[go: up one dir, main page]

JP2015173536A - Armature for linear motor - Google Patents

Armature for linear motor Download PDF

Info

Publication number
JP2015173536A
JP2015173536A JP2014048010A JP2014048010A JP2015173536A JP 2015173536 A JP2015173536 A JP 2015173536A JP 2014048010 A JP2014048010 A JP 2014048010A JP 2014048010 A JP2014048010 A JP 2014048010A JP 2015173536 A JP2015173536 A JP 2015173536A
Authority
JP
Japan
Prior art keywords
groove
armature
grooves
coil
cooling pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014048010A
Other languages
Japanese (ja)
Other versions
JP6327889B2 (en
Inventor
修 中崎
Osamu Nakasaki
修 中崎
幸次 守谷
Koji Moriya
幸次 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2014048010A priority Critical patent/JP6327889B2/en
Publication of JP2015173536A publication Critical patent/JP2015173536A/en
Application granted granted Critical
Publication of JP6327889B2 publication Critical patent/JP6327889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an armature for which cooling by a cooling pipe is appropriately controlled.SOLUTION: An armature 40 is arranged while being spaced apart from a field magnet. The armature 40 includes: an armature core 41 including a yoke part 42 extending in a direction X and a plurality of teeth 43g, 43h and 43i protruding therefrom to the side of the field magnet; coils 49g, 49h and 49i wound around the teeth 43g, 43h and 43i, respectively; and a cooling pipe in which a coolant flows. A core cooling part 61h is housed in a groove 51h, a core cooling part 61i is housed in a groove 51i, and the grooves 51h and 51i are formed in such a manner that a length direction thereof is turned in a Z direction. A distance P between a center of the groove 51h and a center of the groove 51i is different from a distance D between a center of the core cooling part 61h and a center of the core cooling part 61i.

Description

本発明は、リニアモータの固定子又は可動子として用いられる電機子に関する。   The present invention relates to an armature used as a stator or a mover of a linear motor.

リニアモータに用いられる電機子は、電機子コアとコイルを備える。電機子コアは駆動方向に複数設けられるティース部を有し、このティース部にコイルが巻き回される。コイルが通電により発熱すると、電機子コアの温度が上昇し、電機子の性能に悪影響を及ぼす場合がある。この対策として、その内部を冷媒が流れる冷却管により電機子コアを冷却する技術が知られている。従来では、例えば特許文献1に記載の電機子が提案されている。   An armature used for a linear motor includes an armature core and a coil. The armature core has a plurality of teeth provided in the driving direction, and a coil is wound around the teeth. When the coil generates heat when energized, the temperature of the armature core increases, which may adversely affect the performance of the armature. As a countermeasure, a technique for cooling the armature core with a cooling pipe through which a refrigerant flows is known. Conventionally, for example, an armature described in Patent Document 1 has been proposed.

特開2008−35698号JP 2008-35698 A

しかしながら、特許文献1に記載されるような従来のリニアモータ用電機子では、冷却管による冷却が十分に制御されておらず、改善の余地がある。   However, in the conventional armature for linear motors described in Patent Document 1, the cooling by the cooling pipe is not sufficiently controlled, and there is room for improvement.

本発明は、こうした状況に鑑みてなされたものであり、その目的は、冷却管による冷却が的確に制御された電機子を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an armature in which cooling by a cooling pipe is accurately controlled.

上記課題を解決するために、本発明のある態様のリニアモータ用電機子は、界磁子と間隔を空けて配置される電機子であって、モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、ティース部に巻き回されるコイルと、内部を冷媒が流れる冷却管と、を備える。ヨーク部のコイルと反対側の面には複数の溝が形成され、複数の溝のうちの第1の溝には冷却管の第1の部分が収容され、複数の溝のうちの第2の溝には冷却管の第2の部分が収容され、第1の溝および第2の溝は、それぞれの長手方向が略同一方向を向くよう形成され、第1の溝の中心と第2の溝の中心との距離は、第1の部分の中心と第2の部分の中心との距離とは異なる。   In order to solve the above-mentioned problems, an armature for a linear motor according to an aspect of the present invention is an armature that is spaced apart from a field element, and a yoke portion that extends in a motor driving direction and the armature A core including a plurality of teeth portions protruding toward the field element side, a coil wound around the teeth portions, and a cooling pipe through which a coolant flows are provided. A plurality of grooves are formed on the surface of the yoke portion opposite to the coil, the first groove of the plurality of grooves accommodates the first portion of the cooling pipe, and the second of the plurality of grooves. The second portion of the cooling pipe is accommodated in the groove, and the first groove and the second groove are formed so that the respective longitudinal directions thereof are substantially in the same direction, and the center of the first groove and the second groove are formed. The distance from the center of is different from the distance between the center of the first part and the center of the second part.

本発明の別の態様もまた、リニアモータ用電機子である。このリニアモータ用電機子は、界磁子と間隔を空けて配置される電機子であって、モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、ティース部に巻き回されるコイルと、内部を冷媒が流れる冷却管と、を備える。ヨーク部のコイルと反対側の面には、それぞれの長手方向が略同一方向を向くよう複数の溝が形成され、複数の溝のうちの隣接する2つの溝のそれぞれには、冷却管の第1の部分と冷却管の第2の部分が収容され、第1の部分と第2の部分の中心間距離は、複数の溝のピッチよりも短い。   Another aspect of the present invention is also a linear motor armature. This armature for a linear motor is an armature that is spaced apart from a field element, and includes a yoke portion that extends in the motor driving direction and a plurality of teeth portions that project from the yoke portion to the field element side. A core including the coil wound around the tooth portion, and a cooling pipe through which the refrigerant flows. A plurality of grooves are formed on the surface of the yoke portion opposite to the coil so that the longitudinal directions thereof are substantially in the same direction, and each of the two adjacent grooves among the plurality of grooves has a first cooling tube. The first portion and the second portion of the cooling pipe are accommodated, and the distance between the centers of the first portion and the second portion is shorter than the pitch of the plurality of grooves.

本発明のさらに別の態様もまた、リニアモータ用電機子である。このリニアモータ用電機子は、界磁子と間隔を空けて配置される電機子であって、モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、ティース部に巻き回されるコイルと、内部を冷媒が流れる冷却管と、を備える。ヨーク部のコイルと反対側の面には複数の溝が形成され、複数の溝のうちの第1の溝には冷却管の第1の部分が収容され、複数の溝のうちの第1の溝に隣接する第2の溝には冷却管の第2の部分が収容され、第1の溝および第2の溝は、それぞれの長手方向が略同一方向を向くよう形成され、第1の部分は、第1の溝の第2の溝側の内壁に近寄った位置に収容され、第2の部分は、第2の溝の第1の溝側の内壁に近寄った位置に収容される。   Yet another embodiment of the present invention is also an armature for a linear motor. This armature for a linear motor is an armature that is spaced apart from a field element, and includes a yoke portion that extends in the motor driving direction and a plurality of teeth portions that project from the yoke portion to the field element side. A core including the coil wound around the tooth portion, and a cooling pipe through which the refrigerant flows. A plurality of grooves are formed on the surface of the yoke portion opposite to the coil, and a first portion of the cooling pipe is accommodated in the first groove of the plurality of grooves, and the first of the plurality of grooves is accommodated. The second groove adjacent to the groove accommodates the second portion of the cooling pipe, and the first groove and the second groove are formed so that the longitudinal directions thereof are substantially in the same direction. Is accommodated at a position close to the inner wall of the first groove on the second groove side, and the second portion is accommodated at a position close to the inner wall of the second groove on the first groove side.

本発明のさらに別の態様もまた、リニアモータ用電機子である。このリニアモータ用電機子は、界磁子と間隔を空けて配置される電機子であって、モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、ティース部に巻き回されるコイルと、内部を冷媒が流れる冷却管と、を備える。ヨーク部のコイルと反対側の面には複数の溝が形成され、複数の溝のうちの第1の溝には冷却管の第1の部分が収容され、複数の溝のうちの第2の溝には冷却管の第2の部分が収容され、第1の部分とコイルとのモータ駆動方向に直交する方向における距離は、第2の部分とコイルとのモータ駆動方向に直交する方向における距離と異なる。   Yet another embodiment of the present invention is also an armature for a linear motor. This armature for a linear motor is an armature that is spaced apart from a field element, and includes a yoke portion that extends in the motor driving direction and a plurality of teeth portions that project from the yoke portion to the field element side. A core including the coil wound around the tooth portion, and a cooling pipe through which the refrigerant flows. A plurality of grooves are formed on the surface of the yoke portion opposite to the coil, the first groove of the plurality of grooves accommodates the first portion of the cooling pipe, and the second of the plurality of grooves. The groove accommodates the second portion of the cooling pipe, and the distance in the direction perpendicular to the motor driving direction between the first portion and the coil is the distance in the direction perpendicular to the motor driving direction between the second portion and the coil. And different.

本発明によれば、冷却管による冷却が的確に制御された電機子を提供できる。   According to the present invention, it is possible to provide an armature in which the cooling by the cooling pipe is accurately controlled.

第1の実施の形態に係る電機子が用いられるリニアモータを示す断面図である。It is sectional drawing which shows the linear motor with which the armature which concerns on 1st Embodiment is used. 図1の電機子を示す斜視図である。It is a perspective view which shows the armature of FIG. 図1の一部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows a part of FIG. 第2の実施の形態に係る電機子が用いられるリニアモータを示す断面図である。It is sectional drawing which shows the linear motor with which the armature which concerns on 2nd Embodiment is used.

以下、各図面に示される同一または同等の構成要素、部材、工程には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。   Hereinafter, the same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are appropriately omitted. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Also, in the drawings, some of the members that are not important for describing the embodiment are omitted.

(第1の実施の形態)
図1は、第1の実施形態に係る電機子40が用いられるリニアモータ10を示す断面図である。図2は、図1の電機子40を示す斜視図である。図2では、冷却管60を分離させた状態を示す。図3は、図1の一部を拡大して示す拡大断面図である。リニアモータ10は、界磁子30と、電機子40と、を備える。界磁子30が固定子であり、電機子40が可動子である。
以降、界磁子30から見て電機子40側を上側として説明する。また、リニアモータ10の駆動方向をX方向、上下方向をY方向、両者に直交する方向をZ方向として説明する。
(First embodiment)
FIG. 1 is a cross-sectional view showing a linear motor 10 in which an armature 40 according to the first embodiment is used. FIG. 2 is a perspective view showing the armature 40 of FIG. FIG. 2 shows a state where the cooling pipe 60 is separated. FIG. 3 is an enlarged cross-sectional view showing a part of FIG. 1 in an enlarged manner. The linear motor 10 includes a field element 30 and an armature 40. The field element 30 is a stator, and the armature 40 is a mover.
Hereinafter, the armature 40 side as viewed from the field element 30 will be described as the upper side. Further, the driving direction of the linear motor 10 will be described as the X direction, the vertical direction as the Y direction, and the direction orthogonal to both as the Z direction.

界磁子30は、界磁子コア31と、複数の磁石33と、を含む。界磁子コア31はX方向に延在する直方体状の部材である。複数の磁石33は永久磁石である。なお、複数の磁石33は電磁石でもよい。複数の磁石33は、界磁子コア31の上面31aに設けられる。特に、複数の磁石33は、X方向に異なる磁極(N極、S極)が交互に並ぶように設けられる。   The field element 30 includes a field element core 31 and a plurality of magnets 33. The field element core 31 is a rectangular parallelepiped member extending in the X direction. The plurality of magnets 33 are permanent magnets. The plurality of magnets 33 may be electromagnets. The plurality of magnets 33 are provided on the upper surface 31 a of the field element core 31. In particular, the plurality of magnets 33 are provided such that different magnetic poles (N pole, S pole) are alternately arranged in the X direction.

電機子40は、界磁子30と間隔を空けて配置される。電機子40は、電機子コア41と、コイル49で総称されるコイル49a〜49iと、冷却管60と、を含む。電機子コア41は、櫛歯状の板状体47を複数枚積層して形成される。板状体47は電磁鋼板である。なお、板状体47は、他の金属板であってもよい。   The armature 40 is disposed at a distance from the field element 30. The armature 40 includes an armature core 41, coils 49 a to 49 i collectively referred to as a coil 49, and a cooling pipe 60. The armature core 41 is formed by laminating a plurality of comb-like plate-like bodies 47. The plate-like body 47 is an electromagnetic steel plate. The plate-like body 47 may be another metal plate.

電機子コア41は、ヨーク部42と、ティース部43で総称されるティース部43a〜43iと、を含む。ヨーク部42は、X方向に延在する直方体状の部材である。ティース部43は、ヨーク部42から界磁子30側(すなわちY方向)に突出する。ティース部43のX方向の両側には、スロット部45で総称されるスロット部45a〜45jが形成される。ティース部43と、このスロット部45とは、X方向に交互に並ぶ。各ティース部43にはコイル49が巻き回され、スロット部45内にはコイル49が収容される。   The armature core 41 includes a yoke portion 42 and tooth portions 43 a to 43 i that are collectively referred to as a tooth portion 43. The yoke part 42 is a rectangular parallelepiped member extending in the X direction. The teeth part 43 protrudes from the yoke part 42 to the field element 30 side (that is, the Y direction). Slot portions 45 a to 45 j collectively referred to as the slot portion 45 are formed on both sides of the teeth portion 43 in the X direction. The teeth portions 43 and the slot portions 45 are alternately arranged in the X direction. A coil 49 is wound around each tooth portion 43, and the coil 49 is accommodated in the slot portion 45.

ヨーク部42の上面42aには、溝51で総称される溝51a〜51jが形成される。特に、溝51は、スロット部45の上方に形成される。溝51は、ヨーク部42をZ方向に貫通する凹部であって、断面がU字状の凹部である。各溝51は、実質的に同一の形状を有する。各溝51は、一定の溝ピッチPでX方向に並んでいる。溝51には、冷却管60の少なくとも一部が収容される。   Grooves 51 a to 51 j collectively referred to as the groove 51 are formed on the upper surface 42 a of the yoke portion 42. In particular, the groove 51 is formed above the slot portion 45. The groove 51 is a concave portion that penetrates the yoke portion 42 in the Z direction and has a U-shaped cross section. Each groove 51 has substantially the same shape. The grooves 51 are arranged in the X direction at a constant groove pitch P. At least a part of the cooling pipe 60 is accommodated in the groove 51.

冷却管60は銅等の金属材料を素材とする。冷却管60は、コア冷却部61で総称されるコア冷却部61a〜61jと、連設部63で総称される連設部63a〜63iとを含む。コア冷却部61は、X方向に間隔を空けて設けられる。特に、コア冷却部61は、溝51の数に対応した数だけ設けられる。連設部63は、隣り合うコア冷却部61の端部をつなぐ。コア冷却部61および連設部63は、断面が円形である円筒状に形成される。もちろん、これらは、断面が多角形である角筒状、その他の形状に形成されてもよい。冷却管60は、コア冷却部61と連設部63とが波状に蛇行するように形成され、その内部に連続した流路が形成される。冷却管60は管体を曲げ加工することにより形成される。   The cooling pipe 60 is made of a metal material such as copper. The cooling pipe 60 includes core cooling parts 61 a to 61 j that are collectively referred to as the core cooling part 61, and continuous parts 63 a to 63 i that are collectively referred to as the continuous part 63. The core cooling part 61 is provided at intervals in the X direction. In particular, the number of core cooling parts 61 corresponding to the number of grooves 51 is provided. The connecting portion 63 connects the end portions of the adjacent core cooling portions 61. The core cooling part 61 and the connecting part 63 are formed in a cylindrical shape having a circular cross section. Of course, these may be formed in a rectangular tube shape having a polygonal cross section or other shapes. The cooling pipe 60 is formed such that the core cooling part 61 and the continuous part 63 meander in a wave shape, and a continuous flow path is formed therein. The cooling pipe 60 is formed by bending a pipe body.

コア冷却部61a〜61jは、それぞれ溝51a〜51jに収容される。コア冷却部61a〜61jは、Y方向におけるコイル49との距離La〜Ljがすべて同じになるよう溝51a〜51jに収容される。一方で、コア冷却部61g〜61jは、その中心が、X方向において溝51g〜51jの中心からずれた位置に収容される。別の言い方をすると、コア冷却部61g〜61jは、X方向で対向する溝51g〜51jの内壁のうちのいずれか一方に近寄った位置に収容される。具体的には、コア冷却部61gは内壁52gbに、コア冷却部61hは内壁52hbに、コア冷却部61iは内壁52iaに、コア冷却部61jは内壁52jaに近寄った位置に収容される。つまり、コア冷却部61g〜61jは、それぞれコイル49h側の内壁に近寄った位置に収容される。また、コア冷却部61hおよびコア冷却部61iは、それらの中心間距離Dが、溝51の溝ピッチP(すなわち隣接する溝51hと溝51iとの中心間距離)よりも短くなるよう収容される。   Core cooling parts 61a-61j are stored in grooves 51a-51j, respectively. The core cooling units 61a to 61j are accommodated in the grooves 51a to 51j so that the distances La to Lj with the coil 49 in the Y direction are all the same. On the other hand, the core cooling parts 61g to 61j are accommodated in positions where the centers thereof deviate from the centers of the grooves 51g to 51j in the X direction. In other words, the core cooling parts 61g to 61j are accommodated at positions close to any one of the inner walls of the grooves 51g to 51j opposed in the X direction. Specifically, the core cooling part 61g is accommodated in the inner wall 52gb, the core cooling part 61h is accommodated in the inner wall 52hb, the core cooling part 61i is accommodated in the inner wall 52ia, and the core cooling part 61j is accommodated in a position close to the inner wall 52ja. That is, the core cooling parts 61g to 61j are accommodated at positions close to the inner wall on the coil 49h side. Moreover, the core cooling part 61h and the core cooling part 61i are accommodated so that the center distance D thereof is shorter than the groove pitch P of the groove 51 (that is, the center distance between the adjacent groove 51h and the groove 51i). .

連設部63a〜61iは、Z方向において電機子コア41の外側に配置される。冷却管60に水等の冷媒を送り込むと、その流路の流入側P1(上流側)から流出側P2(下流側)に向かうQ方向に冷媒が流れ、コア冷却部61内の冷媒により電機子コア41が冷却される。   The continuous portions 63a to 61i are disposed outside the armature core 41 in the Z direction. When a coolant such as water is fed into the cooling pipe 60, the coolant flows in the Q direction from the inflow side P1 (upstream side) to the outflow side P2 (downstream side) of the flow path, and the armature is driven by the coolant in the core cooling unit 61. The core 41 is cooled.

以上のように構成されたリニアモータ10の動作を説明する。駆動電流がコイル49に供給される。その駆動電流がコイル49を流れることにより生じる磁界と磁石33の磁界との相互作用により電機子40に推力が発生し、X方向に電機子40が移動する。同時に冷却管60に冷媒を送り込みことによって、電機子コア41ひいてはコイル49が冷却される。   The operation of the linear motor 10 configured as described above will be described. A drive current is supplied to the coil 49. Thrust is generated in the armature 40 due to the interaction between the magnetic field generated by the drive current flowing through the coil 49 and the magnetic field of the magnet 33, and the armature 40 moves in the X direction. At the same time, the coolant is fed into the cooling pipe 60, whereby the armature core 41 and thus the coil 49 are cooled.

以上、実施の形態に係る電機子40が用いられるリニアモータ10について説明した。本実施の形態に係る電機子40によれば、特定のコイル49周辺(図3ではコイル49h周辺)のコア冷却部61が、そのコイル49に近接するよう溝51に収容される。これにより、その特定のコイルを効率的に冷却することができる。つまり、コア冷却部61のX方向における位置をコントロールすることによって、コア冷却部61による冷却効果を局所的に高めることができる。   The linear motor 10 using the armature 40 according to the embodiment has been described above. According to the armature 40 according to the present embodiment, the core cooling portion 61 around the specific coil 49 (around the coil 49h in FIG. 3) is accommodated in the groove 51 so as to be close to the coil 49. Thereby, the specific coil can be efficiently cooled. That is, by controlling the position of the core cooling unit 61 in the X direction, the cooling effect by the core cooling unit 61 can be locally increased.

(第2の実施の形態)
第1の実施の形態に係る電機子40と第2の実施の形態に係る電機子との主な違いは、コア冷却部をずらす方向である。
図4は、第2の実施の形態に係る電機子140が用いられるリニアモータ110を示す断面図である。図4は図1に対応する。
(Second Embodiment)
The main difference between the armature 40 according to the first embodiment and the armature according to the second embodiment is the direction in which the core cooling unit is shifted.
FIG. 4 is a cross-sectional view showing the linear motor 110 in which the armature 140 according to the second embodiment is used. FIG. 4 corresponds to FIG.

本実施の形態では、コア冷却部61a〜61jは、その流路の流出側P2(すなわち冷媒の流れ方向の下流側)に近いコア冷却部61ほど下方に位置するよう溝51a〜51jに収容される。すなわち、コア冷却部61a〜61jは、Y方向におけるコイル49との距離La〜Ljが、La>Lb>Lc>Ld>Le>Lf>Lg>Lh>Li>Ljを満たすように設けられる。   In the present embodiment, the core cooling parts 61a to 61j are accommodated in the grooves 51a to 51j so that the core cooling part 61 closer to the outflow side P2 of the flow path (that is, the downstream side in the refrigerant flow direction) is positioned below. The That is, the core cooling units 61a to 61j are provided such that the distances La to Lj with the coil 49 in the Y direction satisfy La> Lb> Lc> Ld> Le> Lf> Lg> Lh> Li> Lj.

本実施の形態に係る電機子40によれば、コア冷却部61は、冷媒の流れ方向の下流側のコア冷却部61ほど下方に位置するよう溝51内に収容される。ここで、冷却管60を流れる冷媒は、電機子コア41の熱を吸熱することにより、下流側に近づくほどその温度が上昇する。そのため、冷却管60による冷却効果は、下流側に近づくほど低下する。これにより、電機子コア41にX方向に温度勾配が生じ、熱膨張による反りが生じる場合がある。これに対し、上述のように、下流側に近いコア冷却部61ほど下方に位置するよう溝51内に収容すれば、下流側に近いコア冷却部61ほどコイル49に近づけることができる。すると、流出側に近くなるほどコイル49は冷却されやすくなり、その結果、X方向の温度勾配が生じるのを低減できる。   According to the armature 40 according to the present embodiment, the core cooling part 61 is accommodated in the groove 51 so that the core cooling part 61 on the downstream side in the refrigerant flow direction is positioned below. Here, the temperature of the refrigerant flowing through the cooling pipe 60 increases as it approaches the downstream side by absorbing the heat of the armature core 41. Therefore, the cooling effect by the cooling pipe 60 decreases as it approaches the downstream side. Thereby, a temperature gradient is generated in the X direction in the armature core 41, and warpage due to thermal expansion may occur. On the other hand, as described above, if the core cooling part 61 closer to the downstream side is accommodated in the groove 51 so as to be positioned below, the core cooling part 61 closer to the downstream side can be brought closer to the coil 49. Then, the closer to the outflow side, the easier the coil 49 is cooled, and as a result, the occurrence of a temperature gradient in the X direction can be reduced.

以上、実施の形態に係る電機子について説明した。これらの実施の形態は例示であり、各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The armature according to the embodiment has been described above. It is to be understood by those skilled in the art that these embodiments are exemplifications, and various modifications can be made to the combination of each component, and such modifications are also within the scope of the present invention.

(変形例1)
第1の実施の形態では、コア冷却部61a〜61jとコイル49とのY方向における距離La〜Ljがすべて同じである場合について説明したが、これに限られない。例えば、コア冷却部61g〜61jがコア冷却部61a〜61fよりも下方に位置するようにしてもよい。すなわち、Lg〜Lj<La〜Lfを満たすように構成されてもよい。
(変形例2)
第1および第2の実施の形態では、溝部51の断面がU字状である場合について説明したが、これに限られない。溝部51は、断面がV字状、円形状、楕円形状、多角形状、その他の形状であってもよい。
(変形例3)
第1および第2の実施の形態では、電機子コア41が積層コアである場合について説明したが、これに限られない。例えば、電機子コア41は、フェライト等の粉末を焼結させたコアであってもよい。
(Modification 1)
In the first embodiment, the case where the distances La to Lj in the Y direction between the core cooling units 61a to 61j and the coil 49 are all the same has been described, but the present invention is not limited to this. For example, the core cooling units 61g to 61j may be positioned below the core cooling units 61a to 61f. That is, it may be configured to satisfy Lg to Lj <La to Lf.
(Modification 2)
In 1st and 2nd embodiment, although the case where the cross section of the groove part 51 was U-shaped was demonstrated, it is not restricted to this. The groove 51 may have a V-shaped cross section, a circular shape, an elliptical shape, a polygonal shape, or other shapes.
(Modification 3)
In the first and second embodiments, the case where the armature core 41 is a laminated core has been described, but the present invention is not limited to this. For example, the armature core 41 may be a core obtained by sintering powder such as ferrite.

(変形例4)
第1および第2の実施の形態では、本発明に係る電機子40を可動子に適用した例を説明したが、固定子に適用されてもよい。固定子に適用される場合も、電機子40は、界磁子30である可動子と対向する電機子コア41の側部にティース部43が設けられ、そのティース部43にコイル49が巻き回される。
(Modification 4)
In the first and second embodiments, the example in which the armature 40 according to the present invention is applied to the mover has been described. However, the armature 40 may be applied to a stator. Also when applied to the stator, the armature 40 is provided with a tooth portion 43 on the side portion of the armature core 41 facing the mover that is the field element 30, and the coil 49 is wound around the tooth portion 43. Is done.

(変形例5)
第1および第2の実施の形態では、ひとつの冷却管60により電機子コア41を冷却する場合について説明したが、これに限られない。複数の冷却管により電機子コア41を冷却してもよい。
(Modification 5)
Although the case where the armature core 41 is cooled by one cooling pipe 60 has been described in the first and second embodiments, the present invention is not limited to this. The armature core 41 may be cooled by a plurality of cooling pipes.

(変形例6)
第1および第2の実施の形態では、溝51が、ヨーク部42をZ方向に貫通する凹部である場合について説明したが、これに限られない。溝51は、X方向に貫通する凹部であっても、X方向およびZ方向と交差する方向に貫通する凹部であってもよい。
(変形例7)
第1および第2の実施の形態では、スロット部45の上方に溝51が形成され場合について説明したがこれに限られない。溝51は、スロット部45の上方に代えてまたはスロット部45の上方に加えて、ティース部43の上方に形成されてもよい。コイル49とティース部43との接触面積は、コイル49とヨーク部42との接触面積よりも大きいため、コイル49が発する熱の多くはティース部43に伝達される。したがって、本変形例によれば、ティース部43の上方、すなわちティース部43により近い位置に冷却管60が配置される。そのため、コイル49が発する熱をより効率的に冷却することができる。
(Modification 6)
In the first and second embodiments, the case where the groove 51 is a concave portion penetrating the yoke portion 42 in the Z direction has been described. However, the present invention is not limited to this. The groove 51 may be a recess penetrating in the X direction or a recess penetrating in a direction intersecting the X direction and the Z direction.
(Modification 7)
In the first and second embodiments, the case where the groove 51 is formed above the slot portion 45 has been described. However, the present invention is not limited to this. The groove 51 may be formed above the tooth portion 43 instead of or above the slot portion 45. Since the contact area between the coil 49 and the tooth part 43 is larger than the contact area between the coil 49 and the yoke part 42, most of the heat generated by the coil 49 is transmitted to the tooth part 43. Therefore, according to the present modification, the cooling pipe 60 is disposed above the teeth portion 43, that is, at a position closer to the teeth portion 43. Therefore, the heat generated by the coil 49 can be cooled more efficiently.

上述した実施の形態および変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施の形態および変形例それぞれの効果をあわせもつ。   Any combination of the above-described embodiments and modifications is also useful as an embodiment of the present invention. The new embodiment generated by the combination has the effects of the combined embodiment and the modified examples.

10 リニアモータ、 30 界磁子、 33 磁石、 40 電機子、 41 電機子コア、 42 ヨーク部、 43 ティース部、 49 コイル、 51 溝、 60 冷却管。   10 linear motor, 30 field element, 33 magnet, 40 armature, 41 armature core, 42 yoke part, 43 teeth part, 49 coil, 51 groove, 60 cooling pipe.

Claims (6)

界磁子と間隔を空けて配置される電機子であって、
モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、
前記ティース部に巻き回されるコイルと、
内部を冷媒が流れる冷却管と、を備え、
前記ヨーク部の前記コイルと反対側の面には複数の溝が形成され、
前記複数の溝のうちの第1の溝には前記冷却管の第1の部分が収容され、
前記複数の溝のうちの第2の溝には前記冷却管の第2の部分が収容され、
前記第1の溝および前記第2の溝は、それぞれの長手方向が略同一方向を向くよう形成され、
前記第1の溝の中心と前記第2の溝の中心との距離は、前記第1の部分の中心と前記第2の部分の中心との距離とは異なることを特徴とするリニアモータ用電機子。
An armature that is spaced apart from the field element,
A core including a yoke portion extending in the motor driving direction and a plurality of teeth portions projecting from the yoke portion to the field element side;
A coil wound around the teeth portion;
A cooling pipe through which the refrigerant flows,
A plurality of grooves are formed on the surface of the yoke portion opposite to the coil,
The first groove of the plurality of grooves accommodates a first portion of the cooling pipe,
The second groove of the plurality of grooves accommodates a second portion of the cooling pipe,
The first groove and the second groove are formed such that the respective longitudinal directions face substantially the same direction,
The distance between the center of the first groove and the center of the second groove is different from the distance between the center of the first portion and the center of the second portion. Child.
前記第2の溝は前記1の溝と隣接し、
前記第1の部分の中心と前記第2の部分の中心との距離は、前記第1の溝の中心と前記第2の溝の中心よりも短いことを特徴とする請求項1に記載のリニアモータ用電機子。
The second groove is adjacent to the first groove;
2. The linear according to claim 1, wherein a distance between the center of the first portion and the center of the second portion is shorter than the center of the first groove and the center of the second groove. Armature for motor.
界磁子と間隔を空けて配置される電機子であって、
モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、
前記ティース部に巻き回されるコイルと、
内部を冷媒が流れる冷却管と、を備え、
前記ヨーク部の前記コイルと反対側の面には、それぞれの長手方向が略同一方向を向くよう複数の溝が形成され、
前記複数の溝のうちの隣接する2つの溝のそれぞれには、前記冷却管の第1の部分と前記冷却管の第2の部分が収容され、
前記第1の部分と前記第2の部分の中心間距離は、前記複数の溝のピッチよりも短いことを特徴とするリニアモータ用電機子。
An armature that is spaced apart from the field element,
A core including a yoke portion extending in the motor driving direction and a plurality of teeth portions projecting from the yoke portion to the field element side;
A coil wound around the teeth portion;
A cooling pipe through which the refrigerant flows,
A plurality of grooves are formed on the surface of the yoke portion on the opposite side of the coil so that the longitudinal directions thereof are substantially in the same direction,
Each of two adjacent grooves among the plurality of grooves accommodates a first portion of the cooling pipe and a second portion of the cooling pipe,
The linear motor armature, wherein a distance between centers of the first portion and the second portion is shorter than a pitch of the plurality of grooves.
界磁子と間隔を空けて配置される電機子であって、
モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、
前記ティース部に巻き回されるコイルと、
内部を冷媒が流れる冷却管と、を備え、
前記ヨーク部の前記コイルと反対側の面には複数の溝が形成され、
前記複数の溝のうちの第1の溝には前記冷却管の第1の部分が収容され、
前記複数の溝のうちの前記第1の溝に隣接する第2の溝には前記冷却管の第2の部分が収容され、
前記第1の溝および前記第2の溝は、それぞれの長手方向が略同一方向を向くよう形成され、
前記第1の部分は、前記第1の溝の前記第2の溝側の内壁に近寄った位置に収容され、
前記第2の部分は、前記第2の溝の前記第1の溝側の内壁に近寄った位置に収容されることを特徴とするリニアモータ用電機子。
An armature that is spaced apart from the field element,
A core including a yoke portion extending in the motor driving direction and a plurality of teeth portions projecting from the yoke portion to the field element side;
A coil wound around the teeth portion;
A cooling pipe through which the refrigerant flows,
A plurality of grooves are formed on the surface of the yoke portion opposite to the coil,
The first groove of the plurality of grooves accommodates a first portion of the cooling pipe,
A second portion of the plurality of grooves adjacent to the first groove accommodates a second portion of the cooling pipe,
The first groove and the second groove are formed such that the respective longitudinal directions face substantially the same direction,
The first portion is accommodated at a position close to the inner wall of the first groove on the second groove side,
The linear motor armature, wherein the second portion is housed in a position near the inner wall of the second groove on the first groove side.
界磁子と間隔を空けて配置される電機子であって、
モータ駆動方向に延在するヨーク部とそこから界磁子側に突出する複数のティース部とを含むコアと、
前記ティース部に巻き回されるコイルと、
内部を冷媒が流れる冷却管と、を備え、
前記ヨーク部の前記コイルと反対側の面には複数の溝が形成され、
前記複数の溝のうちの第1の溝には前記冷却管の第1の部分が収容され、
前記複数の溝のうちの第2の溝には前記冷却管の第2の部分が収容され、
前記第1の部分と前記コイルとのモータ駆動方向に直交する方向における距離は、前記第2の部分と前記コイルとのモータ駆動方向に直交する方向における距離と異なることを特徴とするリニアモータ用電機子。
An armature that is spaced apart from the field element,
A core including a yoke portion extending in the motor driving direction and a plurality of teeth portions projecting from the yoke portion to the field element side;
A coil wound around the teeth portion;
A cooling pipe through which the refrigerant flows,
A plurality of grooves are formed on the surface of the yoke portion opposite to the coil,
The first groove of the plurality of grooves accommodates a first portion of the cooling pipe,
The second groove of the plurality of grooves accommodates a second portion of the cooling pipe,
The distance between the first portion and the coil in the direction orthogonal to the motor driving direction is different from the distance between the second portion and the coil in the direction orthogonal to the motor driving direction. Armature.
前記第2の部分は、前記第1の部分よりも、冷媒の流れ方向の下流側に設けられ、
前記第2の部分と前記コイルとのモータ駆動方向に直交する方向における距離は、前記第1の部分と前記コイルとのモータ駆動方向に直交する方向における距離よりも短いことを特徴とする請求項3に記載のリニアモータ用電機子。
The second part is provided downstream of the first part in the flow direction of the refrigerant,
The distance between the second portion and the coil in a direction orthogonal to the motor driving direction is shorter than the distance between the first portion and the coil in the direction orthogonal to the motor driving direction. The armature for linear motors as described in 3.
JP2014048010A 2014-03-11 2014-03-11 Armature for linear motor Expired - Fee Related JP6327889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014048010A JP6327889B2 (en) 2014-03-11 2014-03-11 Armature for linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014048010A JP6327889B2 (en) 2014-03-11 2014-03-11 Armature for linear motor

Publications (2)

Publication Number Publication Date
JP2015173536A true JP2015173536A (en) 2015-10-01
JP6327889B2 JP6327889B2 (en) 2018-05-23

Family

ID=54260530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014048010A Expired - Fee Related JP6327889B2 (en) 2014-03-11 2014-03-11 Armature for linear motor

Country Status (1)

Country Link
JP (1) JP6327889B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487199A (en) * 2016-12-23 2017-03-08 广州市昊志机电股份有限公司 Linear motor rotor
CN110518746A (en) * 2019-07-09 2019-11-29 大族激光科技产业集团股份有限公司 A kind of Linear motor cooling device
WO2024161581A1 (en) * 2023-02-02 2024-08-08 Dmg森精機株式会社 Linear motor and machine tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255842A (en) * 1988-08-18 1990-02-26 Hitachi Ltd Cooled throttle actuator
JP2006074961A (en) * 2004-09-06 2006-03-16 Nikon Corp Linear motor, stage apparatus and exposure apparatus
KR20080044574A (en) * 2006-11-16 2008-05-21 두산인프라코어 주식회사 Cooling device for linear motor
JP2010263744A (en) * 2009-05-11 2010-11-18 Fuji Electric Systems Co Ltd Rotating electric machine
WO2012004858A1 (en) * 2010-07-06 2012-01-12 三菱電機株式会社 Linear motor armature and linear motor
CN103178687A (en) * 2011-12-26 2013-06-26 上海磁浮交通发展有限公司 A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor
JP2014042423A (en) * 2012-08-23 2014-03-06 Sanyo Denki Co Ltd Linear motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255842A (en) * 1988-08-18 1990-02-26 Hitachi Ltd Cooled throttle actuator
JP2006074961A (en) * 2004-09-06 2006-03-16 Nikon Corp Linear motor, stage apparatus and exposure apparatus
KR20080044574A (en) * 2006-11-16 2008-05-21 두산인프라코어 주식회사 Cooling device for linear motor
JP2010263744A (en) * 2009-05-11 2010-11-18 Fuji Electric Systems Co Ltd Rotating electric machine
WO2012004858A1 (en) * 2010-07-06 2012-01-12 三菱電機株式会社 Linear motor armature and linear motor
CN103178687A (en) * 2011-12-26 2013-06-26 上海磁浮交通发展有限公司 A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor
JP2014042423A (en) * 2012-08-23 2014-03-06 Sanyo Denki Co Ltd Linear motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487199A (en) * 2016-12-23 2017-03-08 广州市昊志机电股份有限公司 Linear motor rotor
CN110518746A (en) * 2019-07-09 2019-11-29 大族激光科技产业集团股份有限公司 A kind of Linear motor cooling device
WO2024161581A1 (en) * 2023-02-02 2024-08-08 Dmg森精機株式会社 Linear motor and machine tool
JP7543599B1 (en) 2023-02-02 2024-09-02 Dmg森精機株式会社 Linear motors and machine tools

Also Published As

Publication number Publication date
JP6327889B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6269895B2 (en) Linear motor
CN106469968B (en) Linear motor
US7696654B2 (en) Linear motor not requiring yoke
JP6353771B2 (en) Linear motor and compressor equipped with linear motor
JPWO2018154944A1 (en) motor
JP6327889B2 (en) Armature for linear motor
KR101896858B1 (en) Armature core, armature and linear motor
JP2016059117A (en) Armature for linear motor
TWI513150B (en) Linear motor
JP5678025B2 (en) Thrust generating mechanism
CN110291699A (en) motor
JP5345047B2 (en) Linear motor
JP6664146B2 (en) Armature for linear motor
JP2015216793A (en) Armature for linear motor
KR100892217B1 (en) Linear motor
JP4721211B2 (en) Coreless linear motor
JP6677048B2 (en) Moving coil type linear motor
CN103312116A (en) Segmental planar switch reluctance motor
JP5648872B2 (en) Linear motor
CN119341248A (en) Linear Motor
JP2023026153A (en) linear motor
JP2007209175A (en) Three-phase linear motor
JP6338405B2 (en) Armature for linear motor
JP2007209176A (en) Three-phase linear motor
JP2009159740A (en) Linear motor and table feeding apparatus with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6327889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees