JP2015178578A - Gasification reactor - Google Patents
Gasification reactor Download PDFInfo
- Publication number
- JP2015178578A JP2015178578A JP2014057216A JP2014057216A JP2015178578A JP 2015178578 A JP2015178578 A JP 2015178578A JP 2014057216 A JP2014057216 A JP 2014057216A JP 2014057216 A JP2014057216 A JP 2014057216A JP 2015178578 A JP2015178578 A JP 2015178578A
- Authority
- JP
- Japan
- Prior art keywords
- gasification
- heat transfer
- raw material
- reaction
- transfer body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、バイオマス等の炭素化合物を含有するガス化原料をガス化するためのガス化反応装置に関するものである。 The present invention relates to a gasification reaction apparatus for gasifying a gasification raw material containing a carbon compound such as biomass.
近年、地球環境問題に伴う二酸化炭素排出の削減や、化石燃料の高騰から、バイオマス等の固形有機物ガス化原料を、外部エネルギー源を用いて水性ガスに転化することが要望されている。このようなガス化原料を、水性ガスに転化する装置として、例えば特許文献1のようなガス化反応装置が提案されている。 In recent years, there has been a demand for conversion of solid organic gasification raw materials such as biomass into water gas using an external energy source due to reduction of carbon dioxide emissions associated with global environmental problems and soaring fossil fuels. As an apparatus for converting such a gasification raw material into water gas, for example, a gasification reaction apparatus as disclosed in Patent Document 1 has been proposed.
バイオマスから直接吸熱反応により水性ガスを得る場合に、従来のガス化反応装置を実際の水性ガスの生成に利用するためには、固形有機物ガス化原料(以下、「ガス化原料」と総称する。)に効率よく大量の反応熱を供給すること、特に反応生成ガスが速やかに水性ガスに転化するように、有効な触媒機能の存在下で、ガス化原料及び気相に接触により熱を伝達させることが必要とされる。しかしながら、反応の律速過程が熱供給過程にあるにもかかわらず、従来のガス化反応装置では、ガス化反応装置のガス化室内にガス化原料を投入し、ガス化室壁面からのみ熱を供給する構成であるため、伝熱面であるガス化室内壁とガス化原料及び気相との接触が十分に得られず、ガス化原料に効率よく大量の反応熱を供給できないという問題が生じていた。 When water gas is obtained directly from biomass by endothermic reaction, in order to use a conventional gasification reaction apparatus for actual production of water gas, it is generically referred to as a solid organic gasification raw material (hereinafter referred to as “gasification raw material”). ) To efficiently supply a large amount of reaction heat, especially in the presence of an effective catalytic function so that the reaction product gas is quickly converted into water gas, and heat is transferred to the gasification raw material and the gas phase by contact. Is needed. However, in spite of the rate-limiting process of the reaction being the heat supply process, in the conventional gasification reactor, the gasification raw material is introduced into the gasification chamber of the gasification reactor and heat is supplied only from the wall of the gasification chamber. Therefore, there is a problem that sufficient contact between the gasification interior wall, which is the heat transfer surface, the gasification raw material, and the gas phase cannot be obtained, and a large amount of reaction heat cannot be efficiently supplied to the gasification raw material. It was.
本発明は、上記課題を解決するためになされたものであり、固形有機物ガス化原料に効率よく大量の反応熱を供給して高い反応効率を得ることができるガス化反応装置を提供する。 The present invention has been made to solve the above-described problems, and provides a gasification reaction apparatus capable of obtaining a high reaction efficiency by efficiently supplying a large amount of reaction heat to a solid organic gasification raw material.
本発明のガス化反応装置は、炭素化合物を含有する固形有機物ガス化原料を、水又は水蒸気と共に、触媒機能を有しかつ大きな熱伝導度及び熱容量を持つ伝熱体と混合させながら熱を供給することで、吸熱反応によりガス化するためのガス化反応装置であって、内部に伝熱体が収容され、ガス化原料が供給されるガス化室と、前記ガス化室内に収容された伝熱体を攪拌するための攪拌手段とを備える。 The gasification reaction apparatus of the present invention supplies heat while mixing a solid organic gasification raw material containing a carbon compound together with water or steam together with a heat transfer body having a catalytic function and having a large thermal conductivity and heat capacity. Thus, there is provided a gasification reaction apparatus for gasification by an endothermic reaction, in which a heat transfer body is accommodated and a gasification raw material is supplied, and a gasification chamber accommodated in the gasification chamber. A stirring means for stirring the heat element.
起こる反応は、バイオマスを代表する物質としてセルロースを例にとれば、
(C6H10O5)n + nH2O → 6nH2 + 6nCO - 816n [kJ]
木質バイオマスを代表するリグニンに対しては、
(CH1.4O0.3)n + 0.7nH2O → 1.4nH2 + nCO - 136n [kJ]
であり、いずれも極めて大きな吸熱を伴う反応であり、水蒸気共存下で起こる。
The reaction that takes place, taking cellulose as an example of a material representing biomass,
(C 6 H 10 O 5 ) n + nH 2 O → 6nH 2 + 6nCO-816n [kJ]
For lignin representing woody biomass,
(CH 1.4 O 0.3 ) n + 0.7nH 2 O → 1.4nH 2 + nCO-136n [kJ]
These are reactions with extremely large endotherms and occur in the presence of water vapor.
ガス化反応装置では、ガス化室において、伝熱体が、その熱伝導度により速やかに外部熱源からの熱を得るとともに、その熱容量によって、熱源からの熱を保持している。本発明では、ガス化反応装置が攪拌手段を備えているため、伝熱体が攪拌手段によって攪拌されて、ガス化室内に均一に広がる。これにより、ガス化原料及びガス化原料の分解生成物(気相)に対して大きな面積で接触することができる。また伝熱体は撹拌により絶えず熱源と接触し、そこから熱を得る。その結果、伝熱体の熱伝導作用によって、ガス化原料及びガス化原料の分解生成物に、吸熱反応に十分な大量の反応熱を効率よく供給することができる。 In the gasification reactor, in the gasification chamber, the heat transfer body quickly obtains heat from the external heat source due to its thermal conductivity, and retains heat from the heat source due to its heat capacity. In the present invention, since the gasification reaction apparatus includes the stirring means, the heat transfer body is stirred by the stirring means and spreads uniformly in the gasification chamber. Thereby, it can contact in a large area with the decomposition product (gas phase) of the gasification raw material and the gasification raw material. In addition, the heat transfer body constantly comes into contact with a heat source by stirring and obtains heat therefrom. As a result, a large amount of reaction heat sufficient for an endothermic reaction can be efficiently supplied to the gasification raw material and the decomposition product of the gasification raw material by the heat conduction action of the heat transfer body.
なお、「伝熱体を攪拌する」とは、単にガス化室内において伝熱体をかき混ぜるのみではなく、例えば伝熱体をガス化室内とガス化室外とで循環させる、ガス化室を回転させる等して、伝熱体がガス化室内の一定箇所に留まらず、ガス化室内を散らばるようにすることも含むものである。この点は、本明細書を通じて同義である。 Note that “stirring the heat transfer body” does not only simply stir the heat transfer body in the gasification chamber, but also rotates the gasification chamber, for example, circulating the heat transfer body between the gasification chamber and the outside of the gasification chamber. For example, the heat transfer body is not limited to a fixed location in the gasification chamber but is scattered in the gasification chamber. This point is synonymous throughout this specification.
上記ガス化反応装置において、前記攪拌手段は、前記ガス化室と連結され、伝熱体を循環させる循環路であることができる。 In the gasification reaction apparatus, the stirring means may be a circulation path connected to the gasification chamber and circulating the heat transfer body.
また、上記ガス化反応装置は、ガス化原料中に含まれる不活性物質及び吸熱反応により生成される反応残渣を分離するための分離機構を更に備えることができる。ガス化原料には、不可避的に、灰分、金属片や土砂等の反応に寄与しない成分(以下、「不活性物質」と総称する。)が混入している。また、ガス化原料に吸熱反応を起こすと、タールや炭化成分といった反応残渣が生じる。しかしながら、上記構成を有することにより、分離機構によって不活性物質や反応残渣を分離できる。これにより、不活性物質や反応残渣がガス化室内に溜まることが防止でき、ガス化室内に溜まった不活性物質や反応残渣を除去する必要がなくなるため、ガス化反応装置を連続運転することができる。 In addition, the gasification reaction apparatus can further include a separation mechanism for separating an inert substance contained in the gasification raw material and a reaction residue generated by an endothermic reaction. The gasification raw material inevitably contains components (hereinafter collectively referred to as “inert substances”) that do not contribute to the reaction, such as ash, metal pieces, and earth and sand. In addition, when an endothermic reaction occurs in the gasification raw material, reaction residues such as tar and carbonized components are generated. However, by having the above configuration, the inert substance and the reaction residue can be separated by the separation mechanism. As a result, it is possible to prevent the inert substances and reaction residues from being accumulated in the gasification chamber, and it is not necessary to remove the inert substances and reaction residues accumulated in the gasification chamber, so that the gasification reaction apparatus can be operated continuously. it can.
また、上記ガス化反応装置において、前記ガス化室は、ガス化原料を供給する供給口と、生成されたガスを排出する排出口とを備え、前記供給口から連続的にガス化原料を供給しながら、前記循環路を介して循環する伝熱体と混合させることでガス化させ、生成ガスを連続的に排出することができる。上記構成を有することにより、ガス化原料を供給口から連続的に供給する一方、触媒機能を有する伝熱体を、その機能を損なわずに連続的に供給して、常時ガスを生成し、排出口から排出させることができる。それとともに、上述したように不活性物質や反応残渣を、ガス化室から除去することができる。これにより、ガス化反応装置を連続的に使用することができる。また、伝熱体が循環することに加え、その触媒機能を損なわないため、ガス化原料に対して高効率で熱を供給して吸熱反応を起こさせることができる。 In the gasification reaction apparatus, the gasification chamber includes a supply port for supplying a gasification raw material and a discharge port for discharging the generated gas, and continuously supplies the gasification raw material from the supply port. However, it is gasified by mixing with the heat transfer body circulating through the circulation path, and the product gas can be continuously discharged. By having the above-described configuration, the gasification raw material is continuously supplied from the supply port, while the heat transfer body having a catalytic function is continuously supplied without impairing the function, and gas is always generated and discharged. It can be discharged from the outlet. At the same time, as described above, inert substances and reaction residues can be removed from the gasification chamber. Thereby, a gasification reaction apparatus can be used continuously. In addition to the circulation of the heat transfer body, the catalytic function is not impaired, so that heat can be efficiently supplied to the gasification raw material to cause an endothermic reaction.
また、上記ガス化反応装置において、前記循環路は、ガス化室と異なる雰囲気とすることができる別室となる上記構成を有することにより、ガス化原料をガス化室においてガス化させる吸熱反応を行いながら、吸熱反応の際に伝熱体の表面に付着したタールや炭化成分といった反応残渣を循環路において酸化雰囲気下で酸化除去して、伝熱体の触媒機能の再活性化させることができる。 Further, in the gasification reaction apparatus, the circulation path has an above-described configuration that is a separate chamber that can be an atmosphere different from that of the gasification chamber, thereby performing an endothermic reaction in which the gasification raw material is gasified in the gasification chamber. However, reaction residues such as tar and carbonized components adhering to the surface of the heat transfer body during the endothermic reaction can be oxidized and removed in an oxidizing atmosphere in the circulation path to reactivate the catalyst function of the heat transfer body.
本発明によれば、ガス化原料に効率よく大量の反応熱を供給して高い反応効率を得ることができる。 According to the present invention, high reaction efficiency can be obtained by efficiently supplying a large amount of reaction heat to the gasification raw material.
以下、本発明に係るガス化反応装置10の一実施形態について、添付図面を参照して説明する。 Hereinafter, an embodiment of a gasification reaction apparatus 10 according to the present invention will be described with reference to the accompanying drawings.
まず、図1を参照して、本発明のガス化反応装置10を組み込んだガス生成システム1について説明する。 First, with reference to FIG. 1, the gas production | generation system 1 incorporating the gasification reaction apparatus 10 of this invention is demonstrated.
本発明のガス生成システム1は、ガス化反応装置10と、固形有機物ガス化原料Mを供給する原料供給部2と、ガス化反応装置10から排出されたガスを貯蔵するガス貯蔵部5と、分離除去された不活性物質I及び反応残渣Rをガス化反応装置10から排出する廃棄物排出部20とを備えている。 The gas generation system 1 of the present invention includes a gasification reaction device 10, a raw material supply unit 2 that supplies a solid organic gasification raw material M, a gas storage unit 5 that stores gas discharged from the gasification reaction device 10, A waste discharge unit 20 for discharging the separated inert substance I and reaction residue R from the gasification reactor 10 is provided.
原料供給部2に貯蔵されるガス化原料Mとしては、固形で、少なくとも炭素化合物を含有するものであればどのようなものでも良く、例えばバイオマス等を用いることができる。バイオマスとしては、例えば、動物又は植物由来のものが挙げられる。具体的な例としては、木質系バイオマス、セルロース系廃棄物、厨芥、生ゴミ、生ゴミの乾燥物、食品工場廃棄物、等の固形バイオマスを多く含む廃棄物である。また、バガス、キャッサバ、トウモロコシ等の作物から食糧、飼料、若しくはバイオ燃料として炭水化物を利用した後のセルロース系廃棄物を含むバイオマスが挙げられる。またバイオマスではないが、燃料ガスの重要な廃棄物系の原料であるとともに廃棄物系バイオマスに混入が想定されるポリエチレンやポリスチレンなどの廃プラスチックも、ガス化原料Mとして使用できる。 The gasification raw material M stored in the raw material supply unit 2 may be any material as long as it is solid and contains at least a carbon compound. For example, biomass can be used. Examples of biomass include those derived from animals or plants. Specific examples include waste containing a large amount of solid biomass such as woody biomass, cellulosic waste, straw, garbage, dried garbage, food factory waste, and the like. Moreover, the biomass containing cellulosic waste after using carbohydrates as food, feed, or biofuel from crops such as bagasse, cassava and corn can be mentioned. Moreover, although it is not biomass, waste plastics, such as polyethylene and polystyrene, which are important waste materials of fuel gas and are supposed to be mixed in the waste biomass, can be used as the gasification raw material M.
このガス化原料Mは、後述するガス化室11内でガスに転化し易くするために、予め粉砕機等で所定の大きさに粉砕しておく必要がある。反応後に、不活性物質I及び反応残渣Rと、後述する伝熱体HTとを分離することから、ガス化原料Mは、伝熱体HTより十分小さくなるように粉砕する。このようにして粉砕されたガス化原料Mは、原料供給部2から、伝熱体HT及び水又は水蒸気と混合してガス化反応装置10に供給される。なお、ガス化原料Mは、ガス化反応装置10内で水又は水蒸気及び伝熱体HTと混合しても良い。 This gasification raw material M needs to be pulverized in advance to a predetermined size by a pulverizer or the like in order to facilitate conversion into gas in a gasification chamber 11 described later. After the reaction, since the inert substance I and the reaction residue R are separated from the heat transfer body HT described later, the gasification raw material M is pulverized to be sufficiently smaller than the heat transfer body HT. The gasified raw material M thus pulverized is supplied from the raw material supply unit 2 to the gasification reaction apparatus 10 after being mixed with the heat transfer body HT and water or water vapor. The gasification raw material M may be mixed with water or water vapor and the heat transfer body HT in the gasification reaction apparatus 10.
ガス化反応装置10は、水又は水蒸気と共にガス化原料Mを、触媒機能を有する伝熱体HTと混合させながら熱を供給することで、吸熱反応によりガス化するためのものである。図2に示すように、ガス化反応装置10は、内部に伝熱体HTを収容するとともに、水又は水蒸気と共にガス化原料Mが供給されるガス化室11と、ガス化室11内に収容された伝熱体HTを攪拌するための攪拌手段30と、ガス化室11の周辺又は内部に設けられて主として伝熱体を通してガス化室11内のガス化原料Mと気相成分を加熱し、反応熱を供給するための熱源13とを備えている。 The gasification reaction apparatus 10 is for gasifying by endothermic reaction by supplying heat while mixing the gasification raw material M together with water or water vapor with the heat transfer body HT having a catalytic function. As shown in FIG. 2, the gasification reaction apparatus 10 accommodates a heat transfer body HT therein, a gasification chamber 11 to which a gasification raw material M is supplied together with water or steam, and a gasification chamber 11. The agitating means 30 for agitating the heat transfer body HT, and the gasification raw material M and the gas phase components in the gasification chamber 11 provided around or inside the gasification chamber 11 mainly through the heat transfer body are heated. And a heat source 13 for supplying reaction heat.
触媒機能を有する伝熱体HTは熱源13からガス化原料Mに熱を伝えるために十分な熱容量と伝熱性能を持つ必要がある。材料としては、ニッケル、コバルト等、本発明で効果の認められたバイオマスのガス化反応に触媒効果を持つ金属粒や、それらを成分に含む合金粒、不活性な金属やセラミック粒子に触媒金属をコーティングしたもの、及びそれらの混合物等が挙げられる。これらの材料を用いた伝熱体HTは、本発明で要求される熱的な特性と触媒機能の双方を有することから、好ましく使用することが出来る。この伝熱体HTは、熱源13からガス化原料Mに熱を伝えるために十分な熱容量と伝熱性能を持たせるために、代表長さとして1〜10mm程度の大きさが必要である。 The heat transfer body HT having a catalytic function needs to have a sufficient heat capacity and heat transfer performance to transfer heat from the heat source 13 to the gasification raw material M. Materials include nickel, cobalt, and other metal particles that have a catalytic effect on the gasification reaction of biomass, which has been confirmed to be effective in the present invention, alloy particles that contain them as components, and inert metals and ceramic particles. Examples thereof include a coated product and a mixture thereof. The heat transfer body HT using these materials can be preferably used because it has both the thermal characteristics and the catalytic function required in the present invention. The heat transfer body HT needs to have a typical length of about 1 to 10 mm in order to have sufficient heat capacity and heat transfer performance for transferring heat from the heat source 13 to the gasification raw material M.
触媒活性成分としては、この他にRu、Pd、Rh、Pt等貴金属系も活性を持つことから、好ましく使用することが出来る。反応は熱供給に律速されるため、伝熱体HTに必要な触媒表面は比較的小さくともよい。一方、従来の細孔を有する触媒は、簡単にその表面がタールや炭化物で封じられてしまい効果が低い傾向がある。また多孔質体は熱容量、熱伝導度ともに低く、本発明における伝熱体HTとしては効果が低い傾向がある。 As the catalytically active component, a noble metal system such as Ru, Pd, Rh, Pt and the like is also active, so that it can be preferably used. Since the reaction is rate-controlled by the heat supply, the catalyst surface required for the heat transfer body HT may be relatively small. On the other hand, the conventional catalyst having pores tends to be less effective because its surface is easily sealed with tar or carbide. In addition, the porous body has low heat capacity and thermal conductivity, and tends to be less effective as the heat transfer body HT in the present invention.
セラミック系伝熱体HTとしては、チタニア、ジルコニア、チタニア-ジルコニア、アルミナ、シリカ、アルミナ-シリカからなる群から選ばれた少なくとも1種の金属酸化物、窒化物等が挙げられる。セラミック系伝熱体HTとしては、還元雰囲気、水蒸気雰囲気で安定な化合物であることが好ましい。 Examples of the ceramic heat transfer body HT include at least one metal oxide or nitride selected from the group consisting of titania, zirconia, titania-zirconia, alumina, silica, and alumina-silica. The ceramic heat transfer body HT is preferably a compound that is stable in a reducing atmosphere and a steam atmosphere.
触媒機能を有する伝熱体HTの形状は、特に限定されないが、流動性の観点から球状であることが好ましい。伝熱体HTが球状の場合、伝熱体HTの平均粒子径は、1〜10mm程度が好ましい。伝熱体HTの平均粒子径が1mmより小さくなると、伝熱体HTが保有する熱がすぐに放熱してしまい、ガス化原料Mやその分解生成ガスに反応熱を十分に伝えることができなくなる傾向がある。一方、伝熱体HTの平均粒子径が10mmより大きくなると、伝熱体HTがすぐに加熱されず、ガス化原料Mに反応熱を十分に伝えることができなくなる傾向がある。 The shape of the heat transfer body HT having a catalytic function is not particularly limited, but is preferably spherical from the viewpoint of fluidity. When the heat transfer body HT is spherical, the average particle diameter of the heat transfer body HT is preferably about 1 to 10 mm. If the average particle diameter of the heat transfer body HT is smaller than 1 mm, the heat held by the heat transfer body HT is immediately dissipated, and the reaction heat cannot be sufficiently transferred to the gasification raw material M and its decomposition product gas. Tend. On the other hand, when the average particle diameter of the heat transfer body HT is larger than 10 mm, the heat transfer body HT is not immediately heated, and the reaction heat tends not to be sufficiently transferred to the gasification raw material M.
ガス化室11内で、ガス化原料Mからガスを生成する反応条件は、触媒機能については空間速度(SV値)を用いて表すことができる。空間速度とは、単位時間あたりにガス化原料Mがガス化室11に接触する時間の逆数で表すことができる。
空間速度(SV値)=製品ガス通過流量(m3/h)/触媒充填量(m3)
が等しくなるように、触媒機能を有する伝熱体HTをガス化室11に保持させることが好ましい。
The reaction conditions for generating gas from the gasification raw material M in the gasification chamber 11 can be expressed using the space velocity (SV value) for the catalyst function. The space velocity can be represented by the reciprocal of the time during which the gasification raw material M contacts the gasification chamber 11 per unit time.
Space velocity (SV value) = Product gas flow rate (m 3 / h) / Catalyst filling amount (m 3 )
It is preferable to hold the heat transfer body HT having a catalytic function in the gasification chamber 11 so as to be equal.
一方、反応は前述のように供給熱量により律速されるので、伝熱体HTによる熱源13からガス化原料M及び反応中のガスへの総括熱伝達が、ガス化原料Mの供給量に見合うだけのガス化室11内での吸熱量に相当するように設計することが好ましい。このため、伝熱体HTとガス化原料Mの混合割合は通常伝熱体HTが重量的には大きくなる。また、熱源13から伝熱体HTへの熱伝達も重要である。ガス化室11の壁面積と熱伝達で制限されるガス化室11外側からの加熱よりも、ガス化室11の内部に熱源13を設置すれば、伝熱体HTやガス化原料Mへ直接熱伝達し、また伝熱面積を多くとることができるのでより好ましい。 On the other hand, since the reaction is rate-determined by the amount of heat supplied as described above, the overall heat transfer from the heat source 13 to the gasification raw material M and the gas being reacted by the heat transfer body HT only matches the supply amount of the gasification raw material M. It is preferable to design so as to correspond to the endothermic amount in the gasification chamber 11. For this reason, the mixing ratio of the heat transfer body HT and the gasification raw material M is generally increased in weight by the heat transfer body HT. Also, heat transfer from the heat source 13 to the heat transfer body HT is important. If the heat source 13 is installed inside the gasification chamber 11 rather than heating from the outside of the gasification chamber 11 limited by the wall area and heat transfer of the gasification chamber 11, the heat transfer body HT and the gasification raw material M are directly connected. It is more preferable because heat can be transferred and a large heat transfer area can be obtained.
ガス化室11は、縦長円筒形に形成されている。ガス化室11の上部には、水又は水蒸気と共にガス化原料Mを供給するための供給口111が開口しており、ガス化室11の下部には、生成されたガスを排出するための排出口112が開口されている。ガス化室11の材質としては、ガス化原料Mをガスに転化する際の温度に耐えられるとともに、内部の還元雰囲気における浸炭、脱炭を考慮した選択を行う。またガス化室11外面には断熱を施すが、その断熱材との共存性、また外側が大気であれば耐酸化性も必要である。ガス化室11内の雰囲気は、ガス化原料Mの分解で生成したガスと水蒸気の混合気であり、熱力学的な平衡である水素、一酸化炭素などの単純なガス組成に向けて反応が進む。触媒がなくともある程度反応が進むが、吸熱により著しく温度が下がるため、絶えず熱を供給して温度を保持しなければ反応は進行しない。 The gasification chamber 11 is formed in a vertically long cylindrical shape. A supply port 111 for supplying the gasification raw material M together with water or water vapor is opened at the upper part of the gasification chamber 11, and an exhaust for discharging the generated gas is formed at the lower part of the gasification chamber 11. An outlet 112 is opened. The material of the gasification chamber 11 is selected in consideration of carburization and decarburization in an internal reducing atmosphere while being able to withstand the temperature at which the gasification raw material M is converted to gas. Moreover, although heat insulation is performed on the outer surface of the gasification chamber 11, coexistence with the heat insulating material and oxidation resistance are required if the outside is the atmosphere. The atmosphere in the gasification chamber 11 is a mixture of gas and water vapor generated by the decomposition of the gasification raw material M, and reacts toward a simple gas composition such as hydrogen or carbon monoxide which is a thermodynamic equilibrium. move on. Although the reaction proceeds to some extent even without a catalyst, the temperature is remarkably lowered due to endotherm, so the reaction does not proceed unless the temperature is constantly maintained by supplying heat.
ガス化室11内には、ガス化室11の内側底面から積み重なるようにして伝熱体HTが収容されている。 The heat transfer body HT is accommodated in the gasification chamber 11 so as to be stacked from the inner bottom surface of the gasification chamber 11.
攪拌手段30は、本実施形態では、ガス化室11と連結されて設けられる循環路12である。循環路12は、縦長円筒形に形成されており、上下一対の連結路121によってガス化室11の上下端と連結されている。循環路12の内部には、スクリューフィーダ17が設けられている。スクリューフィーダ17は、回転軸171の外周面に螺旋状の押出羽根172が取り付けられて構成されている。そして、循環路12の上面から回転軸171の一端が突出するようにして、循環路12内に取り付けられている。回転軸171は、循環路12の上方に設けられる駆動装置(図示せず)によって回転可能となっており、回転軸171が回転することで、押出羽根172によって伝熱体HTが持ち上げられるようになっている。 In this embodiment, the stirring means 30 is a circulation path 12 connected to the gasification chamber 11. The circulation path 12 is formed in a vertically long cylindrical shape, and is connected to the upper and lower ends of the gasification chamber 11 by a pair of upper and lower connection paths 121. A screw feeder 17 is provided inside the circulation path 12. The screw feeder 17 is configured by attaching a spiral extrusion blade 172 to the outer peripheral surface of a rotating shaft 171. And it attaches in the circulation path 12 so that the end of the rotating shaft 171 may protrude from the upper surface of the circulation path 12. The rotating shaft 171 is rotatable by a driving device (not shown) provided above the circulation path 12, and the heat transfer body HT is lifted by the extrusion blade 172 when the rotating shaft 171 rotates. It has become.
循環路12の下端には、不活性物質I及び反応残渣Rを分離するための分離機構14が設けられている。分離機構14としては、例えば篩を用いることができる。篩は、伝熱体HTが通過せず、不活性物質I及び反応残渣Rのみが通過可能な大きさの目を有している。分離機構14の下方には、分離された不活性物質I及び反応残渣Rを回収するための廃棄物排出部20が設けられている。 A separation mechanism 14 for separating the inert substance I and the reaction residue R is provided at the lower end of the circulation path 12. As the separation mechanism 14, for example, a sieve can be used. The sieve has a size that does not allow the heat transfer body HT to pass therethrough and allows only the inert substance I and the reaction residue R to pass therethrough. Below the separation mechanism 14, a waste discharge unit 20 for collecting the separated inert substance I and reaction residue R is provided.
熱源13は、ガス化室11内を吸熱反応が生じる温度、例えば900℃程度で反応熱を供給するもので、例えばガス化室11内部に設置、又は外部を包囲する電気ヒータや熱媒体を流通する配管やパネルを用いることができる。熱源13は、ガス化室11の内部及び外部のいずれにも設けられるが、ガス化室11の外部に設けた場合には、ガス化原料Mに供給する熱量がガス化室11の外壁の熱伝導により制限されるため、ガス化室11の内部に設けることが好ましい。加熱温度は、反応効率の点で、800〜900℃程度が好ましい。伝熱体HT表面では吸熱により必ずこれより低い温度になっており、前記温度範囲は実効的な反応温度となる。ガス化室11と熱源13の構成材料の耐熱性からは供給熱温度は低い方がよく、一方反応温度は高い方がよいため、伝熱体HTを介した熱伝達能力を利用して、これらの間の温度差をなるべく小さくすることが重要である。この観点で、図3の矢印Pに示すように、熱源13から伝熱体HT、伝熱体HTからガス化原料M及び気相への熱供給量を整合させ、かつ最大にするように設計する。 The heat source 13 supplies reaction heat at a temperature at which an endothermic reaction occurs in the gasification chamber 11, for example, about 900 ° C., and is installed in the gasification chamber 11 or circulates an electric heater or heat medium surrounding the outside, for example. Piping and panels can be used. The heat source 13 is provided both inside and outside the gasification chamber 11. When the heat source 13 is provided outside the gasification chamber 11, the amount of heat supplied to the gasification raw material M is the heat of the outer wall of the gasification chamber 11. Since it is limited by conduction, it is preferably provided inside the gasification chamber 11. The heating temperature is preferably about 800 to 900 ° C. in terms of reaction efficiency. The surface of the heat transfer body HT always has a temperature lower than that due to heat absorption, and the temperature range is an effective reaction temperature. In view of the heat resistance of the constituent materials of the gasification chamber 11 and the heat source 13, the lower the heat supply temperature is better, while the higher the reaction temperature is better. Therefore, the heat transfer capability through the heat transfer body HT is utilized. It is important to minimize the temperature difference between the two. From this point of view, as shown by the arrow P in FIG. 3, the heat supply amount from the heat source 13 to the heat transfer body HT, and the heat supply amount from the heat transfer body HT to the gasification raw material M and the gas phase are matched and maximized. To do.
ガス化室11内部の圧力は、その上部から、ガス化原料Mを供給するための供給口111が開口するものであるため、常圧(又は大気圧)付近で良い。 The pressure inside the gasification chamber 11 may be close to normal pressure (or atmospheric pressure) because the supply port 111 for supplying the gasification raw material M is opened from the top.
循環路12内を搬送される伝熱体HTはガス化室11を出るときは反応温度に近い800〜900℃である。このままの温度で循環してもよいが、適度な温度にしてもよい。この場合、循環路12の入り口では冷却、出口では加熱を行う必要があり、この冷却及び加熱に、熱効率の観点から、熱交換器を利用することが好ましい。 When the heat transfer body HT conveyed in the circulation path 12 exits the gasification chamber 11, it is 800-900 degreeC near reaction temperature. Although it may circulate at this temperature, it may be set to an appropriate temperature. In this case, it is necessary to perform cooling at the entrance of the circulation path 12 and heating at the exit, and it is preferable to use a heat exchanger for this cooling and heating from the viewpoint of thermal efficiency.
なお、熱源13は、電気ヒータや熱媒体を流通する配管やパネルに限られず、ガス化室11内に大量の反応熱を供給することができれば、既知の任意の手段を用いることができる。 The heat source 13 is not limited to an electric heater or a pipe or panel that circulates a heat medium, and any known means can be used as long as a large amount of reaction heat can be supplied into the gasification chamber 11.
次に、本発明のガス化方法について、上述したガス化反応装置10を用いて説明する。 Next, the gasification method of this invention is demonstrated using the gasification reaction apparatus 10 mentioned above.
まず、バイオマス等のガス化原料Mは、粉砕機等で所定の大きさに粉砕され、水又は水蒸気とともにガス化室11の供給口111から連続的又は定期的にガス化室11内に供給される。水又は水蒸気は、予めガス化原料Mに含ませておいても良いし、ガス化原料Mをガス化室11に供給する際に、同時に供給口111を利用して、又は別の開口を利用してガス化室11内に供給されても良い。 First, the gasification raw material M such as biomass is pulverized to a predetermined size by a pulverizer or the like, and is supplied into the gasification chamber 11 continuously or periodically from the supply port 111 of the gasification chamber 11 together with water or steam. The Water or water vapor may be included in the gasification raw material M in advance, and when the gasification raw material M is supplied to the gasification chamber 11, the supply port 111 is used simultaneously or another opening is used. Then, it may be supplied into the gasification chamber 11.
ガス化室11内には予め触媒機能を有する伝熱体HTが循環可能な形で備えられており、ガス化室11に供給されたガス化原料M及び水又は水蒸気は、伝熱体HTと混合されながら、熱源13によって伝熱体HTを介して熱が供給される。このとき、ガス化室11内は、水蒸気及び生成ガスで満たされており、空気や酸素の排除された還元雰囲気である。ガス化室11内が脱酸素状態で保たれていることにより、ガス化原料Mや製品ガスが燃焼せずに、ガス化原料Mから水素ガス、一酸化炭素、メタンガス等の有用なガスを得ることが可能になる。 In the gasification chamber 11, a heat transfer body HT having a catalytic function is provided in a form that can be circulated in advance, and the gasification raw material M and water or water vapor supplied to the gasification chamber 11 are combined with the heat transfer body HT. While being mixed, heat is supplied by the heat source 13 via the heat transfer body HT. At this time, the inside of the gasification chamber 11 is filled with water vapor and product gas, and is a reducing atmosphere from which air and oxygen are excluded. By maintaining the inside of the gasification chamber 11 in a deoxygenated state, useful gases such as hydrogen gas, carbon monoxide, and methane gas are obtained from the gasification raw material M without burning the gasification raw material M and the product gas. It becomes possible.
十分な熱を供給されたガス化原料Mは、吸熱反応を起こし、水素、一酸化炭素、二酸化炭素、メタン等を主成分とする混合ガスが生成される。前述のように、
(C6H10O5)n + nH2O → 6nH2 + 6nCO - 816n [kJ]
(CH1.4O0.3)n + 0.7nH2O → 1.4nH2 + nCO - 136n [kJ]
の反応が起こるが、さらにこれらに並行して水性ガス反応、リフォーミング反応、シフト反応といった平衡反応が起き、結果的にできる生成ガスの組成は、概ねC、H、Oの元素の化学平衡組成に近い。また、ガス化原料Mのガス化には複雑な多段階が存在すると考えられるが、反応の対象となるのはガス化原料Mとその分解で生じた気相成分であり、熱がこれらに加えられて吸熱反応がおこった結果、最終的にこの平衡組成に近い混合ガスが、上記の吸熱量に相当するエネルギーの消費を伴って発生する。そして、生成されたガスが、排出口112を介してガス化室11から取り出される。
The gasification raw material M to which sufficient heat is supplied undergoes an endothermic reaction, and a mixed gas containing hydrogen, carbon monoxide, carbon dioxide, methane and the like as main components is generated. As aforementioned,
(C 6 H 10 O 5 ) n + nH 2 O → 6nH 2 + 6nCO-816n [kJ]
(CH 1.4 O 0.3 ) n + 0.7nH 2 O → 1.4nH 2 + nCO-136n [kJ]
In parallel with these reactions, an equilibrium reaction such as a water gas reaction, reforming reaction, and shift reaction takes place. As a result, the composition of the resulting gas is generally the chemical equilibrium composition of the elements C, H, and O. Close to. In addition, gasification of the gasification raw material M is considered to have complicated multi-stages, but the target of the reaction is the gasification raw material M and gas phase components generated by the decomposition thereof, and heat is added to these. As a result of the endothermic reaction, a mixed gas close to this equilibrium composition is finally generated with the consumption of energy corresponding to the above-mentioned endothermic amount. Then, the generated gas is taken out from the gasification chamber 11 through the discharge port 112.
一方、使用された伝熱体HTは、ガス化室11内において下側に位置するものから順次、下側の連結路121を通って循環路12に入り、循環路12においてスクリューフィーダ17によって上昇させられる。このとき、循環路12内は、ガス化室11とは別室となるため、ガス化室11と異なる雰囲気にすることができ、必要に応じて酸素や空気を供給することで酸化雰囲気とすることができる。酸化雰囲気下では、伝熱体HTの表面に付着した反応残渣(タール、炭化成分等)を酸化により除去することが可能になる。一方、伝熱体HTの触媒機能を損なわない範囲において反応残渣が付着していても、連結路121の上側から再びガス化室11内に供給されたのちは、ガス化原料と同様の反応により除去される。 On the other hand, the used heat transfer body HT enters the circulation path 12 through the lower connection path 121 sequentially from the lower position in the gasification chamber 11, and rises by the screw feeder 17 in the circulation path 12. Be made. At this time, since the inside of the circulation path 12 is a separate chamber from the gasification chamber 11, the atmosphere can be different from that of the gasification chamber 11, and an oxygen or air is supplied as necessary to make an oxidizing atmosphere. Can do. Under an oxidizing atmosphere, reaction residues (tar, carbonized components, etc.) adhering to the surface of the heat transfer body HT can be removed by oxidation. On the other hand, even if the reaction residue adheres in a range that does not impair the catalytic function of the heat transfer body HT, after being supplied again into the gasification chamber 11 from the upper side of the connection path 121, the reaction is similar to that of the gasification raw material. Removed.
また、循環路12には、伝熱体HTと共に、遊離している不活性物質I(灰分、金属片や土砂等)が入ってくるが、これら不活性物質Iは、伝熱体HTと、分離機構14によって篩い分けられる。また、使用された伝熱体HTの表面に付着している反応残渣R(タール、炭化成分等)の一部は、伝熱体HTが、循環路12を搬送される過程でスクリューフィーダ17の押出羽根172上を回転したり、循環路12の内壁面と接触したり、他の伝熱体HTと互いに接触したりして、落下・除去される。落下した不活性物質Iや反応残渣Rは、廃棄物排出部20に回収される。そして、不活性物質Iや反応残渣Rが分離除去された伝熱体HTが、上側の連結路121を通ってガス化室11に戻され、再度ガス化室11内においてガス化原料Mの吸熱反応の促進に使用される。 In addition to the heat transfer body HT, the free inert substance I (ash, metal pieces, earth and sand, etc.) enters the circulation path 12, and these inert substances I include the heat transfer body HT, It is sieved by the separation mechanism 14. Further, a part of the reaction residue R (tar, carbonized component, etc.) adhering to the surface of the used heat transfer body HT is part of the screw feeder 17 in the process in which the heat transfer body HT is transported through the circulation path 12. It is dropped and removed by rotating on the extrusion blade 172, contacting the inner wall surface of the circulation path 12, or contacting each other with the other heat transfer body HT. The fallen inert substance I and reaction residue R are collected in the waste discharge unit 20. Then, the heat transfer body HT from which the inert substance I and the reaction residue R have been separated and removed is returned to the gasification chamber 11 through the upper connection path 121, and the heat absorption of the gasification raw material M in the gasification chamber 11 again. Used to promote the reaction.
以上のように、本実施形態によれば、ガス化反応装置10は循環路12を備えるため、伝熱体HTが循環路12を通ってガス化室11の上方へ移動させられて、ガス化室11内に均一に広がる。これにより、ガス化原料M及びガス化原料Mの分解生成物(気相)に対して大きな面積で接触することができる。また、伝熱体HTも効果的に熱源13からの熱を得る。その結果、伝熱体HTの熱伝導作用によってガス化原料M及びガス化原料Mの分解生成物に、吸熱反応に十分な大量の反応熱を熱源13から効率よく供給することができる。また、循環路12を循環する間に、分離機構14によって伝熱体HTから不活性物質I及び反応残渣Rが分離される。これにより、ガス化室11において、不活性物質I及び反応残渣Rが蓄積して運転を継続できなくなることを防止することができる。さらに、循環路12が酸化雰囲気であるため、循環路12を循環する間に、ガス化反応の際に伝熱体HTの表面に付着した反応残渣を酸化除去して、伝熱体HTの触媒機能の再活性化することができる。これにより、伝熱体HTがその触媒機能を損なわないため、ガス化原料Mに対して高効率で熱を供給して持続的な吸熱反応を起こさせることができる。その結果、ガス化反応装置10の連続運転が可能となる。 As described above, according to the present embodiment, since the gasification reaction apparatus 10 includes the circulation path 12, the heat transfer body HT is moved to the upper side of the gasification chamber 11 through the circulation path 12, and gasification is performed. Spreads uniformly in the chamber 11. Thereby, it is possible to contact the gasification raw material M and the decomposition product (gas phase) of the gasification raw material M with a large area. Further, the heat transfer body HT also effectively obtains heat from the heat source 13. As a result, a large amount of reaction heat sufficient for an endothermic reaction can be efficiently supplied from the heat source 13 to the gasification raw material M and the decomposition product of the gasification raw material M by the heat conduction action of the heat transfer body HT. Further, the inert substance I and the reaction residue R are separated from the heat transfer body HT by the separation mechanism 14 while circulating through the circulation path 12. Thereby, in the gasification chamber 11, it can prevent that the inert substance I and the reaction residue R accumulate | store, and it becomes impossible to continue an operation | movement. Further, since the circulation path 12 is an oxidizing atmosphere, the reaction residue adhering to the surface of the heat transfer body HT during the gasification reaction is oxidized and removed during the circulation of the circulation path 12, and the catalyst of the heat transfer body HT is removed. The function can be reactivated. Thereby, since the heat transfer body HT does not impair the catalytic function, heat can be supplied to the gasification raw material M with high efficiency to cause a continuous endothermic reaction. As a result, the gasification reaction device 10 can be continuously operated.
また、本実施形態では、供給口111から連続的にガス化原料Mを供給しながら、循環路12を介して循環する伝熱体HTと混合させることでガス化させ、生成ガスを連続的に排出することができる。これにより、常時ガスを生成し、排出口112から排出させることができ、その結果、ガス化反応装置10を連続的に使用することができる。このため、バッチ式の反応で不可避な、ガス化室や伝熱体を不必要に加熱冷却することによる熱損失を押えることができる。 Further, in the present embodiment, while continuously supplying the gasification raw material M from the supply port 111, it is gasified by mixing with the heat transfer body HT circulated through the circulation path 12, and the product gas is continuously supplied. Can be discharged. Thereby, gas can always be produced | generated and it can be made to discharge from the discharge port 112, As a result, the gasification reaction apparatus 10 can be used continuously. For this reason, the heat loss by heating and cooling a gasification chamber and a heat exchanger unnecessarily by batch type reaction can be suppressed.
以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。 As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible unless it deviates from the meaning.
例えば、上記実施形態では、攪拌手段30は、循環路12であったが、攪拌手段30は、伝熱体HTを攪拌できれば、既知の任意の手段を採用することができる。例えば、図4に示すように、ガス化室11内に攪拌器18を設け、これを攪拌手段30としても良い。また、ガス化室11自体を回転可能に形成することで、攪拌手段30としても良い。このような循環路12と別の攪拌手段30を設ける場合、別の攪拌手段30と共に循環路12を設けても良いし、循環路12を設けなくても良い。循環路12を設けない場合には、ガス化室の一部に分離機構14を設けることが好ましい。 For example, in the above embodiment, the stirring unit 30 is the circulation path 12, but the stirring unit 30 may employ any known unit as long as the heat transfer body HT can be stirred. For example, as shown in FIG. 4, a stirrer 18 may be provided in the gasification chamber 11 and this may be used as the stirring means 30. Further, the agitation means 30 may be formed by forming the gasification chamber 11 itself to be rotatable. When such a circulation path 12 and another stirring means 30 are provided, the circulation path 12 may be provided together with another stirring means 30 or the circulation path 12 may not be provided. When the circulation path 12 is not provided, it is preferable to provide the separation mechanism 14 in a part of the gasification chamber.
また、上記実施形態では、ガス化室11を縦長円筒形に形成したが、例えば、図4に示すように、ガス化室11を横向きないし斜めに設置する横長円筒形に形成しても良い。この場合、供給口111から供給されたガス化原料Mと、ガス化室11内の伝熱体HTとを十分に混合させるために、ガス化室11内にスクリューフィーダ、コンベア、攪拌器18等を設けたり、ロータリーキルン形式の回転円筒としたりすることが好ましい。これにより、ガス化原料Mと伝熱体HTとが十分に混合され、吸熱反応を助長することができる。また、このとき、循環路12は縦長円筒形でも良いが、循環路12も横長円筒形に形成して、互いに平行に設置することもできる。また、図5に示すように、横長円筒形のガス化室11を、供給口111が上側となるように、設置面に対して傾斜させて設置することもできる。この場合には、ガス化室11の内部にスクリューフィーダ、コンベア、攪拌器18等を設けなくても、上記実施形態と同様に自重によってガス化原料Mがガス化室11の内部に搬送され、伝熱体HTと混合して吸熱反応を起こさせることができる。その他、ガス化室11は任意の形状に形成することができる。いずれの形式においても、本発明では吸熱反応のための熱供給が重要であり、ガス化室11内部においてなるべく大きな伝熱面積を熱源13と伝熱体HT及びガス化原料Mの混合物の間に得ることが好ましい。 Moreover, in the said embodiment, although the gasification chamber 11 was formed in the vertically long cylindrical shape, as shown in FIG. 4, for example, you may form the gasification chamber 11 in the horizontally long cylindrical shape installed sideways or diagonally. In this case, in order to sufficiently mix the gasification raw material M supplied from the supply port 111 and the heat transfer body HT in the gasification chamber 11, a screw feeder, a conveyor, an agitator 18 and the like are provided in the gasification chamber 11. It is preferable to provide a rotary cylinder of a rotary kiln type. Thereby, the gasification raw material M and the heat exchanger HT are sufficiently mixed, and the endothermic reaction can be promoted. At this time, the circulation path 12 may be a vertically long cylindrical shape, but the circulation path 12 may also be formed in a horizontally long cylindrical shape and installed parallel to each other. Further, as shown in FIG. 5, the horizontally long gasification chamber 11 can be installed to be inclined with respect to the installation surface so that the supply port 111 is on the upper side. In this case, the gasification raw material M is conveyed into the gasification chamber 11 by its own weight as in the above embodiment, without providing a screw feeder, conveyor, stirrer 18 and the like inside the gasification chamber 11, It can be mixed with the heat transfer body HT to cause an endothermic reaction. In addition, the gasification chamber 11 can be formed in an arbitrary shape. In any form, heat supply for the endothermic reaction is important in the present invention, and a heat transfer area as large as possible in the gasification chamber 11 is provided between the heat source 13 and the mixture of the heat transfer body HT and the gasification raw material M. It is preferable to obtain.
また、上記実施形態では、循環路12にスクリューフィーダ17を設けて伝熱体を循環させる構成としているが、この構成に限られない。例えば、段付きのベルトコンベアを用いて伝熱体HTを搬送することもできる。その他、循環路12内において伝熱体を搬送できれば、既知の任意の手段を使用することができる。 Moreover, in the said embodiment, although it is set as the structure which provides the screw feeder 17 in the circulation path 12 and circulates a heat exchanger, it is not restricted to this structure. For example, the heat transfer body HT can be transported using a stepped belt conveyor. In addition, any known means can be used as long as the heat transfer body can be conveyed in the circulation path 12.
また、上記実施形態では、分離機構14として篩を例示したが、分離機構14は篩以外にもサイクロンや遠心分離を用いることもできる。ただし、サイクロンや遠心分離は断熱してエネルギー効率を上げるためには有利ではなく、篩が好ましい。 Moreover, although the sieve was illustrated as the separation mechanism 14 in the said embodiment, the separation mechanism 14 can also use a cyclone and centrifugation other than a sieve. However, cyclones and centrifuges are not advantageous for heat insulation and increase energy efficiency, and sieves are preferred.
10 ガス化反応装置
11 ガス化室
111 供給口
112 排出口
12 循環路
13 熱源
14 分離機構
30 攪拌手段
M ガス化原料
HT 伝熱体
I 不活性物質
R 反応残渣
DESCRIPTION OF SYMBOLS 10 Gasification reaction apparatus 11 Gasification chamber 111 Supply port 112 Discharge port 12 Circulation path 13 Heat source 14 Separation mechanism 30 Stirring means M Gasification raw material HT Heat exchanger I Inactive substance R Reaction residue
Claims (5)
内部に伝熱体が収容され、ガス化原料が供給されるガス化室と、
前記ガス化室内に収容された伝熱体を攪拌させるための攪拌手段と、
を備えるガス化反応装置。 A gasification reaction apparatus for gasifying by an endothermic reaction by supplying heat while mixing a solid organic gasification raw material containing a carbon compound with a heat transfer body having a catalytic function together with water or steam,
A gasification chamber in which a heat transfer body is housed and a gasification raw material is supplied;
A stirring means for stirring the heat transfer body accommodated in the gasification chamber;
A gasification reaction apparatus comprising:
前記供給口から連続的にガス化原料を供給しながら、前記循環路を介して循環する伝熱体と混合させることでガス化させ、生成ガスを連続的に排出する請求項3に記載のガス化反応装置。 The gasification chamber includes a supply port for supplying a gasification raw material and an exhaust port for discharging the generated gas.
The gas according to claim 3, wherein the gasification raw material is continuously discharged from the supply port, gasified by mixing with a heat transfer body that circulates through the circulation path, and the generated gas is continuously discharged. Chemical reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014057216A JP2015178578A (en) | 2014-03-19 | 2014-03-19 | Gasification reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014057216A JP2015178578A (en) | 2014-03-19 | 2014-03-19 | Gasification reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015178578A true JP2015178578A (en) | 2015-10-08 |
Family
ID=54262858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014057216A Pending JP2015178578A (en) | 2014-03-19 | 2014-03-19 | Gasification reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015178578A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019065851A1 (en) * | 2017-09-29 | 2019-04-04 | 株式会社ジャパンブルーエナジー | Biomass gasification device |
KR101997506B1 (en) * | 2018-01-10 | 2019-07-08 | 부산대학교 산학협력단 | Cyclone Gasifier |
KR20220064125A (en) * | 2020-11-11 | 2022-05-18 | 한국생산기술연구원 | Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117302A (en) * | 1976-03-26 | 1977-10-01 | Chevron Res | Method of gasifying solid carbonaceous substances |
JPH06306372A (en) * | 1993-04-22 | 1994-11-01 | Nippon Chem Plant Consultant:Kk | High-temperature polymer continuous pyrolysis equipment |
JP2008036457A (en) * | 2006-08-01 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Organic matter processing equipment |
JP2012528222A (en) * | 2009-05-25 | 2012-11-12 | ユスターシュ、フランソワ | A novel method for pyrolysis gasification of organic waste |
JP2013231117A (en) * | 2012-04-27 | 2013-11-14 | Ihi Corp | Gasification gas generation method |
-
2014
- 2014-03-19 JP JP2014057216A patent/JP2015178578A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117302A (en) * | 1976-03-26 | 1977-10-01 | Chevron Res | Method of gasifying solid carbonaceous substances |
JPH06306372A (en) * | 1993-04-22 | 1994-11-01 | Nippon Chem Plant Consultant:Kk | High-temperature polymer continuous pyrolysis equipment |
JP2008036457A (en) * | 2006-08-01 | 2008-02-21 | Matsushita Electric Ind Co Ltd | Organic matter processing equipment |
JP2012528222A (en) * | 2009-05-25 | 2012-11-12 | ユスターシュ、フランソワ | A novel method for pyrolysis gasification of organic waste |
JP2013231117A (en) * | 2012-04-27 | 2013-11-14 | Ihi Corp | Gasification gas generation method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019065851A1 (en) * | 2017-09-29 | 2019-04-04 | 株式会社ジャパンブルーエナジー | Biomass gasification device |
JP2019065160A (en) * | 2017-09-29 | 2019-04-25 | 株式会社ジャパンブルーエナジー | Biomass gasifier |
US11066612B1 (en) | 2017-09-29 | 2021-07-20 | Japan Blue Energy Co., Ltd. | Biomass gasification device |
RU2766422C2 (en) * | 2017-09-29 | 2022-03-15 | Джапан Блю Энерджи Ко., Лтд. | Biomass gasification device |
KR101997506B1 (en) * | 2018-01-10 | 2019-07-08 | 부산대학교 산학협력단 | Cyclone Gasifier |
KR20220064125A (en) * | 2020-11-11 | 2022-05-18 | 한국생산기술연구원 | Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same |
KR102465674B1 (en) | 2020-11-11 | 2022-11-11 | 한국생산기술연구원 | Gasifier capable of continuously regenerating carbon-based additives and method for producing syngas using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6321375B2 (en) | Gasification method and gasification system for carbonaceous material | |
Hai et al. | Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidized bed gasifier | |
Ge et al. | Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal | |
EP2236204B1 (en) | Process for production of catalyst for use in the reforming of tar-containing gas, method for reforming of tar, and method for regeneration of catalyst for use in the reforming of tar-containing gas | |
CA2989862C (en) | Process for converting carbonaceous material into low tar synthesis gas | |
JP5009419B2 (en) | Method for producing catalyst for reforming tar-containing gas, method for reforming tar, and method for regenerating catalyst for reforming tar-containing gas | |
EP3026098A1 (en) | Method for preparing hydrogen-rich gas by gasification of solid organic substance and steam | |
GB2539518A (en) | A gasification system | |
AU2007240969A1 (en) | Methods and systems for gasifying a process stream | |
JP4547244B2 (en) | Organic gasifier | |
RU2544669C1 (en) | Method for processing combustible carbon- and/or hydrocarbon-containing products, and reactor for implementing it | |
CN101932678A (en) | Fuel gas refining equipment, power generation system and fuel synthesis system | |
JP2008132458A (en) | Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst | |
JP4799976B2 (en) | Method for modifying fluid organic compounds | |
JP2015178578A (en) | Gasification reactor | |
JP2004204106A (en) | Gasifier of organic material | |
HK1214289A1 (en) | Device in the form of a rotating thermolysis reactor and method for operating a reactor of this kind in an arrangement for the thermal decomposition of by-products and waste | |
JP2009102594A (en) | Gasifier system | |
RU85984U1 (en) | GAS GENERATOR | |
JP5875067B2 (en) | Fuel gas purification device, power generation system, and fuel synthesis system | |
JP2007023084A (en) | Biomass gasification catalyst | |
JP2008036457A (en) | Organic matter processing equipment | |
JP3485343B2 (en) | Coal gasifier | |
JP5351846B2 (en) | Decomposition and removal system for tar in gasification gas | |
KR20230110000A (en) | Apparatus and process for dry producing hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170317 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180411 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180417 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180619 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180828 |