[go: up one dir, main page]

JP2013161562A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2013161562A
JP2013161562A JP2012020664A JP2012020664A JP2013161562A JP 2013161562 A JP2013161562 A JP 2013161562A JP 2012020664 A JP2012020664 A JP 2012020664A JP 2012020664 A JP2012020664 A JP 2012020664A JP 2013161562 A JP2013161562 A JP 2013161562A
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
negative electrode
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012020664A
Other languages
Japanese (ja)
Inventor
Yasuo Arishima
康夫 有島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2012020664A priority Critical patent/JP2013161562A/en
Publication of JP2013161562A publication Critical patent/JP2013161562A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery capable of ensuring adequate security by suppressing thermorunaway of a battery due to overcharge, even when the charging current or charging voltage changes.SOLUTION: In a lithium ion secondary battery 22 having an electrode group 21 in which a positive electrode 1 and a negative electrode 2 are arranged with separators 3, 4 being interposed therebetween, a battery can 11 housing the electrode group 21, and a nonaqueous electrolyte injected into the battery can 11, the ratio of the weight A of a positive electrode active material contained in the positive electrode and the weight B of a negative electrode active material contained in the negative electrode satisfies a relation 1.90≥A/B≥1.50, and 2.8-3.2 wt% of cyclohexylbenzene is added to the nonaqueous electrolyte. With such an arrangement, adequate security can be ensured during overcharge even if the charging current changes.

Description

本発明は、例えば車両に搭載されるリチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery mounted on, for example, a vehicle.

リチウムイオン二次電池は他の二次電池と比較してエネルギー密度が高いため、昨今では主にデジタルカメラやノート型パソコン、携帯電話などのポータブル機器に多く使用されている。また近年は環境問題に対応すべく、電気自動車用や電力貯蔵用を目的とする、大型のリチウムイオン二次電池の研究開発が活発に行われている。特に、自動車産業界においては、動力源としてモータを用いる方式の電気自動車や内燃機関とモータとの両方を用いるハイブリッド方式の電気自動車の開発が進められており、その一部はすでに実用化されている。   Since lithium ion secondary batteries have a higher energy density than other secondary batteries, they are now mainly used in portable devices such as digital cameras, notebook computers and mobile phones. In recent years, research and development of large-sized lithium ion secondary batteries for the purpose of electric vehicles and power storage have been actively conducted in order to cope with environmental problems. In particular, in the automobile industry, the development of electric vehicles using a motor as a power source and hybrid electric vehicles using both an internal combustion engine and a motor are underway, some of which have already been put into practical use. Yes.

このリチウムイオン二次電池は、エネルギー密度が高いという利点を有する反面、非水電解液を使用することなどから安全性に対する対応策が必要とされる。特に、車載用の大型リチウムイオン二次電池については、内在するエネルギーが非常に大きいため、より高い安全性と信頼性が求められる。その中でも過充電に関しては、さらに大きなエネルギーが電池内に蓄えられることになるため、十分な対策を施しておくことが重要である。   While this lithium ion secondary battery has an advantage of high energy density, a countermeasure for safety is required because a non-aqueous electrolyte is used. In particular, a large-sized lithium ion secondary battery for in-vehicle use is required to have higher safety and reliability because the inherent energy is very large. Among them, regarding overcharge, it is important to take sufficient countermeasures since a larger amount of energy is stored in the battery.

過充電時の安全性確保を目的として、非水電解液に所定の物質を添加することが行われている。このような物質(添加剤)として、例えば、シクロヘキシルベンゼン(CHB)が公知である(特許文献1)。シクロヘキシルベンゼン(CHB)を添加しておくと、過充電時の正極との反応により、正極表面に被膜が形成され、その結果、電池抵抗が上昇することで電流値が抑制され、電池の熱暴走が回避される。   For the purpose of ensuring safety during overcharge, a predetermined substance is added to the non-aqueous electrolyte. As such a substance (additive), for example, cyclohexylbenzene (CHB) is known (Patent Document 1). When cyclohexylbenzene (CHB) is added, a film is formed on the surface of the positive electrode due to a reaction with the positive electrode during overcharge. As a result, the battery resistance is increased and the current value is suppressed, so that the thermal runaway of the battery Is avoided.

上記シクロヘキシルベンゼン(CHB)のほかに、添加される物質として、ビフェニル(BP)や、フルオロベンゼン(FB)なども公知である(特許文献2、3) 。   In addition to the above cyclohexylbenzene (CHB), biphenyl (BP), fluorobenzene (FB) and the like are also known as added substances (Patent Documents 2 and 3).

特許第3247103号公報Japanese Patent No. 3247103 特許第3354057号公報Japanese Patent No. 3354057 特許第3061759号公報Japanese Patent No. 3061759

しかしながら、上記添加剤のみでは、充電電流や充電電圧などの様々な条件に対応して、十分な安全性を確保することは困難である。
本発明は、上記問題点に鑑み、充電電流や充電電圧などが変化した場合においても、過充電による電池の熱暴走を抑制し、十分な安全性を確保可能なリチウムイオン二次電池を提供することを課題とする。
However, it is difficult to ensure sufficient safety with only the above additives in response to various conditions such as charging current and charging voltage.
In view of the above problems, the present invention provides a lithium ion secondary battery that can prevent thermal runaway of a battery due to overcharging and ensure sufficient safety even when a charging current or a charging voltage changes. This is the issue.

上記課題に対して、本発明は、正極電極と負極電極をセパレータを介して配した電極群と、電極群を収納する電池缶と、電池缶内に注入される非水電解液とを有するリチウムイオン二次電池であって、正極電極に含まれる正極活物質の重量Aと負極電極に含まれる負極活物質の重量Bとの比が、1.90≧A/B≧1.50の関係にあり、かつ、非水電解液にシクロヘキシルベンゼン(CHB)が2.8重量%から3.2重量%添加されていることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides a lithium having an electrode group in which a positive electrode and a negative electrode are arranged via a separator, a battery can containing the electrode group, and a non-aqueous electrolyte injected into the battery can. An ion secondary battery, wherein the ratio of the weight A of the positive electrode active material contained in the positive electrode to the weight B of the negative electrode active material contained in the negative electrode has a relationship of 1.90 ≧ A / B ≧ 1.50, and A feature is that cyclohexylbenzene (CHB) is added to the non-aqueous electrolyte from 2.8 wt% to 3.2 wt%.

本発明によれば、充電電流や充電電圧の変化にも対応して、過充電による電池の熱暴走を制御し、安全性を確保することができる。   According to the present invention, it is possible to control the thermal runaway of a battery due to overcharging and to ensure safety in response to changes in charging current and charging voltage.

本発明の一実施形態であるリチウムイオン二次電池の扁平形捲回電極群の分解斜視図。The disassembled perspective view of the flat wound electrode group of the lithium ion secondary battery which is one Embodiment of this invention. 本発明の一実施形態であるリチウムイオン二次電池の分解斜視図。The disassembled perspective view of the lithium ion secondary battery which is one Embodiment of this invention. 本発明の一実施形態であるリチウムイオン二次電池の外観斜視図。1 is an external perspective view of a lithium ion secondary battery according to an embodiment of the present invention. 本発明の一実施形態であるリチウムイオン二次電池の電池作製工程のフローチャート。The flowchart of the battery preparation process of the lithium ion secondary battery which is one Embodiment of this invention.

以下、図1〜図4を参照して、本発明のリチウムイオン二次電池の実施形態について説明する。   Hereinafter, with reference to FIGS. 1-4, embodiment of the lithium ion secondary battery of this invention is described.

図1は、本発明の一実施形態であるリチウムイオン二次電池の扁平形捲回電極群の分解斜視図である。扁平形捲回電極群21は、一定幅の正極未塗工部1aを有する正極電極1と一定幅の負極未塗工部2aを有する負極電極2を、セパレータ3、およびセパレータ4を介して、互いの未塗工部が逆になるように配して捲回した構成を有する。   FIG. 1 is an exploded perspective view of a flat wound electrode group of a lithium ion secondary battery according to an embodiment of the present invention. The flat wound electrode group 21 includes a positive electrode 1 having a constant width positive electrode uncoated portion 1a and a negative electrode 2 having a constant width negative electrode uncoated portion 2a through a separator 3 and a separator 4. It has the structure which arranged so that a mutual uncoated part might be reversed and wound.

<正極電極の作製>
正極活物質としてリチウム遷移金属複合酸化物と、導電助剤として鱗片状黒鉛と、結着剤としてポリフッ化ビニリデン(PVDF)とを重量比85:10:5で混合し、これに分散溶媒のN−メチルピロリドン(NMP)を添加、混練したスラリを、厚さ20μmのアルミニウム箔の両面に塗工した。その後、乾燥、プレス、裁断することにより、正極塗工部1bの幅が80mm、電極長が4mの正極1を得た。なお、アルミニウム箔の長尺方向の片側端部には、連続して形成した正極未塗工部1aを配し、その部分を正極リードとした。
<Preparation of positive electrode>
A lithium transition metal composite oxide as a positive electrode active material, scaly graphite as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder are mixed at a weight ratio of 85: 10: 5, and this is mixed with N as a dispersion solvent. -A slurry in which methylpyrrolidone (NMP) was added and kneaded was applied to both sides of an aluminum foil having a thickness of 20 µm. Then, the positive electrode 1 whose width | variety of the positive electrode coating part 1b is 80 mm and whose electrode length is 4 m was obtained by drying, pressing, and cutting. In addition, the positive electrode uncoated part 1a formed continuously was arranged in the one side edge part of the elongate direction of aluminum foil, and the part was used as the positive electrode lead.

<負極電極の作製>
負極活物質として黒鉛系粉末、結着剤としてPVDFを添加し、これに分散溶媒のNMPを添加、混練したスラリを、厚さ10μmの圧延銅箔の両面に塗工した。その後乾燥、プレス、裁断することにより、負極塗工部2bの幅が84mm、電極長が4.4mの負極電極2を得た。なお、圧延銅箔の長尺方向の片側端部には、連続して形成した負極未塗工部2aを配し、その部分を負極リードとした。
<Preparation of negative electrode>
A graphite powder as a negative electrode active material and PVDF as a binder were added, NMP as a dispersion solvent was added thereto, and a kneaded slurry was applied to both surfaces of a rolled copper foil having a thickness of 10 μm. Thereafter, drying, pressing, and cutting were performed to obtain a negative electrode 2 with a negative electrode coating portion 2b having a width of 84 mm and an electrode length of 4.4 m. In addition, the negative electrode uncoated part 2a formed continuously was arranged in the one side edge part of the elongate direction of rolled copper foil, and the part was made into the negative electrode lead.

<電池組立>
上記作製した正極電極1と負極電極2を、これら両極が直接接触しないように幅90mm、厚さ30μmのポリエチレン製微多孔性セパレータ3およびセパレータ4と共に捲回して扁平形捲回電極群21を作製した。扁平形捲回電極群は、正極電極1、負極電極2、セパレータ3、セパレータ4とも長尺方向に10Nの荷重をかけて伸展しつつ、電極端面およびセパレータ端面が一定位置になるように蛇行制御しながら作製した。扁平形捲回電極群21の中心には、ポリプロピレン製微多孔性セパレータ3およびセパレータ4を一層以上配した。このとき、正極未塗工部1aと負極未塗工部2aとが、それぞれ扁平形捲回電極群21の互いに反対側の端部に(捲回軸方向一方側と他方側に分かれて)位置するようにした。
<Battery assembly>
The produced positive electrode 1 and the negative electrode 2 are wound together with a polyethylene microporous separator 3 and a separator 4 having a width of 90 mm and a thickness of 30 μm so that the two electrodes are not in direct contact with each other, thereby producing a flat wound electrode group 21. did. In the flat wound electrode group, the positive electrode 1, the negative electrode 2, the separator 3, and the separator 4 are stretched by applying a load of 10 N in the longitudinal direction, and meander control is performed so that the electrode end face and the separator end face are in a fixed position. While making. In the center of the flat wound electrode group 21, one or more polypropylene microporous separators 3 and separators 4 are arranged. At this time, the positive electrode uncoated portion 1a and the negative electrode uncoated portion 2a are respectively positioned at opposite ends of the flat wound electrode group 21 (divided into one side and the other side in the winding axis direction). I tried to do it.

図2は、本発明の一実施形態であるリチウムイオン二次電池の分解斜視図である。注液孔10を配した電池蓋9には負極外部端子7と正極外部端子8をあらかじめ接続し、負極外部端子7と負極集電板5を電気的に導通させ、正極外部端子8と正極集電板6も電気的に導通するよう作製した。正極未塗工部1aを正極集電板6と超音波溶接により接合し、負極未塗工部2aと負極集電板5とも同様に接合した。その後、電池蓋部分を取り付けた扁平形捲回電極群21を電池容器11内に挿入した。   FIG. 2 is an exploded perspective view of a lithium ion secondary battery according to an embodiment of the present invention. A negative electrode external terminal 7 and a positive electrode external terminal 8 are connected in advance to the battery lid 9 provided with the liquid injection hole 10, and the negative electrode external terminal 7 and the negative electrode current collector plate 5 are electrically connected to each other. The electric plate 6 was also made to be electrically conductive. The positive electrode uncoated portion 1a was joined to the positive electrode current collector plate 6 by ultrasonic welding, and the negative electrode uncoated portion 2a and the negative electrode current collector plate 5 were joined in the same manner. Thereafter, the flat wound electrode group 21 to which the battery lid portion was attached was inserted into the battery container 11.

扁平形捲回電極群21全体を浸潤可能な所定量の非水電解液を注液孔10から電池容器11内に注入した後、注液孔10を密閉することによりリチウムイオン二次電池22を完成させた。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いた。そして、過充電対策の添加剤として、シクロヘキシルベンゼン(CHB)を加えた。 After injecting a predetermined amount of non-aqueous electrolyte that can infiltrate the entire flat wound electrode group 21 into the battery container 11 from the injection hole 10, the injection hole 10 is sealed, whereby the lithium ion secondary battery 22 is sealed. Completed. In the non-aqueous electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) was added to a mixed solution in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2. What was melt | dissolved in the density | concentration of was used. Then, cyclohexylbenzene (CHB) was added as an additive for overcharge countermeasures.

図3は、本発明の一実施形態であるリチウムイオン二次電池の外観斜視図である。電池容器11を電池蓋9で密閉したリチウムイオン二次電池22の外観では負極外部端子7と正極外部端子8、注液孔10が見とめられる。   FIG. 3 is an external perspective view of a lithium ion secondary battery according to an embodiment of the present invention. In the appearance of the lithium ion secondary battery 22 in which the battery container 11 is sealed with the battery lid 9, the negative electrode external terminal 7, the positive electrode external terminal 8, and the liquid injection hole 10 are found.

図4は、本発明の一実施形態であるリチウムイオン二次電池の電池作製工程のフローチャートである。電極作製については、混練、塗工、プレス、スリットの順に行い、電極原反までを作製する。混練は、活物質と導電助剤および結着剤を所定の重量比で混合し、これに分散溶媒を添加して所定の固形分濃度、粘度に調整したスラリを作製する。塗工は、所定厚さの金属箔基材の両面に前記スラリを、所定の幅および所定の重量だけ塗布し、その後溶媒のみを乾燥により除去することで、塗工後電極を作製する。プレスは、前記塗工後電極を所定の厚さまでロールプレスにより圧縮することで、プレス後電極を作製する。スリットは、前記プレス後電極を、所定の塗工部幅、および所定の未塗工部幅に裁断し、電極原反を作製する。   FIG. 4 is a flowchart of a battery manufacturing process of a lithium ion secondary battery according to an embodiment of the present invention. For electrode preparation, kneading, coating, pressing, and slitting are performed in this order to prepare the electrode stock. For kneading, an active material, a conductive additive and a binder are mixed at a predetermined weight ratio, and a dispersion solvent is added thereto to prepare a slurry adjusted to a predetermined solid content concentration and viscosity. In the coating, the slurry is applied to both surfaces of a metal foil substrate having a predetermined thickness by a predetermined width and a predetermined weight, and then only the solvent is removed by drying, thereby producing an electrode after coating. In the pressing, the post-pressing electrode is produced by compressing the post-coating electrode to a predetermined thickness by a roll press. The slit cuts the post-pressing electrode into a predetermined coated part width and a predetermined uncoated part width to produce an original electrode fabric.

その後、電極原反を用いて、捲回、集電板溶接、缶挿入、缶溶接、注液の工程を経て、リチウムイオン二次電池を作製する。捲回工程では、正極と負極を、両極が直接接触しないように、セパレータを介して、共に捲回して捲回電極群を作製する。また、電極端面およびセパレータ端面が一定位置になるように蛇行制御しながら、正極未塗工部と負極未塗工部とが、捲回電極群の互いに反対側の端部に位置するように作製する。
集電板溶接工程では、捲回電極群の互いに反対側の端部に位置する正極未塗工部、および負極未塗工部に、それぞれ正極集電板、負極集電板を超音波溶接により接合する。正極集電板、負極集電板は、予め蓋部分において、正極外部端子、および負極外部端子にそれぞれ接続されている。
缶挿入工程と、次の缶溶接工程では、正極集電板、および負極集電板を含む蓋部分を取り付けた、捲回電極群を電池容器内に挿入し、蓋部分と電池容器をレーザー溶接により封止する。注液工程では、電池容器内に、所定量の非水電解液を蓋部分に設けられた注液孔より注入した後、注液孔をレーザー溶接により密閉し、リチウムイオン二次電池を作製する。
Then, a lithium ion secondary battery is produced through the process of winding, current collector plate welding, can insertion, can welding, and liquid injection using an electrode fabric. In the winding process, the positive electrode and the negative electrode are wound together through a separator so that the two electrodes do not directly contact each other, thereby producing a wound electrode group. In addition, while controlling the meandering so that the electrode end face and the separator end face are in a fixed position, the positive electrode uncoated part and the negative electrode uncoated part are prepared so as to be positioned at the opposite ends of the wound electrode group. To do.
In the current collector plate welding step, the positive electrode current collector plate and the negative electrode current collector plate are ultrasonically welded to the positive electrode uncoated portion and the negative electrode uncoated portion located at the opposite ends of the wound electrode group, respectively. Join. The positive electrode current collector plate and the negative electrode current collector plate are previously connected to the positive electrode external terminal and the negative electrode external terminal in advance in the lid portion.
In the can insertion step and the next can welding step, the wound electrode group with the lid portion including the positive electrode current collector plate and the negative electrode current collector plate attached is inserted into the battery container, and the lid part and the battery container are laser welded. Seal with. In the liquid injection process, a predetermined amount of nonaqueous electrolyte is injected into the battery container from the liquid injection hole provided in the lid, and then the liquid injection hole is sealed by laser welding to produce a lithium ion secondary battery. .

本発明は、上記実施形態によって制限されるものでない。角型リチウムイオン二次電池、円筒型リチウムイオン二次電池、いずれを用いてもよい。また、バインダとしてもPVDFを例示したが、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン等の重合体及びこれらの混合体などを使用するようにしてもよい。   The present invention is not limited by the above embodiment. Either a square lithium ion secondary battery or a cylindrical lithium ion secondary battery may be used. Moreover, although PVDF was illustrated also as a binder, polytetrafluoroethylene (PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, Polymers such as vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof may be used.

また、本実施形態では、EC、DMCの混合溶液中に、LiPFを溶解した非水電解液を例示したが、一般的なリチウム塩を電解質とし、これを有機溶媒に溶解した非水電解液を用いるようにしてもよく、本発明は用いられるリチウム塩や有機溶媒には特に制限されない。例えば、電解質としては、LiClO、LiAsF、LiBF、LiB(C、CHSOLi、CFSOLi等やこれらの混合物を用いることができる。また、有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトニル等またはこれら2種類以上の混合溶媒を用いるようにしてもよく、混合配合比についても制限されるものではない。 Further, in the present embodiment, a nonaqueous electrolyte solution in which LiPF 6 is dissolved in a mixed solution of EC and DMC is exemplified, but a nonaqueous electrolyte solution in which a general lithium salt is used as an electrolyte and this is dissolved in an organic solvent. The present invention is not particularly limited to the lithium salt or organic solvent used. For example, as the electrolyte, LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, or a mixture thereof can be used. Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, Diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propiontonyl, etc., or a mixed solvent of two or more of these may be used, and the mixing ratio is not limited.

次に、上述した本実施形態に従って作製した角型リチウムイオン二次電池22の実施例について説明する。なお、比較のために作製した比較例についても併記する。   Next, examples of the prismatic lithium ion secondary battery 22 manufactured according to the above-described embodiment will be described. A comparative example prepared for comparison is also shown.

実施例として作製した角型リチウムイオン二次電池の仕様を下表に示す。

Figure 2013161562
The specifications of the prismatic lithium ion secondary battery produced as an example are shown in the table below.
Figure 2013161562

ここで、重量比は、正極活物質の重量Aと負極活物質の重量Bとの比A/Bであり、電解液量は(%)は、電極群21の総空孔に対する非水電解液の注入量である。ここで、電極群21の総空孔は、正極電極1、負極電極2、およびセパレータ3、4、それぞれの空孔を合計したものである。
そして、CHB添加量(wt%)は、非水電解液からCHBとその他の添加剤を除いた電解液量を100%とした場合のCHBの添加量である。すなわち、例えば、CHB添加量(wt%)が3(wt%)とは、非水電解液からCHBとその他の添加剤を除いた電解液量を100%としてCHBを3wt%加えたことを意味し、合計で103%になる。
Here, the weight ratio is the ratio A / B between the weight A of the positive electrode active material and the weight B of the negative electrode active material, and the amount of electrolyte is (%) is a non-aqueous electrolyte with respect to the total pores of the electrode group 21. The injection amount. Here, the total holes of the electrode group 21 are the total of the holes of the positive electrode 1, the negative electrode 2, and the separators 3 and 4.
The CHB addition amount (wt%) is the CHB addition amount when the amount of the electrolyte solution obtained by removing CHB and other additives from the non-aqueous electrolyte solution is 100%. That is, for example, a CHB addition amount (wt%) of 3 (wt%) means that 3 wt% of CHB was added with the amount of the electrolyte solution obtained by removing CHB and other additives from the nonaqueous electrolyte solution as 100%. And the total is 103%.

比較例として作製した角型リチウムイオン二次電池の仕様を下表に示す。

Figure 2013161562
The specifications of the prismatic lithium ion secondary battery produced as a comparative example are shown in the table below.
Figure 2013161562

上記作製した電池について、過充電試験結果(充電電流変更)、および電池のエネルギー密度を下表に示す。

Figure 2013161562
About the produced battery, an overcharge test result (charging current change) and the energy density of the battery are shown in the table below.
Figure 2013161562

この結果から明らかなように、本発明のリチウムイオン二次電池としては、条件(1)正極活物質の重量Aと負極活物質の重量Bとの比が、1.90≧A/B≧1.50の関係にあり、かつ、条件(2)非水電解液にシクロヘキシルベンゼン(CHB)が2.8重量%から3.2重量%添加されていることが好適である。
前者の条件(1)については、負極活物質の充填量が正極活物質の充填量に対して一定程度以下である場合には、過充電時に正極から放出されるリチウムイオンが、負極上で金属リチウムとして析出し短絡が生じるリスクが増加するためであると考えられる。また、後者の条件(2)については、添加量3.0重量%に対して、誤差0.2重量%を想定したものである。
As is clear from this result, the lithium ion secondary battery of the present invention has a condition (1) the ratio of the positive electrode active material weight A to the negative electrode active material weight B is 1.90 ≧ A / B ≧ 1.50. And (2) cyclohexyl benzene (CHB) is preferably added to the non-aqueous electrolyte from 2.8 wt% to 3.2 wt%.
As for the former condition (1), when the filling amount of the negative electrode active material is not more than a certain level with respect to the filling amount of the positive electrode active material, lithium ions released from the positive electrode during overcharge are metal on the negative electrode. This is considered to be because the risk of precipitation as lithium and short circuiting increases. The latter condition (2) assumes an error of 0.2% by weight with respect to the added amount of 3.0% by weight.

比較例1、2では、正極活物質の重量Aと負極活物質の重量Bの比A/Bが2.10と2.00であり、重量比(A/B)の上限値である1.90よりも大きい値となっている。したがって、比較例1では、充電電流30A、150Aの両方で破裂、発火に至り、比較例2では、充電電流30Aで破裂、発火に至る試験結果となった。
そして、比較例3、4では、シクロヘキシルベンゼン(CHB)の添加量が2.0と1.0であり、CHB添加量の下限値である2.8重量%よりも小さい値となっている。したがって、比較例3、4では、充電電流150Aの両方で破裂、発火に至る試験結果となった。
これにより、充電電流の変動に対して、十分な安全性を確保するためには、正極活物質の重量Aと負極活物質の重量Bの比A/B、およびシクロヘキシルベンゼン(CHB)添加量の両者を適正にする必要があり、これらを上記した条件(1)、(2)とすることによって、充電電流が変化した場合においても、過充電での十分な安全性を確保できる。
In Comparative Examples 1 and 2, the ratio A / B between the weight A of the positive electrode active material and the weight B of the negative electrode active material is 2.10 and 2.00, which is the upper limit of the weight ratio (A / B). The value is larger than 90. Therefore, in Comparative Example 1, the test results resulted in rupture and ignition at both charging currents 30A and 150A, and in Comparative Example 2, the test result resulted in rupture and ignition at the charging current 30A.
In Comparative Examples 3 and 4, the addition amount of cyclohexylbenzene (CHB) is 2.0 and 1.0, which is smaller than the lower limit value of 2.8% by weight of the CHB addition amount. Therefore, in Comparative Examples 3 and 4, the test results that resulted in rupture and ignition at both charging currents of 150A.
Thus, in order to ensure sufficient safety against fluctuations in charging current, the ratio A / B of the weight A of the positive electrode active material to the weight B of the negative electrode active material and the amount of cyclohexylbenzene (CHB) added It is necessary to make both appropriate, and by setting these to the above-mentioned conditions (1) and (2), sufficient safety in overcharging can be ensured even when the charging current changes.

さらに本発明のリチウムイオン二次電池としては、非水電解液の注入量が、電極群の総空孔に対して、140%以上、160%以下であることが好適である。非水電解液の注入量が少ない場合には、実施例7に見られるように、充電電流150Aでの試験結果が発煙に至った。これは、注入量が少ないために、シクロヘキシルベンゼン(CHB)の絶対量が不足したこと、および非水電解液による熱吸収の効果が減少したことに起因している。また注入量が多い場合には、電池重量が増加し、エネルギー密度が低下してしまう。なお、実施例1〜6では、電池温度が100℃から130℃、実施例7では、電池温度が300℃になった。   Furthermore, in the lithium ion secondary battery of the present invention, it is preferable that the injection amount of the non-aqueous electrolyte is 140% or more and 160% or less with respect to the total vacancies of the electrode group. When the injection amount of the non-aqueous electrolyte was small, as seen in Example 7, the test result at a charging current of 150 A resulted in smoke generation. This is because the amount of cyclohexylbenzene (CHB) is insufficient due to the small injection amount, and the effect of heat absorption by the non-aqueous electrolyte is reduced. Moreover, when there is much injection amount, a battery weight will increase and an energy density will fall. In Examples 1 to 6, the battery temperature was 100 ° C. to 130 ° C., and in Example 7, the battery temperature was 300 ° C.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 正極電極
1a 正極未塗工部
1b 正極塗工部
2 負極電極
2a 負極未塗工部
2b 負極塗工部
3 セパレータ
4 セパレータ
5 負極集電板
6 正極集電板
7 負極外部端子
8 正極外部端子
9 電池蓋
10 注液孔
11 電池容器
21 扁平形捲回電極群
22 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Positive electrode uncoated part 1b Positive electrode coated part 2 Negative electrode 2a Negative electrode uncoated part 2b Negative electrode coated part 3 Separator 4 Separator 5 Negative electrode current collector plate 6 Positive electrode current collector plate 7 Negative electrode external terminal 8 Positive electrode external terminal 9 Battery lid 10 Injection hole 11 Battery container 21 Flat wound electrode group 22 Lithium ion secondary battery

Claims (2)

正極電極と負極電極をセパレータを介して配した電極群と、該電極群を収納する電池缶と、該電池缶内に注入される非水電解液とを有するリチウムイオン二次電池であって、
前記正極電極に含まれる正極活物質の重量Aと前記負極電極に含まれる負極活物質の重量Bとの比が、1.90≧A/B≧1.50の関係にあり、かつ、前記非水電解液にシクロヘキシルベンゼンが2.8重量%から3.2重量%添加されていることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having an electrode group in which a positive electrode and a negative electrode are arranged via a separator, a battery can containing the electrode group, and a non-aqueous electrolyte injected into the battery can,
The ratio of the weight A of the positive electrode active material contained in the positive electrode to the weight B of the negative electrode active material contained in the negative electrode is in a relationship of 1.90 ≧ A / B ≧ 1.50, and the non-aqueous electrolyte contains A lithium ion secondary battery, wherein cyclohexylbenzene is added in an amount of 2.8 wt% to 3.2 wt%.
前記非水電解液の注入量が、前記電極群の総空孔に対して、140%以上、160%以下であることを特徴とする請求項1記載のリチウムイオン二次電池。   2. The lithium ion secondary battery according to claim 1, wherein an injection amount of the non-aqueous electrolyte is 140% or more and 160% or less with respect to a total number of vacancies of the electrode group.
JP2012020664A 2012-02-02 2012-02-02 Lithium ion secondary battery Pending JP2013161562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020664A JP2013161562A (en) 2012-02-02 2012-02-02 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020664A JP2013161562A (en) 2012-02-02 2012-02-02 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2013161562A true JP2013161562A (en) 2013-08-19

Family

ID=49173678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020664A Pending JP2013161562A (en) 2012-02-02 2012-02-02 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2013161562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058214A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN112540297A (en) * 2020-11-10 2021-03-23 中车长春轨道客车股份有限公司 Method for researching overcharge safety redundancy boundary of lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015155A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Lithium secondary battery
JP2005259680A (en) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery
JP2006173099A (en) * 2004-11-19 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008501220A (en) * 2004-05-28 2008-01-17 エルジー・ケム・リミテッド 4.35V or higher lithium secondary battery
JP2010034024A (en) * 2008-06-25 2010-02-12 Hitachi Maxell Ltd Lithium-ion secondary battery
JP2010113804A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2011192541A (en) * 2010-03-15 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015155A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Lithium secondary battery
JP2005259680A (en) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp Non-aqueous electrolyte secondary battery
JP2008501220A (en) * 2004-05-28 2008-01-17 エルジー・ケム・リミテッド 4.35V or higher lithium secondary battery
JP2006173099A (en) * 2004-11-19 2006-06-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2010034024A (en) * 2008-06-25 2010-02-12 Hitachi Maxell Ltd Lithium-ion secondary battery
JP2010113804A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2011192541A (en) * 2010-03-15 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058214A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN112540297A (en) * 2020-11-10 2021-03-23 中车长春轨道客车股份有限公司 Method for researching overcharge safety redundancy boundary of lithium ion battery
CN112540297B (en) * 2020-11-10 2024-06-11 中车长春轨道客车股份有限公司 Method for researching overcharge safety redundancy boundary of lithium ion battery

Similar Documents

Publication Publication Date Title
JP5417241B2 (en) Rectangular lithium ion secondary battery and method for manufacturing prismatic lithium ion secondary battery
JP6439838B2 (en) Nonaqueous electrolyte secondary battery
JP7231188B2 (en) Manufacturing method of lithium ion battery
US20160043373A1 (en) Lithium-ion secondary cell and method for manufacturing same
JP5300274B2 (en) Lithium secondary battery
JP5420888B2 (en) battery
JPWO2014192094A1 (en) Lithium ion secondary battery
CN110870106B (en) Method for manufacturing secondary battery
CN105591148B (en) Rechargeable nonaqueous electrolytic battery
JP2018060599A (en) Square secondary battery
JP5923431B2 (en) Lithium ion secondary battery
JP2013073809A (en) Lithium ion secondary battery
JP6106774B2 (en) Prismatic lithium-ion battery
WO2019123932A1 (en) Positive electrode for lithium ion secondary cell, and lithium ion secondary cell using same
JP2017021986A (en) Nonaqueous secondary battery
JP6216203B2 (en) Winding type secondary battery
JP5882697B2 (en) Prismatic lithium-ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2013161562A (en) Lithium ion secondary battery
JP5720411B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2004241222A (en) Manufacturing method of non-aqueous electrolyte battery
JP2012074327A (en) Lithium ion secondary battery
JP2020144978A (en) Negative electrode for nonaqueous lithium ion secondary battery and nonaqueous lithium ion secondary battery using the same
CN111213277A (en) Non-aqueous electrolyte secondary battery
JP4211439B2 (en) Method for selecting composite oxide for positive electrode active material of lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202