果では不十分な場合があった。
By the way, the non-aqueous electrolyte secondary battery (particularly a battery for a high output power source for driving a vehicle or the like) is required to satisfy both excellent input / output characteristics and high battery reliability. For example, a battery having a battery resistance of 6 mΩ or less and a battery temperature of about 110 ° C. or less during overcharging is preferable as the high-output power source for driving the vehicle.
Conventionally, for the purpose of improving input / output characteristics, for example, measures for reducing battery resistance by using positive and negative electrode active materials having a large specific surface area have been taken. However, since an active material having a large specific surface area has a large area in contact with the non-aqueous electrolyte, an exothermic reaction (decomposition reaction of the non-aqueous electrolyte) between the active material and the non-aqueous electrolyte during overcharge tends to proceed rapidly. There was a trade-off. Therefore, there is a demand for a technology that can realize both excellent input / output characteristics and high battery reliability at a high level. As technologies related to these, Patent Document 1 discloses that excellent output characteristics can be improved by using a positive electrode active material having a predetermined crystal structure, and Patent Document 2 inputs by using a negative electrode active material having a large specific surface area. It is described that the characteristics and thermal stability can be improved. However, depending on the use conditions of the battery (especially a battery for a high output power source for driving a vehicle, etc.), the improvement effect of the input / output characteristics and the battery reliability by these measures may not be sufficient.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、優れた入出力特性と高い信頼性とを兼ね備えた非水電解液二次電池、より具体的には、電池抵抗が6mΩ以下であり且つ過充電時の電池温度が110℃以下である非水電解液二次電池を提供することである。   The present invention has been made in view of the above points, and its main object is a non-aqueous electrolyte secondary battery having excellent input / output characteristics and high reliability, more specifically, battery resistance. The object is to provide a non-aqueous electrolyte secondary battery having a battery temperature of 6 mΩ or less and an overcharged battery temperature of 110 ° C. or less.

本発明者らは、上記目的を実現すべく種々検討したところ、
(1)正極活物質をCuKα線を用いた粉末X線回析して得られるミラー指数(003)面での回析ピークの半価幅(以下、単に「正極活物質の(003)面半価幅」ともいう)、
(2)クリプトンガスを吸着ガスとして用いたときの負極活物質のBET比表面積(以下、単に「負極活物質のKrBET比表面積」ともいう)、および、
(3)正極に含まれる正極活物質の総重量W(mg)と負極に含まれる負極活物質の総重量W(mg)の比(W/W)、
からなる計3つのパラメータを所定の範囲に設定して組み合わせることで、電池抵抗の低減と電池温度の上昇抑制とを共に実現できることを見出し、本発明を完成するに至った。
The present inventors have made various studies to achieve the above object,
(1) Half width of diffraction peak on Miller index (003) plane obtained by powder X-ray diffraction of positive electrode active material using CuKα ray (hereinafter simply referred to as “(003) plane half of positive electrode active material) Price range)),
(2) BET specific surface area of the negative electrode active material when krypton gas is used as the adsorption gas (hereinafter, also simply referred to as “KrBET specific surface area of negative electrode active material”), and
(3) Ratio (W P / W N ) of the total weight W P (mg) of the positive electrode active material contained in the positive electrode and the total weight W N (mg) of the negative electrode active material contained in the negative electrode,
The present inventors have found that by reducing the battery resistance and suppressing the increase in battery temperature by combining a total of three parameters consisting of the above within a predetermined range, the present invention has been completed.

即ち、本発明により、正極活物質を有する正極と、負極活物質を有する負極と、を有する電極体を備える非水電解液二次電池であって、以下の特徴を全て具備する非水電解液二次電池が提供される。即ち、本発明により提供される非水電解液二次電池は、
i)上記正極活物質をCuKα線を用いた粉末X線回析して得られるミラー指数(003)面での回析ピークの半価幅が0.06〜0.1deg.であること;
ii)クリプトンガスを吸着ガスとして用いた上記負極活物質のBET比表面積(KrBET比表面積)が3.3m/g以上4.7m/g以下であること;および
iii)上記正極に含まれる正極活物質の総重量W(mg)と、上記負極に含まれる負極活物質の総重量W(mg)の比(W/W)が1.2以上1.6以下であること;
を特徴とする非水電解液二次電池である。
That is, according to the present invention, a nonaqueous electrolyte secondary battery comprising an electrode body having a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material, the nonaqueous electrolyte solution having all of the following features: A secondary battery is provided. That is, the non-aqueous electrolyte secondary battery provided by the present invention is
i) The half width of the diffraction peak on the Miller index (003) plane obtained by powder X-ray diffraction of the positive electrode active material using CuKα rays is 0.06 to 0.1 deg. Be
ii) the negative electrode active material using krypton gas as an adsorption gas has a BET specific surface area (KrBET specific surface area) of 3.3 m 2 / g or more and 4.7 m 2 / g or less; and iii) included in the positive electrode The ratio (W P / W N ) of the total weight W P (mg) of the positive electrode active material to the total weight W N (mg) of the negative electrode active material included in the negative electrode is 1.2 or more and 1.6 or less. ;
Is a non-aqueous electrolyte secondary battery.

本発明者らの検討によると、正極活物質の(003)面半価幅が大きく且つ負極活物質のKrBET比表面積が大きい程、電池抵抗は低下する傾向にあり、上記正極活物質の(003)面半価幅が0.06deg.以上且つ上記負極活物質のKrBET比表面積が3.3m/g以上の場合に特に優れた電池抵抗の低減効果が発揮されることが確認された。かかる正極活物質の(003)面半価幅と負極活物質のKrBET比表面積の組み合わせが電池抵抗に与える影響を示すグラフを図1に示す。
また、上記正極活物質の(003)面半価幅が小さく且つ負極活物質のKrBET比表面積が小さい程、過充電時における電池温度の上昇が抑制される傾向にあり、上記正極活物質の(003)面半価幅が0.1deg.以下且つ負極活物質のKrBET比表面積が4.7m/g以下の場合に、特に優れた過充電時における電池温度の上昇抑制効果が発揮されることが本発明者らの検討で確認された。かかる正極活物質の(003)面半価幅と負極活物質のKrBET比表面積の組み合わせが過充電時の電池温度に与える影響を示すグラフを図2に示す。
さらに、上記W/Wを1.2以上1.6以下とすることで、より優れた電池抵抗の低減効果と過充電時の電池温度の上昇抑制効果とを発揮できることが確認された。
具体的には、正極活物質の(003)面半価幅、負極活物質のKrBET比表面積、および正負極に含まれる正負極活物質の重量比(W/W)を上記範囲とすることで、特に高出力用途での使用に好適な電池抵抗(典型的には6mΩ以下)および過充電時の電池温度(典型的には110℃以下)を共に実現可能である。即ち、本発明によると、優れた入出力特性(特に電池抵抗の低減)および高い信頼性(特に過充電時の電池温度の上昇抑制)を共に実現した非水電解液二次電池を提供することができる。
According to the study by the present inventors, the battery resistance tends to decrease as the (003) plane half-value width of the positive electrode active material increases and the KrBET specific surface area of the negative electrode active material increases. ) Half width at half maximum is 0.06 deg. As described above, it was confirmed that a particularly excellent battery resistance reduction effect was exhibited when the negative electrode active material had a KrBET specific surface area of 3.3 m 2 / g or more. A graph showing the effect of the combination of the (003) plane half-value width of the positive electrode active material and the KrBET specific surface area of the negative electrode active material on the battery resistance is shown in FIG.
In addition, as the (003) plane half-value width of the positive electrode active material is smaller and the KrBET specific surface area of the negative electrode active material is smaller, the increase in battery temperature during overcharge tends to be suppressed. 003) Plane half width is 0.1 deg. It has been confirmed by the present inventors that the battery temperature increase suppression effect is particularly excellent when the negative electrode active material has a KrBET specific surface area of 4.7 m 2 / g or less. . FIG. 2 shows a graph showing the influence of the combination of the (003) plane half-value width of the positive electrode active material and the KrBET specific surface area of the negative electrode active material on the battery temperature during overcharge.
Furthermore, it was confirmed that by making the above W P / W N 1.2 or more and 1.6 or less, it is possible to exhibit a more excellent battery resistance reduction effect and a battery temperature increase suppression effect during overcharge.
Specifically, the (003) plane half width of the positive electrode active material, the KrBET specific surface area of the negative electrode active material, and the weight ratio (W P / W N ) of the positive and negative electrode active materials contained in the positive and negative electrodes are within the above ranges. Thus, it is possible to achieve both a battery resistance (typically 6 mΩ or less) suitable for use in a high power application and a battery temperature during overcharge (typically 110 ° C. or less). That is, according to the present invention, there is provided a non-aqueous electrolyte secondary battery that achieves both excellent input / output characteristics (particularly, reduction in battery resistance) and high reliability (particularly, suppression of increase in battery temperature during overcharge). Can do.

正極活物質の(003)面半価幅(deg.)および負極活物質のKrBET比表面積(m/g)の組み合わせと電池抵抗(mΩ)との関係を示すグラフである。It is a graph which shows the relationship between the combination of (003) plane half value width (deg.) Of a positive electrode active material and the KrBET specific surface area (m < 2 > / g) of a negative electrode active material, and battery resistance (m (omega | ohm)). 正極活物質の(003)面半価幅(deg.)および負極活物質のKrBET比表面積(m/g)の組み合わせと過充電時の電池温度(℃)との関係を示すグラフである。It is a graph which shows the relationship between the battery temperature (degreeC) at the time of the overcharge and the combination of the (003) plane half value width (deg.) Of a positive electrode active material and the KrBET specific surface area (m < 2 > / g) of a negative electrode active material. 正極活物質の(003)面半価幅(deg.)および負極活物質のKrBET比表面積(m/g)が異なる各電池について、電池抵抗(mΩ)を測定した結果を示す表である。It is a table | surface which shows the result of having measured battery resistance (m (ohm)) about each battery from which the (003) plane half value width (deg.) Of a positive electrode active material and the KrBET specific surface area (m < 2 > / g) of a negative electrode active material differ. 正極活物質の(003)面半価幅(deg.)および負極活物質のKrBET比表面積(m/g)が異なる各電池について、過充電時の電池温度(℃)を測定した結果を示す表である。The result of having measured the battery temperature (degreeC) at the time of overcharge about each battery from which the (003) plane half value width (deg.) Of a positive electrode active material and the KrBET specific surface area (m < 2 > / g) of a negative electrode active material differ is shown. It is a table. 正極活物質の(003)面半価幅(deg.)、負極活物質のKrBET比表面積(m/g)および正負極に含まれる正負極活物質の重量比(W/W)が異なる各電池について、電池抵抗(mΩ)と過充電時の電池温度(℃)とを測定した結果を示す表である。The (003) plane half-value width (deg.) Of the positive electrode active material, the KrBET specific surface area (m 2 / g) of the negative electrode active material, and the weight ratio (W P / W N ) of the positive and negative electrode active materials contained in the positive and negative electrodes It is a table | surface which shows the result of having measured battery resistance (mohm) and the battery temperature at the time of overcharge (degreeC) about each different battery. 正極活物質の(003)面半価幅(deg.)、負極活物質のKrBET比表面積(m/g)および正極活物質中のタングステン濃度(W濃度(質量%))が異なる各電池について、電池抵抗(mΩ)と過充電時の電池温度(℃)とを測定した結果を示す表である。About each battery in which the (003) plane half-value width (deg.) Of the positive electrode active material, the KrBET specific surface area (m 2 / g) of the negative electrode active material, and the tungsten concentration (W concentration (mass%)) in the positive electrode active material are different It is a table | surface which shows the result of having measured battery resistance (mohm) and the battery temperature (degreeC) at the time of overcharge. 正極活物質の(003)面半価幅(deg.)および非水電解液中のジフルオロリン酸リチウム(LiPO)の含有量(質量%)が異なる各電池について、電池抵抗(mΩ)を測定した結果を示す表である。Battery resistance (mΩ) for each battery in which the (003) plane half-value width (deg.) Of the positive electrode active material and the content (mass%) of lithium difluorophosphate (LiPO 2 F 2 ) in the non-aqueous electrolyte are different It is a table | surface which shows the result of having measured. 正極活物質の(003)面半価幅(deg.)および非水電解液中のLiPOの含有量(質量%)が異なる各電池について、過充電時の電池温度(℃)を測定した結果を示す表である。Measure the battery temperature (° C) during overcharge for each battery with different (003) half-width (deg.) Of the positive electrode active material and the content (mass%) of LiPO 2 F 2 in the non-aqueous electrolyte. It is a table | surface which shows the result. 正極活物質の(003)面半価幅(deg.)、非水電解液中のLiPOの含有量(質量%)および正極に含まれる正極活物質の重量W(mg)と電池構築に用いた非水電解液の重量W(mg)の比(W/W)が異なる各電池について、電池抵抗(mΩ)と過充電時の電池温度(℃)とを測定した結果を示す表である。The (003) half-width (deg.) Of the positive electrode active material, the content (% by mass) of LiPO 2 F 2 in the non-aqueous electrolyte, and the weight W P (mg) of the positive electrode active material contained in the positive electrode and the battery Results of measurement of battery resistance (mΩ) and battery temperature (° C.) during overcharge for each battery having a different ratio (W L / W P ) of the weight W L (mg) of the non-aqueous electrolyte used in the construction It is a table | surface which shows. 正極活物質の(003)面半価幅(deg.)、非水電解液中のLiPOの含有量(質量%)および正極活物質中のタングステン濃度(W濃度(質量%))が異なる各電池について、電池抵抗(mΩ)と過充電時の電池温度(℃)とを測定した結果を示す表である。The (003) plane half-value width (deg.) Of the positive electrode active material, the content (mass%) of LiPO 2 F 2 in the non-aqueous electrolyte, and the tungsten concentration (W concentration (mass%)) in the positive electrode active material It is a table | surface which shows the result of having measured battery resistance (mohm) and the battery temperature at the time of overcharge (degreeC) about each different battery.

以下、本発明の好適な実施形態をリチウムイオン二次電池を例として説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施し得る。また、リチウムイオン二次電池は一例であり、本発明の技術思想は、その他の電荷担体(例えばナトリウムイオン)を備える他の非水電解液二次電池(例えばナトリウムイオン二次電池)にも適用される。   Hereinafter, a preferred embodiment of the present invention will be described using a lithium ion secondary battery as an example. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be implemented based on the contents disclosed in the present specification and common general technical knowledge in the field. Further, the lithium ion secondary battery is an example, and the technical idea of the present invention is also applied to other non-aqueous electrolyte secondary batteries (for example, sodium ion secondary batteries) provided with other charge carriers (for example, sodium ions). Is done.

ここに開示されるリチウムイオン二次電池は、大まかにいって、正極および負極を有する電極体と非水電解液とが、電池ケース内に収容されている。かかる電池ケースには、外部接続用の正負極端子と、電池ケースの内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された安全弁と、非水電解液を注入するための注入口とが設けられている。また、電池ケースの内部には電池ケースの内圧上昇により作動する電流遮断機構(Current Interrupt Device、CID)が設けられてもよい。このような電池ケースの材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルめっき鋼といった軽量で熱伝導性の良い金属材料が好適である。   In general, the lithium ion secondary battery disclosed herein includes an electrode body having a positive electrode and a negative electrode and a non-aqueous electrolyte contained in a battery case. In such a battery case, positive and negative terminals for external connection, a safety valve set to release the internal pressure when the internal pressure of the battery case rises above a predetermined level, and a non-aqueous electrolyte are injected. An inlet is provided. In addition, a current interruption device (Current Interrupt Device, CID) that operates when the internal pressure of the battery case increases may be provided inside the battery case. As a material of such a battery case, for example, a light metal material having good thermal conductivity such as aluminum, stainless steel, and nickel-plated steel is suitable.

上記正極は、長尺な正極集電体の片面または両面(ここでは両面)に長手方向に沿って正極活物質を含有する正極活物質層が形成されている。上記正極集電体としては、例えばアルミニウム箔等を用いることができる。   In the positive electrode, a positive electrode active material layer containing a positive electrode active material is formed along the longitudinal direction on one side or both sides (here, both sides) of a long positive electrode current collector. As the positive electrode current collector, for example, an aluminum foil or the like can be used.

上記正極活物質は、リチウムを可逆的に吸蔵および放出可能な層状構造(典型的には六晶系に属する層状岩塩型構造)のリチウム遷移金属酸化物からなる物質であり得る。かかる正極活物質は、CuKα線を用いた粉末X線回折パターンにおいて、ミラー指数(003)の回折面により得られる回析ピークの半価幅が0.06〜0.1deg.(好ましくは0.07〜0.09deg.)を満たすことにより特徴付けられる。   The positive electrode active material may be a material made of a lithium transition metal oxide having a layered structure (typically a layered rock salt structure belonging to a hexagonal system) capable of reversibly occluding and releasing lithium. Such a positive electrode active material has a half-value width of a diffraction peak obtained by a diffraction surface with a Miller index (003) of 0.06 to 0.1 deg. In a powder X-ray diffraction pattern using CuKα rays. (Preferably 0.07 to 0.09 deg.).


ここで、CuKα線を用いた粉末X線回折(XRD:X-ray diffraction)測定は、X線発生源から照射されるX線(CuKα線)を試料の試料面に入射することにより行うとよい。試料面は、正極活物質(典型的には粉体)からなる面であってもよく、該正極活物質をバインダで結着させて実際に正極を形成した面(正極活物質層の表面)であってもよい。そして、X線の回析方向と入射方向の角度差(回折角2θ)と、回析X線強度を測定し、得られた回折パターンから、(003)面に由来する回折ピークの半価幅を算出することができる。かかるX線回折測定および(003)面半価幅の算出は、種々の測定装置メーカーから市販されているX線回折測定装置および付属の解析ソフトを用いて行うことができる。例えば、株式会社リガク製のX線回折測定装置MultiFlexおよび付属の解析ソフトJADEを用いることができる。

Here, powder X-ray diffraction (XRD) measurement using CuKα rays may be performed by making X-rays (CuKα rays) irradiated from an X-ray generation source incident on the sample surface of the sample. . The sample surface may be a surface made of a positive electrode active material (typically powder), and a surface on which the positive electrode is actually formed by binding the positive electrode active material with a binder (surface of the positive electrode active material layer) It may be. Then, the angle difference (diffraction angle 2θ) between the diffraction direction and the incident direction of the X-ray and the diffraction X-ray intensity are measured, and from the obtained diffraction pattern, the half width of the diffraction peak derived from the (003) plane. Can be calculated. Such X-ray diffraction measurement and calculation of the (003) plane half width can be performed using X-ray diffraction measurement devices commercially available from various measurement device manufacturers and attached analysis software. For example, an X-ray diffraction measuring device MultiFlex manufactured by Rigaku Corporation and the attached analysis software JADE can be used.

上記リチウム遷移金属酸化物は、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)のうちの少なくとも一つを含む化合物(例えば、LiNiO、LiCoO、LiMnO、LiNi1−xCo(ここで0<x<1)、LiNi1−xMn(ここで0<x<1)、LiNi1−x−yCoMn(ここでx>0、y>0、x+y<1)等)であり得る。これらNi,Co,およびMnの合計含有量は、該正極活物質に含まれるリチウム以外の全金属元素の原子量基準での合計量を1としたとき、そのうち例えば0.85以上(好ましくは0.95以上)であり得る。中でも、少なくともNiを構成元素として含むリチウム遷移金属酸化物が好ましい。
好ましい一態様として、Ni、CoおよびMnの全てを構成元素として含むリチウム遷移金属酸化物(例えばLiNi1−x−yCoMn(ここでx>0、y>0、x+y<1))が挙げられる。これらの遷移金属元素のうちの主成分がNiであるか、あるいはNiとCoとMnとを概ね同程度の割合で含有するリチウム遷移金属酸化物が特に好ましい。例えば、これら遷移金属元素(Ni、Co、Mn)の原子量基準での合計量を1としたとき、Ni、Co、Mnの量がいずれも0.1を超えて0.6以下(好ましくは0.3を超えて0.5以下)であるリチウム遷移金属酸化物が挙げられる。かかる三元系のリチウムイオン遷移金属酸化物は、熱安定性に優れ且つ高いエネルギー密度を有するため本発明の実施に好適である。
The lithium transition metal oxide is a compound containing at least one of nickel (Ni), cobalt (Co), and manganese (Mn) (for example, LiNiO 2 , LiCoO 2 , LiMnO 2 , LiNi 1-x Co x O 2 (where 0 <x <1), LiNi 1-x Mn x O 2 (where 0 <x <1), LiNi 1-xy Co x Mn y O 2 (where x> 0, y>) 0, x + y <1), etc.). The total content of these Ni, Co, and Mn is, for example, 0.85 or more (preferably 0.8 or more) when the total amount based on the atomic weight of all metal elements other than lithium contained in the positive electrode active material is 1. 95 or more). Among these, lithium transition metal oxides containing at least Ni as a constituent element are preferable.
As a preferred embodiment, a lithium transition metal oxide containing all of Ni, Co, and Mn as constituent elements (for example, LiNi 1-xy Co x Mn y O 2 (where x> 0, y> 0, x + y <1 )). Of these transition metal elements, the main component is Ni, or a lithium transition metal oxide containing Ni, Co, and Mn at approximately the same ratio is particularly preferable. For example, when the total amount of these transition metal elements (Ni, Co, Mn) on an atomic weight basis is 1, the amounts of Ni, Co, and Mn all exceed 0.1 and are 0.6 or less (preferably 0 .3 and 0.5 or less) lithium transition metal oxide. Such a ternary lithium ion transition metal oxide is suitable for the practice of the present invention because it has excellent thermal stability and high energy density.

ここで開示される技術における正極活物質は、さらに、これらの遷移金属元素のほかに、付加的な構成元素(添加元素)として、他の1種又は2種以上の金属元素を含むものであってもよい。かかる付加的な金属元素としては、例えばマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、ロジウム(Rh)、パラジウム(Pb)、白金(Pt)、銅(Cu)、亜鉛(Zn)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、ランタン(La)、セリウム(Ce)が挙げられる。特に、上記添加元素としてWを含み、その含有量が正極活物質100質量%に対して0.5質量%以上1.0質量%以下(例えば凡そ0.75質量%)の正極活物質を好適に用いることができる。かかるWを含む正極活物質は、その製造過程において(003)面半価幅の制御が容易となり、かかる正極活物質の(003)面半価幅を好ましい範囲に設定しやすくなる。   In addition to these transition metal elements, the positive electrode active material in the technology disclosed herein further includes one or more other metal elements as additional constituent elements (additive elements). May be. Examples of such additional metal elements include magnesium (Mg), calcium (Ca), strontium (Sr), titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), chromium (Cr), Molybdenum (Mo), tungsten (W), iron (Fe), rhodium (Rh), palladium (Pb), platinum (Pt), copper (Cu), zinc (Zn), boron (B), aluminum (Al), Examples include gallium (Ga), indium (In), tin (Sn), lanthanum (La), and cerium (Ce). In particular, a positive electrode active material containing W as the additive element and having a content of 0.5% by mass to 1.0% by mass (for example, approximately 0.75% by mass) with respect to 100% by mass of the positive electrode active material is suitable. Can be used. The positive electrode active material containing W can easily control the (003) plane half-value width in the production process, and can easily set the (003) plane half-value width of the positive electrode active material within a preferable range.

なお、正極活物質層は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としてはアセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしてはPVDF等を使用し得る。   Note that the positive electrode active material layer may include components other than the active material, such as a conductive material and a binder. As the conductive material, carbon black such as acetylene black (AB) or other (such as graphite) carbon materials can be suitably used. PVDF or the like can be used as the binder.

このような正極は、例えば以下のように作成することができる。まず、正極活物質と必要に応じて用いられる材料とを適当な溶媒(例えばN−メチル−2−ピロリドン)に分散させ、ペースト状(スラリー状)の正極活物質形成用組成物を調製し、次に、該組成物の適当量を正極集電体の表面に付与した後、乾燥によって溶媒を除去することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって正極活物質層の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a positive electrode can be produced as follows, for example. First, a positive electrode active material and a material used as necessary are dispersed in a suitable solvent (for example, N-methyl-2-pyrrolidone) to prepare a paste-like (slurry) positive electrode active material forming composition, Next, it can be formed by applying an appropriate amount of the composition to the surface of the positive electrode current collector and then removing the solvent by drying. Moreover, the properties (for example, average thickness, active material density, porosity, etc.) of the positive electrode active material layer can be adjusted by performing an appropriate press treatment as necessary.

負極は、長尺な負極集電体の片面または両面(ここでは両面)に長手方向に沿って負極活物質を含有する負極活物質層が形成されている。上記負極集電体としては、例えば銅箔等を用いることができる。   In the negative electrode, a negative electrode active material layer containing a negative electrode active material is formed along the longitudinal direction on one side or both sides (here, both sides) of a long negative electrode current collector. As the negative electrode current collector, for example, a copper foil or the like can be used.

上記負極活物質は、リチウムを可逆的に吸蔵および放出可能な層状構造の炭素材料でありえる。かかる負極活物質は、吸着ガスとしてクリプトン(Kr)を用いたBET比表面積が3.3m/g以上(好ましくは3.5m/g以上、より好ましくは3.8m/g以上)4.7m/g以下(好ましくは4.5m/g以下、より好ましくは4.2m/g以下)を満たすことにより特徴づけられる。かかる「KrBET比表面積(m/g)」は、吸着ガスとしてKrガスを用いたガス吸着法(定容量式吸着法)によって測定されたガス吸着量を、BET法(例えばBET1点法)で解析することによって求めることができる。 The negative electrode active material may be a layered carbon material capable of reversibly occluding and releasing lithium. Such a negative electrode active material has a BET specific surface area of 3.3 m 2 / g or more (preferably 3.5 m 2 / g or more, more preferably 3.8 m 2 / g or more) using krypton (Kr) as an adsorption gas. .7m 2 / g or less (preferably 4.5 m 2 / g or less, more preferably 4.2 m 2 / g or less) is characterized by satisfying the. The “KrBET specific surface area (m 2 / g)” is a gas adsorption amount measured by a gas adsorption method (fixed capacity adsorption method) using Kr gas as an adsorption gas by a BET method (for example, a BET one-point method). It can be obtained by analysis.

上記KrBET比表面積が3.3m/g以上の負極活物質は、物理的なリチウムイオンの吸着面積として好適な面積を保有しているため、高負荷時(例えば、大電流充電時)であってもリチウムイオンを好適に吸蔵することができ、リチウムの析出やそれに伴う電池容量の低下を抑制し得る。よって、上記負極活物質を備えた非水電解液二次電池(リチウムイオン二次電池)は、優れた入力特性を発揮し得る。さらに、KrBET比表面積を4.7m/g以下とすることで、非水電解液の分解を抑制することができ、また活物質表面へのリチウム化合物の生成量を制御することで容量低下を抑制し得るため、高い耐久性を維持することができる。かかるKrBET比表面積の調整は、例えば、負極活物質を構成する炭素材料種の選択や該炭素材料の表面を非晶質炭素で被覆する方法等によって行うことができる。より具体的には、例えば、黒鉛粒子の表面に非晶質炭素をコートする際の焼成温度を変化させることによって、KrBET比表面積を調整し得る。あるいは、適宜粉砕処理や篩い分けを行うことによっても調整することができる。このような調整手法は、単独で、あるいは適宜組み合わせて行ってもよい。 Since the negative electrode active material having a KrBET specific surface area of 3.3 m 2 / g or more has an area suitable as a physical lithium ion adsorption area, the negative electrode active material has a high load (for example, when charged with a large current). However, lithium ions can be occluded suitably, and lithium precipitation and accompanying reduction in battery capacity can be suppressed. Therefore, the non-aqueous electrolyte secondary battery (lithium ion secondary battery) provided with the negative electrode active material can exhibit excellent input characteristics. Furthermore, by setting the KrBET specific surface area to 4.7 m 2 / g or less, the decomposition of the non-aqueous electrolyte can be suppressed, and the capacity reduction can be achieved by controlling the amount of lithium compound produced on the active material surface. Since it can suppress, high durability can be maintained. Such adjustment of the KrBET specific surface area can be performed by, for example, selecting a carbon material type constituting the negative electrode active material, or coating the surface of the carbon material with amorphous carbon. More specifically, for example, the KrBET specific surface area can be adjusted by changing the firing temperature when amorphous carbon is coated on the surface of the graphite particles. Or it can adjust also by performing a grinding | pulverization process and sieving suitably. Such adjustment methods may be performed alone or in appropriate combination.

ここで、吸着ガスとして用いたKrは、吸着断面積がリチウムイオンの実効断面積(溶媒和された状態のリチウムイオンの断面積)とほぼ同程度であるため、溶媒和されたリチウムイオンの吸着量を評価するために好適である。さらにKrは、一般的な吸着測定で用いられる窒素やアルゴン等に比べて飽和蒸気圧が低いため、吸着量が小さい場合(例えば、Kr吸着量が5m/g以下の場合)であっても高精度の測定が可能である。 Here, Kr used as the adsorbed gas has an adsorption cross-sectional area that is substantially the same as the effective cross-sectional area of lithium ions (the cross-sectional area of lithium ions in a solvated state), and therefore, the adsorption of solvated lithium ions. Suitable for evaluating the amount. Furthermore, since Kr has a lower saturated vapor pressure than nitrogen or argon used in general adsorption measurement, even when the adsorption amount is small (for example, when the Kr adsorption amount is 5 m 2 / g or less). High-precision measurement is possible.

上記負極活物質を構成する炭素材料としては、例えば、黒鉛、ハードカーボン、ソフトカーボン等を好適に使用することができる。また、コアとしての黒鉛粒子が非晶質(アモルファス)な炭素素材で被覆(コート)された形態のカーボン粒子であってもよい。このようなアモルファスコートされた黒鉛を有する非水電解液二次電池(リチウムイオン二次電池)は、不可逆容量や抵抗が抑制され、且つ高い耐久性を発揮することができるため、好適である。   As the carbon material constituting the negative electrode active material, for example, graphite, hard carbon, soft carbon and the like can be suitably used. Moreover, the carbon particle of the form by which the graphite particle as a core was coat | covered with the amorphous (amorphous) carbon raw material may be sufficient. A non-aqueous electrolyte secondary battery (lithium ion secondary battery) having such amorphous-coated graphite is suitable because irreversible capacity and resistance are suppressed and high durability can be exhibited.

なお、負極活物質層は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、スチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボメチルセルロース(CMC)等を使用し得る。   Note that the negative electrode active material layer can contain components other than the active material, such as a binder and a thickener. As the binder, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carbomethylcellulose (CMC) can be used.

このような負極は、例えば上述の正極の場合と同様にして作製することができる。即ち、負極活物質と必要に応じて用いられる材料とを適当な溶媒(例えばイオン交換水)に分散させ、ペースト状(スラリー状)の負極活物質層形成用組成物を調製し、次に、該組成物の適当量を負極集電体の表面に付与した後、乾燥によって溶媒を除去することによって形成することができる。また、必要に応じて適当なプレス処理を施すことによって負極活物質層の性状(例えば、平均厚み、活物質密度、空孔率等)を調整し得る。   Such a negative electrode can be produced, for example, in the same manner as the above-described positive electrode. That is, a negative electrode active material and a material used as necessary are dispersed in a suitable solvent (for example, ion-exchanged water) to prepare a paste-like (slurry) negative electrode active material layer forming composition, It can be formed by applying an appropriate amount of the composition to the surface of the negative electrode current collector and then removing the solvent by drying. Moreover, the properties (for example, average thickness, active material density, porosity, etc.) of the negative electrode active material layer can be adjusted by performing an appropriate press treatment as necessary.

ここに開示される正極および負極は、正極に含まれる正極活物質の総重量W(mg)と負極に含まれる負極活物質の総重量W(mg)の比(W/W)が、1.2以上1.6以下である。かかる正負極活物質の重量比(W/W)は、例えば、正負極集電体の単位面積あたりに設けられる活物質層(乾燥状態)の質量(目付量)や上記正負極活物質層形成用組成物中の活物質濃度等を適宜調整することによって調整することができる。 The positive electrode and the negative electrode disclosed herein are the ratio of the total weight W P (mg) of the positive electrode active material contained in the positive electrode to the total weight W N (mg) of the negative electrode active material contained in the negative electrode (W P / W N ). Is 1.2 or more and 1.6 or less. The weight ratio (W P / W N ) of the positive and negative electrode active materials is, for example, the mass (weight per unit area) of the active material layer (dried state) provided per unit area of the positive and negative electrode current collector or the positive and negative electrode active materials. It can adjust by adjusting the active material density | concentration etc. in the composition for layer formation suitably.

上記正極および上記負極は、典型的にセパレータを介して対向し得る。セパレータとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース、ポリアミド等の樹脂から成る多孔性シート(フィルム)が挙げられる。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。   The positive electrode and the negative electrode can typically face each other via a separator. Examples of the separator include a porous sheet (film) made of a resin such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Such a porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer).

非水電解液としては、典型的には有機溶媒(非水溶媒)中に支持塩を含有させたものを用いることができる。
非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。具体例として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が例示される。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩を好適に用いることができる。特に好ましい支持塩として、LiPFが挙げられる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下(例えば1.1mol/L)が好ましい。
As the nonaqueous electrolytic solution, typically, an organic solvent (nonaqueous solvent) containing a supporting salt can be used.
As the non-aqueous solvent, various organic solvents such as carbonates, ethers, esters, nitriles, sulfones, lactones and the like used in electrolytes of general lithium ion secondary batteries are used without particular limitation. Can do. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. Such a non-aqueous solvent can be used individually by 1 type or in combination of 2 or more types as appropriate.
As the supporting salt, for example, a lithium salt such as LiPF 6 , LiBF 4 , or LiClO 4 can be suitably used. Particularly preferred support salt include LiPF 6. The concentration of the supporting salt is preferably 0.7 mol / L or more and 1.3 mol / L or less (for example, 1.1 mol / L).

なお、非水電解液中には、上述した支持塩や非水溶媒以外の成分を適宜含有することもできる。かかる任意成分は、例えば、過充電時におけるガス発生量の増加、電池の出力性能の向上、保存性の向上(保存中における容量低下の抑制等)、サイクル特性の向上、初期充放電効率の向上等の目的で使用され得る。一例として、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;リチウムビスオキサレートボレート(LiBOB)、ビニレンカーボネート(VC)の被膜形成剤;分散剤;増粘剤;等の各種添加剤が挙げられる。   In addition, components other than the supporting salt and the non-aqueous solvent described above can be appropriately contained in the non-aqueous electrolyte. Such optional components include, for example, an increase in the amount of gas generated during overcharge, an improvement in battery output performance, an improvement in storage stability (such as suppression of capacity reduction during storage), an improvement in cycle characteristics, and an improvement in initial charge / discharge efficiency. It can be used for such purposes. Examples include gas generating agents such as biphenyl (BP) and cyclohexylbenzene (CHB); film forming agents for lithium bisoxalate borate (LiBOB) and vinylene carbonate (VC); dispersants; thickeners; Is mentioned.

ここで開示される非水電解液二次電池は各種用途に利用可能であるが、優れた入出力特性と高い電池信頼性を両立していること(より具体的には電池抵抗が6mΩ以下であり且つ過充電時の電池温度が110℃以下であること)を特徴とする。従って、かかる特徴を活かして、例えばプラグインハイブリッド自動車(PHV)、ハイブリッド自動車(HV)、電気自動車(EV)等の車両に搭載される駆動用電源として好適に利用し得る。   The non-aqueous electrolyte secondary battery disclosed here can be used for various applications, but has both excellent input / output characteristics and high battery reliability (more specifically, the battery resistance is 6 mΩ or less). And the battery temperature during overcharge is 110 ° C. or lower). Therefore, taking advantage of this feature, for example, it can be suitably used as a driving power source mounted on a vehicle such as a plug-in hybrid vehicle (PHV), a hybrid vehicle (HV), or an electric vehicle (EV).

以下、本発明に関するいくつかの例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the specific examples.

まず、図3、4(表1、2)に示す(003)面半価幅の正極活物質と、図3、4(表1、2)に示すKrBET比表面積の負極活物質とを準備し、かかる正負極活物質を用いて合計36種類の非水電解液二次電池(リチウムイオン二次電池)を構築し、電池抵抗と過充電時の電池温度とを測定した。このとき、正極に含まれる正極活物質の総重量W(mg)と負極に含まれる負極活物質の総重量W(mg)の比(W/W)、即ち正負極活物質の重量比(W/W)は1.4に設定した。 First, a (003) half-width positive electrode active material shown in FIGS. 3 and 4 (Tables 1 and 2) and a KrBET specific surface area negative electrode active material shown in FIGS. 3 and 4 (Tables 1 and 2) were prepared. A total of 36 types of nonaqueous electrolyte secondary batteries (lithium ion secondary batteries) were constructed using such positive and negative electrode active materials, and battery resistance and battery temperature during overcharge were measured. At this time, the ratio (W P / W N ) of the total weight W P (mg) of the positive electrode active material contained in the positive electrode to the total weight W N (mg) of the negative electrode active material contained in the negative electrode, that is, The weight ratio (W P / W N ) was set to 1.4.

具体的には、まず、正極活物質として、(003)面半価幅が図3、4(表1、2)の「正極活物質(003)面半価幅(deg.)」に示す値であるLiNi0.33Co0.33Mn0.33(LNCM)を準備した。かかるLNCMと、導電材としてのABと、バインダとしてのPVDFとを、LNCM:AB:PVDF=92:5:3の質量比でN−メチルピロリドン(NMP)と混合し、正極活物質層形成用スラリーを調製した。かかるスラリーを、長尺状のアルミニウム箔(正極集電体)の両面に帯状に塗布して乾燥し、プレスすることにより、正極集電体上に正極活物質層を備えた正極を作製した。 Specifically, first, as the positive electrode active material, the (003) plane half-value width is a value indicated by “positive electrode active material (003) plane half-value width (deg.)” In FIGS. LiNi 0.33 Co 0.33 Mn 0.33 O 2 (LNCM) was prepared. This LNCM, AB as a conductive material, and PVDF as a binder are mixed with N-methylpyrrolidone (NMP) at a mass ratio of LNCM: AB: PVDF = 92: 5: 3 to form a positive electrode active material layer. A slurry was prepared. The slurry was applied to both sides of a long aluminum foil (positive electrode current collector) in a strip shape, dried, and pressed to prepare a positive electrode having a positive electrode active material layer on the positive electrode current collector.

次に、負極活物質として、KrBET比表面積が図3、4(表1、2)の「負極活物質KrBET(m/g)」に示す値である、アモルファスコートされた黒鉛(C)を準備した。かかるCと、バインダとしてのSBRと、増粘剤としてのCMCとを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用スラリーを調製した。かかるスラリーを、長尺状の銅箔(負極集電体)の両面に帯状に塗布して乾燥し、プレスすることにより、負極集電体上に負極活物質層を備えた負極を作製した。 Next, as the negative electrode active material, an amorphous coated graphite (C) whose KrBET specific surface area is the value shown in “Negative electrode active material KrBET (m 2 / g)” in FIGS. Got ready. C, SBR as a binder, and CMC as a thickener are mixed with ion-exchanged water at a mass ratio of C: SBR: CMC = 98: 1: 1 to obtain a slurry for forming a negative electrode active material layer. Prepared. The slurry was applied in a strip shape on both sides of a long copper foil (negative electrode current collector), dried and pressed to prepare a negative electrode having a negative electrode active material layer on the negative electrode current collector.

上述の方法で作製した正極および負極を、多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のセパレータ2枚を介して長尺方向に重ねあわせ、長尺方向に捲回した後に押しつぶして拉げることで、扁平形状の捲回電極体を作製した。   The positive electrode and the negative electrode produced by the above method were overlapped in the longitudinal direction via two separators having a three-layer structure in which a porous polypropylene layer was formed on both sides of the porous polyethylene layer, and wound in the longitudinal direction. Later, flattened wound electrode bodies were fabricated by crushing and ablating.

次いで、上記捲回電極体を電池ケースの内部に収容し、電池ケースの開口部(非水電解液注入口)から非水電解液を注入して各電池を構築した。ここで、上記非水電解液としては、ECとDMCとEMCとを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを用いた。 Next, the wound electrode body was accommodated in the battery case, and each battery was constructed by injecting a non-aqueous electrolyte from an opening (non-aqueous electrolyte injection port) of the battery case. Here, as the non-aqueous electrolyte, LiPF 6 as a supporting salt was dissolved at a concentration of 1.1 mol / L in a mixed solvent containing EC, DMC, and EMC at a volume ratio of 3: 4: 3. A thing was used.

[電池抵抗の測定]
上記のとおり作製した各電池について、−30℃の温度条件下、1CでSOC30%の充電状態に調整した後、10Cで2秒間の定電流放電を行い、この時の電流(I)−電圧(V)のプロット値の一次近似直線の傾きから電池抵抗(IV抵抗)(mΩ)を求めた。結果を図3(表1)に示す。
ここで、本明細書において「1C」とは、理論容量より予測した電池容量(Ah)を一時間で充電することができる電流値を意味し、例えば電池容量が24Ahの場合は1C=24Aである。
[Measurement of battery resistance]
About each battery produced as mentioned above, after adjusting to a 30% SOC charge condition at 1C under a temperature condition of -30 ° C, a constant current discharge was performed at 10C for 2 seconds, and the current (I) -voltage ( The battery resistance (IV resistance) (mΩ) was determined from the slope of the first-order approximation line of the plot value of V). The results are shown in FIG. 3 (Table 1).
Here, “1C” in this specification means a current value that can charge the battery capacity (Ah) predicted from the theoretical capacity in one hour. For example, when the battery capacity is 24 Ah, 1C = 24A. is there.

[過充電試験]
まず、上記のとおり作製した各電池の外表面に熱電対を張り付けた後、1CでSOC30%の充電状態に調整し、電池温度が−10℃になるまで冷却した。次に、常温(25℃)の温度条件下、10Cの定電流で強制的に充電し続け、過充電により電流遮断(セパレータのシャットダウン)した直後に充電を停止した。その後、各電池の電池温度を経時的に測定し、最高温度を過充電時の電池温度(℃)として記録した。結果を図4(表2)に記す。
[Overcharge test]
First, after attaching a thermocouple to the outer surface of each battery produced as described above, the battery was adjusted to a SOC of 30% at 1 C and cooled until the battery temperature reached −10 ° C. Next, the battery was forcibly charged with a constant current of 10 C under a normal temperature (25 ° C.) temperature condition, and the charge was stopped immediately after the current was interrupted by the overcharge (separator shutdown). Thereafter, the battery temperature of each battery was measured over time, and the maximum temperature was recorded as the battery temperature (° C.) during overcharge. The results are shown in FIG. 4 (Table 2).

図3、4(表1、2)に示すように、正極活物質の(003)面半価幅を0.06〜0.1deg.とし、且つ負極活物質のKrBET比表面積を3.3m/g以上4.7m/g以下とすることで、電池抵抗が低減され、且つ過充電時の電池温度上昇が抑制される傾向があることを確認した。しかし、上記2つのパラメータを上記範囲に設定するのみでは電池抵抗が6mΩより高い電池や過充電時の電池温度が110℃より高い電池があった。 As shown in FIGS. 3 and 4 (Tables 1 and 2), the (003) plane half width of the positive electrode active material is 0.06 to 0.1 deg. In addition, by setting the KrBET specific surface area of the negative electrode active material to 3.3 m 2 / g or more and 4.7 m 2 / g or less, battery resistance tends to be reduced and increase in battery temperature during overcharge tends to be suppressed. I confirmed that there was. However, only by setting the above two parameters within the above range, there were batteries having a battery resistance higher than 6 mΩ and batteries having an overcharged battery temperature higher than 110 ° C.

そこで、正負極中の正極活物質と負極活物質の重量比(W/W)、正極活物質の(003)面半価幅および負極活物質のKrBET比表面積を図5(表3)に示す値に設定した例1〜20にかかる非水電解液二次電池を作製した。なお、特に上述した条件以外は上記図3、4(表1、2)に示した電池と同様の材料およびプロセスにて各例にかかる電池を作製した。そして、各電池について、上記図3、4(表1、2)に示す電池と同様の方法で電池抵抗と過充電時の電池温度を測定した。結果を図5(表3)に示す。 Therefore, the weight ratio (W P / W N ) of the positive electrode active material and the negative electrode active material in the positive and negative electrodes, the (003) plane half-value width of the positive electrode active material, and the KrBET specific surface area of the negative electrode active material are shown in FIG. The non-aqueous-electrolyte secondary battery concerning Examples 1-20 set to the value shown to was produced. In addition, the battery concerning each example was produced with the material and process similar to the battery shown to the said FIGS. 3 and 4 (Table 1, 2) except the conditions mentioned above especially. And about each battery, the battery resistance and the battery temperature at the time of an overcharge were measured by the method similar to the battery shown to the said FIGS. The results are shown in FIG. 5 (Table 3).

図5(表3)に示すように、正極活物質の(003)面半価幅が0.06〜0.1deg.であり、負極活物質のKrBET比表面積が3.3m/g以上4.7m/g以下であり、且つ上記W/Wが1.2以上1.6以下である例1〜例12にかかる電池は、いずれも過充電時の電池温度が110℃以下であり、且つ、電池抵抗が6mΩ以下であった。以上のことから、ここで開示される技術によれば、優れた入出力特性と高い電池信頼性とを両立した非水電解液二次電池を提供することができることを確認した。 As shown in FIG. 5 (Table 3), the (003) plane half-value width of the positive electrode active material is 0.06 to 0.1 deg. Examples 1 to Examples in which the negative electrode active material has a KrBET specific surface area of 3.3 m 2 / g or more and 4.7 m 2 / g or less, and the W P / W N is 1.2 or more and 1.6 or less. In any of the batteries according to No. 12, the battery temperature during overcharging was 110 ° C. or lower, and the battery resistance was 6 mΩ or lower. From the above, according to the technology disclosed herein, it was confirmed that a non-aqueous electrolyte secondary battery having both excellent input / output characteristics and high battery reliability can be provided.

なお、上記正負極活物質の重量比(W/W)を調整することに代えて、正極活物質中に0.5質量%以上1.0質量%以下のタングステンを含有させることによっても、電池抵抗が6mΩ以下であり、且つ過充電時の電池温度が110℃以下である非水電解液二次電池を提供し得ることを確認した(図6(表4)参照)。なお、図6(表4)中の「W濃度(質量%)」とは、正極活物質中のタングステン濃度のことを意味する。 Instead of adjusting the weight ratio (W P / W N ) of the positive and negative electrode active materials, 0.5% by mass or more and 1.0% by mass or less of tungsten may be included in the positive electrode active material. It was confirmed that a non-aqueous electrolyte secondary battery having a battery resistance of 6 mΩ or less and a battery temperature at overcharge of 110 ° C. or less can be provided (see FIG. 6 (Table 4)). Note that the “W concentration (mass%)” in FIG. 6 (Table 4) means the tungsten concentration in the positive electrode active material.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

<本発明の他の形態>
ところで、上述した本発明の実施形態とは異なる観点で、優れた入出力特性と高い信頼性の両立、より具体的には、電池抵抗を6mΩ以下に低減し且つ過充電時の電池温度を110℃以下に抑制し得ることを確認したので、以下に記載する。
<Other forms of the present invention>
By the way, from the viewpoint different from the above-described embodiment of the present invention, both excellent input / output characteristics and high reliability are achieved. More specifically, the battery resistance is reduced to 6 mΩ or less and the battery temperature during overcharge is set to 110. Since it has been confirmed that the temperature can be suppressed to below ℃, it is described below.

まず、図7、8(表5、6)に示す(003)面半価幅の正極活物質と、図7、8(表5、6)に示す濃度のジフルオロリン酸リチウム(LiPO)を含有する非水電解液を用いて合計30個の非水電解液を作成した。ここで、負極活物質としてはKrBET比表面積が5m/gのものを用いた。なお、特に上述した条件以外は図3、4(表1、2)に記した電池と同様の材料およびプロセスにて各非水電解液二次電池を作製した。そして、各電池について、上記例1〜20と同様の方法で電池抵抗と過充電時の電池温度を測定した。結果を図7、8(表5、6)に示す。 First, a (003) half-width positive electrode active material shown in FIGS. 7 and 8 (Tables 5 and 6) and lithium difluorophosphate (LiPO 2 F 2 ) having the concentrations shown in FIGS. 7 and 8 (Tables 5 and 6). A total of 30 non-aqueous electrolytes were prepared using non-aqueous electrolytes containing). Here, a negative electrode active material having a KrBET specific surface area of 5 m 2 / g was used. Each non-aqueous electrolyte secondary battery was manufactured using the same materials and processes as the batteries shown in FIGS. 3 and 4 (Tables 1 and 2) except for the conditions described above. And about each battery, the battery resistance and the battery temperature at the time of an overcharge were measured by the method similar to the said Examples 1-20. The results are shown in FIGS. 7 and 8 (Tables 5 and 6).

図7、8(表5、6)に示すように、正極活物質の(003)面半価幅を0.06〜0.1deg.とし、且つ非水電解液中のLiPO濃度を0.5質量%以上1.5質量%以下とすることで、電池抵抗が低減され、且つ過充電時の電池温度上昇が抑制される傾向があることを確認した。しかし、上記2つのパラメータを上記範囲に設定するのみでは電池抵抗が6mΩより高い電池や過充電時の電池温度が110℃より高い電池があった。 As shown in FIGS. 7 and 8 (Tables 5 and 6), the (003) plane half width of the positive electrode active material is 0.06 to 0.1 deg. And by setting the LiPO 2 F 2 concentration in the non-aqueous electrolyte to 0.5 mass% or more and 1.5 mass% or less, the battery resistance is reduced and the battery temperature rise during overcharging is suppressed. It confirmed that there was a tendency. However, only by setting the above two parameters within the above range, there were batteries having a battery resistance higher than 6 mΩ and batteries having an overcharged battery temperature higher than 110 ° C.

そこで、正極に含まれる正極活物質の総重量W(mg)と電池の構築に用いた非水電解液の重量W(mg)の比(W/W)、正極活物質の(003)面半価幅および非水電解液中のLiPO含有量を図9(表7)に示す値に設定した合計20種類の非水電解液二次電池(サンプル100〜119)を作成した。なお、特に上述した条件以外は上記図7、8(表5、6)に示した電池と同様の材料およびプロセスにて各電池を作製した。そして、各電池について、上記例1〜20と同様の方法で電池抵抗と過充電時の電池温度を測定した。結果を図9(表7)に示す。 Therefore, the ratio (W L / W P ) of the total weight W P (mg) of the positive electrode active material contained in the positive electrode to the weight W L (mg) of the non-aqueous electrolyte used for battery construction, 003) A total of 20 types of non-aqueous electrolyte secondary batteries (samples 100 to 119) in which the half-value width and the LiPO 2 F 2 content in the non-aqueous electrolyte were set to the values shown in FIG. 9 (Table 7). Created. In addition, each battery was produced with the material and process similar to the battery shown to the said FIG.7, 8 (Table 5, 6) except the conditions mentioned above especially. And about each battery, the battery resistance and the battery temperature at the time of an overcharge were measured by the method similar to the said Examples 1-20. The results are shown in FIG. 9 (Table 7).

図9(表7)に示すように、正極活物質の(003)面半価幅を0.06〜0.1deg.とし、非水電解液中のLiPO濃度を0.5質量%以上1.5質量%以下とし、且つ上記W/Wを1.0以上1.5以下とすることで、電池抵抗を6mΩ以下に低減し且つ過充電時の電池温度を110℃以下に抑制することができた。 As shown in FIG. 9 (Table 7), the (003) plane half width of the positive electrode active material is 0.06 to 0.1 deg. And then, the LiPO 2 F 2 concentration of the non-aqueous electrolytic solution was 1.5 wt% or less than 0.5 wt%, and by the W L / W P and 1.0 to 1.5, cell The resistance was reduced to 6 mΩ or less, and the battery temperature during overcharge could be suppressed to 110 ° C. or less.

なお、上記非水電解液重量と正極活物質重量の比(W/W)を調整することに代えて、正極活物質中に0.5質量%以上1.0質量%以下のタングステンを含有させることによっても、電池抵抗が6mΩ以下であり、且つ過充電時の電池温度が110℃以下である非水電解液二次電池を提供し得ることを確認した(図10(表8)参照)。なお、図10(表8)中の「W濃度(質量%)」とは、正極活物質中のタングステン濃度のことを意味する。 Instead of adjusting the ratio of the non-aqueous electrolyte weight and the positive electrode active material weight (W L / W P ), 0.5% by mass or more and 1.0% by mass or less of tungsten is contained in the positive electrode active material. It was also confirmed that the non-aqueous electrolyte secondary battery having a battery resistance of 6 mΩ or less and a battery temperature of 110 ° C. or less during overcharge can be provided even when contained (see FIG. 10 (Table 8)). ). Note that “W concentration (mass%)” in FIG. 10 (Table 8) means the tungsten concentration in the positive electrode active material.

以上、本発明に関する他の形態について説明したが、これらは例示にすぎず、本発明および請求の範囲をかかる他の形態に限定することを意図したものではない。   As mentioned above, although the other form regarding this invention was demonstrated, these are only illustrations and are not intending limiting this invention and a claim to this other form.

Claims (1)

正極活物質を有する正極と、負極活物質を有する負極と、を有する電極体を備える非水電解液二次電池であって、以下の特徴:
前記正極活物質をCuKα線を用いた粉末X線回析して得られるミラー指数(003)面での回析ピークの半価幅が0.06〜0.1deg.以下であること;
クリプトンガスを吸着ガスとして用いた前記負極活物質のBET比表面積が3.3m/g以上4.7m/g以下であること;および
前記正極に含まれる正極活物質の総重量W(mg)と、前記負極に含まれる負極活物質の総重量W(mg)の比(W/W)が1.2以上1.6以下であること;
をいずれも具備する、非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising an electrode body having a positive electrode having a positive electrode active material and a negative electrode having a negative electrode active material, the following features:
The half-value width of the diffraction peak on the Miller index (003) plane obtained by subjecting the positive electrode active material to powder X-ray diffraction using CuKα rays is 0.06 to 0.1 deg. Be:
The negative electrode active material using krypton gas as an adsorption gas has a BET specific surface area of 3.3 m 2 / g or more and 4.7 m 2 / g or less; and the total weight W P of the positive electrode active material contained in the positive electrode ( mg) and the total weight W N (mg) of the negative electrode active material contained in the negative electrode (W P / W N ) is 1.2 or more and 1.6 or less;
A non-aqueous electrolyte secondary battery.
JP2014183180A 2014-09-09 Non-aqueous electrolyte secondary battery Active JP6268537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183180A JP6268537B2 (en) 2014-09-09 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183180A JP6268537B2 (en) 2014-09-09 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2016058214A true JP2016058214A (en) 2016-04-21
JP6268537B2 JP6268537B2 (en) 2018-01-31

Family

ID=

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017217407A1 (en) * 2016-06-13 2019-04-11 日本電気株式会社 Lithium ion secondary battery
JP2019061826A (en) * 2017-09-26 2019-04-18 Tdk株式会社 Lithium ion secondary battery
JP2020113395A (en) * 2019-01-09 2020-07-27 トヨタ自動車株式会社 Method of determining quality of cathode active material for non-aqueous electrolyte secondary battery
CN113437250A (en) * 2021-06-21 2021-09-24 宁德新能源科技有限公司 Electrochemical device and electronic device
CN114730910A (en) * 2020-08-14 2022-07-08 宁德时代新能源科技股份有限公司 Secondary battery, preparation method thereof, battery module comprising secondary battery, battery pack and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201875A (en) * 1989-01-31 1990-08-10 Mitsui Petrochem Ind Ltd polyaniline battery
JPH07201320A (en) * 1993-12-29 1995-08-04 Hitachi Maxell Ltd Lithium battery
JP2005026141A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2012124240A1 (en) * 2011-03-11 2012-09-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2013161562A (en) * 2012-02-02 2013-08-19 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2014011064A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201875A (en) * 1989-01-31 1990-08-10 Mitsui Petrochem Ind Ltd polyaniline battery
JPH07201320A (en) * 1993-12-29 1995-08-04 Hitachi Maxell Ltd Lithium battery
JP2005026141A (en) * 2003-07-04 2005-01-27 Matsushita Electric Ind Co Ltd Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
WO2012124240A1 (en) * 2011-03-11 2012-09-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2013161562A (en) * 2012-02-02 2013-08-19 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2014011064A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Lithium secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017217407A1 (en) * 2016-06-13 2019-04-11 日本電気株式会社 Lithium ion secondary battery
JP7335035B2 (en) 2016-06-13 2023-08-29 日本電気株式会社 lithium ion secondary battery
JP2019061826A (en) * 2017-09-26 2019-04-18 Tdk株式会社 Lithium ion secondary battery
JP6992362B2 (en) 2017-09-26 2022-01-13 Tdk株式会社 Lithium ion secondary battery
JP2020113395A (en) * 2019-01-09 2020-07-27 トヨタ自動車株式会社 Method of determining quality of cathode active material for non-aqueous electrolyte secondary battery
JP7074077B2 (en) 2019-01-09 2022-05-24 トヨタ自動車株式会社 Non-aqueous electrolyte solution Method for determining the quality of positive electrode active material for secondary batteries
CN114730910A (en) * 2020-08-14 2022-07-08 宁德时代新能源科技股份有限公司 Secondary battery, preparation method thereof, battery module comprising secondary battery, battery pack and device
CN114730910B (en) * 2020-08-14 2023-08-29 宁德时代新能源科技股份有限公司 Secondary battery, manufacturing method thereof, battery module, battery pack, and device including secondary battery
US11804590B2 (en) 2020-08-14 2023-10-31 Contemporary Amperex Technology Co., Limited Secondary battery, preparation method thereof, and battery module, battery pack, and apparatus containing secondary battery
CN113437250A (en) * 2021-06-21 2021-09-24 宁德新能源科技有限公司 Electrochemical device and electronic device
CN113437250B (en) * 2021-06-21 2022-06-10 宁德新能源科技有限公司 Electrochemical and electronic devices

Similar Documents

Publication Publication Date Title
JP6098878B2 (en) Non-aqueous electrolyte secondary battery
JP5999442B2 (en) Nonaqueous electrolyte secondary battery
JP5928800B2 (en) Nonaqueous electrolyte secondary battery
JPWO2015111710A1 (en) Non-aqueous secondary battery
JP6086248B2 (en) Non-aqueous electrolyte secondary battery
JP5517007B2 (en) Lithium ion secondary battery
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP6443416B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
WO2013073231A1 (en) Lithium ion secondary battery and method for manufacturing same
JP2014143151A (en) Nonaqueous electrolyte secondary battery
JP2017091886A (en) Nonaqueous electrolyte secondary battery
WO2011024251A1 (en) Nonaqueous electrolyte lithium ion secondary battery
JP6902206B2 (en) Lithium ion secondary battery
JP6208584B2 (en) Nonaqueous electrolyte secondary battery
JP6119641B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JP6120068B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2015210891A (en) Nonaqueous electrolyte secondary battery
JP6493766B2 (en) Lithium ion secondary battery
JP7074077B2 (en) Non-aqueous electrolyte solution Method for determining the quality of positive electrode active material for secondary batteries
JP6189644B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6268537B2 (en) Non-aqueous electrolyte secondary battery
JP2021077531A (en) Non-aqueous electrolyte secondary battery
JP2016058214A (en) Nonaqueous electrolyte secondary battery
JP6202336B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2011181234A (en) Nonaqueous electrolyte type lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R151 Written notification of patent or utility model registration

Ref document number: 6268537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151