[go: up one dir, main page]

JP2016012122A - フォトマスク、光学素子アレイの製造方法、光学素子アレイ - Google Patents

フォトマスク、光学素子アレイの製造方法、光学素子アレイ Download PDF

Info

Publication number
JP2016012122A
JP2016012122A JP2015086265A JP2015086265A JP2016012122A JP 2016012122 A JP2016012122 A JP 2016012122A JP 2015086265 A JP2015086265 A JP 2015086265A JP 2015086265 A JP2015086265 A JP 2015086265A JP 2016012122 A JP2016012122 A JP 2016012122A
Authority
JP
Japan
Prior art keywords
optical element
light transmittance
region
photomask
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015086265A
Other languages
English (en)
Inventor
関根 康弘
Yasuhiro Sekine
康弘 関根
真梨子 古田
Mariko Furuta
真梨子 古田
純 岩田
Jun Iwata
純 岩田
杏平 渡辺
Kyohei Watanabe
杏平 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015086265A priority Critical patent/JP2016012122A/ja
Priority to US14/727,111 priority patent/US9703015B2/en
Priority to CN201510300461.5A priority patent/CN105301677A/zh
Publication of JP2016012122A publication Critical patent/JP2016012122A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

【課題】 所望の形状の光学素子を得る。【解決手段】 第1光学素子と、第1方向に第1光学素子に隣接して配された第2光学素子と、を含む光学素子アレイ用のフォトマスクであって、フォトマスクの光透過率分布は、第1光学素子を形成するための第1領域と、第2光学素子を形成するための第2領域と、第1領域と第2領域との間の第3領域と、を有し、第1領域の端部における第1光透過率と、端部と反対側で、第1領域と第3領域との境界である別の端部における、第1光透過率よりも高い光透過率を有する第2光透過率と、第2領域と第3領域との境界である端部における第3光透過率と、端部と反対側の第2領域の別の端部における、第3光透過率よりも高い光透過率を有する第4光透過率と、を有し、第1方向に沿ったフォトマスクの光透過率分布は、第3領域において、第2光透過率と第3光透過率とを結ぶ線分よりも、高い光透過率を有する。【選択図】 図1

Description

本発明は、フォトマスクの作製に関するものであり、特に、光学素子を形成するためのフォトマスクの作製に関する。
撮像装置用の光学素子として、マイクロレンズが知られている。撮像装置において、光電変換素子が配列する撮像領域では、中心部に比べて周辺部に入射する光の入射角度が大きくなるため、周辺部に位置するマイクロレンズの集光特性が中心部のそれと比べて低下する場合があった。特許文献1には、撮像領域の中心部にある半球状のマイクロレンズに対して、周辺部にはティアドロップ型のマイクロレンズを設けることにより、周辺部におけるマイクロレンズの集光特性の損失を低減する構成が開示されている。
また、特許文献2には、面積階調によるフォトマスクを使用することで任意の形状のマイクロレンズを形成する方法が開示されている。
特開2007−335723号公報 特開2005−258349号公報
特許文献1に記載のティアドロップ型のような、半球ではない形状のマイクロレンズアレイ(光学素子アレイ)を形成するにあたり、特許文献2に記載の方法を用いることが考えられる。しかし、本発明者らは、特許文献2に記載の方法では、半球ではない形状の光学素子が隣接する部分において、所望の光学素子の形状が得られないことを見出した。
そこで、本発明においては、所望の形状の光学素子が得られるフォトマスク、光学素子アレイの製造方法等を提供することを目的とする。
本発明のフォトマスクは、第1方向と前記第1方向に交差する第2方向を含む第1面に底面が配された第1光学素子と、前記第1面に底面が配され、前記第1方向に沿って前記第1光学素子と隣接して配された第2光学素子と、を含む光学素子アレイ用のフォトマスクであって、前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第1光学素子を形成するための第1領域と、前記第2光学素子を形成するための第2領域と、前記第1領域と前記第2領域との間の第3領域と、を有し、前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第1領域の端部における第1光透過率と、前記端部と反対側で、前記第1領域と前記第3領域との境界である別の端部における、前記第1光透過率よりも高い光透過率を有する第2光透過率と、前記第2領域と前記第3領域との境界である端部における第3光透過率と、前記端部と反対側の前記第2領域の別の端部における、前記第3光透過率よりも高い光透過率を有する第4光透過率と、を有し、前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第3領域において、前記第2光透過率と前記第3光透過率とを結ぶ線分よりも、高い光透過率を有することを特徴とするフォトマスク。
本発明によれば、所望の形状の光学素子が得られるフォトマスク、光学素子アレイの製造方法等を提供することができる。
第1実施形態の光学素子を説明するための平面、および断面模式図である。 第1実施形態のフォトマスクを説明するための平面模式図である。 第1実施形態の光学素子を説明するための平面、および断面模式図である。 第1実施形態を説明するための図である。 第2実施形態の光学素子を説明するための平面、および断面模式図である。 第3実施形態の光学素子を説明するための平面、および断面模式図である。 第4実施形態の光学素子を説明するための平面、および断面模式図である。 第5実施形態の光学素子を説明するための断面模式図である。 第6実施形態の光学素子を説明するための断面模式図である。 第1実施形態の光学素子を用いた光電変換装置の製造方法を説明するための図である。 本願発明に係る光学素子を説明するための図である。
本開示の光学素子アレイ用のフォトマスクについて、複数の実施形態を用いて説明を行う。各実施形態は、適宜変更可能であり、組み合わせ可能である。本開示の光学素子アレイ用のフォトマスクにて形成された光学素子アレイは、光電変換装置や表示装置、それらを用いた撮像システムや表示システムに適用可能である。
以下の説明において、光学素子アレイの中心Oを通るX軸方向(第1方向)とY軸方向(第2方向)とZ軸方向(第3方向)を基準として用いる。しかし、第1方向は、例えば、X軸方向から角度θ1(θ1>0)だけ傾いた方向でもよい。つまり、光学素子が配置された領域(アレイ領域)の中央から外周へ放射する任意の方向を第1方向とし、それに交差する方向を第2方向としてもよい。但し、以下の説明において、第1方向と第2方向を含む面に沿って、光学素子アレイが設けられているものとする。また、以下の説明において、対応する図面は適宜説明を省略する。
(第1実施形態)
第1実施形態として、図1〜図4を用いて、光学素子アレイとして複数のマイクロレンズを1次元に配置した例を用いて説明する。図1は、光学素子アレイ100に関する形状と分布を示した図面である。図1では、光学素子アレイ100のうち、3つの光学素子11と、光学素子12と、光学素子13がY軸方向に沿って配されている部分を示している。図1(a)は、光学素子アレイ100の正射影像を示した平面模式図である。正射影像は、X軸とY軸を含む面への光学素子アレイ100の投影した図である。
図1(b1)は、図1(a)のB−B’線における光学素子アレイの設計形状110を示す図である。ここで、設計形状とは設計時の理想的な形状を示す。図1(b2)は、図1(b1)の設計に基づくフォトマスクの光透過率分布120を示す図である。図1(b3)は、図1(b2)の光透過率分布を有するフォトマスクを用いた時の被露光部材における光強度分布130を示す図である。図1(b4)は、図1(a)のB−B’線で示す位置における光学素子アレイの形状140を示す図(断面模式図)である。
図1(c1)は、図1(a)のC−C’線における光学素子アレイの設計形状1110を示す図である。図1(c2)は、図1(c1)の設計に基づくフォトマスクの光透過率分布1120を示す図である。図1(c3)は、図1(c2)の光透過率分布を有するフォトマスクを用いた時の露光面における光強度分布1130を示す図である。図1(c4)は、図1(a)のC−C’線で示す位置における光学素子アレイの形状1140を示す図(断面模式図)である。以降の説明において、点は、X軸方向あるいはY軸方向の位置と、設計形状の高さ、光透過率、光強度、および形状の高さとを示すものである。
ここで、本実施形態のフォトマスクについて説明する。本実施形態のフォトマスクは、連続的な階調変化を持つフォトマスクであればよい。例えば、本実施形態のフォトマスクとして、グレートーンマスク、ハーフトーンマスク、面積階調マスク等を用いることができる。面積階調マスクは、露光装置の解像度以下の遮光膜からなるドットの密度分布、あるいは面積を変化させることで、連続的な階調変化を持つ光照射を可能とするフォトマスクである。また、本実施形態においては、フォトレジストはポジ型の場合を例に説明を行うが、ネガ型であってもよい。
まず、光学素子の形状について、光学素子アレイの2つの光学素子に着目して、説明する。図1(a)に示すように、例えば光学素子11の正射影像は、B−B’線を基準に線対称の形状を有する。しかし、例えば光学素子11の正射影像は、C−C’線を含む、Y軸方向に平行な線分においては、線対称とはならない。このような光学素子11のB−B’線における断面の形状は、図1(b4)の形状140になる。図1(b4)は縦軸が高さ(Z軸方向の大きさ)を示している。図1(b4)において、形状140は、点141から点142までの間で高さが高くなる。また、形状140は、点142から点143までの間で、高さが一度高くなった後、低くなる。ここで、点141から点143は、光学素子11(第1光学素子)に対応する。そして、形状140は、点143から点144までの間で高さが高くなり、点144から点145までの間で、高さが一度高くなった後、低くなる。ここで、点143から点145は、光学素子12(第2光学素子)に対応する。また、形状140は、光学素子13に対応する部分で、点141から点143の間と、点143から点145の間と同様の形状を有する。光学素子11〜13は、それぞれが頂点148を有する。
図1(b1)には、図1(b4)の設計形状110を示している。図1(b1)の縦軸は、図1(b4)と同様に高さである。設計形状110は、図1(b4)に示す形状140と対応しており、理想的には、一致している。設計形状110は、図1(b4)の形状140の点141〜点145と頂点148と対応する、点111〜115と頂点118を有する。
図1(b2)は、フォトマスクの透過率分布120を示し、その縦軸は透過率を示している。透過率分布120は、図1(b1)に示す設計形状110を再現するために、使用する感光部材の感度を考慮して取得することができる。ここで、光透過率分布120は、図1(b1)に示す設計形状110が有する点111〜117と頂点118に対応する、点121〜127と頂点128と有する。ここで、光透過率分布120は、点121から点122まで一定の光透過率を有し、点123で点121、点122よりも低い光透過率を有する。光透過率分布120は、点123から点124の間で、一度、点123における光透過率よりも低い光透過率を示した後、点124で、点123よりも高い光透過率を有する。ここで、点121から点124は、光学素子11(第1光学素子)に対応する。光透過率分布120は、点124から点127までの間で、点121から点124と同様の分布を取る。光透過率分布120の点124から点127の間の部分は光学素子12に対応する。光透過率分布120は、光学素子13に対応する部分も、点121から点124の間と、点124から点127の間と同様の形状を有する。光透過率分布120は、各光学素子に対応した部分で、図1(b1)の設計形状110の頂点118と対応する点128を有する。
図1(b2)に示すように、光透過率分布120は、光学素子11を形成するための第1領域101と、光学素子12を形成するための第2領域102と、第1領域101と第2領域102の間の第3領域103を有する。第1領域101は、第1領域101の端部である点123から、点123とは反対側の第3領域との境界である別の端部である点124の間の領域である。第1領域101の光透過率分布120は、点123にて第1光透過率を有し、点124にて第1光透過率よりも高い第2光透過率を有する。第1領域101の光透過率分布120は、第1光透過率から第2光透過率に向かって、光透過率が高くなっている。本実施形態では、光透過率分布120は、第1光透過率から頂点118に対応する点128まで光透過率が低くなった後に、第2光透過率まで高くなるが、第1光透過率から第2光透過率まで一定の比率で高くなってもよい。第2領域102は、第3領域103との境界の端部である点125および点126と、端部である点125および点126とは反対側の別の端部である点127の間の領域である。第2領域102の光透過率分布120は、点126にて第3光透過率を有し、点127にて第3光透過率よりも高い第4光透過率を有する。第2領域102の光透過率分布120は、第3光透過率から第4光透過率に向かって光透過率が高くなっている。本実施形態では、光透過率分布120は、第3光透過率から頂点118に対応する点まで光透過率が低くなった後に、第4光透過率まで高くなるが、第3光透過率から第4光透過率まで一定の比率で高くなってもよい。第3領域103は、第1領域101との境界の端部である点124(第1領域側の端部)と、第2領域102との境界の別の端部である点125および点126(第2領域側の端部)との間である。第3領域103は、第1領域101に比べてX軸方向の長さが短く、第2領域102に比べてX軸方向の長さが短い。第3領域103の光透過率分布120は、端部である点124と、別の端部である点126の光透過率である第2光透過率と第3光透過率とを結ぶ線分129を設けた場合に、線分と等しいかそれ以上の高い光透過率を有する。本実施形態では、第3領域103において光透過率分布120は、例えば、点125のように、点124における光透過率(第2光透過率)と同じ値を有する。ここで、第1領域101や第2領域102における光透過率の変化率(比率)に対して、第3領域103の光透過率の変化率の絶対値が大きい場合に適用することができる。なお、第3領域103の光透過率は、線分以上の値を有して入ればよく、連続的に変化していても、不連続に変化していても、一定でもいずれの場合でもよい。
このような光透過率分布120を有するフォトマスクを用いて露光をすることによって、被露光部材において図1(b3)に示す光強度分布130が得られる。光強度分布130は、点131〜135と頂点138を有する。光強度分布130の点131〜135は、図1(b2)における光透過率分布120の点121〜127と対応している。ここで、光強度分布130は、光透過率分布120の第1領域101と第3領域103の境界に対応する部分である点133において、最も高い光強度を有している。このようなフォトマスクによって、光学素子11と光学素子12との間の形状を制御よく形成することが可能となる。
図3は、図1と対応した図面である。図3(a)は図1(a)と対応した光学素子アレイ300の平面模式図である。図3(a)では、図1(a)の光学素子11〜13に対応する光学素子31〜33を示している。図3(b1)〜図3(b4)は、図1(b1)〜図1(b4)に対応した図面である。
図3(b1)において、設計形状310は、点311から点312に向かって高さが高くなっている。そして、設計形状310は、点313に向かって、点318を経由して高さが低くなっている。点313〜点315までもその設計形状310は点311〜点313までと同様の形状を有する。ここで、図3(b2)において、設計形状310を形成するためのフォトマスクの光透過率分布320は、設計形状310と同じ形を有するように設計される。しかし、図3(b4)の形状340が、設計時の形状を示す図3(b1)の設計形状310と異なっていることが分かる。例えば、図3(b1)の設計形状310において、点312から点313の間の部分は、点313から点314の間の部分よりもその形状の変化率が小さい。このような変化率の異なる部分が接する領域に対応する領域において、図3(b4)の形状340にて再現率が低下してしまう。形状340の点342から点343の間の部分は、設計形状310の対応する部分に比べてより小さな傾斜を有するようになり、形状340の点343から点344の間の部分は、設計形状310の対応する部分に比べて小さな傾斜を有する。更に、図3(b1)における設計形状310は、点313から点314の高さH319を有していたが、図3(b4)における形状340は、点343から点344の高さH349は、高さH319よりも低くなってしまう。これは、図3(b3)の光強度分布330が、図3(b2)の光透過率分布320と異なる分布を示していることによる。
この原理について、図4を用いて説明する。図4(a)はフォトマスクの設計時の光透過率分布420を示しており、図4(b)は図4(a)のフォトマスク450を用いた時の露光の様子を模式的に示した断面図である。図4(c)は図4(b)の時の被露光部材(感光性部材、例えばフォトレジスト)における光強度分布430を示しており、図4(d)は露光後に現像されたフォトレジストの形状440を示している。図4(a)において、光透過率分布420は、点423から点424までは高い光透過率を有し、点425から点426までは光透過率が零となっている。図4(b)において、光透過率分布420に対応するフォトマスク450は、開口部451と遮光部452を有する。開口部451と遮光部452の境界は、図4(a)の光透過率分布420の点424(点425)に対応した位置となる。ここで、光(矢印)が入射した際には、開口部451と遮光部452の境界、遮光部452の端部において、光が回折を生じてしまう。この回折によって、図4(c)に示す光強度分布430において、点431と点432の間で光強度の低下が生じ、点432と点433の間の光強度の増加が生じてしまう。このような光強度の変化によって、図4(d)に示すフォトレジストの形状440において、点441から点442の間で形状変化が生じてしまう。回折が生じたとしても、図1(b2)の光透過率分布を有するフォトマスクを用いることで、回折の影響を低減することができ、光学素子11と光学素子12との間の形状を制御よく形成することが可能となる。
再び、図1について説明する。図1(c1)〜図1(c4)は、図1(a)の線分C−C’線における光学素子12の断面の形状等を示したものである。図1(c1)〜図1(c4)は、図1(b1)〜図1(b4)と同様に形状と分布を示した図であり、図1(c1)〜図1(c4)の縦軸は図1(b1)〜図1(b4)と同様の値を示している。図1(c1)の設計形状1110が示すように、光学素子12は半球状の形状を示している。点1111は頂点であり、光学素子12のC−C’線における断面は、頂点を通る線分1112に線対称の形状を有している。線分1112は光学素子12の底面1113に垂直である。図1(c2)〜図1(c4)においては、設計形状1110を維持した光透過率分布1120と、光強度分布1130と、形状1140が示されている。
図2に、図1に示した光透過率分布に基づく、フォトマスクの設計データ200を示す。設計データ200は、平面的な遮光体の配置を示したものであり、図1(a)の1つの光学素子12に対応し、図1(b2)の領域103、領域102、および図1(c2)に対応する。図2において、1つの領域に対応する部分を複数のセルに区切っている。このセルは、露光に用いる波長の光の解像限界よりも小さい大きさに設定されている。黒色のセルは遮光体が設けられており、白色のセルは遮光体のない開口領域である。この遮光体の面積によって、フォトマスクの光透過率を調整することができる。フォトマスクの設計データにおいて、図1(b2)の領域103に対応した領域に遮光体が設けられていない。
このような設計データ200に基づくフォトマスクによって露光・現像されることで光学素子および光学素子アレイ100が形成される。光学素子および光学素子アレイ100は、例えば、図1(d)に示すような、光電変換装置に適用することができる。図1(d)において、光電変換素子212を有する半導体基板20の上に、中間層21を間にはさんで、光学素子アレイ100が設けられている。半導体基板20は、光電変換素子212の他にトランジスタ等の素子を有する。中間層21は、複数の配線層23と、それらを絶縁する複数の絶縁層24と、色分離をするカラーフィルタ層25等を含む。中間層21は、更に、層内レンズ層や遮光層を含んでもよい。光電変換装置において、撮像領域には、いわゆる画素150と呼ばれる同一の回路が繰り返し設けられる領域がある。光学素子アレイ100の光学素子は、画素150と対応して設けられうる。ここで、図1(d)の断面図において、画素150の中心151と、光学素子の中心152とがオフセットし、光学素子の中心は画素150の中心よりも光学素子アレイ100の中心の近くに位置している。図1(d)では、このような光電変換装置において、光153が入射する場合を示している。図1(b4)において、点143から点144に対応する部分に入射する光は、点144から点145に対応する部分に入射する光よりも大きく屈折し、光電変換素子22から外れた領域に入射するため、光電変換装置への集光に寄与しない。一方、点144から点145に対応する部分に入射する光は光電変換素子22に向かって集光される。つまり、点144から点145に対応する部分の形状は特に制御良く形成することが望まれており、図2に示すフォトマスク200によれば、点144から点145に対応する部分の形状を、設計形状に対して再現性高く形成することが可能となる。
ここで、再度、図3(b4)の形状と比較する。光学素子アレイの形状を示す図3(b4)における点343は、光学アレイの設計形状である図3(b1)における点313の位置よりも左側にずれている。また、図3(b1)におけるH319よりも、図3(b4)におけるH349の方が小さい。すなわち、高さ方向の位置も上方にずれている。これに対し、図1(b4)では点143の位置が、図1(b1)の設計形状における点113の位置とほぼ一致しており、点142から点143の領域が設計形状に対してより再現性高く形成されていることがわかる。さらに、図1を用いて実施例について詳しく説明する。本実施形態のフォトマスクによって光学素子アレイを形成する場合、光学素子アレイであるマイクロレンズの材料としては一般的にポジ型のフォトレジストを使用する。
マイクロレンズの形成では、面積階調マスクを用いてレジストを露光するため、レジストのコントラストは、一般的なフォトレジストと比較して低い。図1(b4)において、点143から点144に対応する部分は集光に寄与しないため、できるだけ切り立った急峻な形状としてその幅を小さくする必要がある。この幅を小さくすることにより、集光に寄与する点144から点145に対応する部分の形状を、図1(b1)の点114から点115に対応する形状により近づけることができる。
コントラストの低いマイクロレンズ用フォトレジストを用いた場合でも、この方法を用いることによって、設計形状と同等の良好な形状を形成することが可能となった。この非対称マイクロレンズについて、図11を用いて説明する。
図11は、図1(b4)に対応する図であるが、図11以外で用いた表現と異なる表現で光学素子の説明を行う場合もある。ここで、符号2100は、第1光学素子が形成されている領域、符号2200は、第2光学素子が形成されている領域、符号2300は、第3光学素子が形成されている領域である。これらの光学素子はX軸方向(第1方向)に沿って配され、X軸方向に底面を有する。また、第2光学素子は第1光学素子と隣接して配置されている。また、第3光学素子は、第2光学素子が設けられた側とは反対側において、第1光学素子と隣接して配置されている。
図11は第1方向に沿った断面図であり、このように形態を把握することを「第1方向に沿った断面視において」と表現することもある。
第1方向に沿った断面視において、第1光学素子は、第1光学素子の表面形状の変化が急峻な第1領域2110と、相対的に第1光学素子の表面形状の変化が緩慢な第2領域2120を有する。ここで、第1領域2110と第2領域2120との境界は点144である。また、第1光学素子が形成されている領域2100と第2光学領域が形成されている領域2200との境界は点143である。第1方向について、これらの境界間の距離、すなわち、点143から点144までの距離をWとする。距離Wは第1光学素子としてのマイクロレンズの表面形状が急峻な領域の幅となる。
また、第1光学素子の頂点148から底面までの第1方向に直交する方向(Y軸方向)の距離をHとする。距離Hは第1光学素子としてのマイクロレンズの高さとなる。
さらに、第1光学素子が形成されている領域2100の第1方向の距離をPとする。距離Pは複数の光学素子が形成されているピッチとなる。
加えて、点143と点144とを結ぶ直線と底面とがなす角度はθとなる。
ここで、作製されたマイクロレンズの距離W(マイクロレンズの表面形状が急峻な領域の幅)と距離H(マイクロレンズの高さ)は、0.3H<W<0.5Hの関係を満たしている。さらに、角度θは2<tan−1θ<3.5の関係を満たしている。
一例を挙げると、作製されたマイクロレンズは、角度θが70°、高さHが1μm、急峻な領域の幅Wが0.4μmであった。
また、斜め入射光に対して効率的に集光させるためには、ピッチPと距離Wとが、W<1/3・Pの関係を満すようにすればよい。
また、図1(b1)に示す第3領域103を適切に設計することで、光学素子と、隣接する別の光学素子との間を狭める、いわゆるギャップレスな構造を得ることが可能となる。この時の領域103の幅は、図1(b1)に示す第3領域103の寸法は、露光に使用する光の波長の1/10倍以上1倍以下の間であって、特に、1/2倍以上1倍以下であることが望ましい。
(第2実施形態)
第1実施形態では、1次元に複数の光学素子が配置された光学素子アレイ100の場合を示したが、本実施形態では、複数の光学素子が2次元に配置されている場合について説明する。図5(a)は、図1(a)に対応する平面模式図であり、本実施形態では、複数の光学素子11〜19が2次元に配置されている。図5(b2)および図5(b4)は、図5(a)のB−B’線における断面の光透過率と形状を示しており、図1(b2)および図1(b4)と等しい。図5(c1)〜図5(c4)は、図5(a)のC−C’線における断面の設計形状1510、光透過率分布1520、光強度分布1530、形状1540をそれぞれ示している。
図5(c1)に示すように、光学素子12、14、15の設計形状1510は、隣接する光学素子と同じ高さで接している。このような場合には、図5(c2)で示す光透過率分布1520において、図5(b2)の領域103のような部分を設けなくてもよい。図5(c2)では、隣接する光学素子の接点において、光透過率分布1520が接点を含み線対象的な形状を示している。一方、図5(b2)に示すように、隣接する光学素子の接点において、光透過率分布120が接点を含み線対象でない形状を示す場合には領域103を設ける。このような構成によって、設計時における形状に対する再現性の高い光学素子を提供することができる。
(第3実施形態)
本実施形態は、第1実施形態とは、複数の光学素子が2次元に配置されている点と、ある光学素子とX軸方向に隣接する別の光学素子の間にギャップを有する点である点が異なる。また、本実施形態は、第2実施形態とは、ある光学素子とX軸方向に隣接する別の光学素子の間にギャップを有する点である点が異なる。図6(a)〜図6(c4)は、図1(a)〜図1(c4)と対応し、図5(a)〜図5(c4)と対応している。図6(a)は、9個の光学素子61〜69を示した平面模式図である。隣接する光学素子同士の間のギャップ605は、例えば、光学素子61と光学素子62の間に示されたハッチングの部分である。このような構成においても、第1、第2実施形態と同様のフォトマスクの設計を行うことができる。光学素子61と光学素子62に着目して光学素子の形状とフォトマスクの光透過率について説明する。
図6(b1)に示す設計形状610は、点611と点612の間は高さが一定であり、点612から点613にかけて高さが高くなる。そして、設計形状610は、点613から点614にかけて高さが低くなり、点614と点615の間で、再び、高さが一定となる。設計形状610は、点615から点616の間で高さが高くなり、点616から点617にかけて高さが低くなり、点617から点618の間で、再び、高さが一定となる。ここで、点611と点612の間、点614と点615の間、および点617と点618の間はギャップとなる部分である。点619は、最も高さが高い部分であり、この断面における頂点である。
図6(b2)に示す光透過率分布620は、設計形状610に対応し、図1(b2)と同様に、第1領域601、第2領域602、および第3領域603を有する。光透過率分布620は、点621と点622の間は高さが一定であり、点622から点623に示すように、点622において高さが高くなる(光透過率分布620の傾きが0)。そして、光透過率分布620は、点623から点624にかけて高さが低くなり、点624と点625の間で、再び、高さが一定となる。光透過率分布620は、点625から点626に示すように高さが高くなり(光透過率分布620の傾きが0)、点626から点627にかけて高さが低くなり、点627から点628の間で、再び、高さが一定となる。ここで、点621と点622の間、点624と点625の間、および点627と点628の間はギャップとなる部分である。点629は、最も光透過率が低い部分であり、図6(b1)の点619に対応する。
ここで、光透過率分布620は、点623から点624の間の第1領域601と、点626から点627の間の第2領域602と、点624から点625で示される第3領域603を有する。第1実施形態と同様に、第3領域603の光透過率は、点624と点626との間の線分よりも高い透過率を有する。ここで、本実施形態では、第3領域603の幅が、第1実施形態の第3領域103の幅よりも広く設計されている。このような光透過率分布を有するフォトマスクを形成することで、図6(b3)に示すような点631〜点639を有する光強度分布630が得られ、図6(b4)に示すような点641〜点649を有する形状640が得られる。このようなフォトマスクによって、図6(b1)の設計形状610に対して高い再現性を有する形状640を有する光学素子を得ることができる。
図6(c1)〜図6(c4)に示す設計形状1610、光透過率分布1620、光強度分布1630、形状1640は、図5(c1)〜図5(c4)と同様の形状、および分布を有するため説明を省略する。本実施形態では、複数の光学素子を2次元に配置しているが、1次元に配置してもよい。
(第4実施形態)
本実施形態は、第1実施形態とは、光学素子の平面形状が異なる。図7(a)〜図7(c4)は、図1(a)〜図1(c4)と対応している。図7(a)は、3個の光学素子71〜73示した平面模式図である。本実施形態の光学素子の平面形状において、光学素子71に着目して説明する。
図7(a)に示すように、光学素子71は、平面的に見て、X方向に沿って、光学素子アレイの中心に近い点501と、中心から点501よりも離れて位置する点502を有する。光学素子71は、点501と点502を結ぶ線分に対して、線対称な形状を有し、点501と点502を結ぶ線分に、頂点が位置する点505を有する。また、Y方向に沿って、光学素子71は、その外縁に点503と点504を有する。点503と点504を結ぶ線分は、光学素子71においてY方向に沿った幅の中で最も広い。ここで、光学素子71は、点502から点501と、点503から点501にかけて曲率を有する平面形状を有する。
このような構成においても、他の実施形態と同様のフォトマスクの設計が可能である。
図7(a)のB−B’線とC−C’線での断面形状は、図1(a)のB−B’線とC−C’線での断面形状と等しいため、図7(b1)〜図7(c4)は、図1(b1)〜図1(c4)と等しくなる。よって、図7(b1)〜図7(c4)の詳細な説明は省略する。なお、図7(b1)の点111、113、118は、図7(a)の点501、502、505と対応する点である。
(第5実施形態)
第5実施形態は、第1〜第4実施形態とは、光学素子がプリズム構造である点が異なる。本実施形態では、プリズム構造を持つ光学素子を1次元に配置した場合について説明する。図8(a)は、図1(b1)に示すような光学素子アレイの断面の設計形状610を示している。図8(b)は、図1(b2)に示すような光透過率分布820を示す。
図8(a)に示す設計形状610は、3つの光学素子の一断面を示している。以下、2つの光学素子に着目して設計形状610について説明を行う。設計形状610は、点811から点812にかけて、直線的に高さが高くなり、点812から点813にかけて直線的に高さが低くなる。そして、点813から点814にかけて、再び、直線的に高さが高くなる。そして、設計形状610は、点814から点815にかけて高さが直線的に低くなる。点812、814は、最も高さが高い部分であり、この断面における頂点である。また、点811から点812と、点813から点814の変化率に対して、点812から点813と、点814から点815の変化率は小さい。
図8(b)に示す光透過率分布820は、設計形状610に対応し、図1(b2)と同様に、第1領域801、第2領域802、および第3領域803を有する。光透過率分布820は、点821と点822の間は高さが一定であり、点822から点823に示すように、点822において高さが高くなる。そして、光透過率分布820は、点823から点824にかけて直線的に高さが低くなり、点824と点825の間で、再び、高さが一定となる。光透過率分布820は、点825から点826に示すように、点825において高さが高くなり、点826から点827にかけて高さが低くなる。点823、806は、最も光透過率が低い部分となる。ここで、点802から点803の間と、点805から点806の間は、点803から点804の間と、点806から点807の間よりも変化率が大きい。
ここで、光透過率分布820は、点823から点824の間の第1領域801と、点826から点827の間の第2領域802と、点824から点825で示される第3領域803を有する。第1実施形態と同様に、第3領域803の光透過率は、点824と点826とを結ぶ線分よりも高い透過率を有する。このような光透過率分布を有するフォトマスクを形成することで、図8(a)に示すような設計形状610に対して高い再現性の形状が得られる。
(第6実施形態)
第6実施形態は、第5実施形態の形状に対して、光学素子と、光学素子と隣接する別の光学素子との間にギャップを有する点が異なる。図9(a)は、図8(a)に対応した光学素子アレイの断面の設計形状910を示している。図9(b)は、図8(b)に対応する、光透過率分布920を示す。
図9(a)に示す設計形状910は、図8(a)と同様に、3つの光学素子の一断面を示している。以下、2つの光学素子に着目して設計形状910について説明を行う。設計形状910は、点911から点912にかけて高さが一定であり、点912から点913にかけて、直線的に高さが高くなり、点913から点814にかけて直線的に高さが低くなる。そして、設計形状910は、点914から点915にかけて高さが一定であり、点915から点916にかけて、直線的に高さが高くなり、点916から点817にかけて直線的に高さが低くなる。点913、916は、最も高さが高い部分であり、この断面における頂点である。また、点912から点913と、点915から点916の変化率に対して、点913から点914と、点916から点917の形状の変化率は小さい。
図9(b)に示す光透過率分布920は、設計形状910に対応し、図8(b)と同様に、第1領域901、第2領域902、および第3領域903を有する。また、光透過率分布920は点921〜点927にかけて、図8(b)の点821〜点827と同様の分布を有する。よって、光透過率分布920は、他の実施形態と同様に、点923から点924の間の第1領域901と、点926から点927の間の第2領域902と、点924から点925で示される第3領域903を有する。他の実施形態と同様に、第3領域903の光透過率は、点924と点926とを結ぶ線分よりも高い透過率を有する。そして、本実施形態では、光透過率分布920は、図8(b)の光透過率分布820に比べて、第3領域903の幅が広い。このような光透過率分布を有するフォトマスクを形成することで、図9(a)に示すような設計形状910に対して高い再現性の形状が得られる。
(光電変換装置の形成方法)
第1〜第6実施形態に基づいて形成されるフォトマスクの形成方法と、それを使用した光学素子の製造方法を、図10を用いて説明する。ここでは、第1実施形態の図1(d)のような光電変換装置において光学素子を製造する方法を例に説明を行う。図10は、任意の製造工程における光電変換装置の断面を模式的に示した図である。
まず、フォトマスクを、フォトマスク作製システムを用いて作成する。フォトマスク作製システムは、情報処理装置と、描画装置と、検査装置と、欠陥修正装置を備える。情報処理装置は、取得した各種データに基づいてフォトマスクパターンデータを生成する。さらに、情報処理装置は、生成したフォトマスクパターンデータを描画装置に対応した描画データに変換する。描画装置は、情報処理装置で作成された描画データに基づいて、縮小転写方式又は直接描画方式によりフォトマスクを作製する。検査装置は、フォトマスクの欠陥を検査し、ドットパターンが設計通りに形成されたかどうかを調べる。検査方法としては種々の方法があり、特定の検査方法に限定されないが、例えばフォトマスクパターンデータとフォトマスクの光学像の電気信号とを比較して検査を行う方法を用いることができる。欠陥修正装置は、検査装置によって検出された欠陥を修正する。修正方法としては種々の方法があり、特定の限定に限定されないが、例えばレーザビーム法やイオンビーム法を用いることができる。ここで、フォトマスクパターンデータとは、描画装置でフォトマスクパターンを描画するための設計データをいう。また、描画データとは、フォトマスクパターンを描画装置に対応するデータ形式に変換したデータをいう。
まず、情報処理装置において、第1〜第6実施形態に示されるような光学素子の形状を決定し、公知の手法を用いて、光透過率分布データを取得する。ここでは、隣接する2つの光学素子のそれぞれに対応する第1部分と第2部分を有する光透過率分布データを作成する。本実施形態では、作成した光透過率分布データにおいて、第1部分と第2部分の一部の光透過率を、他の実施形態に記載したような光透過率に置き換える処理を行う。例えば、第1部分と第2部分の境界を含む部分と、第1部分の境界側の一部と、第2部分の境界側の一部を含む第3部分の光透過率を置き換える。この時、第1部分の残りの一部が他の実施形態における第1領域に対応し、第2部分の残りの一部が他の実施形態における第2領域に対応し、第3部分が他の実施形態における第3領域に対応する。このような第1〜第3領域を有する光透過率分布のデータに対して、2値化処理を行い、遮光体の配置パターンを決定し、フォトマスクパターンデータを生成する。このフォトマスクパターンデータに基づき、描画データを作成した後、描画装置でクロム等の遮光体を基板に形成することでフォトマスクを形成する。
図10(a)に示す工程では、光電変換素子22やトランジスタ等の素子が形成された半導体基板20を準備する。半導体基板20の上に、中間層21を形成する。中間層21は、複数の絶縁層24や複数の配線層23を含み、複数の絶縁層24の上に形成されたカラーフィルタ層25を含む。これらの製造方法は、一般の半導体技術によって形成可能であるため、説明を省略する。次に、カラーフィルタ層25の上に、後に光学素子となるフォトレジスト層107を形成する。フォトレジスト層107は、例えば、ポジ型のフォトレジストであり、スピンコート法によって形成可能である。このフォトレジスト層107が、被露光部材となる。
次いで、図1(b2)、および図1(c2)に示す光透過率分布を有するフォトマスクを用意し、フォトマスクを介してフォトレジスト層107を露光する。ここでは、図1(d)に示したように、光学素子の中心152と画素150の中心151とがオフセットするように、フォトマスクの位置を調整する。
露光の後に、フォトレジスト層107に対して現像処理と、安定化のための熱処理を行うことで、図10(c)の光学素子アレイ100が形成される。
なお、半球形状ではない光学素子を形成する場合には、熱処理の際における熱変形は極力抑える必要がある。熱変形を抑制するため、熱処理として、熱変形の発生しない温度範囲で1回目の熱処理を行い、1回目の熱処理の温度よりも高い温度で2回目の熱処理を行うとよい。このような熱処理によって、フォトレジスト材の耐熱性が向上し、熱変形が抑制されうる。このような変形を抑えるための熱処理は、この方法の他にUVキュア処理などを用いることができた。
11〜13 光学素子
101 第1領域
102 第2領域
103 第3領域
110 光学素子の設計形状
120 光透過率分布

Claims (12)

  1. 第1方向と前記第1方向に交差する第2方向を含む第1面に底面が配された第1光学素子と、前記第1面に底面が配され、前記第1方向に沿って前記第1光学素子と隣接して配された第2光学素子と、を含む光学素子アレイ用のフォトマスクであって、
    前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第1光学素子を形成するための第1領域と、前記第2光学素子を形成するための第2領域と、前記第1領域と前記第2領域との間の第3領域と、を有し、
    前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第1領域の端部における第1光透過率と、前記端部と反対側で、前記第1領域と前記第3領域との境界である別の端部における、前記第1光透過率よりも高い光透過率を有する第2光透過率と、前記第2領域と前記第3領域との境界である端部における第3光透過率と、前記端部と反対側の前記第2領域の別の端部における、前記第3光透過率よりも高い光透過率を有する第4光透過率と、を有し、
    前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第3領域において、前記第2光透過率と前記第3光透過率とを結ぶ線分よりも、高い光透過率を有することを特徴とするフォトマスク。
  2. 前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第1方向に沿って前記第3領域にて一定の値を有する部分を含むことを特徴とする請求項1に記載のフォトマスク。
  3. 前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第3領域において前記第1領域側の端部から前記第2領域側の端部の間で、前記第3光透過率から前記第4光透過率まで一定の比率で前記光透過率が増加していることを特徴とする請求項1または2に記載のフォトマスクの設計方法。
  4. 前記第1方向に沿った前記フォトマスクの光透過率分布は、前記第1領域の端部から前記第1領域の別の端部の間で、前記第1光透過率から前記第2光透過率まで一定の比率で前記光透過率が増加し、前記第2領域の別の端部から前記第2領域の端部の間で、前記第3光透過率から前記第4光透過率まで一定の比率で前記光透過率が増加することを特徴とする請求項1乃至3のいずれか1項に記載のフォトマスク。
  5. 前記第1方向において、前記第3領域は、前記第1領域と前記第2領域よりも短いことを特徴とする請求項1乃至4のいずれか1項に記載のフォトマスク。
  6. 請求項1乃至5のいずれか1項に記載のフォトマスクを用いて露光することにより、前記光学素子アレイを形成することを特徴とする光学素子アレイの製造方法。
  7. 複数の光電変換素子を有する基板を準備する工程と、
    前記基板の上に、感光性部材を形成する工程と、
    請求項1乃至5のいずれか1項に記載のフォトマスクを用いて前記感光性部材を露光することにより、前記基板の上に前記光学素子アレイを形成することを特徴とする光電変換装置の製造方法。
  8. 第1方向と前記第1方向に交差する第2方向を含む第1面に底面が配された第1光学素子と、前記第1面に底面が配され、前記第1方向に沿って前記第1光学素子と隣接して配された第2光学素子と、を含む光学素子アレイ用のフォトマスクパターンデータの設計方法であって、
    前記第1の光学素子と前記第2の光学素子の設計形状を取得する工程と、
    前記第1の光学素子と前記第2の光学素子の設計形状から、前記第1の光学素子に対応する第1部分と前記第2の光学素子に対応する第2部分を有する前記フォトマスクのマスクパターンデータの光透過率分布を取得する工程と、
    前記光透過率分布のうち、前記第1部分と前記第2部分との境界と、前記第1部分の前記境界側の一部と、前記第2部分の前記境界側の一部を、第3部分に差し替える工程と、前記第3部分に差し替えた後、前記光透過率分布に基づき、前記マスクパターンデータを形成する工程と、を有し、
    前記第3部分は、前記第1部分との境界における第1光透過率と、前記第2部分との境界における第2光透過率を有し、
    前記第3部分における前記光透過率分布は、前記第1部分との境界における光透過率と、前記第2部分との境界における光透過率を結ぶ線分よりも高い光透過率を有することを特徴とするフォトマスクパターンデータの設計方法。
  9. 請求項8に記載のフォトマスクパターンデータの設計方法を用いて、フォトマスクパターンデータを形成する工程と、
    前記フォトマスクパターンデータを用いて、フォトマスクを作成する工程と、を有することを特徴とするフォトマスクの製造方法。
  10. 複数の光学素子を有する光学素子アレイであって、
    第1方向に沿って配され、前記第1方向に底面を有する第1光学素子と、
    前記第1方向に沿って配され、前記第1方向に底面を有し、前記第1光学素子と隣接して配置されている第2光学素子と、
    前記第1方向に沿って配され、前記第1方向に底面を有し、前記第2光学素子が配されている位置とは反対側において前記第1光学素子と隣接して配置されている第3光学素子と、を有し
    前記第1光学素子は、前記第1方向に沿った断面視において、
    前記第1光学素子の頂点を含まず、前記第1光学素子の表面形状の変化が急峻な第1領域と、
    前記第1光学素子の頂点を含み、前記第1光学素子の表面形状の変化が緩慢な第2領域と、を備え、
    前記第1領域と前記第2領域との境界と、前記第1光学素子が形成されている領域と前記第2光学素子が形成されている領域との境界との前記第1方向の距離Wと、前記第1光学素子の頂点と底面との前記第1方向と直交する方向の距離Hは、0.3H<W<0.5Hの関係を満たすことを特徴とする光学素子アレイ。
  11. 前記第1領域と第2領域との境界と、前記第1光学素子が形成されている領域と前記第2光学素子が形成されている領域との境界とを結ぶ直線と、前記底面とのなす角度θは2<tan−1θ<3.5の関係を有することを特徴とする請求項10に記載の光学素子アレイ。
  12. 前記複数の光学素子が形成されているピッチPと前記距離Wとが、W<1/3・Pの関係を満たすことを特徴とする請求項10に記載の光学素子アレイ。
JP2015086265A 2014-06-03 2015-04-20 フォトマスク、光学素子アレイの製造方法、光学素子アレイ Pending JP2016012122A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015086265A JP2016012122A (ja) 2014-06-03 2015-04-20 フォトマスク、光学素子アレイの製造方法、光学素子アレイ
US14/727,111 US9703015B2 (en) 2014-06-03 2015-06-01 Photomask, method of manufacturing optical element array, optical element array
CN201510300461.5A CN105301677A (zh) 2014-06-03 2015-06-03 光掩模、光学元件阵列的制造方法、光学元件阵列

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014115281 2014-06-03
JP2014115281 2014-06-03
JP2015086265A JP2016012122A (ja) 2014-06-03 2015-04-20 フォトマスク、光学素子アレイの製造方法、光学素子アレイ

Publications (1)

Publication Number Publication Date
JP2016012122A true JP2016012122A (ja) 2016-01-21

Family

ID=54701484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086265A Pending JP2016012122A (ja) 2014-06-03 2015-04-20 フォトマスク、光学素子アレイの製造方法、光学素子アレイ

Country Status (3)

Country Link
US (1) US9703015B2 (ja)
JP (1) JP2016012122A (ja)
CN (1) CN105301677A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011002A (ja) * 2015-06-18 2017-01-12 ソニー株式会社 撮像素子、電子機器
JP6660127B2 (ja) * 2015-09-15 2020-03-04 キヤノン株式会社 画像処理装置およびその方法、並びに、画像形成装置
CN105631112B (zh) * 2015-12-25 2021-08-24 鼎奇(天津)主轴科技有限公司 一种厚板类零件的热变形仿真分析与建模方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4411493A (en) 1981-10-05 1983-10-25 Miller Jack V Seasonal control skylight glazing panel with passive solar energy switching
TW374857B (en) * 1996-06-19 1999-11-21 Toshiba Corp Display device, liquid crystal display panel, and a projection type display using a liquid crystal display panel
US5731899A (en) 1996-12-20 1998-03-24 Eastman Kodak Company Lenslet array system incorporating an integral field lens/reimager lenslet array
CN100380231C (zh) 2003-08-28 2008-04-09 力晶半导体股份有限公司 光学光刻方法
JP4489471B2 (ja) 2004-03-15 2010-06-23 大日本印刷株式会社 マイクロレンズアレイの形成方法
JP2007335723A (ja) 2006-06-16 2007-12-27 Fujifilm Corp 固体撮像素子用マイクロレンズ及びその製造方法
US7307790B1 (en) 2006-11-10 2007-12-11 Genie Lens Technologies, Llc Ultrathin lens arrays for viewing interlaced images
US7414790B2 (en) 2006-11-10 2008-08-19 Genie Lens Technologies, Llc Ultrathin lens arrays for viewing interlaced images with dual lens structures
US8908151B2 (en) * 2008-02-14 2014-12-09 Nikon Corporation Illumination optical system, exposure apparatus, device manufacturing method, compensation filter, and exposure optical system

Also Published As

Publication number Publication date
CN105301677A (zh) 2016-02-03
US9703015B2 (en) 2017-07-11
US20150346393A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
CN100479175C (zh) 固态成像装置及其制造方法
US9274254B2 (en) Optical element array, photoelectric conversion apparatus, and image pickup system
JP6035744B2 (ja) 固体撮像素子
US20150214270A1 (en) Microlens forming method and solid-state image sensor manufacturing method
JP2016012122A (ja) フォトマスク、光学素子アレイの製造方法、光学素子アレイ
US8209641B2 (en) Method of fabricating a photomask used to form a lens
US8354206B2 (en) Method of generating photomask data, method of fabricating photomask, non-transitory memory medium storing program for generating photomask data, method of manufacturing solid-state image sensor having microlens array and method of manufacturing microlens array
JP4489471B2 (ja) マイクロレンズアレイの形成方法
JP5800662B2 (ja) 半導体装置及びその製造方法
JP5031173B2 (ja) 撮像装置と撮像装置におけるマイクロレンズの形成方法
JP5159859B2 (ja) フォトマスクの製造方法
JP6801230B2 (ja) 固体撮像素子および電子機器
US20120100662A1 (en) Method of manufacturing solid-state image sensor
JP2005259824A (ja) 固体撮像素子及び非対称光導波路の形成方法
JP6195369B2 (ja) 固体撮像装置、カメラ、および、固体撮像装置の製造方法
JP2008268378A (ja) マスクパターンデータの生成方法、情報処理装置、フォトマスク及びその作製システム並びに撮像素子
JP5412892B2 (ja) レンズ形状の設計方法、レンズの形成方法、撮像素子、およびフォトマスクの設計方法
JP5365353B2 (ja) 濃度分布マスク
JP2009031399A (ja) マイクロレンズ
JP6409499B2 (ja) パターンデータの作製方法およびフォトマスク
JP6409498B2 (ja) パターンデータの作製方法
JP2005294467A (ja) 固体撮像装置
JP2008275891A (ja) レンズアレイ作成用マスクおよびレンズアレイ作成方法