[go: up one dir, main page]

JP2015227421A - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
JP2015227421A
JP2015227421A JP2014113782A JP2014113782A JP2015227421A JP 2015227421 A JP2015227421 A JP 2015227421A JP 2014113782 A JP2014113782 A JP 2014113782A JP 2014113782 A JP2014113782 A JP 2014113782A JP 2015227421 A JP2015227421 A JP 2015227421A
Authority
JP
Japan
Prior art keywords
mass
resin
parts
polycarbonate resin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014113782A
Other languages
English (en)
Inventor
光地 岩木
Mitsuji Iwaki
光地 岩木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2014113782A priority Critical patent/JP2015227421A/ja
Publication of JP2015227421A publication Critical patent/JP2015227421A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート樹脂/スチレン系樹脂アロイを提供する。【解決手段】示差型走査熱量計(DSC)で測定した結晶融解熱が15mJ/g以上であるポリカーボネート樹脂(a1)15〜90質量%と示差型走査熱量計(DSC)で測定した結晶融解熱が5mJ/g以下であるポリカーボネート樹脂(a2)85〜10質量%からなるポリカーボネート樹脂(A)50〜90質量%と、スチレン系樹脂(B)50〜10質量%からなる(A)及び(B)の合計100質量部に対し、リン系難燃剤(C)3〜30質量部、フルオロポリマー(D)0.01〜2質量部及びケイ酸塩化合物(E)0〜5質量部を配合してなる熱可塑性樹脂組成物。【選択図】なし

Description

本発明は、熱可塑性樹脂組成物に関し、詳しくは難燃性、高温成形時の耐衝撃性に優れ、成形時の外観が改良されたポリカーボネート樹脂/スチレン系樹脂系の熱可塑性樹脂組成物に関する。
ポリカーボネート樹脂は、耐熱性、機械的物性、電気的特性に優れた樹脂であり、例えば自動車材料、電気・電子機器材料、住宅材料、その他の工業分野における部品製造用材料等に幅広く利用されている。特に、難燃化されたポリカーボネート/スチレン系の樹脂アロイは、コンピューター、ノートブック型パソコン、各種携帯端末、プリンター、複写機等の電気・電子機器やOA・情報機器等の部材として好適に使用されている。
なかでもリン系難燃剤によって難燃化されたポリカーボネート/スチレン系樹脂アロイ組成物は、リン系難燃剤の可塑化効果により成形性に非常に優れるため、薄肉、大型成形品を得るためには最も好適な樹脂材料である(例えば特許文献1〜4参照)。
近年は、ノートパソコンや各種携帯機器の小型化、薄肉化に伴い、それらの筐体やバッテリーパック部品等も薄肉化が急速に進展しており、より高い成形性を得るため、成形加工温度を高めに設定し、また滞留時間も延びる傾向にある。しかしながらポリカーボネート/スチレン系樹脂アロイは、このような高温成形においては高い衝撃強度を維持することができないという課題を有している。
また、電気・電子機器筐体では、成形品の強度を高めるために、リブを設けたり、セルフタップ用のボスを設けることがよく行われるが、リブやボスが設けられた成形品をポリカーボネート/スチレン系樹脂アロイで成形しようとすると、ゲートからリブやボスを通過した後ろの部分に黒筋状の外観不良が発生し、商品価値を著しく損なってしまうという課題も有している。
さらに、最近では、電子・電気機器の筐体には、UL94に準拠した難燃性試験で5VB以上のレベルが必要とされる。
したがって、電気・電子機器分野においては、5VB以上の難燃性と耐衝撃性と外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/スチレン系樹脂アロイが強く望まれている。
特許第3638806号公報 特許第4080851号公報 特許第3655979号公報 特許第4157271号公報
本発明は、上記従来技術の問題点に鑑みて創案されたもので、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/スチレン系樹脂アロイを提供することを目的とする。
本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ポリカーボネート樹脂として、特定の結晶融解熱を有する結晶化したポリカーボネート樹脂と、非晶性ポリカーボネート樹脂の混合物を用い、スチレン系樹脂、リン系難燃剤、フルオロポリマー及びケイ酸塩化合物をそれぞれ特定量で配合した熱可塑性樹脂組成物が、難燃性、耐衝撃性のバランスに優れ、さらにはリブやボスが設けられた成形品を成形する場合にも良好な外観が得られ、かつ高温条件で成形した場合でも衝撃強度の低下が小さいことを見出し、本発明を完成させるに至った。
本発明は、以下の熱可塑性樹脂組成物を提供する。
[1]示差型走査熱量計(DSC)で測定した結晶融解熱が15mJ/g以上であるポリカーボネート樹脂(a1)15〜90質量%と示差型走査熱量計(DSC)で測定した結晶融解熱が5mJ/g以下であるポリカーボネート樹脂(a2)85〜10質量%からなるポリカーボネート樹脂(A)50〜90質量%と、スチレン系樹脂(B)50〜10質量%からなる(A)及び(B)の合計100質量部に対し、
リン系難燃剤(C)3〜30質量部、フルオロポリマー(D)0.01〜2質量部及びケイ酸塩化合物(E)0〜5質量部を配合してなる熱可塑性樹脂組成物。
[2]スチレン系樹脂(B)が、ABS樹脂及び/又はAS樹脂である上記[1]に記載の熱可塑性樹脂組成物。
[3]さらに、ゴム質重合体に、芳香族ビニル化合物、シアン化ビニル化合物成分及び(メタ)アクリル酸エステル化合物からなる単量体から選ばれる少なくとも1種をグラフト重合させてなるグラフト共重合体(F)を、ポリカーボネート樹脂(A)及びスチレン系樹脂(B)の合計100質量部に対し、0.5〜10質量部配合してなる上記[1]又は[2]に記載の熱可塑性樹脂組成物。
[4]リン系難燃剤(C)が縮合リン酸エステル及び/又はホスファゼン化合物である上記[1]〜[3]のいずれかに記載の熱可塑性樹脂組成物。
[5]240℃で成形した3mm厚のISO多目的試験片のノッチ付シャルピー衝撃強度(240℃衝撃強度)に対する260℃で成形した3mm厚のISO多目的試験片のノッチ付シャルピー衝撃強度(260℃衝撃強度)の比(260℃衝撃強度/240℃衝撃強度)が、0.8以上である上記[1]〜[4]のいずれかに記載の熱可塑性樹脂組成物。
[6]1.8mm厚におけるUL94による難燃性が、5VAまたは5VBである上記[1]〜[5]のいずれかに記載の熱可塑性樹脂組成物。
本発明の熱可塑性樹脂組成物は、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/スチレン系樹脂アロイである。
実施例における外観評価に使用した平板状成形体の上面図である。
以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定して解釈されるものではない。
なお、本明細書において、「〜」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。
[概要]
本発明の熱可塑性樹脂組成物は、示差型走査熱量計(DSC)で測定した結晶融解熱が15mJ/g以上であるポリカーボネート樹脂(a1)15〜90質量%と示差型走査熱量計(DSC)で測定した結晶融解熱が5mJ/g以下であるポリカーボネート樹脂(a2)85〜10質量%からなるポリカーボネート樹脂(A)50〜90質量%と、スチレン系樹脂(B)50〜10質量%からなる(A)及び(B)の合計100質量部に対し、
リン系難燃剤(C)3〜30質量部、フルオロポリマー(D)0.01〜2質量部及びケイ酸塩化合物(E)0〜5質量部を配合してなることを特徴とする。
[ポリカーボネート樹脂(A)]
本発明の熱可塑性樹脂組成物において、ポリカーボネート樹脂(A)としては、示差型走査熱量計(DSC)で測定した結晶融解熱が15mJ/g以上であるポリカーボネート樹脂(a1)と示差型走査熱量計(DSC)で測定した結晶融解熱が5mJ/g以下であるポリカーボネート樹脂(a2)を用いる。その配合割合は、(a1)及び(a2)の合計100質量%基準で、ポリカーボネート樹脂(a1)が15〜90質量%であり、ポリカーボネート樹脂(a2)85〜10質量%である。
なお、本発明において、ポリカーボネート樹脂の示差型走査熱量計(DSC)で測定した結晶融解熱は、具体的には、セイコーインスツルメント社製の示差型走査熱量計DSC7020を用い、ポリカーボネート樹脂のサンプルを30℃から320℃まで20℃/分で昇温した際に、ポリカーボネート樹脂の融点付近である220℃〜280℃における結晶融解に由来する吸熱量として定義される。
ポリカーボネート樹脂(a1)は、昇温の過程において結晶融解由来の220〜280℃における吸熱量が15mJ/mg以上である結晶化したポリカーボネート樹脂であり、ポリカーボネート樹脂(a2)は、同様に結晶融解由来の220〜280℃における吸熱量が5mJ/m以下の、または明確な吸熱ピークを持たない非晶性のポリカーボネート樹脂である。
ポリカーボネート樹脂は、一般式:[−O−X−O−C(=O)−]で示される炭酸結合を有する基本構造の重合体であり、本発明におけるポリカーボネート樹脂(a1)及び(a2)としても、上記式におけるXが炭化水素基であるものが通常使用されるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXであるものでもよい。
また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、ポリカーボネート樹脂(a1)及び(a2)としては、いずれを用いることもでき、中でも耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。
ポリカーボネート樹脂(a1)、(a2)の原料成分や生成反応に制限は無いが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート樹脂が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしても良い。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いても良い。
またポリカーボネート樹脂(a1)、(a2)は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート樹脂(a1)、(a2)は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。
ポリカーボネート樹脂(a1)、(a2)の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例としては、
1,2−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4−ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
2,2’−ジヒドロキシ−1,1’−ビナフチル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシナフタレン類;
2,2’−ジヒドロキシジフェニルエーテル、3,3’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル、1,4−ビス(3−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1−ビス(4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メトキシ−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−メトキシ−4−ヒドロキシフェニル)プロパン、
1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、
1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、
ビス(4−ヒドロキシフェニル)メタン、
ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4−ヒドロキシフェニル)フェニルメタン、
ビス(4−ヒドロキシフェニル)(4−プロペニルフェニル)メタン、
ビス(4−ヒドロキシフェニル)ジフェニルメタン、
ビス(4−ヒドロキシフェニル)ナフチルメタン、
1,1−ビス(4−ヒドロキシフェニル)エタン、
1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、
1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、
1,1−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ペンタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
1,1−ビス(4−ヒドロキシフェニル)オクタン、
2,2−ビス(4−ヒドロキシフェニル)オクタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
4,4−ビス(4−ヒドロキシフェニル)ヘプタン、
2,2−ビス(4−ヒドロキシフェニル)ノナン、
1,1−ビス(4−ヒドロキシフェニル)デカン、
1,1−ビス(4−ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,4−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,5−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−プロピル−5−メチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−フェニルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;
4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;等が挙げられる。
これらの中でもビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4−ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、エタン−1,2−ジオール、プロパン−1,2−ジオール、プロパン−1,3−ジオール、2,2−ジメチルプロパン−1,3−ジオール、2−メチル−2−プロピルプロパン−1,3−ジオール、ブタン−1,4−ジオール、ペンタン−1,5−ジオール、ヘキサン−1,6−ジオール、デカン−1,10−ジオール等のアルカンジオール類;
シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール、1,4−シクロヘキサンジメタノール、4−(2−ヒドロキシエチル)シクロヘキサノール、2,2,4,4−テトラメチル−シクロブタン−1,3−ジオール等のシクロアルカンジオール類;
エチレングリコール、2,2’−オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;
1,2−ベンゼンジメタノール、1,3−ベンゼンジメタノール、1,4−ベンゼンジメタノール、1,4−ベンゼンジエタノール、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、2,3−ビス(ヒドロキシメチル)ナフタレン、1,6−ビス(ヒドロキシエトキシ)ナフタレン、4,4’−ビフェニルジメタノール、4,4’−ビフェニルジエタノール、1,4−ビス(2−ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2−ヒドロキシエチル)エーテル、ビスフェノールSビス(2−ヒドロキシエチル)エーテル等のアラルキルジオール類;
1,2−エポキシエタン(即ち、エチレンオキシド)、1,2−エポキシプロパン(即ち、プロピレンオキシド)、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,4−エポキシシクロヘキサン、1−メチル−1,2−エポキシシクロヘキサン、2,3−エポキシノルボルナン、1,3−エポキシプロパン等の環状エーテル類;等が挙げられる。
ポリカーボネート樹脂(a1)、(a2)の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。
カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。
・ポリカーボネート樹脂(a1)、(a2)の製造方法
ポリカーボネート樹脂(a1)、(a2)の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
・・界面重合法
まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。
反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
アルカリ水溶液中のアルカリ化合物の濃度に制限は無いが、通常、反応のアルカリ水溶液中のpHを10〜12にコントロールするために、5〜10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10〜12、好ましくは10〜11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。
重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’−ジメチルシクロヘキシルアミン、N,N’−ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’−ジメチルアニリン、N,N’−ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m−メチルフェノール、p−メチルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−tert−ブチルフェノール、p−長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロぺニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o−ヒドロキシ安息香酸、2−メチル−6−ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、熱可塑性樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。
反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
なお、反応温度は通常0〜40℃であり、反応時間は通常は数分(例えば、10分)〜数時間(例えば、6時間)である。
・・溶融エステル交換法
次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
ジヒドロキシ化合物は、前述の通りである。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−tert−ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
ジヒドロキシ化合物と炭酸ジエステルとの比率は所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。
ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。
炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
溶融エステル交換法において、反応温度は通常100〜320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。
溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂及び熱可塑性樹脂組成物の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。
溶融エステル交換法においては、必要に応じて、触媒失活剤を用いても良い。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、芳香族ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。
・ポリカーボネート樹脂(a1)の好ましい製造方法
前記のとおり、ポリカーボネート樹脂(a1)は、昇温の過程において結晶融解由来の220〜280℃における吸熱量が15mJ/mg以上である結晶化したポリカーボネート樹脂であるが、かかる結晶化ポリカーボネート樹脂を製造する方法としては、公知の方法が採用でき、熱処理による方法、溶媒処理による方法あるいは可塑化剤処理による方法等が挙げられる。
熱処理による方法では、結晶化度の低いポリカーボネート樹脂を高温にて、例えば72時間以上の時間をかけて熱処理する方法である。
溶媒処理による結晶化方法は、ポリカーボネート樹脂を溶媒に溶解した後、貧溶媒を用いこれに沈殿させる方法であり、ポリカーボネート樹脂(a1)を製造する方法として好ましい方法である。
溶媒としては、塩素化された脂肪族又は芳香族の炭化水素、例えばジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等が好ましく挙げられ、特にジクロロメタン等の塩素化炭化水素が好ましい。貧溶媒としては、上記溶媒よりも沸点の高いものが好ましく、ヘキサン、ヘプタン、トルエン、水等が好ましく挙げられる。
貧溶媒は、溶媒に溶解したポリカーボネート樹脂溶液の好ましくは0.2〜0.6容量倍程度を滴下され、貧溶媒中にポリカーボネート樹脂が粉状に析出し、通常フレーク状として結晶性のポリカーボネート樹脂が得られる。
この方法は、前記した界面重合法において、生成したポリカーボネート樹脂の溶液を貧溶媒にて析出させることでも可能であるので好ましい。
ポリカーボネート樹脂(a1)は、昇温の過程において結晶融解由来の220〜280℃における吸熱量が15mJ/mg以上であるが、好ましくは20mJ/mg以上、より好ましくは25mJ/mg以上である。吸熱量は析出速度、溶媒と貧溶媒との組み合わせにより調整することができる。
・ポリカーボネート樹脂(a2)の好ましい製造方法
前記のとおり、ポリカーボネート樹脂(a2)は、結晶融解由来の220〜280℃における吸熱量が5mJ/m以下の、または明確な吸熱ピークを持たない非晶性ポリカーボネート樹脂であるが、ポリカーボネート樹脂は通常は非晶性であり、吸熱量が5mJ/m以下か、または明確な吸熱ピークを持たない。ポリカーボネート樹脂(a2)を製造する方法としては、公知の通常の方法(界面重合法あるいは溶融エステル交換法等)により製造することができ、また市販の非晶性ポリカーボネート樹脂も使用することができる、また界面重合法などにおいて、溶媒下で析出することで結晶化してしまったポリカーボネートの粉末を、押出し機等を用いて結晶を融解させたのちにペレタイズすることで吸熱量を5mJ/m以下、または明確な吸熱ピークを持たない状態に調整した非晶状態のポリカーボネートを使用することもできる。
・ポリカーボネート樹脂(a1)及び(a2)の配合割合
ポリカーボネート樹脂(a1)及び(a2)の配合割合は、前記のとおり、ポリカーボネート樹脂(a1)15〜90質量%、ポリカーボネート樹脂(a2)85〜10質量%である。このような配合割合とすることで、本発明の熱可塑性樹脂組成物は、高温成形時の耐衝撃性が優れ、難燃性にも優れることになる。好ましい配合割合は、ポリカーボネート樹脂(a1)20〜85質量%、ポリカーボネート樹脂(a2)80〜15質量%であり、より好ましくはポリカーボネート樹脂(a1)25〜80質量%、ポリカーボネート樹脂(a2)75〜20質量%、さらに好ましくはポリカーボネート樹脂(a1)30〜75質量%、ポリカーボネート樹脂(a2)70〜25質量%である。
・ポリカーボネート樹脂(a1)、(a2)に関するその他の事項
ポリカーボネート樹脂(a1)、(a2)の分子量は、それぞれ任意であり、適宜選択して決定すればよいが、溶液粘度から換算した粘度平均分子量[Mv]は、通常10,000以上、好ましくは16,000以上、より好ましくは17,000以上であり、また、通常40,000以下、好ましくは30,000以下、より好ましくは24,000以下である。
粘度平均分子量を前記範囲の下限値以上とすることにより本発明の熱可塑性樹脂組成物の機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。一方、粘度平均分子量を前記範囲の上限値以下とすることにより本発明の熱可塑性樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。なお、ポリカーボネート樹脂(a1)、(a2)は、それぞれ粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10−4Mv0.83、から算出される値を意味する。また極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure 2015227421
ポリカーボネート樹脂(a1)、(a2)の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1,000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これにより本発明の熱可塑性樹脂組成物の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、本発明の熱可塑性樹脂組成物の機械的特性をより向上させることができる。
なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
ポリカーボネート樹脂(A)は、ポリカーボネート樹脂(a1)、(a2)以外の他のポリカーボネート樹脂をさらに配合してもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。
また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂(A)は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1,500以上、好ましくは2,000以上であり、また、通常9,500以下、好ましくは9,000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。
[スチレン系樹脂(B)]
本発明の熱可塑性樹脂組成物は、スチレン系樹脂(B)を含有する。スチレン系樹脂(B)を含有することで、熱可塑性樹脂組成物の流動性(成形性)を改良することができる。
ここでスチレン系樹脂(B)とは、芳香族ビニル単量体単独、または芳香族ビニル単量体と必要に応じて共重合可能な他のビニル単量体及びゴム質重合体より選ばれる1種以上を重合して得られる樹脂である。
スチレン系樹脂(B)に用いられる芳香族ビニル単量体(b1)としては、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、ビニルキシレン、エチルスチレン、ジメチルスチレン、p−tert−ブチルスチレン、ビニルナフタレン、メトキシスチレン、モノブロムスチレン、ジブロムスチレン、フルオロスチレン、トリブロムスチレン等のスチレン誘導体が挙げられ、特にスチレンが好ましい。
これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
これらの芳香族ビニル単量体(b1)と共重合可能な他のビニル単量体としては、シアン化ビニル単量体(b2)が好ましく、例えばアクリロニトリル、メタクリロニトリル等を挙げることができる。
また、その他の単量体(b4)として、フェニルアクリレート、ベンジルアクリレート等のアクリル酸のアリールエステル;メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、アミルアクリレート、ヘキシルアクリレート、2−エチルヘキシルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート、ドデシルアクリレート等のアクリル酸のアルキルエステル;フェニルメタクリレート、ベンジルメタクリレート等のメタクリル酸アリールエステル;メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、2−エチルヘキシルメタクリレート、オクチルメタクリレート、シクロヘキシルメタクリレート、ドデシルメタクリレート等のメタクリル酸アルキルエステル;グリシジルメタクリレート等のエポキシ基含有メタクリル酸エステル;マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド系単量体;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸及びその無水物が挙げられる。好ましくは、アクリル酸アルキルエステル、メタクリル酸アルキルエステルである。
これらのその他単量体(b4)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
また、芳香族ビニル単量体(b1)と共重合可能なゴム質重合体(b3)としては、ガラス転移温度が10℃以下のゴムが適当である。このようなゴム質重合体の具体例としては、ジエン系ゴム、アクリル系ゴム、エチレン・プロピレンゴム、シリコンゴム、ポリオルガノシロキサンゴム成分とポリアルキル(メタ)アクリレートゴム成分とが分離できないように相互に絡み合った構造を有している複合ゴム(IPN型ゴム)等が挙げられ、好ましくは、ジエン系ゴム、アクリル系ゴム等が挙げられる。
なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート」と「メタアクリレート」の一方又は双方をさす。「(メタ)アクリル」「(メタ)アクリロ」についても同様である。
ジエン系ゴムとしては、例えば、ポリブタジエン、スチレン−ブタジエンランダム共重合体及びブロック共重合体、アクリロニトリル−ブタジエン共重合体、ポリイソプレン、ブタジエン−イソプレン共重合体、エチレン−プロピレン−ヘキサジエン共重合体等のエチレンとプロピレンと非共役ジエンの共重合体、ブタジエン−(メタ)アクリル酸の低級アルキルエステル共重合体、ブタジエン−スチレン−(メタ)アクリル酸の低級アルキルエステル共重合体等が挙げられる。
上記の(メタ)アクリル酸の低級アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル等が挙げられる。
ブタジエン−(メタ)アクリル酸の低級アルキルエステル共重合体又はブタジエン−スチレン−(メタ)アクリル酸の低級アルキルエステル共重合体における(メタ)アクリル酸の低級アルキルエステルの割合は、ゴム質重合体の量の30質量%以下であることが好ましい。
アクリル系ゴムとしては、例えば、アクリル酸アルキルエステルゴムが挙げられ、ここで、アルキル基の炭素数は好ましくは1〜8である。アクリル酸アルキルエステルの具体例としては、アクリル酸エチル、アクリル酸ブチル、アクリル酸ヘキシル等が挙げられる。アクリル酸アルキルエステルゴムには、任意に、エチレン性不飽和単量体が用いられていてもよい。そのような化合物の具体例としては、ジ(メタ)アクリレート、ジビニルベンゼン、トリビニルベンゼン、シアヌル酸トリアリル、(メタ)アクリル酸アリル、ブタジエン、イソプレン等が挙げられる。アクリル系ゴムとしては、更に、コアとして架橋ジエン系ゴムを有するコア−シェル型重合体が挙げられる。
これらのゴム質重合体(b3)についても、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
スチレン系樹脂(B)は、上記した芳香族ビニル単量体成分(b1)50〜100質量%、シアン化ビニル単量体成分(b2)0〜30質量%、ゴム質重合体成分(b3)0〜30質量%、その他の単量体成分(b4)0〜30質量%からなることが好ましく、芳香族ビニル単量体成分(b1)45〜80質量%、シアン化ビニル単量体成分(b2)10〜30質量%、ゴム質重合体成分(b3)10〜25質量%、その他の単量体成分(b4)0〜40質量%からなることがより好ましく、芳香族ビニル単量体成分(b1)55〜70質量%、シアン化ビニル単量体成分(b2)15〜25質量%、ゴム質重合体成分(b3)15〜20質量%、その他の単量体成分(b4)0〜5質量%からなることがさらに好ましい。
本発明で用いられるスチレン系樹脂(B)の具体例としては、例えば、スチレンの単独重合体、スチレンと(メタ)アクリロニトリルとの共重合体、スチレンと(メタ)アクリル酸アルキルエステルとの共重合体、スチレンと(メタ)アクリロニトリルと他の共重合可能な単量体との共重合体、また、ゴムの存在下スチレンを重合してなるグラフト共重合体、ゴムの存在下スチレンと(メタ)アクリロニトリルとをグラフト重合してなるグラフト共重合体等が好ましく挙げられる。
さらに、具体的には、ポリスチレン、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル−スチレン系共重合体(AS樹脂)、スチレン−無水マレイン酸系共重合体(SMA樹脂)、アクリロニトリル−ブタジエン−スチレン系共重合体(ABS樹脂)、アクリロニトリル−スチレン−アクリルゴム系共重合体(ASA樹脂)、メチルメタクリレート−ブタジエン−スチレン系共重合体(MBS樹脂)、メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン系共重合体(MABS樹脂)、スチレン−ブタジエン−スチレン系共重合体(SBS樹脂)、水添スチレン−ブタジエン−スチレン系共重合体(水添SBS)、水添スチレン−イソプレン−スチレン系共重合体(SEPS)、アクリロニトリル−アクリルゴム−スチレン系共重合体(AAS樹脂)、アクリロニトリル−エチレンプロピレン系ゴム−スチレン系共重合体(AES樹脂)及びスチレン−IPN型ゴム共重合体等の樹脂、又は、これらの混合物が挙げられる。また、さらにシンジオタクティックポリスチレン等のように立体規則性を有するものであってもよい。また、上記のスチレンに代えて、広く芳香族ビニル系モノマーを用いることができる。
これらの中でも、アクリロニトリル−スチレン系共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン系共重合体(ABS樹脂)、アクリロニトリル−スチレン−アクリルゴム系共重合体(ASA樹脂)、アクリロニトリル−エチレンプロピレン系ゴム−スチレン系共重合体(AES樹脂)が好ましい。
これらスチレン系樹脂(B)の製造方法としては、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等の公知の方法が挙げられるが、スチレン系樹脂(B)としては塊状重合法によるものが湿熱安定性や熱安定性に優れるため好ましい。
これらのスチレン系樹脂(B)は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
スチレン系樹脂(B)の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量%基準で、10〜50質量%であり、好ましくは10〜40質量%、より好ましくは10〜35質量%、特に好ましくは15〜35質量%である。スチレン系樹脂体(B)の含有量が50質量%を超えると、強度が不満足となりやすく、1質量%未満では流動性改良効果が不十分となる。
[リン系難燃剤(C)]
本発明におけるリン系難燃剤(C)としては、分子中にリンを含む化合物であり、低分子であっても、オリゴマーであっても、ポリマーであってもよいが、熱安定性の面から、例えば一般式(1)で表される縮合リン酸エステル化合物や一般式(2)および(3)で表されるホスファゼン化合物が特に好ましい。
Figure 2015227421
Figure 2015227421
Figure 2015227421
・縮合リン酸エステル化合物
上記一般式(1)で表される縮合リン酸エステル化合物は、kが異なる数を有する化合物の混合物であってもよく、かかるkが異なる縮合リン酸エステルの混合物の場合は、kはそれらの混合物の平均値となる。kは、通常0〜5の整数であり、異なるk数を有する化合物の混合物の場合は、平均のk数は好ましくは0.5〜2、より好ましくは0.6〜1.5、さらに好ましくは0.8〜1.2、特に好ましくは0.95〜1.15の範囲である。
また、Xは、二価のアリーレン基を示し、例えばレゾルシノール、ハイドロキノン、ビスフェノールA、2,2’−ジヒドロキシビフェニル、2,3’−ジヒドロキシビフェニル、2,4’−ジヒドロキシビフェニル、3,3’−ジヒドロキシビフェニル、3,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシ化合物から誘導される二価の基である。これらのうち、特に、レゾルシノール、ビスフェノールA、3,3’−ジヒドロキシビフェニルから誘導される二価の基が好ましい。
また、一般式(1)におけるp、q、rおよびsは、それぞれ0または1を表し、なかでも1であることが好ましい。
また、R、R、RおよびRは、それぞれ、炭素数1〜6のアルキル基またはアルキル基で置換されていてもよい炭素数6〜20のアリール基を示す。このようなアリール基としては、フェニル基、クレジル基、キシリル基、イソプロピルフェニル基、ブチルフェニル基、tert−ブチルフェニル基、ジ−tert−ブチルフェニル基、p−クミルフェニル基等が挙げられるが、フェニル基、クレジル基、キシリル基がより好ましい。
一般式(1)で表される縮合リン酸エステル化合物の具体例としては、
トリフェニルホスフェート(TPP)、トリクレジルホスフェート(TCP)、トリキシレニルホスフェート(TXP)、クレジルジフェニルホスフェート(CDP)、2−エチルヘキシルジフェニルホスフェート(EHDP)、tert−ブチルフェニルジフェニルホスフェート、ビス−(tert−ブチルフェニル)フェニルホスフェート、トリス−(tert−ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス−(イソプロピルフェニル)ジフェニルホスフェート、トリス−(イソプロピルフェニル)ホスフェート等の芳香族リン酸エステル類;
レゾルシノールビス−ジフェニルホスフェート(RDP)、レゾルシノールビス−ジキシレニルホスフェート(RDX)、ビスフェノールAビス−ジフェニルホスフェート(BDP)、ビフェニルビス−ジフェニルホスフェート等の縮合リン酸エステル類;
等が挙げられる。
一般式(1)で表される縮合リン酸エステル化合物の酸価は、0.2mgKOH/g以下が好ましく、より好ましくは0.15mgKOH/g以下であり、さらに好ましくは0.1mgKOH以下であり、特に好ましくは0.05mgKOH/g以下である。かかる酸価の下限は実質的に0とすることも可能である。一方、ハーフエステルの含有量は1.1質量部以下がより好ましく、0.9質量部以下がさらに好ましい。酸価が0.2mgKOH/gを超える場合やハーフエステル含有量が1.5mgを超える場合は、本発明のポリカーボネート樹脂組成物の熱安定性や耐加水分解性の低下を招く。
リン酸エステル化合物としては、上述のものの他に、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,3−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、10−(2,4−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド、リン酸エステル部位を含有するポリエステル樹脂、ポリカーボネート樹脂またはエポキシ樹脂も当然含まれる。
・ホスファゼン化合物
一般式(2)及び(3)で表されるホスファゼン化合物としては、例えば、フェノキシホスファゼン、(ポリ)トリルオキシホスファゼン(例えば、o−トリルオキシホスファゼン、m−トリルオキシホスファゼン、p−トリルオキシホスファゼン、o,m−トリルオキシホスファゼン、o,p−トリルオキシホスファゼン、m,p−トリルオキシホスファゼン、o,m,p−トリルオキシホスファゼン等)、(ポリ)キシリルオキシホスファゼン等の環状及び/又は鎖状C1−6アルキルC6−20アリールオキシホスファゼンや、(ポリ)フェノキシトリルオキシホスファゼン(例えば、フェノキシo−トリルオキシホスファゼン、フェノキシm−トリルオキシホスファゼン、フェノキシp−トリルオキシホスファゼン、フェノキシo,m−トリルオキシホスファゼン、フェノキシo,p−トリルオキシホスファゼン、フェノキシm,p−トリルオキシホスファゼン、フェノキシo,m,p−トリルオキシホスファゼン等)、(ポリ)フェノキシキシリルオキシホスファゼン、(ポリ)フェノキシトリルオキシキシリルオキシホスファゼン等の環状及び/又は鎖状C6−20アリールC1−10アルキルC6−20アリールオキシホスファゼン等が例示できる。
これらのうち、好ましくは、環状及び/又は鎖状フェノキシホスファゼン、環状及び/又は鎖状C1−3アルキルC6−20アリールオキシホスファゼン、C6−20アリールオキシC1−3アルキルC6−20アリールオキシホスファゼン(例えば、環状及び/又は鎖状トリルオキシホスファゼン、環状及び/又は鎖状フェノキシトリルフェノキシホスファゼン等)である。
一般式(2)で表される環状ホスファゼン化合物としては、R及びRは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。このようなアリール基又はアルキルアリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基等が挙げられるが、なかでもR及びRがフェニル基である環状フェノキシホスファゼンが特に好ましい。
このような環状フェノキシホスファゼン化合物としては、例えば、塩化アンモニウムと五塩化リンとを120〜130℃の温度で反応させて得られる環状及び直鎖状のクロロホスファゼン混合物から、ヘキサクロロシクロトリホスファゼン、オクタクロロシクロテトラホスファゼン、デカクロロシクロペンタホスファゼン等の環状のクロルホスファゼンを取り出した後にフェノキシ基で置換して得られる、フェノキシシクロトリホスファゼン、オクタフェノキシシクロテトラホスファゼン、デカフェノキシシクロペンタホスファゼン等の化合物が挙げられる。
また、式(2)中、tは3〜25の整数を表すが、なかでもtが3〜8の整数である化合物が好ましく、tの異なる化合物の混合物であってもよい。なかでも、t=3のものが50質量%以上、t=4のものが10〜40質量%、t=5以上のものが合わせて30質量%以下である化合物の混合物が好ましい。
式(3)中、R及びRは、同一又は異なっていてもよく、アリール基又はアルキルアリール基を示す。このようなアリール基又はアルキルアリール基としては、フェニル基、ナフチル基、メチルフェニル基、ベンジル基等が挙げられるが、R及びRがフェニル基である鎖状フェノキシホスファゼンが特に好ましい。
このような鎖状フェノキシホスファゼン化合物は、例えば、上記の方法で得られるヘキサクロロシクロトリホスファゼンを220〜250℃の温度で開還重合し、得られた重合度3〜10,000の直鎖状ジクロロホスファゼンをフェノキシ基で置換することにより得られる化合物が挙げられる。
また、Rは、−N=P(OR基、−N=P(OR基、−N=P(O)OR基、−N=P(O)OR基から選ばれる少なくとも1種を示し、R10は、−P(OR基、−P(OR基、−P(O)(OR基、−P(O)(OR基から選ばれる少なくとも1種を示す。
また、式(3)中、uは3〜10,000の整数を示し、好ましくは3〜1,000、より好ましくは3〜100、さらに好ましくは3〜25である。
また、ホスファゼン化合物は、その一部が架橋された架橋ホスファゼン化合物であってもよい。このような架橋構造を有することで耐熱性が向上する傾向にある。
このような架橋ホスファゼン化合物としては、下記一般式(4)で表わされる架橋基、例えば、4,4’−スルホニルジフェニレン(ビスフェノールS残基)の架橋構造を有する化合物、2,2−(4,4’−ジフェニレン)イソプロピリデン基の架橋構造を有する化合物、4,4’−オキシジフェニレン基の架橋構造を有する化合物、4,4’−チオジフェニレン基の架橋構造を有する化合物等の、4,4’−ジフェニレン基の架橋構造を有する化合物等が挙げられる。
Figure 2015227421
[式(4)中、Xは−C(CH−、−SO−、−S−、又は−O−であり、vは0又は1である。]
また、架橋ホスファゼン化合物としては、一般式(2)においてR及びRがフェニル基である環状フェノキシホスファゼン化合物が前記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物又は、前記一般式(3)においてR及びRがフェニル基である鎖状フェノキシホスファゼン化合物が上記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物が難燃性の点から好ましく、環状フェノキシホスファゼン化合物が上記一般式(4)で表される架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物がより好ましい。
また、架橋フェノキシホスファゼン化合物中のフェニレン基の含有量は、一般式(2)で表される環状ホスファゼン化合物及び/又は一般式(3)で表される鎖状フェノキシホスファゼン化合物中の全フェニル基及びフェニレン基数を基準として、通常50〜99.9%、好ましくは70〜90%である。また、該架橋フェノキシホスファゼン化合物は、その分子内にフリーの水酸基を有しない化合物であることが特に好ましい。
本発明においては、ホスファゼン化合物は、前記一般式(2)で表される環状フェノキシホスファゼン化合物、及び、上記一般式(3)で表される環状フェノキシホスファゼン化合物が架橋基によって架橋されてなる架橋フェノキシホスファゼン化合物よる成る群から選択される少なくとも1種であることが、難燃性及び機械的特性の点から好ましい。
リン系難燃剤(C)の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対し、3質量部以上であり、好ましくは5質量部以上、さらに好ましくは8質量部以上であり、30質量部以下であって、好ましくは25量部以下、さらに好ましくは20質量部以下である。リン系難燃剤(C)の配合量が3質量部を下回る場合は、難燃性が不十分であり、30質量部を超えると著しい耐熱性の低下や、機械物性の低下を引き起こす。
[フルオロポリマー(D)]
本発明の熱可塑性樹脂組成物は、フルオロポリマー(D)を、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対し、0.01〜2質量部含有する。フルオロポリマー(D)は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
フルオロポリマー(D)としては、例えば、フルオロオレフィン樹脂が挙げられる。フルオロオレフィン樹脂は、通常フルオロエチレン構造を含む重合体あるいは共重合体である。具体例としてはジフルオロエチレン樹脂、テトラフルオロエチレン樹脂、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合樹脂、テトラフルオロエチレン/パーフルアルキルビニルエーテル共重合樹脂等が挙げられる。なかでも好ましくはテトラフルオロエチレン樹脂等が挙げられる。このフルオロエチレン樹脂としては、フィブリル形成能を有するフルオロエチレン樹脂が挙げられる。
フィブリル形成能を有するフルオロエチレン樹脂としては、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)6J」、「テフロン(登録商標)640J」、ダイキン工業社製「ポリフロンF201L」、「ポリフロンF103」、「ポリフロンFA500B」、「ポリフロンFA500H」などが挙げられる。さらに、フルオロエチレン樹脂の水性分散液の市販品として、例えば、三井・デュポンフロロケミカル社製「テフロン(登録商標)31−JR」、ダイキン工業社製「フルオンD−210C」等が挙げられる。さらに、ビニル系単量体を重合してなる多層構造を有するフルオロエチレン重合体も使用することができ、このようなフルオロエチレン重合体としては、ポリスチレン−フルオロエチレン複合体、ポリスチレン−アクリロニトリル−フルオロエチレン複合体、ポリメタクリル酸メチル−フルオロエチレン複合体、ポリメタクリル酸ブチル−フルオロエチレン複合体等が挙げられ、具体例としては三菱レイヨン社製「メタブレンA−3800」、GEスペシャリティケミカル社製「ブレンデックス449」等が挙げられる。なお、滴下防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
本発明におけるフルオロポリマー(D)は、標準比重の値が、2.15〜2.22のものを使用することが好ましい。標準比重が、2.15を下回る場合は、成形品外観が低下する傾向にあるため好ましくない。また標準比重が2.22を超える場合は、耐ドリップ性が低下する傾向にあるため好ましくない。標準比重の値は、2.155〜2.215であることが好ましく、2.16〜2.1であることがさらに好ましく、2.16〜2.20であることが特に好ましく、2.165〜2.19であることが最も好ましい。なお、標準比重(SSGともいう。)は、ASTM D4895に準拠して成形されたサンプルを用い、水置換法により測定する値である。
また、本発明におけるフルオロポリマー(D)の平均粒径は、特に制限はないが、300〜1,000μmであることが好ましい。平均粒径が300μmを下回る場合は、本発明の熱可塑性樹脂組成物の耐ドリップ性が低下する可能性があり、また1,000μmを超える場合は、フルオロポリマーが凝集しやすくなり、成形体とした場合に白点異物等の外観不良を引き起こす可能性があるため好ましくない。このような観点より、フルオロポリマーの平均粒径は、350〜800μmであることがより好ましく、380〜750μmであることがさらに好ましく、400〜700μmであることが特に好ましい。
フルオロポリマー(D)の含有量は、前述したように、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対し、0.01質量部以上であり、好ましくは0.03質量部以上、より好ましくは0.05質量部以上、特に好ましくは0.1質量部以上であり、また、2質量部以下であり、好ましくは1質量部以下、より好ましくは0.7質量部以下である。フルオロポリマー(D)の含有量が0.01質量部未満の場合は、滴下防止剤による難燃性の効果が不十分となり、含有量が2質量部を超える場合は、熱可塑性樹脂組成物を成形した成形品の外観不良や機械的強度の低下が生じやすい。
[ケイ酸塩化合物(E)]
本発明の熱可塑性樹脂組成物には、ケイ酸塩化合物(E)を配合する。ケイ酸塩化合物(E)は、燃焼時の溶融樹脂のドリップを防止する効果が大きく、樹脂組成物の難燃性をより向上させ、剛性、寸法安定性を改良することができる。
ケイ酸塩化合物(E)の具体例としては、カオリン、タルク、クレー、マイカ、モンモリロナイト、ワラストナイト、天然シリカ、合成シリカ、各種ガラスフィラー、ゼオライトおよびケイソウ土等、またはこれらの混合物を挙げることができるが、好ましくはタルク、マイカ、ワラストナイトであり、さらに難燃性・寸法安定性のバランスから最も好ましいのはタルクである。タルクは、上記の中でも、燃焼時の溶融樹脂ドリップ防止効果が特に大きい。
タルクは、特に限定されないが、光透過式粒度分布測定器を用いる沈降法(浅田法)で測定した数平均粒子径で好ましくは1.0〜20.0μm、より好ましくは1.5〜10.0μm、さらに好ましくは2.0〜7.0μmのタルクである。数平均粒子径を1.0μm以上とすることにより、難燃性が向上する傾向にあり、20.0μm以下とすることにより、成形品の外観がより向上する傾向にある。
タルク中のFe成分およびAl成分の含有量は、それぞれFe、Alとして0.001〜0.4質量%であることが好ましく、0.001〜0.2質量%がより好ましい。
本発明で使用されるケイ酸塩化合物(E)は、ポリカーボネート樹脂(A)、スチレン系樹脂(B)及び後記するグラフト共重合体(F)との親和性あるいは界面結合力を高める目的で、種々のカップリング剤を使用することもできる。
カップリング剤としては通常はシラン系、クロム系、チタン系等のカップリング剤が挙げられる。中でもγ−グリシドキシプロピルトリメトキシシラン等のエポキシシラン化合物、ビニルトリクロロシラン化合物、γ−アミノプロピルトリエトキシシラン化合物等のシラン系カップリング剤を含むものが好ましい。この際、非イオン、陽イオン、陰イオン型等各種の界面活性剤や脂肪酸、金属石鹸、各種樹脂等の分散剤による処理を合わせて行うことが、機械的強度および混練性の向上の点で好ましい。
ケイ酸塩化合物(E)の好ましい含有量は、ポリカーボネート樹脂(A)及びスチレン系樹脂(B)の合計100質量部に対して、0〜5質量部であり、0.5〜4質量部がより好ましい。
[グラフト共重合体(E)]
本発明の熱可塑性樹脂組成物は、エラストマーを含有することが好ましい。エラストマーを含有することで、熱可塑性樹脂組成物の耐衝撃性を改良することができる。
本発明に用いるエラストマーは、なかでもゴム質重合体に、これと共重合可能な単量体成分とをグラフト共重合したグラフト共重合体が好ましい。なお、このグラフト共重合体は、当然ながら、前述したスチレン系樹脂(B)とは異なるものが使用される。
グラフト共重合体の製造方法としては、塊状重合、溶液重合、懸濁重合、乳化重合などのいずれの製造方法であってもよく、共重合の方式は一段グラフトでも多段グラフトであってもよい。
ゴム質重合体は、ガラス転移温度が通常0℃以下、中でも−20℃以下が好ましく、更には−30℃以下が好ましい。
ゴム質重合体の具体例としては、ポリブタジエンゴム、ポリイソプレンゴム、ポリブチルアクリレートやポリ(2−エチルヘキシルアクリレート)、ブチルアクリレート−2−エチルヘキシルアクリレート共重合体などのポリアルキルアクリレートゴム、ポリオルガノシロキサンゴムなどのシリコーン系ゴム、ブタジエン−アクリル複合ゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなる複合ゴム、スチレン−ブタジエンゴム、エチレン−プロピレンゴムやエチレン−ブテンゴム、エチレン−オクテンゴムなどのエチレン−α−オレフィン系ゴム、エチレン−アクリルゴム、フッ素ゴムなど挙げることができる。これらは、単独でも2種以上を混合して使用してもよい。
これらの中でも、機械的特性や表面外観の面から、ポリブタジエンゴム、ポリアルキルアクリレートゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなる複合ゴム、スチレン−ブタジエンゴムが好ましい。
ゴム質重合体とグラフト共重合可能な単量体成分としては、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物、グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物;マレイミド、N−メチルマレイミド、N−フェニルマレイミド等のマレイミド化合物;マレイン酸、フタル酸、イタコン酸等のα,β−不飽和カルボン酸化合物やそれらの無水物(例えば無水マレイン酸等)などが挙げられる。これらの単量体成分は1種を単独で用いても2種以上を併用してもよい。
これらの中でも、機械的特性や表面外観の面から、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物、(メタ)アクリル酸化合物が好ましく、より好ましくは、芳香族ビニル化合物、シアン化ビニル化合物、(メタ)アクリル酸エステル化合物であり、さらに好ましくは、(メタ)アクリル酸エステル化合物である。(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸フェニル等を挙げることができる。
ゴム質重合体を共重合したグラフト共重合体は、耐衝撃性や表面外観の点からコア/シェル型グラフト共重合体タイプのものが好ましい。なかでもポリブタジエン含有ゴム、ポリブチルアクリレート含有ゴム、ポリオルガノシロキサンゴム、ポリオルガノシロキサンゴムとポリアルキルアクリレートゴムとからなる複合ゴムから選ばれる少なくとも1種のゴム質重合体をコア層とし、その周囲に(メタ)アクリル酸エステルを共重合して形成されたシェル層からなる、コア/シェル型グラフト共重合体が特に好ましい。
上記コア/シェル型グラフト共重合体において、ゴム質重合体を40質量%以上含有するものが好ましく、60質量%以上含有するものがさらに好ましい。また、(メタ)アクリル酸は、10質量%以上含有するものが好ましい。
これらコア/シェル型グラフト共重合体の好ましい具体例としては、メチルメタクリレート−ブタジエン−スチレン共重合体(MBS)、メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン共重合体(MABS)、メチルメタクリレート−ブタジエン共重合体(MB)、メチルメタクリレート−アクリルゴム共重合体(MA)、メチルメタクリレート−アクリルゴム−スチレン共重合体(MAS)、メチルメタクリレート−アクリル・ブタジエンゴム共重合体、メチルメタクリレート−アクリル・ブタジエンゴム−スチレン共重合体、メチルメタクリレート−(アクリル・シリコーンIPNゴム)共重合体等が挙げられる。このようなゴム性重合体は、1種を単独で用いても2種以上を併用してもよい。
このようなコア/シェル型グラフト共重合体としては例えば、ローム・アンド・ハース・ジャパン社製、「パラロイドEXL2602」、「パラロイドEXL2603」、「パラロイドEXL2655」、「パラロイドEXL2311」、「パラロイドEXL2313」、「パラロイドEXL2315」、「パラロイドKM330」、「パラロイドKM336P」、「パラロイドKCZ201」、三菱レイヨン社製、「メタブレンC−223A」、「メタブレンE−901」、「メタブレンS−2001」、「メタブレンSRK−200」、カネカ社製、「カネエースM−511」、「カネエースM−600」、「カネエースM−400」、「カネエースM−580」、「カネエースMR−01」等が挙げられる。
このようなグラフト共重合体の含有量は、ポリカーボネート樹脂(A)及びスチレン系樹脂(B)の合計100質量部に対して、好ましくは0.5質量部以上、より好ましくは0.75質量部以上、さらに好ましくは1質量部以上であり、また、好ましくは10質量部以下、より好ましくは7.5質量部以下、さらに好ましくは6質量部以下である。グラフト共重合体が前記範囲の下限値未満の場合は、エラストマーによる耐衝撃性向上効果が不十分となる可能性があり、グラフト共重合体の含有量が前記範囲の上限値を超える場合は、ポリカーボネート樹脂組成物を成形した成形品の外観不良や耐熱性、難燃性の低下が生じる可能性がある。
上述したポリカーボネート樹脂(a1)、ポリカーボネート樹脂(a2)及びスチレン系樹脂(B)に、リン系難燃剤(C)、フルオロポリマー(D)及びケイ酸塩化合物(E)を配合し、また、上記グラフト共重合体を、それぞれ前記した特定の量で配合することにより、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート/スチレン系樹脂アロイが可能となる。
[カーボンブラック]
本発明の熱可塑性樹脂組成物は、カーボンブラックを含有することが成形品の高級感の向上効果の点で好ましい。使用するカーボンブラックの製造方法、原料種等に制限はなく、従来公知の任意のもの、例えばオイルファーネスブラック、チャンネルブラック、アセチレンブラック、ケッチェンブラック等のいずれをも使用することができる。これらの中でも、着色性とコストの点から、オイルファーネスブラックが好ましい。
用いるカーボンブラックの平均粒子径は適宜選択して決定すればよいが、中でも5〜60nmが好ましく、更には7〜55nm、特に10〜50nmであることが好ましい。平均粒子径を前記範囲とすることで、カーボンブラックの凝集を抑制し、外観が向上する傾向にある。なお、カーボンブラックの平均粒子径は、透過型電子顕微鏡を用い求めることができる。
本発明で用いるカーボンブラックの窒素吸着比表面積は、通常1000m/g未満が好ましく、なかでも50〜400m/gであることが好ましい。窒素吸着比表面積を1000m/g未満にすることで、本発明の熱可塑性樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。なお、窒素吸着比表面積は、JIS K6217に準拠して測定することができる(単位はm/g)。
またカーボンブラックのDBP吸収量は、300cm/100g未満であることが好ましく、なかでも30〜200cm/100gであることが好ましい。DBP吸収量を300cm/100g未満にすることで、本発明の熱可塑性樹脂組成物の流動性や成形品の外観が向上する傾向にあり好ましい。
なお、DBP吸収量はJIS K6217に準拠して測定することができる(単位はcm/100g)。また本発明で使用するカーボンブラックは、そのpHについても特に制限はないが、通常、2〜10であり、3〜9であることが好ましく、4〜8であることがさらに好ましい。
カーボンブラックは、単独でまたは2種以上併用して使用することができる。更にカーボンブラックは、バインダーを用いて顆粒化することも可能であり、他の樹脂中に高濃度で溶融混練したマスターバッチでの使用も可能である。溶融混練したマスターバッチを使用することによって、押出時のハンドリング性改良、樹脂組成物中への分散性改良が達成できる。上記樹脂としては、ポリスチレン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂等が挙げられる。
カーボンブラックの含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対して、好ましくは0.0001質量部以上、より好ましくは0.0005質量部以上、さらに好ましくは0.001質量部以上であり、また、好ましくは2質量部以下、より好ましくは1質量部以下である。カーボンブラックが前記範囲の下限値未満の場合は、外観や漆黒性に劣る可能性があり、カーボンブラックの含有量が前記範囲の上限値を超える場合は、本発明の熱可塑性樹脂組成物の熱安定性が低下する可能性がある。
[フェノール系安定剤]
本発明の熱可塑性樹脂組成物は、フェノール系安定剤を含有することが好ましい。フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナミド]、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”−ヘキサ−tert−ブチル−a,a’,a”−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン,2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノール、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート等が挙げられる。
なかでも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASF社製「イルガノックス1010」、「イルガノックス1076」、ADEKA社製「アデカスタブAO−50」、「アデカスタブAO−60」等が挙げられる。
なお、フェノール系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
フェノール系安定剤の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。フェノール系安定剤の含有量が前記範囲の下限値未満の場合は、フェノール系安定剤としての効果が不十分となる可能性があり、フェノール系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
[離型剤]
また、離型剤(滑剤)を含有することも好ましい。離型剤としては、例えば、脂肪族カルボン酸、脂肪族カルボン酸とアルコールとのエステル、数平均分子量200〜15,000の脂肪族炭化水素化合物、ポリシロキサン系シリコーンオイルなどが好ましく挙げられる。
脂肪族カルボン酸としては、例えば、飽和または不飽和の脂肪族一価、二価または三価カルボン酸を挙げることができる。ここで脂肪族カルボン酸とは、脂環式のカルボン酸も包含する。これらの中で好ましい脂肪族カルボン酸は、炭素数6〜36の一価または二価カルボン酸であり、炭素数6〜36の脂肪族飽和一価カルボン酸がさらに好ましい。かかる脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、カプロン酸、カプリン酸、ラウリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラリアコンタン酸、モンタン酸、アジピン酸、アゼライン酸などが挙げられる。
脂肪族カルボン酸とアルコールとのエステルにおける脂肪族カルボン酸としては、例えば、前記脂肪族カルボン酸と同じものが使用できる。一方、アルコールとしては、例えば、飽和または不飽和の一価または多価アルコールが挙げられる。これらのアルコールは、フッ素原子、アリール基などの置換基を有していてもよい。これらの中では、炭素数30以下の一価または多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコールまたは脂肪族飽和多価アルコールがさらに好ましい。なお、ここで脂肪族とは、脂環式化合物も包含する用語として使用される。
かかるアルコールの具体例としては、オクタノール、デカノール、ドデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2−ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
なお、上記のエステルは、不純物として脂肪族カルボン酸及び/またはアルコールを含有していてもよい。また、上記のエステルは、純物質であってもよいが、複数の化合物の混合物であってもよい。さらに、結合して一つのエステルを構成する脂肪族カルボン酸及びアルコールは、それぞれ、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
脂肪族カルボン酸とアルコールとのエステルの具体例としては、蜜ロウ(ミリシルパルミテートを主成分とする混合物)、ステアリン酸ステアリル、ベヘン酸ベヘニル、ベヘン酸ステアリル、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
数平均分子量200〜15,000の脂肪族炭化水素としては、例えば、流動パラフィン、パラフィンワックス、マイクロワックス、ポリエチレンワックス、フィッシャ−トロプシュワックス、炭素数3〜12のα−オレフィンオリゴマー等が挙げられる。なお、ここで脂肪族炭化水素としては、脂環式炭化水素も含まれる。また、これらの炭化水素は部分酸化されていてもよい。
これらの中では、パラフィンワックス、ポリエチレンワックスまたはポリエチレンワックスの部分酸化物が好ましく、パラフィンワックス、ポリエチレンワックスがさらに好ましい。
また、前記の脂肪族炭化水素の数平均分子量は、好ましくは5,000以下である。
なお、脂肪族炭化水素は、単一物質であってもよいが、構成成分や分子量が様々なものの混合物であっても、主成分が上記の範囲内であれば使用できる。
ポリシロキサン系シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、ジフェニルシリコーンオイル、フッ素化アルキルシリコーン等が挙げられる。
なお、上述した離型剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
離型剤の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1質量部以下である。離型剤の含有量が前記範囲の下限値未満の場合は、離型性の効果が十分でない場合があり、離型剤の含有量が前記範囲の上限値を超える場合は、耐加水分解性の低下、射出成形時の金型汚染などが生じる可能性がある。
[リン系安定剤]
本発明の熱可塑性樹脂組成物は、リン系安定剤を含有することも好ましい。リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2B族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
有機ホスファイト化合物としては、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。
このような、有機ホスファイト化合物としては、具体的には、例えば、ADEKA社製「アデカスタブ1178」、「アデカスタブ2112」、「アデカスタブHP−10」、城北化学工業社製「JP−351」、「JP−360」、「JP−3CP」、BASF社製「イルガフォス168」等が挙げられる。
なお、リン系安定剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
リン系安定剤の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量以下、より好ましくは0.5質量部以下である。リン系安定剤の含有量が前記範囲の下限値未満の場合は、熱安定効果が不十分となる可能性があり、リン系安定剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。
[その他の成分]
本発明の熱可塑性樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、上記した以外の樹脂、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
・その他の樹脂
その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート樹脂などの熱可塑性ポリエステル樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂等が挙げられる。
なお、その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
・樹脂添加剤
樹脂添加剤としては、例えば、紫外線吸収剤、染顔料、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。なお、樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
以下、本発明の熱可塑性樹脂組成物に好適な添加剤の例について具体的に説明する。
・・紫外線吸収剤
紫外線吸収剤としては、例えば、酸化セリウム、酸化亜鉛などの無機紫外線吸収剤;ベンゾトリアゾール化合物、ベンゾフェノン化合物、サリシレート化合物、シアノアクリレート化合物、トリアジン化合物、オギザニリド化合物、マロン酸エステル化合物、ヒンダードアミン化合物などの有機紫外線吸収剤などが挙げられる。これらの中では有機紫外線吸収剤が好ましく、ベンゾトリアゾール化合物がより好ましい。有機紫外線吸収剤を選択することで、本発明の熱可塑性樹脂組成物の透明性や機械物性が良好なものになる。
ベンゾトリアゾール化合物の具体例としては、例えば、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−[2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル]−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチル−フェニル)−5−クロロベンゾトリアゾール)、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミル)−ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]等が挙げられ、なかでも2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]が好ましく、特に2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾールが好ましい。
このようなベンゾトリアゾール化合物としては、具体的には例えば、シプロ化成社製「シーソーブ701」、「シーソーブ705」、「シーソーブ703」、「シーソーブ702」、「シーソーブ704」、「シーソーブ709」、共同薬品社製「バイオソーブ520」、「バイオソーブ582」、「バイオソーブ580」、「バイオソーブ583」、ケミプロ化成社製「ケミソーブ71」、「ケミソーブ72」、サイテックインダストリーズ社製「サイアソーブUV5411」、ADEKA社製「LA−32」、「LA−38」、「LA−36」、「LA−34」、「LA−31」、BASF社製「チヌビンP」、「チヌビン234」、「チヌビン326」、「チヌビン327」、「チヌビン328」等が挙げられる。
ベンゾフェノン化合物の具体例としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−n−ドデシロキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン等が挙げられ、このようなベンゾフェノン化合物としては、具体的には例えば、シプロ化成社製「シーソーブ100」、「シーソーブ101」、「シーソーブ101S」、「シーソーブ102」、「シーソーブ103」、共同薬品社製「バイオソーブ100」、「バイオソーブ110」、「バイオソーブ130」、ケミプロ化成社製「ケミソーブ10」、「ケミソーブ11」、「ケミソーブ11S」、「ケミソーブ12」、「ケミソーブ13」、「ケミソーブ111」、BASF社製「ユビヌル400」、BASF社製「ユビヌルM−40」、BASF社製「ユビヌルMS−40」、サイテックインダストリーズ社製「サイアソーブUV9」、「サイアソーブUV284」、「サイアソーブUV531」、「サイアソーブUV24」、ADEKA社製「アデカスタブ1413」、「アデカスタブLA−51」等が挙げられる。
サリシレート化合物の具体例としては、例えば、フェニルサリシレート、4−tert−ブチルフェニルサリシレート等が挙げられ、このようなサリシレート化合物としては、具体的には例えば、シプロ化成社製「シーソーブ201」、「シーソーブ202」、ケミプロ化成社製「ケミソーブ21」、「ケミソーブ22」等が挙げられる。
シアノアクリレート化合物の具体例としては、例えば、エチル−2−シアノ−3,3−ジフェニルアクリレート、2−エチルヘキシル−2−シアノ−3,3−ジフェニルアクリレート等が挙げられ、このようなシアノアクリレート化合物としては、具体的には例えば、シプロ化成社製「シーソーブ501」、共同薬品社製「バイオソーブ910」、第一化成社製「ユビソレーター300」、BASF社製「ユビヌルN−35」、「ユビヌルN−539」等が挙げられる。
トリアジン化合物としては、例えば1,3,5−トリアジン骨格を有する化合物等が挙げられ、このようなトリアジン化合物としては、具体的には例えば、ADEKA社製「LA−46」、BASF社製「チヌビン1577ED」、「チヌビン400」、「チヌビン405」、「チヌビン460」、「チヌビン477−DW」、「チヌビン479」等が挙げられる。
オギザニリド化合物の具体例としては、例えば、2−エトキシ−2’−エチルオキザリニックアシッドビスアリニド等が挙げられ、このようなオキザリニド化合物としては、具体的には例えば、クラリアント社製「サンデュボアVSU」等が挙げられる。
マロン酸エステル化合物としては、2−(アルキリデン)マロン酸エステル類が好ましく、2−(1−アリールアルキリデン)マロン酸エステル類がより好ましい。このようなマロン酸エステル化合物としては、具体的には例えば、クラリアント社製「PR−25」、BASF社製「B−CAP」等が挙げられる。
紫外線吸収剤の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対して、通常0.01質量部以上、好ましくは0.1質量部以上であり、また、通常3質量部以下であり、好ましくは2質量部以下、より好ましくは1質量部以下である。紫外線吸収剤の含有量が前記範囲の下限値未満の場合は、耐候性の改良効果が不十分となる可能性があり、紫外線吸収剤の含有量が前記範囲の上限値を超える場合は、モールドデボジット等が生じ、金型汚染を引き起こす可能性がある。なお、紫外線吸収剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
・・染顔料
染顔料としては、例えば、無機顔料、有機顔料、有機染料などが挙げられる。
無機顔料としては、例えば、カドミウムレッド、カドミウムイエロー等の硫化物系顔料;群青などの珪酸塩系顔料;酸化チタン、亜鉛華、弁柄、酸化クロム、鉄黒、チタンイエロー、亜鉛−鉄系ブラウン、チタンコバルト系グリーン、コバルトグリーン、コバルトブルー、銅−クロム系ブラック、銅−鉄系ブラック等の酸化物系顔料;黄鉛、モリブデートオレンジ等のクロム酸系顔料;紺青などのフェロシアン系顔料などが挙げられる。
有機顔料および有機染料としては、例えば、銅フタロシアニンブルー、銅フタロシアニングリーン等のフタロシアニン系染顔料;ニッケルアゾイエロー等のアゾ系染顔料;チオインジゴ系、ペリノン系、ペリレン系、キナクリドン系、ジオキサジン系、イソインドリノン系、キノフタロン系などの縮合多環染顔料;アンスラキノン系、複素環系、メチル系の染顔料などが挙げられる。
これらの中では、熱安定性の点から、酸化チタン、シアニン系、キノリン系、アンスラキノン系、フタロシアニン系化合物などが好ましい。
なお、染顔料は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
染顔料の含有量は、ポリカーボネート樹脂(A)とスチレン系樹脂(B)の合計100質量部に対して、通常5質量部以下、好ましくは3質量部以下、より好ましくは2質量部以下である。染顔料の含有量が多すぎると耐衝撃性が十分でなくなる可能性がある。
[熱可塑性樹脂組成物の製造方法]
本発明の熱可塑性樹脂組成物を製造する製造方法には制限はなく、公知の熱可塑性樹脂組成物の製造方法を広く採用できる。
具体例を挙げると、ポリカーボネート樹脂(A)、スチレン系樹脂(B)、リン酸エステル化合物(C)、フルオロポリマー(D)及びケイ酸塩化合物(E)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
また、例えば、各成分を予め混合せずに、または、一部の成分のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練して、本発明の熱可塑性樹脂組成物を製造することもできる。
また、例えば、一部の成分を予め混合し押出機に供給して溶融混練することで得られる樹脂組成物をマスターバッチとし、このマスターバッチを再度残りの成分と混合し、溶融混練することによって本発明の熱可塑性樹脂組成物を製造することもできる。
また、例えば、分散し難い成分を混合する際には、その分散し難い成分を予め水や有機溶剤等の溶媒に溶解又は分散させ、その溶液又は分散液と混練するようにすることで、分散性を高めることもできる。
本発明の熱可塑性樹脂組成物は、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)において、1.8mm厚さにおけるUL94試験による難燃性が、好ましくは5VAまたは5VBという極めて高い難燃性を有する。
また、本発明の熱可塑性樹脂組成物は、高温で成形した場合でも耐衝撃性の低下が少ないという特徴を有する。具体的には、240℃で成形した3mm厚のISO多目的試験片のノッチ付シャルピー衝撃強度(240℃衝撃強度)に対する260℃で成形した3mm厚のISO多目的試験片のノッチ付シャルピー衝撃強度(260℃衝撃強度)の比(260℃衝撃強度/240℃衝撃強度)が、好ましくは0.8以上の値を示す。
[成形体]
本発明の熱可塑性樹脂組成物は、通常、任意の形状に成形して成形体(樹脂組成物成形体)として用いる。この成形体の形状、模様、色彩、寸法などに制限はなく、その成形体の用途に応じて任意に設定すればよい。
成形体の例を挙げると、電気・電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、照明機器等の部品が挙げられる。これらの中でも、特に電気・電子機器やOA機器の筐体に用いて好適であり、プリンター、複写機、プロジェクター、モデム及びルーター等の筐体に特に好適である。
成形体の製造方法は、特に限定されず、熱可塑性樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
得られた本発明の成形体は、難燃性、耐衝撃性及び外観に優れる。
以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において[部]とは、特に断らない限り質量基準に基づく「質量部」を表す。
(実施例1〜14、比較例1〜4)
[樹脂ペレット製造]
表1に記した各成分のうち(C)成分以外を、表3〜表6に記した割合(質量比)で配合し、タンブラーにて20分混合した後、1ベントを備えた日本製鋼所社製二軸押出機(TEX30α)に上流のフィーダーより供給し、さらに(C)成分をバレルの途中より供給しながら、回転数250rpm、吐出量45kg/時間、バレル温度260℃の条件で混練し、ストランド状に押出された溶融樹脂を水槽にて急冷し、ペレタイザーを用いてペレット化し、樹脂組成物のペレットを得た。
Figure 2015227421
[試験片の作製]
上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製のSE100DU型射出成形機を用いて、シリンダー温度240℃、金型温度40℃の条件で射出成形し、長さ125mm、幅13mm、厚さ1.8mmのUL試験用試験片を成形した。
同様に上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、住友重機械工業社製の射出成型機サイキャップM−2(型締め力75T)を用いて、シリンダー温度240℃、金型温度60℃の条件で射出成形し、240℃成形ISO多目的試験片(3mm)を成形した。
またシリンダー温度260℃、金型温度60℃の条件で射出成形し、260℃成形ISO多目的試験片(3mm)を成形した。
[難燃性評価]
各樹脂組成物の難燃性の評価は、上記で得られたUL試験用試験片(1.8mm厚)を、温度23℃、湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)の94−5V規格に準拠して行った。
94−5V試験は、1.8mm厚のUL試験用試験片(棒状と板状の2種)を用いて、5秒間×5回接炎した後の棒状試験片の残炎時間、ドリップ性、板状試験片の貫通孔の有無から難燃性を評価する方法で、判定基準は以下の表2に従う。5VA、5VBのいずれの判定基準も満たさないものはNRと表記した。
Figure 2015227421
[耐衝撃性]
上述の方法で得られた240℃成形ISO多目的試験片(3mm)及び260℃成形ISO多目的試験片(3mm)を用い、ISO179に準拠してノッチ付シャルピー衝撃強度を測定した。なお、表3〜5中、それぞれ「240℃耐衝撃性(単位:kJ/m)」、「260℃耐衝撃性(単位:kJ/m)」と表記する。
また「240℃耐衝撃性」の値を1としたときの、「260℃耐衝撃性」の比率(260℃耐衝撃性/240℃耐衝撃性)を、「耐衝撃性保持率」として求めた。この値が、大きい方が、高温成形でも物性低下が少なく、大型、薄型の成形品を成形する場合に、物性低下が小さく、設計しやすいことを意味し、好ましい。
[外観評価]
図1は外観評価のために成形した平板状成形体の形状を示す上面図(表側の意匠面から見た図)である。平板状成形体は、長さ200mm×幅150mm×厚さ2mmの長方形状の平板である。成形は平板状成形体の右側端部に設けたゲートから樹脂を注入して行う。平板状成形体の裏面側には、樹脂の流動方向に長さ30mm、厚さ1.1mmで高さ5mmのリブが、図1に示す位置(図中の数値はmm)に、3つ互いに平行に設けられ、さらに樹脂流動方向に直交する方向に、長さ100mm、厚さ1.1mmで高さ5mmのリブが平板状成形体の裏面側に1つ設けられている。
上述の製造方法で得られたペレットを80℃で5時間乾燥させた後、東芝機械社製のEC160型射出成形機を用いて、シリンダー温度260℃、金型温度40℃の条件で射出成形し、上記平板状成形体を成形し、樹脂の流動方向に直行するリブを通過し、さらに流動方向に設けた3つのリブ通過後の意匠面(図1の3つの流動方向リブの左側部)に発生した黒い筋状の外観不良の数を目視で観察し、筋状外観不良の数が、0〜3つのものを「○」(合格)とし、4つ以上のものを「×」(不合格)と判定した。
Figure 2015227421
Figure 2015227421
Figure 2015227421
上記表3及び表5より、本発明で規定するポリカーボネート樹脂(a1)、(a2)、スチレン系樹脂(B)、リン系難燃剤(C)、フルオロポリマー(D)及びケイ酸塩化合物(E)を、本発明で規定の範囲で含有する実施例の熱可塑性樹脂組成物は、1.8mm厚でのUL難燃性が5VBを達成し、耐衝撃性に優れ、耐衝撃性保持率も高く、外観評価では、黒筋状外観不良発生が少ないことが分かる。
一方、表4より、比較例1、2は、ポリカーボネート樹脂(a2)を含有しないか含有量が少ないため耐衝撃性と耐衝撃性保持率が悪く、フルオロポリマー(D)とケイ酸塩化合物(E)を含有しない比較例3は、難燃性が悪く5VBを達成できず、また、ケイ酸塩化合物(E)の含有量が大き過ぎる比較例は、耐衝撃性が極めて悪くなることが分かる。
本発明の熱可塑性樹脂組成物は、難燃性、耐衝撃性及び外観に優れ、さらには高温成形時の衝撃強度にも優れるポリカーボネート樹脂/スチレン系樹脂アロイであるので、電気・電子機器、OA機器、情報端末機器、機械部品、家電製品、車輌部品、建築部材、各種容器、照明機器等の部品等に用いて好適であり、その産業上の利用性は高いものがある。

Claims (6)

  1. 示差型走査熱量計(DSC)で測定した結晶融解熱が15mJ/g以上であるポリカーボネート樹脂(a1)15〜90質量%と示差型走査熱量計(DSC)で測定した結晶融解熱が5mJ/g以下であるポリカーボネート樹脂(a2)85〜10質量%からなるポリカーボネート樹脂(A)50〜90質量%と、スチレン系樹脂(B)50〜10質量%からなる(A)及び(B)の合計100質量部に対し、
    リン系難燃剤(C)3〜30質量部、フルオロポリマー(D)0.01〜2質量部及びケイ酸塩化合物(E)0〜5質量部を配合してなる熱可塑性樹脂組成物。
  2. スチレン系樹脂(B)が、ABS樹脂及び/又はAS樹脂である請求項1に記載の熱可塑性樹脂組成物。
  3. さらに、ゴム質重合体に、芳香族ビニル化合物、シアン化ビニル化合物成分及び(メタ)アクリル酸エステル化合物からなる単量体から選ばれる少なくとも1種をグラフト重合させてなるグラフト共重合体(F)を、ポリカーボネート樹脂(A)及びスチレン系樹脂(B)の合計100質量部に対し、0.5〜10質量部配合してなる請求項1又は2に記載の熱可塑性樹脂組成物。
  4. リン系難燃剤(C)が縮合リン酸エステル及び/又はホスファゼン化合物である請求項1〜3のいずれかに記載の熱可塑性樹脂組成物。
  5. 240℃で成形した3mm厚のISO多目的試験片のノッチ付シャルピー衝撃強度(240℃衝撃強度)に対する260℃で成形した3mm厚のISO多目的試験片のノッチ付シャルピー衝撃強度(260℃衝撃強度)の比(260℃衝撃強度/240℃衝撃強度)が、0.8以上である請求項1〜4のいずれかに記載の熱可塑性樹脂組成物。
  6. 1.8mm厚におけるUL94による難燃性が、5VAまたは5VBである請求項1〜5のいずれかに記載の熱可塑性樹脂組成物。
JP2014113782A 2014-06-02 2014-06-02 熱可塑性樹脂組成物 Pending JP2015227421A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014113782A JP2015227421A (ja) 2014-06-02 2014-06-02 熱可塑性樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014113782A JP2015227421A (ja) 2014-06-02 2014-06-02 熱可塑性樹脂組成物

Publications (1)

Publication Number Publication Date
JP2015227421A true JP2015227421A (ja) 2015-12-17

Family

ID=54885073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014113782A Pending JP2015227421A (ja) 2014-06-02 2014-06-02 熱可塑性樹脂組成物

Country Status (1)

Country Link
JP (1) JP2015227421A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019151497A1 (ja) * 2018-02-05 2020-12-03 帝人株式会社 難燃性ポリカーボネート樹脂組成物
US11091604B2 (en) 2016-12-14 2021-08-17 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent electrical properties, and molded article produced using same
US11208553B2 (en) 2016-12-21 2021-12-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent electrical properties, and molded article produced using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316411A (ja) * 1994-05-27 1995-12-05 Mitsubishi Chem Corp 難燃性熱可塑性樹脂組成物
JP2001225321A (ja) * 2000-02-15 2001-08-21 Teijin Chem Ltd 熱可塑性樹脂組成物の混合方法
JP2003183490A (ja) * 2001-12-13 2003-07-03 Asahi Kasei Corp ポリカーボネート系難燃樹脂組成物
JP2004238613A (ja) * 2003-01-17 2004-08-26 Teijin Chem Ltd 再生樹脂組成物およびその成形品、再生樹脂組成物の製造方法、および成形品の再利用方法
JP2005146100A (ja) * 2003-11-14 2005-06-09 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316411A (ja) * 1994-05-27 1995-12-05 Mitsubishi Chem Corp 難燃性熱可塑性樹脂組成物
JP2001225321A (ja) * 2000-02-15 2001-08-21 Teijin Chem Ltd 熱可塑性樹脂組成物の混合方法
JP2003183490A (ja) * 2001-12-13 2003-07-03 Asahi Kasei Corp ポリカーボネート系難燃樹脂組成物
JP2004238613A (ja) * 2003-01-17 2004-08-26 Teijin Chem Ltd 再生樹脂組成物およびその成形品、再生樹脂組成物の製造方法、および成形品の再利用方法
JP2005146100A (ja) * 2003-11-14 2005-06-09 Teijin Chem Ltd 難燃性芳香族ポリカーボネート樹脂組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091604B2 (en) 2016-12-14 2021-08-17 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent electrical properties, and molded article produced using same
US11208553B2 (en) 2016-12-21 2021-12-28 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having excellent electrical properties, and molded article produced using same
JPWO2019151497A1 (ja) * 2018-02-05 2020-12-03 帝人株式会社 難燃性ポリカーボネート樹脂組成物
JP7072589B2 (ja) 2018-02-05 2022-05-20 帝人株式会社 難燃性ポリカーボネート樹脂組成物

Similar Documents

Publication Publication Date Title
JP5782547B2 (ja) 熱可塑性樹脂組成物
JP4990417B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP6147595B2 (ja) ポリカーボネート樹脂組成物、それからなる成形体およびその製造方法
WO2013115151A1 (ja) ポリカーボネート樹脂組成物
WO2013157345A1 (ja) ポリカーボネート樹脂組成物
JPWO2012067108A6 (ja) ポリカーボネート樹脂組成物及び成形体
JP2013159703A (ja) 複合繊維強化ポリカーボネート樹脂組成物
JP5449443B2 (ja) ポリカーボネート樹脂組成物
JP2019059813A (ja) ポリカーボネート樹脂組成物
JP5449458B2 (ja) ポリカーボネート樹脂組成物
JP5427767B2 (ja) 芳香族ポリカーボネート樹脂組成物、それからなる成形品および成形品の製造方法
JP2013177476A (ja) 炭素繊維強化ポリカーボネート樹脂組成物
JP2013177545A (ja) 複合繊維強化ポリカーボネート樹脂組成物
JP2015227421A (ja) 熱可塑性樹脂組成物
JPWO2014141759A1 (ja) 熱可塑性樹脂組成物
JP5973333B2 (ja) ポリカーボネート樹脂組成物
JP2014136749A (ja) ガラス繊維強化ポリカーボネート樹脂組成物
JP5758649B2 (ja) ポリカーボネート樹脂組成物及び成形体
JP6276019B2 (ja) ポリカーボネート樹脂組成物
JP5785308B1 (ja) 熱可塑性樹脂組成物
JP5770487B2 (ja) ポリカーボネート樹脂組成物
JP5449442B2 (ja) ポリカーボネート樹脂組成物
JP2014055255A (ja) ガラス繊維強化ポリカーボネート樹脂組成物
JP2013189618A (ja) ガラス繊維強化ポリカーボネート樹脂組成物
JP2014227436A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120