CN103178687A - A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor - Google Patents
A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor Download PDFInfo
- Publication number
- CN103178687A CN103178687A CN2011104412806A CN201110441280A CN103178687A CN 103178687 A CN103178687 A CN 103178687A CN 2011104412806 A CN2011104412806 A CN 2011104412806A CN 201110441280 A CN201110441280 A CN 201110441280A CN 103178687 A CN103178687 A CN 103178687A
- Authority
- CN
- China
- Prior art keywords
- armature
- synchronous motor
- linear synchronous
- double
- magnetic pole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 38
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 28
- 230000002146 bilateral effect Effects 0.000 title claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000004804 winding Methods 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 239000002826 coolant Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 235000000396 iron Nutrition 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Linear Motors (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种双边混合励磁型高推力直线同步电机。 The invention relates to a bilateral mixed excitation type high-thrust linear synchronous motor.
背景技术 Background technique
永磁直线同步电机与直线感应电机相比,优点是推力密度大,缺点是推力波动大。高速数控机床目前采用的大推力直线同步电机都是永磁结构,为了进一步增大推力并克服推力波动大的缺点,双边冷却型结构是一种可选的结构。目前检索到的大推力永磁直线电机,永磁体基本都是面贴式的单边型结构,永磁体安装在背铁上作为长定子,电枢绕组嵌入叠片铁芯作为动子,系统存在很大的边端力,而且动子存在很大的单边法向力。 Compared with the linear induction motor, the permanent magnet linear synchronous motor has the advantage of high thrust density, but the disadvantage of large thrust fluctuation. The high-thrust linear synchronous motors currently used in high-speed CNC machine tools are all permanent magnet structures. In order to further increase the thrust and overcome the shortcomings of large thrust fluctuations, the bilateral cooling structure is an optional structure. In the large-thrust permanent magnet linear motors retrieved so far, the permanent magnets are basically surface-mounted unilateral structures. The permanent magnets are installed on the back iron as the long stator, and the armature winding is embedded in the laminated iron core as the mover. The system exists There is a large edge force, and the mover has a large unilateral normal force.
发明内容 Contents of the invention
本发明提供一种双边混合励磁型高推力直线同步电机,适用于高速数控床、直线输送装置、直线试验平台等需要高平稳大推力的应用场合,解决了目前永磁直线同步电机存在边端力、气隙磁场调磁困难、推力密度不高的问题。 The invention provides a double-sided hybrid excitation high-thrust linear synchronous motor, which is suitable for high-speed numerical control beds, linear conveying devices, linear test platforms and other applications that require high stability and large thrust, and solves the problem of side-end force in current permanent magnet linear synchronous motors. , The air gap magnetic field is difficult to adjust, and the thrust density is not high.
为了达到上述目的,本发明提供一种双边混合励磁型高推力直线同步电机,该直线同步电机包含磁极和电枢,所述磁极设置在电枢两侧。 In order to achieve the above object, the present invention provides a double-sided hybrid excitation high-thrust linear synchronous motor. The linear synchronous motor includes magnetic poles and armatures, and the magnetic poles are arranged on both sides of the armature.
所述的磁极包含齿形背铁,嵌入设置在背铁齿间的可调直流励磁绕组,以及设置在背铁齿上的永磁体。 The magnetic poles include toothed back irons, adjustable DC excitation windings embedded between the teeth of the back irons, and permanent magnets arranged on the back iron teeth.
相邻的永磁体的极性相反。 Adjacent permanent magnets are opposite in polarity.
所述的电枢包含两个背向设置的齿形电枢铁芯,该电枢铁芯的背部设置有若干冷却管槽,该电枢还包含设置在电枢铁芯齿间的电枢绕组,以及设置在电枢铁芯背部冷却管槽内的冷却管道。 The armature includes two tooth-shaped armature cores arranged in the opposite direction, a number of cooling pipe slots are arranged on the back of the armature core, and the armature also includes armature windings arranged between the teeth of the armature core , and the cooling pipe arranged in the cooling pipe groove on the back of the armature core.
所述的背部冷却管槽内的冷却管道内冷却介质可以是水、或是油、或是汽液混合介质、或仅仅开通风道。 The cooling medium in the cooling pipe in the back cooling pipe groove can be water, or oil, or a gas-liquid mixed medium, or just open air passages.
所述的背部冷却管槽可以是横向设置、也可以是纵向设置。 The back cooling pipe slots can be arranged horizontally or vertically.
所述的磁极和电枢都可作为动子。 Both the magnetic poles and the armature can be used as movers.
当磁极作为动子时,电枢作为定子,两侧磁极错位长度l,l范围为磁极极距的0~1/2倍,当电枢作为动子时,磁极作为定子,双排齿形电枢铁芯错位长度l,l范围为磁极极距的0~1/2倍。 When the magnetic pole is used as the mover, the armature is used as the stator, and the dislocation length of the magnetic poles on both sides is l, and the range of l is 0~1/2 times of the pole pitch of the magnetic pole. Pivot core dislocation length l, the range of l is 0~1/2 times of the magnetic pole pitch.
根据需要,如在高推力场合,磁极上也设置冷却系统。 According to needs, such as in high-thrust occasions, a cooling system is also installed on the magnetic poles.
本发明的磁极上安装永磁体与电励磁绕组,采用混合励磁的方式提供气隙磁场,电枢上安装电枢绕组、电枢铁芯与冷却管道,与现有的动电枢型永磁型结构相比,本发明的电枢采用双排式错位拼装结构,减小了边端效应,电枢采用内置冷却结构,提高了推力密度,磁极采用混合励磁结构,使得气隙磁场灵活可调。 Permanent magnets and electric excitation windings are installed on the magnetic poles of the present invention, and the air gap magnetic field is provided by a mixed excitation method. Armature windings, armature cores and cooling pipes are installed on the armature, which is different from the existing moving armature type permanent magnet type. Compared with the structure, the armature of the present invention adopts a double-row dislocation assembly structure, which reduces the edge effect. The armature adopts a built-in cooling structure, which improves the thrust density. The magnetic pole adopts a hybrid excitation structure, which makes the air gap magnetic field flexible and adjustable.
附图说明 Description of drawings
图1是本发明的结构示意图; Fig. 1 is a structural representation of the present invention;
图2是本发明的结构示意图; Fig. 2 is a structural representation of the present invention;
图3是本发明的安装示意图; Fig. 3 is the installation schematic diagram of the present invention;
图4是本发明中电枢的结构示意图。 Fig. 4 is a schematic structural diagram of an armature in the present invention.
具体实施方式 Detailed ways
以下根据图1~图4,具体说明本发明的较佳实施例。 A preferred embodiment of the present invention will be specifically described below with reference to FIGS. 1 to 4 .
本发明提供一种双边混合励磁型高推力直线同步电机,包含磁极1和电枢2,所述电枢为双边背向形式,双边磁极1设置在电枢2两侧。
The present invention provides a double-sided hybrid excitation high-thrust linear synchronous motor, which includes a
所述的磁极1包含齿形背铁1-3,嵌入设置在背铁1-3齿间的可调直流励磁绕组1-2,以及设置在背铁1-3齿上的永磁体1-1。相邻的永磁体1-1的极性相反。
The
如图4所示,所述的电枢2包含两个背向设置的齿形电枢铁芯2-3,该电枢铁芯2-3的背部设置有若干冷却管槽。该电枢2还包含设置在电枢铁芯2-3齿间的电枢绕组2-1,以及设置在电枢铁芯2-3背部冷却管槽内的横向式冷却管道2-2,大大提高电流密度。冷却介质可以是水、或是油、或是汽液混合介质,由外部冷却系统提供。也可仅仅开通风道。
As shown in FIG. 4 , the
所述的磁极1和电枢2都可作为动子,当磁极1作为动子时,电枢2作为定子,两侧磁极错位长度l,l范围为磁极极距的0~1/2倍,当电枢2作为动子时,磁极2作为定子,双排齿形电枢铁芯2-3错位长度l, l范围为磁极极距的0~1/2倍。
Both the
动子一般为电枢,但也可为磁极。动电枢时,冷却管安装于电枢是由于电机主要的损耗产生在电枢上,根据需要,如在高推力场合,磁极部分也可增加冷却系统。 The mover is generally an armature, but it can also be a magnetic pole. When moving the armature, the cooling pipe is installed on the armature because the main loss of the motor is generated on the armature. According to the need, such as in high-thrust occasions, the cooling system can also be added to the magnetic pole part.
本发明的工作原理:永磁体1-1与电枢绕组2-1共同提供可调节的气隙磁场,电枢绕组2-1中通入相应的三相交流电流,产生电磁推力,驱动动子运行。动子互相错开一定的位置l,使两侧边端效应相互抵消,因此本发明电机的优点是边端效应小,动子无单边法向力,推力大,调节灵活。 The working principle of the present invention: the permanent magnet 1-1 and the armature winding 2-1 jointly provide an adjustable air gap magnetic field, and the corresponding three-phase alternating current is passed into the armature winding 2-1 to generate electromagnetic thrust and drive the mover run. The movers are staggered by a certain position l, so that the side-end effects on both sides cancel each other out. Therefore, the advantages of the motor of the present invention are that the side-end effects are small, the movers have no unilateral normal force, the thrust is large, and the adjustment is flexible.
如图1所示,是本发明横向冷却型式双边混合励磁型直线同步电机的第一实施例,该实施例中,动子为电枢2,定子为磁极1,电枢铁芯2-3采用双排式结构,拼装时错开一定的位置l,且双排电枢铁芯2-3中间夹置横向式水冷管道2-2。外部泵的输出软管与冷却管道2-2中管接口连接,提供冷却介质,连接时保证其密封性。连接软管安装在拖链上。本电机中能量损耗主要产生在电枢部分,冷却系统(冷却管道2-2、外部泵、输出软管、冷却介质和拖链等)安装在电枢上,根据需要,如若在推力密度进一步提高时,也可在磁极部分增加冷却系统。移动电枢时电机的效率较高,但动子部分存在移动的电缆与冷却管,需要加装拖链。
As shown in Figure 1, it is the first embodiment of the lateral cooling type bilateral hybrid excitation linear synchronous motor of the present invention. In this embodiment, the mover is the
当动子电枢铁芯中通入所需频率的三相对称交流电,产生电枢磁场,与定子磁极提供的气隙磁场相互作用,产生电磁推力,驱动动子前进。动子中冷却系统快速带走热量,电枢电流密度高,因此推力密度增大;如果电机发热不厉害,仅仅开通风槽也可改善散热效果;动子铁芯两侧端部错位l长度,使边端效应尽量抵消,因此推力波动小;当可调直流励磁绕组电流为零时,仅由永磁体提供气隙磁通,相当于永磁直线同步电机;当可调直流励磁绕组电流为负时,起弱磁扩速作用。 When the three-phase symmetrical alternating current of the required frequency is passed into the armature core of the mover, the armature magnetic field is generated, which interacts with the air gap magnetic field provided by the stator poles to generate electromagnetic thrust to drive the mover forward. The cooling system in the mover quickly takes away the heat, and the armature current density is high, so the thrust density increases; if the motor does not heat up badly, only opening the ventilation slot can also improve the heat dissipation effect; the ends of the mover core are misaligned by l length, The edge effect is offset as much as possible, so the thrust fluctuation is small; when the adjustable DC excitation winding current is zero, only the permanent magnet provides the air gap flux, which is equivalent to the permanent magnet linear synchronous motor; when the adjustable DC excitation winding current is negative , it plays the role of magnetic field weakening and speed expansion.
图2是本发明双边混合励磁型直线同步电机的第二实施例。该实施例中,动子为磁极1,定子为电枢2,两侧磁极1安装在同一个移动平台5上,此时两侧磁极错位长度l,使得两侧的边端力尽量抵消。动子磁极主要用在高速长行程时,其优点是动子磁极上采用小功率直流电源励磁,无需外接电缆,但为了提高效率需要采用分段供电技术。
Fig. 2 is the second embodiment of the bilateral hybrid excitation type linear synchronous motor of the present invention. In this embodiment, the mover is the
如图3所示,该双边混合励磁型直线同步电机的动子为电枢,且应用在直线运动场合时,动子2安装在移动平台5上,定子1安装在固定平台3上,两者之间通过直线导轨4保持恒定气隙,根据设备的运行要求,控制相应的电枢电流与励磁电流。低速时可调直流励磁电流为零,作为永磁直线电机使用;高速时可调直流励磁电流为负,起弱磁扩速的作用。与现有文献中的永磁直线同步电机相比,本冷却型式双边混合励磁型直线同步电机优点十分突出,动子内置冷却管道,电枢铁芯采用两排拼装式结构且端部错位,双励磁方式,因此产生的推力大,波动小,速度范围广,而且电枢无法向力。
As shown in Figure 3, the mover of the bilateral hybrid excitation linear synchronous motor is an armature, and when it is applied to a linear motion occasion, the
本发明附图所示是短电枢形式,产生的损耗主要在电枢部分,因此电枢需要冷却,可提高2-3倍左右的推力密度;也可在磁极部分增加冷却系统,更好提高推力密度和效率。 The accompanying drawings of the present invention are in the form of a short armature, and the loss generated is mainly in the armature part, so the armature needs to be cooled, which can increase the thrust density by about 2-3 times; a cooling system can also be added to the magnetic pole part to better improve Thrust density and efficiency.
励磁采用混合励磁结构,由永磁体与电励磁共同提供磁场。永磁体提供的磁通约为电励磁的2倍,恒转矩运行时无直流励磁,在弱磁控制时提供弱磁电流。 The excitation adopts the hybrid excitation structure, and the magnetic field is provided by the permanent magnet and the electric excitation. The magnetic flux provided by the permanent magnet is about twice that of the electric excitation. There is no DC excitation during constant torque operation, and it provides a field-weakening current during field-weakening control.
电枢铁芯采用双排式结构,背部开设冷却管槽,错位拼装使铁芯端部错开一定的位置l,减小端部力及力的波动。 The armature iron core adopts a double-row structure, with cooling pipe grooves on the back, and dislocation assembly makes the end of the iron core stagger a certain position l, reducing the end force and force fluctuation.
电枢上采用双边冷却式结构,电枢铁芯内置横向或纵向式冷却管道。 The armature adopts a double-sided cooling structure, and the armature core has built-in horizontal or vertical cooling pipes.
本发明采用双边冷却结构,电枢铁芯端部错位,采用电磁永磁双励磁方式,这与目前所见的永磁直线同步电机结构不同,其突出特点是推力大、推力波动小、磁场调节方便。本发明是永磁直线同步电机的优选方案,适用于高速数控加工机床、工业输送等高平稳大推力的直线运动场合。 The invention adopts bilateral cooling structure, dislocation of armature iron core end, and adopts electromagnetic permanent magnet double excitation mode, which is different from the current permanent magnet linear synchronous motor structure, and its outstanding features are large thrust, small thrust fluctuation, and magnetic field adjustment convenient. The present invention is a preferred scheme of a permanent magnet linear synchronous motor, which is suitable for high-speed numerical control processing machine tools, industrial transportation and other high-stable and large-thrust linear motion occasions.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。 Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104412806A CN103178687A (en) | 2011-12-26 | 2011-12-26 | A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011104412806A CN103178687A (en) | 2011-12-26 | 2011-12-26 | A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103178687A true CN103178687A (en) | 2013-06-26 |
Family
ID=48638348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011104412806A Pending CN103178687A (en) | 2011-12-26 | 2011-12-26 | A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103178687A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015173536A (en) * | 2014-03-11 | 2015-10-01 | 住友重機械工業株式会社 | Armature for linear motor |
JP2015177590A (en) * | 2014-03-13 | 2015-10-05 | 住友重機械工業株式会社 | Linear motor armature and method of fixing cooling tube |
CN104967276A (en) * | 2015-07-16 | 2015-10-07 | 哈尔滨工业大学 | Liquid Cooled Ironless Permanent Magnet Linear Motor |
CN105490409A (en) * | 2016-01-22 | 2016-04-13 | 山东理工大学 | Two-phase cylinder electromagnetic linear actuator |
CN105576855A (en) * | 2014-11-05 | 2016-05-11 | 大银微系统股份有限公司 | Iron core group of magnetic offset type linear motor |
CN105680666A (en) * | 2016-01-22 | 2016-06-15 | 山东理工大学 | Electro-magnetic electric vehicle door driving motor |
CN107134909A (en) * | 2017-05-05 | 2017-09-05 | 南京航空航天大学 | A kind of new type composite excitation field structure of permanent magnetic linear synchronous motor |
CN108566053A (en) * | 2018-08-02 | 2018-09-21 | 常州市奥华机电制造有限公司 | A kind of welder of copper strap wire armature |
CN108667261A (en) * | 2018-05-22 | 2018-10-16 | 南京航空航天大学 | Low thrust fluctuation permanent magnet synchronous linear motor with bilateral staggered teeth τ/2 |
CN108667260A (en) * | 2018-05-22 | 2018-10-16 | 南京航空航天大学 | Short primary permanent magnet synchronous linear motor with bilateral staggered teeth τ/2 |
CN109052119A (en) * | 2018-10-12 | 2018-12-21 | 珠海格力电器股份有限公司 | Elevator with a movable elevator car |
CN109525090A (en) * | 2017-09-18 | 2019-03-26 | 大银微系统股份有限公司 | The iron core group of linear motor |
CN109951045A (en) * | 2017-12-20 | 2019-06-28 | 大银微系统股份有限公司 | Linear motor |
CN110061582A (en) * | 2019-06-04 | 2019-07-26 | 恩普齐斯智能装备(苏州)有限公司 | A kind of structure and its cooling means that linear motor is quickly cooled down |
CN110775787A (en) * | 2019-12-03 | 2020-02-11 | 桂林航天工业学院 | A Cordless Elevator Driven by Linear Switched Reluctance Motor |
CN112271902A (en) * | 2020-10-22 | 2021-01-26 | 长航集团武汉电机有限公司 | Same-pole hybrid excitation linear synchronous motor |
CN115189491A (en) * | 2022-06-29 | 2022-10-14 | 北京航空航天大学 | Bilateral coreless permanent magnet synchronous linear motor |
CN115833431A (en) * | 2022-10-26 | 2023-03-21 | 浙江大学 | Multi-mover bilateral permanent magnet linear motor and its segmented power supply method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1327627A (en) * | 1999-10-28 | 2001-12-19 | 沙迪克株式会社 | Linear motor coil assembly and method for manufacturing the same |
JP2002218730A (en) * | 2001-01-18 | 2002-08-02 | Sodick Co Ltd | Linear motor with core, method of manufacturing the same, cooling member used for the production, and method of manufacturing the same |
CN1461096A (en) * | 2003-06-12 | 2003-12-10 | 国家磁浮交通工程技术研究中心 | Permanent magnetic and electromagnetic composite excitation long-stator linear synchronous motor |
CN101895187A (en) * | 2010-08-17 | 2010-11-24 | 哈尔滨工业大学 | Linear permanent magnet synchronous motor |
-
2011
- 2011-12-26 CN CN2011104412806A patent/CN103178687A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1327627A (en) * | 1999-10-28 | 2001-12-19 | 沙迪克株式会社 | Linear motor coil assembly and method for manufacturing the same |
JP2002218730A (en) * | 2001-01-18 | 2002-08-02 | Sodick Co Ltd | Linear motor with core, method of manufacturing the same, cooling member used for the production, and method of manufacturing the same |
CN1461096A (en) * | 2003-06-12 | 2003-12-10 | 国家磁浮交通工程技术研究中心 | Permanent magnetic and electromagnetic composite excitation long-stator linear synchronous motor |
CN101895187A (en) * | 2010-08-17 | 2010-11-24 | 哈尔滨工业大学 | Linear permanent magnet synchronous motor |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015173536A (en) * | 2014-03-11 | 2015-10-01 | 住友重機械工業株式会社 | Armature for linear motor |
JP2015177590A (en) * | 2014-03-13 | 2015-10-05 | 住友重機械工業株式会社 | Linear motor armature and method of fixing cooling tube |
CN105576855A (en) * | 2014-11-05 | 2016-05-11 | 大银微系统股份有限公司 | Iron core group of magnetic offset type linear motor |
CN104967276A (en) * | 2015-07-16 | 2015-10-07 | 哈尔滨工业大学 | Liquid Cooled Ironless Permanent Magnet Linear Motor |
CN105490409A (en) * | 2016-01-22 | 2016-04-13 | 山东理工大学 | Two-phase cylinder electromagnetic linear actuator |
CN105680666A (en) * | 2016-01-22 | 2016-06-15 | 山东理工大学 | Electro-magnetic electric vehicle door driving motor |
CN105680666B (en) * | 2016-01-22 | 2018-01-09 | 山东理工大学 | A kind of electrical excitation electric door motor |
CN107134909A (en) * | 2017-05-05 | 2017-09-05 | 南京航空航天大学 | A kind of new type composite excitation field structure of permanent magnetic linear synchronous motor |
CN107134909B (en) * | 2017-05-05 | 2019-04-05 | 南京航空航天大学 | A kind of new type composite excitation field structure of permanent magnetic linear synchronous motor |
CN109525090A (en) * | 2017-09-18 | 2019-03-26 | 大银微系统股份有限公司 | The iron core group of linear motor |
US20190131831A1 (en) * | 2017-09-18 | 2019-05-02 | Hiwin Mikrosystem Corp. | Core assembly for linear motor |
CN109951045A (en) * | 2017-12-20 | 2019-06-28 | 大银微系统股份有限公司 | Linear motor |
CN108667261A (en) * | 2018-05-22 | 2018-10-16 | 南京航空航天大学 | Low thrust fluctuation permanent magnet synchronous linear motor with bilateral staggered teeth τ/2 |
CN108667260A (en) * | 2018-05-22 | 2018-10-16 | 南京航空航天大学 | Short primary permanent magnet synchronous linear motor with bilateral staggered teeth τ/2 |
CN108566053A (en) * | 2018-08-02 | 2018-09-21 | 常州市奥华机电制造有限公司 | A kind of welder of copper strap wire armature |
CN109052119B (en) * | 2018-10-12 | 2024-05-07 | 珠海格力电器股份有限公司 | Elevator |
CN109052119A (en) * | 2018-10-12 | 2018-12-21 | 珠海格力电器股份有限公司 | Elevator with a movable elevator car |
CN110061582A (en) * | 2019-06-04 | 2019-07-26 | 恩普齐斯智能装备(苏州)有限公司 | A kind of structure and its cooling means that linear motor is quickly cooled down |
CN110775787A (en) * | 2019-12-03 | 2020-02-11 | 桂林航天工业学院 | A Cordless Elevator Driven by Linear Switched Reluctance Motor |
CN112271902A (en) * | 2020-10-22 | 2021-01-26 | 长航集团武汉电机有限公司 | Same-pole hybrid excitation linear synchronous motor |
CN112271902B (en) * | 2020-10-22 | 2022-07-05 | 长航集团武汉电机有限公司 | A homopolar hybrid excitation linear synchronous motor |
CN115189491A (en) * | 2022-06-29 | 2022-10-14 | 北京航空航天大学 | Bilateral coreless permanent magnet synchronous linear motor |
CN115189491B (en) * | 2022-06-29 | 2024-07-02 | 北京航空航天大学 | Bilateral coreless permanent magnet synchronous linear motor |
CN115833431A (en) * | 2022-10-26 | 2023-03-21 | 浙江大学 | Multi-mover bilateral permanent magnet linear motor and its segmented power supply method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103178687A (en) | A Bilateral Mixed Excitation High Thrust Linear Synchronous Motor | |
CN113783396B (en) | Direct-drive type annular flexible conveying system and cooperative control method thereof | |
CN109889014B (en) | Primary winding segmentation permanent magnetism linear synchronous motor | |
CN103683800B (en) | A kind of Gas-adjustable iron core-free linear motor | |
CN104052238A (en) | A Bilateral Primary Permanent Magnet Vernier Linear Motor | |
CN103236774A (en) | Bilateral flat-plate type linear motor | |
CN109245483B (en) | A secondary yokeless bilateral alternating pole permanent magnet linear motor | |
CN103107672A (en) | Double-sided permanent magnet linear synchronous motor | |
CN104779772A (en) | Modularization flat plate type multiphase permanent magnet linear motor based on single and double layer compound windings | |
CN110572003A (en) | A primary halbach permanent magnet linear motor | |
CN104767351B (en) | Highly modularized flat plate type multiphase permanent magnet linear motor | |
CN203722455U (en) | Air gap adjustable type coreless linear motor | |
CN103633812B (en) | A kind of Modular bilateral magnetic flux switches permanent-magnetism linear motor | |
CN102882348B (en) | Dispersed magnetism-conducting block type straight-line switched reluctance motor with single-side stator and rotor with unequal tooth widths | |
CN102255471B (en) | Linear switch magnetic flux permanent magnet motor with low location force and high thrust | |
CN108270338A (en) | The bilateral primary permanent magnet body linear synchronous motor of tooth socket type | |
CN102082490A (en) | High-thrust permanent magnet direct drive linear electric motor | |
CN102931804B (en) | Double-side stator unyoked disperse magnetic guide block type linear switched reluctance motor | |
CN201956874U (en) | Permanent magnet direct drive type linear motor | |
CN111509946B (en) | Low-positioning-force bilateral magnetic flux switching permanent magnet linear motor | |
CN102882347B (en) | Double-sided stator concentrated winding discrete magnetic block type linear switched reluctance motor | |
CN105186750A (en) | Hybrid excitation permanent magnet linear generator with duplex windings on yokes | |
CN101860173B (en) | Direct magnetic suspension permanent magnet linear synchronous motor for numerical control feeding platform | |
CN205081660U (en) | A Double Winding High Power Density Hybrid Excitation Permanent Magnet Linear Generator | |
CN105186733A (en) | Double-winding high-powder-density mixed excitation permanent-magnet linear generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Free format text: FORMER OWNER: SHANGHAI MAGNETIC SUSPENSION COMMUNICATION ENGINEERING TECHNOLOGY RESEARCH CENTE Effective date: 20150107 Owner name: TONGJI UNIVERSITY Free format text: FORMER OWNER: SHANGHAI MAGLEV TRANSPORTATION DEVELOPMENT CO., LTD. Effective date: 20150107 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 201204 PUDONG NEW AREA, SHANGHAI TO: 200092 YANGPU, SHANGHAI |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20150107 Address after: 200092 Shanghai City, Yangpu District Siping Road No. 1239 Applicant after: Tongji University Address before: 201204 Pudong New Area, Longyang Road, No. 2520, Applicant before: Shanghai Maglev Transportation Development Co., Ltd. Applicant before: Shanghai Magnetic Suspension Communication Engineering Technology Research Cente |
|
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130626 |