[go: up one dir, main page]

JP2007023084A - Biomass gasification catalyst - Google Patents

Biomass gasification catalyst Download PDF

Info

Publication number
JP2007023084A
JP2007023084A JP2005203564A JP2005203564A JP2007023084A JP 2007023084 A JP2007023084 A JP 2007023084A JP 2005203564 A JP2005203564 A JP 2005203564A JP 2005203564 A JP2005203564 A JP 2005203564A JP 2007023084 A JP2007023084 A JP 2007023084A
Authority
JP
Japan
Prior art keywords
biomass
gasification
catalyst
gas
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005203564A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
興一 山田
Katsunori Yogo
克則 余語
Chihiro Fushimi
千尋 伏見
Hiroshi Fukunaga
博 福長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2005203564A priority Critical patent/JP2007023084A/en
Publication of JP2007023084A publication Critical patent/JP2007023084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)

Abstract

【課 題】 本発明は、バイオマスのガス化効率を高める触媒、特にバイオマスの熱分解過程において生じるタールの分解及び水蒸気改質反応を促進し、水素及び一酸化炭素をはじめとする低分子気体の生成量を増加させる触媒を提供することを目的とする。
【解決手段】 多孔質流動媒体にガス化触媒成分が担持されていることを特徴とするバイオマスのガス化用触媒。
【選択図】 なし
[Problem] The present invention is a catalyst for improving the gasification efficiency of biomass, in particular, promoting tar decomposition and steam reforming reaction generated in the thermal decomposition process of biomass, and reducing the molecular weight of low molecular gases such as hydrogen and carbon monoxide. It aims at providing the catalyst which increases a production amount.
A biomass gasification catalyst, wherein a gasification catalyst component is supported on a porous fluid medium.
[Selection figure] None

Description

本発明は、バイオマスのガス化効率を高める触媒に関する。更に詳しくは、本発明は、バイオマスの熱分解過程に生じるタールの分解及び水蒸気改質反応を促進し、水素及び一酸化炭素をはじめとする低分子気体の生成量を増加させるバイオマスのガス化用触媒に関する。   The present invention relates to a catalyst that increases the gasification efficiency of biomass. More specifically, the present invention is for the gasification of biomass that promotes the decomposition and steam reforming reaction of tar generated in the pyrolysis process of biomass, and increases the production amount of low molecular gases such as hydrogen and carbon monoxide. Relates to the catalyst.

バイオマスは、森林や農業残渣等として発生する再生可能な有機資源であり、環境調和型のクリーンなエネルギー源である。バイオマスは発電用燃焼燃料として用いられてきたが、近年バイオマスをガス化し、燃料ガスあるいは原料ガスを製造する技術が開発され、数多くの報告がある。バイオマスのガス化に関連する総説としては、例えば、バイオマスのガス化による水素製造技術の現状と課題(非特許文献1参照。)、バイオマスの水蒸気改質(非特許文献2参照。)、水質系バイオマスによる小規模分散型高効率ガス化発電システムの開発(非特許文献3参照。)又はバイオマスの高効率接触ガス化:触媒と反応器の役割(非特許文献4参照。)等がある。
バイオマスから燃料ガスあるいは原料ガスを製造する方法としては、例えば木質片、木質粉等のバイオマス粒と有機成分のガス化触媒を担持した流動媒体とを酸化性ガスにより流動化させて流動層を形成し、前記流動層を400〜600℃の温度に保持して前記バイオマス粒をガス化することを特徴とするバイオマスのガス化方法(特許文献1参照。)、バイオマスを、少なくとも固体成分と気体成分とに熱分解する工程と、触媒の存在下、前記熱分解により生じた気体成分を、酸素及び/又は水蒸気と反応させて合成ガスを生成する工程と、からなるバイオマスのガス化方法(特許文献2参照。)、バイオマス及びガス化剤をガス化炉に導入して合成ガスに転換させるバイオマスのガス化方法において、加熱条件下、ガス化反応系内にバイオマスから生成する灰分を存在させてガス化反応を行うことを特徴とするバイオマスのガス化法(特許文献3参照。)等が知られている。
Biomass is a renewable organic resource generated as a forest, agricultural residue, etc., and is an environmentally friendly clean energy source. Biomass has been used as a combustion fuel for power generation. Recently, a technology for gasifying biomass and producing fuel gas or raw material gas has been developed, and there are many reports. Review articles related to biomass gasification include, for example, the current state and problems of hydrogen production technology by biomass gasification (see Non-Patent Document 1), biomass steam reforming (see Non-Patent Document 2), and water quality systems. Development of a small-scale distributed high-efficiency gasification power generation system using biomass (see Non-Patent Document 3) or high-efficiency catalytic gasification of biomass: roles of catalyst and reactor (see Non-Patent Document 4), and the like.
As a method of producing fuel gas or raw material gas from biomass, for example, a fluidized bed is formed by fluidizing biomass particles such as wood fragments and wood powder and a fluid medium carrying a gasification catalyst of an organic component with an oxidizing gas. The biomass gasification method (refer to Patent Document 1), wherein the fluidized bed is maintained at a temperature of 400 to 600 ° C. to gasify the biomass particles, and the biomass is at least a solid component and a gas component. And a process for generating a synthesis gas by reacting a gas component generated by the thermal decomposition with oxygen and / or water vapor in the presence of a catalyst (Patent Document) 2), in a biomass gasification method in which biomass and a gasifying agent are introduced into a gasification furnace and converted to synthesis gas, Ash in the presence of a generated from the mass by the gasification method of biomass and performing gasification reaction (see Patent Document 3.) And the like are known.

バイオマスのガス化は、環境保護の観点から多くの利点を有するが、バイオマスのガス化技術の大きな課題は、副生するタールを如何に制御し得るかにある。このためバイオマスの熱分解やガス化を促進する触媒も種々報告されている。そのような触媒としては、例えば、アルカリ金属と無水カリウム化合物の粉体を、アルカリ金属に対して不活性な液状の炭化水素触媒中でアルカリ金属の融点以上の温度で混合することを特徴とする、無水カリウム化合物粉体にアルカリ金属を担持せしめる方法で製造した触媒(特許文献4参照。)、セリウム酸化物担体の表面上に、触媒金属としてロジウム、ルテニウム、パラジウム又は白金を担持させた、バイオマスからの合成ガス製造用触媒(特許文献5参照。)又はRh/CeO2/M(MはSiO2、Al23又はZrO2である)で表わされるバイオマスガス化用触媒(特許文献6参照。)等が知られている。しかし、これらの触媒は、例えば金属系触媒は高価であったり、バイオマスの熱分解過程において生成するタール成分が触媒に付着して触媒の機能が十分に発揮できなくなる等、未だ問題がある。
特開2004−149556号公報 特開2005−53972号公報、 特開2005−68373号公報 特公平6−199号公報 特開2002−346388号公報 特開2003−246990号公報 ペテロテック(PETROTECH)、2003年、第26巻第9号、p.708−712 細貝聡、林潤一郎、エネルギー・資源、2005年、第26巻第3号、p.178−182 渡辺達也、山田健一、エネルギー・資源、2005年、第26巻第3号、p.183−187 富重圭一、国守公夫、触媒、2003年、第45巻第8号、p.624−629
Biomass gasification has many advantages from the viewpoint of environmental protection, but a major problem of biomass gasification technology is how to control the by-product tar. For this reason, various catalysts that promote pyrolysis and gasification of biomass have been reported. As such a catalyst, for example, powder of an alkali metal and an anhydrous potassium compound is mixed at a temperature equal to or higher than the melting point of the alkali metal in a liquid hydrocarbon catalyst inert to the alkali metal. Further, a catalyst produced by a method in which an alkali metal is supported on an anhydrous potassium compound powder (see Patent Document 4), a biomass in which rhodium, ruthenium, palladium or platinum is supported as a catalyst metal on the surface of a cerium oxide support A catalyst for biomass gasification represented by a catalyst for production of synthesis gas from (see Patent Document 5) or Rh / CeO 2 / M (M is SiO 2 , Al 2 O 3 or ZrO 2 ) (see Patent Document 6) .) Etc. are known. However, these catalysts still have problems, for example, metal-based catalysts are expensive, or tar components generated in the process of pyrolyzing biomass cannot adhere to the catalyst and the functions of the catalyst cannot be fully exerted.
JP 2004-149556 A JP 2005-53972 A, JP 2005-68373 A Japanese Patent Publication No. 6-199 JP 2002-346388 A JP 2003-246990 A PETROTECH, 2003, Vol. 26, No. 9, p. 708-712 Hosokai, Junichiro Hayashi, Energy and Resources, 2005, Vol. 26, No. 3, p. 178-182 Tatsuya Watanabe, Kenichi Yamada, Energy and Resources, 2005, Vol. 26, No. 3, p. 183-187 Junichi Togashi, Kimio Kunimori, Catalyst, 2003, Vol. 45, No. 8, p. 624-629

本発明は、バイオマスのガス化効率を高める触媒、特にバイオマスの熱分解過程において生じるタールの分解及び水蒸気改質反応を促進する触媒を提供することを目的とする。   An object of the present invention is to provide a catalyst that enhances the gasification efficiency of biomass, particularly a catalyst that promotes the decomposition and steam reforming reaction of tar generated during the thermal decomposition process of biomass.

木質系バイオマスの成分は、セルロース、ヘミセルロース等の多糖類、及びリグニン等である。前記バイオマスの成分のうちガス化において分解が困難な成分がリグニンであることが知られている。そこで本発明者らは、リグニンをバイオマスの代表として選択し、これを用いてバイオマスのガス化効率を高める触媒について鋭意研究をおこなった。その結果、遷移アルミナ等の多孔質流動媒体にガス化触媒成分としてナトリウムを担持させた触媒を流動媒体としてリグニンと共にガス化炉に入れ、約600〜800℃にガス化炉を加熱し、ガス化剤として水蒸気をガス化炉に導入すると、水素ガスを豊富に含む混合ガスを得ることができることを知見した。また、ガス化途中で生成されるタールの、触媒表面への付着も少ないことを知見した。本発明者らは、さらに研究を進め、本発明を完成した。   The components of the woody biomass are polysaccharides such as cellulose and hemicellulose, and lignin. Among the components of the biomass, it is known that a component that is difficult to decompose in gasification is lignin. Therefore, the present inventors have selected lignin as a representative of biomass, and conducted intensive research on a catalyst that uses this to increase the gasification efficiency of biomass. As a result, a catalyst in which sodium is supported as a gasification catalyst component in a porous fluid medium such as transition alumina is placed in a gasification furnace together with lignin as a fluidization medium, and the gasification furnace is heated to about 600 to 800 ° C. for gasification. It has been found that when steam is introduced as an agent into a gasification furnace, a mixed gas rich in hydrogen gas can be obtained. It was also found that tar produced during gasification hardly adheres to the catalyst surface. The inventors have further studied and completed the present invention.

すなわち、本発明は、
(1) 多孔質流動媒体にガス化触媒成分が担持されていることを特徴とするバイオマスのガス化用触媒、
(2) 多孔質流動媒体が遷移アルミナであることを特徴とする前記(1)に記載のバイオマスのガス化用触媒、
(3) 遷移アルミナが、比表面積30m/g以上であって、平均粒径20μm以上2mm以下であることを特徴とする前記(2)に記載のバイオマスのガス化用触媒、
(4) ガス化触媒成分が、アルカリ金属であることを特徴とする前記(1)〜(3)のいずれかに記載のバイオマスのガス化用触媒、
(5) アルカリ金属がナトリウムであることを特徴とする前記(4)に記載のバイオマスのガス化用触媒、及び
(6) 遷移アルミナ1gに対するナトリウムの担持量が0.01〜0.7gであることを特徴とする前記(5)に記載のバイオマスのガス化用触媒、
に関する。
That is, the present invention
(1) A biomass gasification catalyst, wherein a gasification catalyst component is supported on a porous fluid medium,
(2) The biomass gasification catalyst according to (1) above, wherein the porous fluidized medium is transition alumina,
(3) The biomass gasification catalyst according to (2), wherein the transition alumina has a specific surface area of 30 m 2 / g or more and an average particle size of 20 μm to 2 mm,
(4) The gasification catalyst component is an alkali metal, the biomass gasification catalyst according to any one of (1) to (3),
(5) The catalyst for biomass gasification as described in (4) above, wherein the alkali metal is sodium, and (6) the amount of sodium supported on 1 g of transition alumina is 0.01 to 0.7 g. The catalyst for gasification of biomass as described in (5) above,
About.

本発明の触媒は、熱に対して安定であって、バイオマスから有用ガスを製造するために長時間に渡り工業的に有利に使用される新しいアルカリ金属系触媒として利用できる。特に、本発明の触媒は、バイオマスのガス化工程で生成されるタールの熱分解及び水蒸気改質反応を促進するので、未反応のタール分の生成を減少でき、混合ガス製造過程における触媒へのタール付着も抑制できるので、触媒としての寿命が長く経済的な混合ガスの製造が可能である。
さらに、本発明の触媒は、バイオマスのガス化によって水素及び一酸化炭素をはじめとする低分子気体混合ガスを製造する場合において、特に水蒸気の存在下、バイオマスのガス化を促進し,バイオマスから水素へのガス転化率を増加させる効果があるので、単位時間当たりの水素ガス生成量を増加させることができる。
また、本発明の触媒は、触媒調製が簡単で短時間で調製可能である。
本発明の触媒を用いてバイオマスから生成される混合ガス中の水素ガスは、所望により単離されクリーン燃料として燃料電池等に利用できる。
The catalyst of the present invention is stable to heat and can be used as a new alkali metal catalyst that is advantageously used industrially for a long time to produce useful gas from biomass. In particular, since the catalyst of the present invention promotes the thermal decomposition and steam reforming reaction of tar produced in the biomass gasification step, it is possible to reduce the production of unreacted tar, and to the catalyst in the mixed gas production process. Since tar adhesion can also be suppressed, it is possible to produce an economical mixed gas with a long life as a catalyst.
Furthermore, the catalyst of the present invention promotes the gasification of biomass, particularly in the presence of water vapor, in the case of producing a low-molecular gas mixed gas including hydrogen and carbon monoxide by gasification of biomass. Since there is an effect of increasing the gas conversion rate, the amount of hydrogen gas generated per unit time can be increased.
In addition, the catalyst of the present invention is easy to prepare and can be prepared in a short time.
Hydrogen gas in a mixed gas produced from biomass using the catalyst of the present invention is isolated as desired and can be used as a clean fuel in fuel cells and the like.

以下、本発明のバイオマスのガス化用触媒について、より詳細に説明する。
本発明のガス化用触媒においてガス化触媒成分を担持する多孔質流動媒体としては、バイオマスの流動性を高め、壊れにくく、熱に安定でかつ多孔質の媒体であれば特に限定されず用いることができる。しかし、バイオマスのガス化を効率よく行うためには、ガス化触媒成分を担持する多孔質流動媒体は高い比表面積をもつものが好ましい。このような多孔質流動媒体としては、例えば遷移アルミナ、多孔質セラミックやゼオライト等が挙げられ、遷移アルミナが特に好ましい。
本発明において遷移アルミナとは、水酸化アルミニウムを加熱し、αアルミナになる過程のものを指し、具体的にはγ、δ、η、θ、κ、ρ、χ等の結晶形態を有するものであり、中でもδ、θ、γ晶の遷移アルミナが好ましい。本発明の遷移アルミナには、上記αアルミナになる過程のものという意味において、非晶系アルミナも包含される。
Hereinafter, the biomass gasification catalyst of the present invention will be described in more detail.
The porous fluid medium carrying the gasification catalyst component in the gasification catalyst of the present invention is not particularly limited as long as it increases the fluidity of biomass, is hard to break, is stable to heat, and is a porous medium. Can do. However, in order to efficiently perform biomass gasification, the porous fluid medium carrying the gasification catalyst component preferably has a high specific surface area. Examples of such a porous fluid medium include transition alumina, porous ceramic, zeolite, and the like, and transition alumina is particularly preferable.
In the present invention, transition alumina refers to a process in which aluminum hydroxide is heated to become α-alumina, specifically having a crystal form such as γ, δ, η, θ, κ, ρ, χ. Among them, transition alumina having δ, θ, and γ crystals is preferable. The transition alumina of the present invention includes amorphous alumina in the sense that it is in the process of becoming α-alumina.

比表面積は、単位重量の粉体中に含まれる全粒子の表面積の総和をいう。上記高い比表面積とは、比表面積が約30m/g以上、好ましくは約80m/g以上をいう。比表面積の測定法としては、例えば気体吸着法(例えばBET法等)が挙げられる。 The specific surface area refers to the total surface area of all particles contained in a unit weight of powder. The high specific surface area means a specific surface area of about 30 m 2 / g or more, preferably about 80 m 2 / g or more. Examples of the method for measuring the specific surface area include a gas adsorption method (for example, BET method).

遷移アルミナは、公知の方法(例えば、特公昭42−16934号公報、特開平5−238729号公報等)により製造することができる。具体的製造方法としては、例えば活性アルミナ(酸化アルミニウム)又は硫酸アルミニウム等を必要により水素等の還元剤の存在下に、温度約200℃〜約800℃、時間約0.1秒〜約24時間で熱分解する等して製造できる。
遷移アルミナには、上記で製造されるものの他、耐熱性遷移アルミナが当然に含まれる。耐熱性遷移アルミナは、例えば特開平5−4050号公報、特開平8−290916号公報、特開平9−25119号公報、特開平10−45412号公報等に記載の方法により製造できる。
Transition alumina can be produced by a known method (for example, Japanese Patent Publication No. 42-16934, Japanese Patent Laid-Open No. 5-238729, etc.). As a specific production method, for example, activated alumina (aluminum oxide), aluminum sulfate, or the like, if necessary, in the presence of a reducing agent such as hydrogen, temperature is about 200 ° C. to about 800 ° C., time is about 0.1 seconds to about 24 hours It can be manufactured by pyrolyzing.
The transition alumina naturally includes heat-resistant transition alumina in addition to those produced above. The heat-resistant transition alumina can be produced, for example, by the method described in JP-A-5-4050, JP-A-8-290916, JP-A-9-25119, JP-A-10-45412, and the like.

このようにして得られる遷移アルミナは、比表面積が約30m2 /g(好ましくは約80m2 /g)を越える高い比表面積を有し、そのままで、あるいは粉砕した後、ガス化触媒成分を担持する触媒担体として、本発明における多孔質流動媒体に使用できる。 The transition alumina thus obtained has a high specific surface area with a specific surface area exceeding about 30 m 2 / g (preferably about 80 m 2 / g), and supports the gasification catalyst component as it is or after pulverization. As the catalyst carrier to be used, it can be used in the porous fluid medium in the present invention.

遷移アルミナは、その粒径が約20μm以上2mm以下、好ましくは約20〜1mm、より好ましくは約20〜500μm、さらに好ましくは約50〜200μm、とりわけ好ましくは約80〜150μmの範囲となるよう分級するのが好ましい。遷移アルミナの粒径が約20μm未満であると、流動条件にもよるが、流動床における流動媒体としての遷移アルミナとバイオマスとの流動性のバランスが悪くなり得る。また2mmを超えると遷移アルミナの有効表面積が小さくなりバイオマスのガス化効率が低下し得るので好ましくない。粒径は、例えばレーザー回析式粒度分布測定装置等で測定することができる。   The transition alumina is classified so that the particle size thereof ranges from about 20 μm to 2 mm, preferably about 20 to 1 mm, more preferably about 20 to 500 μm, further preferably about 50 to 200 μm, and particularly preferably about 80 to 150 μm. It is preferable to do this. When the particle diameter of the transition alumina is less than about 20 μm, although it depends on the flow conditions, the balance of fluidity between the transition alumina and the biomass as the fluidized medium in the fluidized bed may be deteriorated. On the other hand, if it exceeds 2 mm, the effective surface area of the transition alumina becomes small and the gasification efficiency of biomass can be lowered, which is not preferable. The particle size can be measured, for example, with a laser diffraction particle size distribution measuring device.

ガス化触媒成分は、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等から選択されるアルカリ金属が好ましく、特にナトリウムが好ましい。   The gasification catalyst component is preferably an alkali metal selected from lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and the like, particularly sodium.

本発明のガス化用触媒は、ガス化触媒成分(例えばナトリウム等のアルカリ金属)を含む溶液(例えば、水酸化ナトリウム水溶液等)中に遷移アルミナ等の多孔質流動媒体の粒子を例えば浸漬させる方法、あるいはガス化触媒成分(例えばナトリウム等のアルカリ金属)を含む化合物(例えば、水酸化ナトリウム等)と遷移アルミナ等の多孔質流動媒体を一緒に約200〜400℃に加熱し、例えば撹拌等しながら約1分〜約24時間混合する方法等で、ガス化触媒成分(例えばナトリウム等のアルカリ金属)を遷移アルミナ等の多孔質流動媒体に担持させることよって製造できる。この様にして製造されたガス化用触媒は、バイオマスのガス化における流動媒体としてそのまま用いることができる。   The gasification catalyst of the present invention is a method of, for example, immersing particles of a porous fluid medium such as transition alumina in a solution (for example, an aqueous sodium hydroxide solution) containing a gasification catalyst component (for example, an alkali metal such as sodium). Alternatively, a compound containing a gasification catalyst component (for example, an alkali metal such as sodium) (for example, sodium hydroxide) and a porous fluid medium such as transition alumina are heated together at about 200 to 400 ° C. and stirred, for example. However, it can be produced by supporting a gasification catalyst component (for example, alkali metal such as sodium) on a porous fluid medium such as transition alumina by a method of mixing for about 1 minute to about 24 hours. The gasification catalyst thus produced can be used as it is as a fluid medium in biomass gasification.

この場合において、遷移アルミナ等の多孔質流動媒体1gに対するガス化触媒成分(例えばナトリウム等のアルカリ金属)の担持量は、通常約0.01〜0.7g、好ましくは約0.01〜0.5g、さらに好ましくは約0.05〜0.2gとなるのが好ましい。   In this case, the amount of the gasification catalyst component (for example, alkali metal such as sodium) supported on 1 g of the porous fluid medium such as transition alumina is usually about 0.01 to 0.7 g, preferably about 0.01 to 0.00. It is preferably 5 g, more preferably about 0.05 to 0.2 g.

バイオマスとしては、例えば林産廃棄物(例えば、間伐材、伐採木、又は建築物や木工製品等の製造過程で発生する木質片や木質粉等)、農産廃棄物(もみがら、稲わら、余剰産物等)、家庭ごみ、上下水廃棄物(夾雑物、糞尿残渣、下水汚泥等)、低品位石炭等が挙げられる。   Biomass includes, for example, forest waste (for example, thinned wood, felled wood, or wood fragments or wood powder generated in the manufacturing process of buildings or woodwork products), agricultural waste (rice chaff, rice straw, surplus products) Etc.), household waste, waste water and sewage waste (contamination, manure residue, sewage sludge, etc.), low grade coal, etc.

本発明のバイオマスのガス化用触媒は、流動床ガス化法において好ましく使用し得る。流動床ガス化法は、例えば流動床ガス化炉底部から供給されるガスにより流動床を形成させ、この流動床中でバイオマスのガス化を行うものである。流動床ガス化法において、流動床を形成するバイオマスは、例えば粉砕機等によって粉砕又はカッター等によって細切又は小切等されるのが好ましい。バイオマスの大きさは、特に限定されず、流動床ガス化炉底部から供給されるガスによって流動媒体と共に容易に流動する大きさであればよい。
バイオマスは、連続的に流動床ガス化炉に供給されることが好ましい。該バイオマスの供給は、流動床ガス化炉の上部にバイオマス供給部等を設け、例えば弁(例えば回転弁等)等により、供給量を調節するのが好ましい。
流動床を形成する流動媒体としては、本発明のガス化用触媒を用いるが、本発明のガス化用触媒に加え、他の公知の流動媒体や触媒を配合してもよい。
流動床ガス化炉内における流動媒体とバイオマスの割合は、流動媒体1質量部に対してバイオマス約0.01質量部以上、好ましくは約0.01〜1質量部程度、さらに好ましくは約0.02〜0.1質量部程度が、バイオマスのガス化効率の上で好ましい。
The biomass gasification catalyst of the present invention can be preferably used in a fluidized bed gasification method. In the fluidized bed gasification method, for example, a fluidized bed is formed by gas supplied from the bottom of the fluidized bed gasification furnace, and biomass is gasified in the fluidized bed. In the fluidized bed gasification method, the biomass forming the fluidized bed is preferably pulverized by a pulverizer or the like, or chopped or chopped by a cutter or the like. The magnitude | size of biomass is not specifically limited, What is necessary is just a magnitude | size which flows easily with a fluid medium with the gas supplied from a fluidized bed gasification furnace bottom part.
The biomass is preferably continuously supplied to the fluidized bed gasifier. The supply of the biomass is preferably provided with a biomass supply unit or the like in the upper part of the fluidized bed gasification furnace, and the supply amount is adjusted by, for example, a valve (for example, a rotary valve).
As the fluidized medium forming the fluidized bed, the gasification catalyst of the present invention is used, but in addition to the gasification catalyst of the present invention, other known fluidized media and catalysts may be blended.
The ratio of the fluid medium to the biomass in the fluidized bed gasifier is about 0.01 parts by mass or more, preferably about 0.01 to 1 part by mass, more preferably about 0.1 parts by mass with respect to 1 part by mass of the fluid medium. About 02-0.1 mass part is preferable on the gasification efficiency of biomass.

流動床ガス化炉底部から供給されるガスは、製造される転化ガスの種類によっても異なるが、例えばバイオマスのガス化において、バイオマスの特に水素ガスへの転化を促進するためには水蒸気を含むガスが好ましい。流動床ガス化炉底部から供給されるガス(ガス化剤)は、バイオマスからの製造を目的とするガスの組成によって異なるが、空気、酸素、水蒸気又は二酸化炭素等が主に用いられ、必要に応じてこれらを混合して用いることができる。特にバイオマスから水素ガスへの転化を促進するためには、水蒸気を含むガスが好ましい。また、空気、酸素を用いる場合は、酸化反応で発熱するため、ガス化に必要な熱を得ることができる。ガスの供給流量は、流動床が停滞せず常に流動するよう適宜調整されるのがよい。   The gas supplied from the bottom of the fluidized bed gasification furnace varies depending on the type of conversion gas to be produced. For example, in the gasification of biomass, a gas containing water vapor is used to promote the conversion of biomass into hydrogen gas. Is preferred. The gas (gasification agent) supplied from the bottom of the fluidized bed gasifier varies depending on the composition of the gas intended for production from biomass, but air, oxygen, water vapor, carbon dioxide, etc. are mainly used. These can be mixed and used accordingly. In particular, in order to promote the conversion from biomass to hydrogen gas, a gas containing water vapor is preferable. When air or oxygen is used, heat is generated by the oxidation reaction, so that heat necessary for gasification can be obtained. The gas supply flow rate is preferably adjusted as appropriate so that the fluidized bed always flows without stagnation.

流動床ガス化炉は、バイオマスのガス化に必要な反応熱を補うために、外部から例えば間接的に加熱されるか、あるいはガス化炉内への空気又は酸素の供給によってガス化炉内でバイオマスを部分燃焼させるのがよい。バイオマスをガス化させる流動層の温度は、約400〜1000℃、好ましくは約450〜800℃、さらに好ましくは約500〜700℃に保持させることが望ましい。これは、処理するバイオマスの種類やその形態、流動床装置に供給される時間当たりのバイオマスの投入量等にもよるが、流動層の温度が約500℃よりも低くなるにつれ、タール等の未燃分が増え、バイオマスの分解効率が極端に低下してガス生産性が低下する傾向が現れ、逆に約700℃を超えるにつれ、反応炉内においてバイオマスが流動媒体と混合し均一に拡散される前に燃焼されるか外部からの間接的な熱の過剰供給が必要になり、バイオマスのガス化効率低下を招くからである。これらの傾向は約400℃より低くなるか、約1000℃を超えるとさらに顕著になるからである。   Fluidized bed gasifiers are heated externally, for example indirectly, or supplemented with air or oxygen into the gasifier to supplement the reaction heat required for biomass gasification. It is better to partially burn the biomass. The temperature of the fluidized bed for gasifying the biomass is desirably maintained at about 400 to 1000 ° C, preferably about 450 to 800 ° C, more preferably about 500 to 700 ° C. This depends on the type of biomass to be treated, its form, the amount of biomass input per hour supplied to the fluidized bed apparatus, etc., but as the temperature of the fluidized bed becomes lower than about 500 ° C., the amount of tar, etc. There is a tendency that the fuel content increases, the decomposition efficiency of the biomass is extremely lowered and the gas productivity is lowered, and conversely, as the temperature exceeds about 700 ° C., the biomass is mixed with the fluidized medium and uniformly diffused in the reactor. This is because an excessive supply of heat that is burned before or indirectly from the outside is required, leading to a decrease in biomass gasification efficiency. This is because these tendencies become more remarkable when the temperature is lower than about 400 ° C. or exceeds about 1000 ° C.

流動床ガス化炉内で生成したガスはフィルター及びタールトラップ等を通じることが好ましい。フィルターとしては、ガラスウールやガラスフィルター等が好ましい。タールトラップは、ガスに含まれるタール成分の除去が可能なトラップであればいずれも好ましく用いることができる。タールトラップとして、例えば氷水やドライアイス等が挙げられる。   The gas generated in the fluidized bed gasifier is preferably passed through a filter and a tar trap. As a filter, glass wool, a glass filter, etc. are preferable. As the tar trap, any trap that can remove a tar component contained in the gas can be preferably used. Examples of the tar trap include ice water and dry ice.

この様にして生成されるガスは、通常は、水素(H)、一酸化炭素(CO)、二酸化炭素(CO)及びメタン(CH)、エタン(C)、エチレン(C)又はプロパン(C)等の炭化水素ガス等含む混合ガスである。該混合ガスは、例えばガスクロマトグラフィー等により、単一の水素、一酸化炭素、二酸化炭素又はメタン、エタン、エチレンもしくはプロパン等の炭化水素ガス等に分離精製することができる。分離精製されたガスはそれぞれ燃料ガスや原料ガスとして利用され得る。例えば水素は、クリーン燃料として燃料電池等に利用し得る。 The gas produced in this way is usually hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ) or a mixed gas containing hydrocarbon gas such as propane (C 3 H 8 ). The mixed gas can be separated and purified into a single hydrogen, carbon monoxide, carbon dioxide, or a hydrocarbon gas such as methane, ethane, ethylene or propane, for example, by gas chromatography or the like. The separated and purified gas can be used as a fuel gas and a raw material gas, respectively. For example, hydrogen can be used as a clean fuel in fuel cells and the like.

流動床ガス化装置としては、例えば特開2002−212574号公報、特開2003−342588号公報、特開2004−149556号公報、特開2004−182903号公報、特開2004−198011号公報、特開2004−292720号公報、又は特表2005−504167号公報等に記載の装置等を好ましく挙げることができるが、これらに限定されない。   As the fluidized bed gasifier, for example, JP 2002-212574 A, JP 2003-342588 A, JP 2004-149556 A, JP 2004-182903 A, JP 2004-198011 A, Although the apparatus etc. which are described in Kaikai 2004-292720 gazette or Japanese translations of PCT publication No. 2005-504167 can be mentioned preferably, it is not limited to these.

以下に、実施例及び試験例をあげ本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and test examples, but the present invention is not limited thereto.

ガス化用触媒の作製
100mLのアルミナカップに遷移アルミナ(住友化学AC−11)を50g加え、マッフル炉によりカップを480℃まで加熱し、1時間保持した。この遷移アルミナを室温に冷却した後に、ステンレスビーカーに移し、水酸化ナトリウム10gを加えた。これをマントルヒータにより290℃に加熱し、攪拌機(東京理化器械製NZ−1200)を用いて60rpmで1時間攪拌し、遷移アルミナにナトリウムを担持させた。得られたナトリウム担持遷移アルミナをガス化用触媒として、以下の試験例に用いた。
Preparation of Gasification Catalyst 50 g of transition alumina (Sumitomo Chemical AC-11) was added to a 100 mL alumina cup, and the cup was heated to 480 ° C. in a muffle furnace and held for 1 hour. After this transition alumina was cooled to room temperature, it was transferred to a stainless beaker and 10 g of sodium hydroxide was added. This was heated to 290 ° C. with a mantle heater, and stirred at 60 rpm for 1 hour using a stirrer (NZ-1200, manufactured by Tokyo Rika Kikai Co., Ltd.), and sodium was supported on transition alumina. The obtained sodium-supported transition alumina was used as a gasification catalyst in the following test examples.

〔試験例〕
リグニンの水蒸気分解
流動床ガス化装置の一実施態様としての概略図を図1に示す。外径19mmの石英管に枝管をつけたものを流動床ガス化炉(符号1)として用い、該石英管内に流動媒体を充填した。バイオマスとしてのリグニンの供給は炉の上部につけた回転弁(符号4)をモーターで回わし、自重により落下させて行なった。ガス化剤として水蒸気を用い,炉内温度を変えて実験を行った。分解によって生成したガスはトラップ(氷,ドライアイス;符号7)でタール等を除去したのちガスクロマトグラフィー(符号8)で分析を行った。流動媒体として実施例で作成したガス化用触媒又はAlを用いた場合について生成ガスの測定を行った。また,水蒸気流量を変えて生成ガスの測定を行った。
[Test example]
Steam decomposition of lignin A schematic diagram of one embodiment of a fluidized bed gasifier is shown in FIG. A quartz tube having an outer diameter of 19 mm with a branch pipe was used as a fluidized bed gasification furnace (reference numeral 1), and the quartz tube was filled with a fluid medium. The supply of lignin as biomass was performed by rotating a rotary valve (reference numeral 4) attached to the top of the furnace with a motor and dropping it by its own weight. Experiments were conducted using steam as the gasifying agent and changing the furnace temperature. The gas generated by the decomposition was analyzed by gas chromatography (symbol 8) after removing tar and the like with a trap (ice, dry ice; code 7). The generated gas was measured for the case where the gasification catalyst prepared in the example or Al 2 O 3 was used as the fluid medium. In addition, the product gas was measured by changing the water vapor flow rate.

実験手順を以下に示す。
1.試料(バイオマス;符号9)としてリグニンを試料供給部(符号3)に入れ、蓋をする。
2.実施例で作成したガス化用触媒又はAlを3.0g測りとり、流動床ガス化炉(石英管;符号1)に入れる。
3.水蒸気発生装置(符号6)に蒸留水を入れる。
4.キャリアーガス(ヘリウム;符号11)と水蒸気の合計流量が100mL/分となるようにヘリウムを流し、流動床ガス化炉、水蒸気発生装置、リボンヒーター(符号2)の温度を上げる。検量用の内標準ガスとしてを10mL/分のアルゴン(Ar)を流す。
5.タールトラップとして1、2本目は氷水、3〜5本目はドライアイスで冷やす。
6.流動床ガス化炉(石英管)の温度が700℃に達したら、リグニンの落下速度が0.013g/分となるように上部に取り付けた試料供給部の回転弁をモーターで回転させる。
7.初めは5分後に、それ以降は10分おきにガスクロマトグラフィーで生成ガスを分析する。
The experimental procedure is shown below.
1. As a sample (biomass; code 9), lignin is put into a sample supply part (code 3) and covered.
2. 3.0 g of the gasification catalyst or Al 2 O 3 prepared in the examples is measured and placed in a fluidized bed gasification furnace (quartz tube; reference numeral 1).
3. Distilled water is put into a steam generator (symbol 6).
4). Helium is flowed so that the total flow rate of the carrier gas (helium; code 11) and water vapor is 100 mL / min, and the temperature of the fluidized bed gasifier, the water vapor generator, and the ribbon heater (code 2) is raised. As an internal standard gas for calibration, argon (Ar) is flowed at 10 mL / min.
5. As tar traps, cool the first and second with ice water and the third and fifth with dry ice.
6). When the temperature of the fluidized bed gasification furnace (quartz tube) reaches 700 ° C., the rotary valve of the sample supply unit attached to the upper part is rotated by a motor so that the falling speed of lignin is 0.013 g / min.
7). The product gas is analyzed by gas chromatography after 5 minutes initially and every 10 minutes thereafter.

(1)触媒の有無による生成ガス量の比較
流動床の流動媒体として、実施例で作成したガス化用触媒又はAlを用いてリグニンの水蒸気ガス化を700℃で行い、そのときの生成ガスの流量を比較した。実施例で作成したガス化用触媒又はAlの使用量は、いずれも3.0gであった。実施例で作成したガス化用触媒又はAlのそれぞれの流動媒体を用いたときの各ガスの生成量を表1に示す。生成ガスは水素(H)、一酸化炭素(CO)、二酸化炭素(CO)及びメタン(CH)が主成分であり、各ガスの生成量はH>CO>CO>CHであった。実施例で作成したガス化用触媒を用いることで,全てのガスの生成量が増加したことが分かる。
(1) Comparison of amount of produced gas with and without catalyst As the fluidized medium of the fluidized bed, steam gasification of lignin was carried out at 700 ° C. using the gasification catalyst or Al 2 O 3 prepared in the Examples, and The flow rate of the product gas was compared. The amount of gasification catalyst or Al 2 O 3 used in the examples was 3.0 g. Table 1 shows the amount of each gas produced when each gasification catalyst or Al 2 O 3 fluidized medium prepared in the examples was used. The product gas is mainly composed of hydrogen (H 2 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and methane (CH 4 ), and the amount of each gas produced is H 2 > CO 2 >CO> CH 4. Met. It can be seen that by using the gasification catalyst prepared in the example, the amount of all gas produced increased.

Figure 2007023084
Figure 2007023084

(2) 水蒸気流量と生成ガス
流動媒体として実施例で作成したガス化用触媒を用い、水蒸気流量を0、10、20mL/分と変えて、700℃にてリグニンの分解を行い、生成ガス量を比較した。H、CO、CO、CHの各ガス生成量と水蒸気流量との比較を表2に示す。水蒸気流量が多い方が、リグニンの熱分解が促進され,H生成量が増加した。水蒸気を流さない場合ほとんどいずれのガスも生成していなかった。また、この結果から,実施例で作成したガス化用触媒と水蒸気によりリグニンのガス化,特にHへの改質反応が促進したことが分かった。
(2) Using the gasification catalyst prepared in the examples as the water vapor flow rate and the product gas flow medium, changing the water vapor flow rate to 0, 10 and 20 mL / min, decomposing lignin at 700 ° C. Compared. Table 2 shows a comparison between the gas generation amounts of H 2 , CO, CO 2 , and CH 4 and the water vapor flow rate. When the water vapor flow rate was higher, the thermal decomposition of lignin was promoted and the amount of H 2 produced increased. When no water vapor was flown, almost no gas was generated. Further, from this result, it was found that the gasification catalyst prepared in Example and the steam promoted the gasification of lignin, particularly the reforming reaction to H 2 .

Figure 2007023084
Figure 2007023084

(3) ガス化転化率
700℃において、ガス化した生成ガス中の炭素モル量(CO,CO,CHのモル量の合計)を単位時間あたりに投入したリグニン中に含まれる炭素量で割った値を転化率として算出した(表3)。最も高いガス転化率を示したのは,流動媒体として実施例で作成したガス化用触媒を用い,水蒸気流量20mL/分の時であった。同じ水蒸気流量で流動媒体としてAlを用いた場合に比べて,ガス転化率が約4倍に増加しているのが分かる。また,水蒸気流量10mL/分の時のガス転化率と比較すると約2倍増加している。この結果から,実施例で作成したガス化用触媒がガス化剤として水蒸気を用いる、バイオマスのガス化に有効であることが分かった。
(3) Gasification conversion rate At 700 ° C., the amount of carbon contained in the lignin charged per unit time is calculated as the amount of carbon in the gasified product gas (total amount of CO, CO 2 and CH 4 ). The divided value was calculated as the conversion rate (Table 3). The highest gas conversion was obtained when the gasification catalyst prepared in the example was used as the fluid medium and the water vapor flow rate was 20 mL / min. It can be seen that the gas conversion rate is increased about 4 times compared to the case where Al 2 O 3 is used as the fluid medium at the same water vapor flow rate. In addition, the gas conversion rate is increased by a factor of about 2 compared with the gas conversion rate when the water vapor flow rate is 10 mL / min. From this result, it was found that the gasification catalyst prepared in the example is effective for gasification of biomass using water vapor as a gasifying agent.

Figure 2007023084
Figure 2007023084

本発明のガス化用触媒は、バイオマスの熱分解及び水蒸気改質反応の流動媒体として有用である。   The gasification catalyst of the present invention is useful as a fluidized medium for biomass pyrolysis and steam reforming reactions.

図1は、流動床ガス化装置の1実施態様を示す概略図である。FIG. 1 is a schematic diagram illustrating one embodiment of a fluidized bed gasifier.

符号の説明Explanation of symbols

1 流動床ガス化炉
2 ヒーター
3 試料供給部
4 回転弁
5 ガラスウール
6 水蒸気発生装置
7 トラップ
8 ガスクロマトグラフィー
9 試料
10 流動床
11 キャリアガス
DESCRIPTION OF SYMBOLS 1 Fluidized bed gasification furnace 2 Heater 3 Sample supply part 4 Rotary valve 5 Glass wool 6 Water vapor generator 7 Trap 8 Gas chromatography 9 Sample 10 Fluidized bed 11 Carrier gas

Claims (6)

多孔質流動媒体にガス化触媒成分が担持されていることを特徴とするバイオマスのガス化用触媒。   A biomass gasification catalyst, wherein a gasification catalyst component is supported on a porous fluid medium. 多孔質流動媒体が遷移アルミナであることを特徴とする請求項1に記載のバイオマスのガス化用触媒。   2. The biomass gasification catalyst according to claim 1, wherein the porous fluidized medium is transition alumina. 遷移アルミナが、比表面積30m/g以上であって、平均粒径20μm以上2mm以下であることを特徴とする請求項2に記載のバイオマスのガス化用触媒。 3. The biomass gasification catalyst according to claim 2, wherein the transition alumina has a specific surface area of 30 m 2 / g or more and an average particle size of 20 μm or more and 2 mm or less. ガス化触媒成分が、アルカリ金属であることを特徴とする請求項1〜3のいずれかに記載のバイオマスのガス化用触媒。   The biomass gasification catalyst according to any one of claims 1 to 3, wherein the gasification catalyst component is an alkali metal. アルカリ金属がナトリウムであることを特徴とする請求項4に記載のバイオマスのガス化用触媒。   The catalyst for biomass gasification according to claim 4, wherein the alkali metal is sodium. 遷移アルミナ1gに対するナトリウムの担持量が0.01〜0.7gであることを特徴とする請求項5に記載のバイオマスのガス化用触媒。
The biomass gasification catalyst according to claim 5, wherein the amount of sodium supported on 1 g of transition alumina is 0.01 to 0.7 g.
JP2005203564A 2005-07-12 2005-07-12 Biomass gasification catalyst Pending JP2007023084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203564A JP2007023084A (en) 2005-07-12 2005-07-12 Biomass gasification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203564A JP2007023084A (en) 2005-07-12 2005-07-12 Biomass gasification catalyst

Publications (1)

Publication Number Publication Date
JP2007023084A true JP2007023084A (en) 2007-02-01

Family

ID=37784296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203564A Pending JP2007023084A (en) 2005-07-12 2005-07-12 Biomass gasification catalyst

Country Status (1)

Country Link
JP (1) JP2007023084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010065580A3 (en) * 2008-12-02 2010-08-19 Range Fuels, Inc. Multi-zone reforming methods and apparatus for conversion of devolatilized biomass to syngas
KR101622801B1 (en) 2008-08-15 2016-05-19 루머스 테크놀로지 인코포레이티드 Two stage entrained gasification system and process
CN105969426A (en) * 2016-06-29 2016-09-28 温洲 Biomass gasifier with pyrolysis chamber
US9556391B2 (en) 2012-07-13 2017-01-31 Phillips 66 Company Method for producing renewable hydrogen from biomass derivatives using steam reforming technology
CN113164918A (en) * 2018-08-09 2021-07-23 巴西石油公司 Method for gasifying low-value carbonaceous feedstocks as fuels using nanocatalysts

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101622801B1 (en) 2008-08-15 2016-05-19 루머스 테크놀로지 인코포레이티드 Two stage entrained gasification system and process
WO2010065580A3 (en) * 2008-12-02 2010-08-19 Range Fuels, Inc. Multi-zone reforming methods and apparatus for conversion of devolatilized biomass to syngas
US7919070B2 (en) 2008-12-02 2011-04-05 Range Fuels, Inc. Multi-zone reforming methods and apparatus for conversion of devolatilized biomass to syngas
US9556391B2 (en) 2012-07-13 2017-01-31 Phillips 66 Company Method for producing renewable hydrogen from biomass derivatives using steam reforming technology
CN105969426A (en) * 2016-06-29 2016-09-28 温洲 Biomass gasifier with pyrolysis chamber
CN105969426B (en) * 2016-06-29 2018-11-27 宁波远志立方能源科技有限公司 Biomass gasifying furnace with cracking room
CN113164918A (en) * 2018-08-09 2021-07-23 巴西石油公司 Method for gasifying low-value carbonaceous feedstocks as fuels using nanocatalysts
JP2023510657A (en) * 2018-08-09 2023-03-15 ペトロレオ ブラジレイロ ソシエダ アノニマ - ペトロブラス A process for gasifying low-value carbonaceous feedstocks as fuel using nanocatalysts
JP7439064B2 (en) 2018-08-09 2024-02-27 ペトロレオ ブラジレイロ ソシエダ アノニマ - ペトロブラス Process for gasifying low-value carbonaceous feedstocks as fuel using nanocatalysts
CN113164918B (en) * 2018-08-09 2024-04-26 巴西石油公司 Method for gasifying low-value carbon-containing raw materials as fuel by using nano catalyst

Similar Documents

Publication Publication Date Title
Shen et al. Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production
Asadullah et al. Demonstration of real biomass gasification drastically promoted by effective catalyst
JP4259777B2 (en) Biomass gasification method
JP5494135B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Zhang Review of catalytic reforming of biomass pyrolysis oil for hydrogen production
CN102812110B (en) Method of reforming gasification gas
JP2011212598A (en) Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst and method for reforming tar-containing gas
Asadullah et al. Catalyst performance of Rh/CeO2/SiO2 in the pyrogasification of biomass
Asadullah et al. Role of catalyst and its fluidization in the catalytic gasification of biomass to syngas at low temperature
JP2021104916A (en) Method for producing amorphous silica and method for producing cosmetic raw material
JP4273211B2 (en) Method for producing dimethyl ether from biomass
JPWO2020166659A1 (en) Biomass gas production method, hydrogen production method, biomass gas production system and hydrogen production system
Oni et al. Experimental investigation of steam-air gasification of Cymbopogon citratus using Ni/dolomite/CeO2/K2CO3 as catalyst in a dual stage reactor for syngas and hydrogen production
WO2007099989A1 (en) Carbon support, method of producing carbon support, apparatus for producing carbon support, gas formation method, power generation method and power generator
JP5659534B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
Sanni et al. Heterogeneous catalytic gasification of biomass to biofuels and bioproducts: a review
JP2007023084A (en) Biomass gasification catalyst
JP2015004021A (en) Thermal decomposition gasification furnace, catalytic modification method, energy supply system and electric heat supply system
JP2002285171A (en) Biomass gasifier and method for gasifying biomass
JP4048277B2 (en) Biomass gasification method and gasification apparatus
JP5380691B2 (en) Biomass gasifier and method therefor
JP3975271B2 (en) Biomass gasification method and catalyst used therefor
JP2012036317A (en) Biomass gasification gas purification system and method, methanol production system and method
Sricharoenchaikul et al. Performance of Ni/dolomite pellet catalyst on gas distribution from cassava rhizome gasification with a modular fixed-bed gasifier
JP2002346388A (en) Catalyst for syngas production and method for converting biomass to syngas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527