JP2015167171A - semiconductor device - Google Patents
semiconductor device Download PDFInfo
- Publication number
- JP2015167171A JP2015167171A JP2014041190A JP2014041190A JP2015167171A JP 2015167171 A JP2015167171 A JP 2015167171A JP 2014041190 A JP2014041190 A JP 2014041190A JP 2014041190 A JP2014041190 A JP 2014041190A JP 2015167171 A JP2015167171 A JP 2015167171A
- Authority
- JP
- Japan
- Prior art keywords
- conductive plate
- insulating substrate
- main
- bonding material
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
- H01L2924/13055—Insulated gate bipolar transistor [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
本発明は、半導体装置に関し、特に、放熱性が要求される半導体装置に関するものである。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device that requires heat dissipation.
IGBT(Insulated Gate Bipolar Transistor)等の半導体チップを使用した半導体装置(パワーモジュール)においては、半導体チップから発せられる熱を効率良く放熱して、半導体チップの温度を所定温度以下に保つ必要がある。このため、高熱伝導性の絶縁セラミック板と、その両面に設けられた導板とが一体となった所謂絶縁基板の一面に、半田等の接合材を介して半導体チップが接合されたパワーモジュールが提案されている。絶縁基板の他面には、半田等の接合材を介して直接的ないし間接的に放熱部材が接合されている。 In a semiconductor device (power module) using a semiconductor chip such as an IGBT (Insulated Gate Bipolar Transistor), it is necessary to efficiently dissipate heat generated from the semiconductor chip and keep the temperature of the semiconductor chip below a predetermined temperature. For this reason, there is a power module in which a semiconductor chip is bonded to one surface of a so-called insulating substrate in which an insulating ceramic plate having high thermal conductivity and conductive plates provided on both sides thereof are integrated via a bonding material such as solder. Proposed. A heat radiating member is joined directly or indirectly to the other surface of the insulating substrate via a joining material such as solder.
絶縁基板の絶縁板には窒化珪素、窒化アルミニウム、アルミナ等の高熱伝導性のセラミック板が採用されている。絶縁基板の導板にはアルミニウム(アルミニウム合金を含むものとする)、銅(銅合金を含むものとする)等の高熱伝導性金属が用いられる。半導体装置(パワーモジュール)では、絶縁基板と放熱部材との間の熱膨張係数の相違に起因して絶縁基板と放熱部材とを接合する接合材に熱応力が作用する。使用条件によっては、接合材にクラックが生じて、要求される寿命期間に十分な放熱性能を維持できない場合が発生する。このような、熱応力の作用に起因するクラックの発生を防止するために多くの技術が創出されてきた(例えば特許文献1〜5)。 As the insulating plate of the insulating substrate, a high thermal conductive ceramic plate such as silicon nitride, aluminum nitride, or alumina is employed. A high thermal conductivity metal such as aluminum (including an aluminum alloy) or copper (including a copper alloy) is used for the conductive plate of the insulating substrate. In a semiconductor device (power module), thermal stress acts on a bonding material that joins the insulating substrate and the heat dissipation member due to a difference in thermal expansion coefficient between the insulating substrate and the heat dissipation member. Depending on the conditions of use, cracks may occur in the bonding material, and sufficient heat dissipation performance may not be maintained over the required lifetime. Many techniques have been created to prevent the occurrence of such cracks due to the action of thermal stress (for example, Patent Documents 1 to 5).
特許文献1には被接合面に凸部を設けた接合構造が開示されている。熱応力によるクラックは接合材の上面視外周部において発生する。発熱体である半導体チップが上面視中央付近に接合されているため、接合材を介してヒートシンクに伝わる熱量は接合材の上面視中央部において大きい。一般に導板に用いられる材料はアルミニウムあるいは銅であり、接合材に用いられる半田などの材料と比較して熱伝導率が高い。特許文献1では凸構造を設けることで、上面視中央部と比較して相対的に上面視外側の接合材を肉厚として、接合材の熱応力低減と半導体装置の放熱性能向上を図っている。 Patent Document 1 discloses a joining structure in which convex portions are provided on the joined surfaces. Cracks due to thermal stress occur in the outer peripheral portion of the bonding material as viewed from above. Since the semiconductor chip, which is a heating element, is bonded in the vicinity of the center in the top view, the amount of heat transferred to the heat sink via the bonding material is large in the center in the top view of the bonding material. In general, the material used for the conductive plate is aluminum or copper, and has a higher thermal conductivity than materials such as solder used for the bonding material. In Patent Document 1, by providing a convex structure, the bonding material on the outer side in the top view is relatively thick compared to the central part in the top view, thereby reducing the thermal stress of the bonding material and improving the heat dissipation performance of the semiconductor device. .
しかしながら、このような凸部は絶縁基板を拘束する構造を持たないために、ヒートシンクと絶縁基板を接合するリフロー処理工程において絶縁基板が自由に変位し、横ずれが発生する。また、このような凸部は接合材の厚さを制御する構造を持たないために、上面視外側の一部において接合材が薄肉となる場合があり、熱応力に起因するクラックが発生する場合がある。 However, since such a convex portion does not have a structure for constraining the insulating substrate, the insulating substrate is freely displaced in a reflow process step for joining the heat sink and the insulating substrate, and a lateral shift occurs. In addition, since such a convex part does not have a structure for controlling the thickness of the bonding material, the bonding material may be thin in a part of the outer side in a top view, and a crack caused by thermal stress occurs. There is.
本発明は、上記のような課題を解決するためになされたものであり、絶縁基板の横ずれと接合材の厚さを制御することで、放熱性と寿命に優れた半導体装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a semiconductor device having excellent heat dissipation and long life by controlling the lateral displacement of the insulating substrate and the thickness of the bonding material. Objective.
本願にかかわる半導体装置は、複数の凹部が形成されている放熱部材と、第一主面に接合された第一導板と第二主面に接合された第二導板を有し、放熱部材が第一導板と第一接合材を用いて固定されている絶縁基板と、絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、絶縁基板と半導体チップを封止する樹脂部材と、を備え、第一導板は主凸部と複数の補助凸部を有しており、複数の補助凸部は主凸部よりも背が高くかつ主凸部の周囲に配設されていて、複数の補助凸部は複数の凹部と個々に嵌合していて、主凸部と放熱部材の間には第一接合材が介在している。 A semiconductor device according to the present application includes a heat dissipation member in which a plurality of recesses are formed, a first conductive plate bonded to the first main surface, and a second conductive plate bonded to the second main surface. An insulating substrate fixed using a first conductive plate and a first bonding material, a second conductive plate of the insulating substrate and a semiconductor chip fixed using a second bonding material, and the insulating substrate and the semiconductor chip. A first guiding plate having a main convex portion and a plurality of auxiliary convex portions, the plurality of auxiliary convex portions being taller than the main convex portion and surrounding the main convex portion The plurality of auxiliary convex portions are individually fitted with the plurality of concave portions, and the first bonding material is interposed between the main convex portion and the heat dissipation member.
本発明の態様によれば、絶縁基板の横ずれを防止できるので、生産性向上の効果が得られる。また、接合材の厚さを制御することができるので、接合材の一部が薄肉となることを防ぐことが可能となり、クラックの防止効果が得られる。 According to the aspect of the present invention, since the lateral displacement of the insulating substrate can be prevented, an effect of improving productivity can be obtained. In addition, since the thickness of the bonding material can be controlled, it becomes possible to prevent a part of the bonding material from becoming thin, and an effect of preventing cracks can be obtained.
本発明の実施の形態に係る半導体装置について、図を参照しながら以下に説明する。なお、各図において、同一または同様の構成部分については同じ符号を付している。各図間の図示では、対応する各構成部のサイズや縮尺はそれぞれ独立している。例えば構成の一部を変更した断面図の間で、変更されていない同一構成部分を図示する際に、同一構成部分のサイズや縮尺が異なっている場合もある。また、半導体装置の構成は、実際にはさらに複数の部材を備えているが、説明を簡単にするため、説明に必要な部分のみを記載し、他の部分については省略している。 A semiconductor device according to an embodiment of the present invention will be described below with reference to the drawings. In each figure, the same or similar components are denoted by the same reference numerals. In the drawings between the drawings, the sizes and scales of the corresponding components are independent of each other. For example, when the same components that are not changed are illustrated in cross-sectional views in which a part of the configuration is changed, the sizes and scales of the same components may be different. In addition, the configuration of the semiconductor device actually includes a plurality of members. However, for the sake of simplicity, only the portions necessary for the description are shown and the other portions are omitted.
実施の形態1.
実施の形態1による半導体装置について、図を参照して説明する。図1に、半導体装置100の全体構成を示す。半導体装置100は、半導体チップ1、放熱部材7、絶縁基板8、ケース20、封止樹脂部材21、ボンディングワイヤ22、導電端子(またはリードフレーム)24などから構成されている。半導体チップ1、放熱部材7、絶縁基板8、ボンディングワイヤ22、導電端子24などが封止樹脂部材21で封止されている。絶縁基板8は、導板(または導電パターン)3と絶縁セラミック4と導板(または導電パターン)5とより成る。半導体チップ1には電力用トランジスタ1aや電力用ダイオード1bが含まれる。
Embodiment 1 FIG.
The semiconductor device according to the first embodiment will be described with reference to the drawings. FIG. 1 shows the overall configuration of the semiconductor device 100. The semiconductor device 100 includes a semiconductor chip 1, a heat dissipation member 7, an insulating substrate 8, a case 20, a sealing resin member 21, a bonding wire 22, a conductive terminal (or lead frame) 24, and the like. The semiconductor chip 1, the heat radiating member 7, the insulating substrate 8, the bonding wires 22, the conductive terminals 24 and the like are sealed with a sealing resin member 21. The insulating substrate 8 includes a conductive plate (or conductive pattern) 3, an insulating ceramic 4, and a conductive plate (or conductive pattern) 5. The semiconductor chip 1 includes a power transistor 1a and a power diode 1b.
パッケージタイプの半導体装置100は、ワイヤボンディングの終わった仕掛品を金型にセットして、熱硬化性のエポキシ樹脂を流し込んで成形されている。電力用トランジスタ1aには、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)などが用いられる。電力用トランジスタ1aと電力用ダイオード1bは逆並列に接続されている。半導体装置100は導電端子24などを使って外部機器に接続される。放熱部材7は、単体または複数枚の絶縁基板8とはんだなどの接合材(第一接合材)6によって接合されている。放熱部材7は、半導体チップ1の放熱板としての役割を果たすと共に、放熱部材7の底面7aが熱伝導グリス等でヒートシンクへ接続されることで、半導体装置で発生した熱を効率よく外部へ放熱させる。 The package type semiconductor device 100 is formed by setting a work-in-process after wire bonding to a mold and pouring a thermosetting epoxy resin. As the power transistor 1a, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), or the like is used. The power transistor 1a and the power diode 1b are connected in antiparallel. The semiconductor device 100 is connected to an external device using the conductive terminal 24 or the like. The heat radiating member 7 is bonded to a single or a plurality of insulating substrates 8 by a bonding material (first bonding material) 6 such as solder. The heat dissipating member 7 serves as a heat dissipating plate of the semiconductor chip 1 and the bottom surface 7a of the heat dissipating member 7 is connected to the heat sink by heat conduction grease or the like, thereby efficiently dissipating heat generated in the semiconductor device to the outside. Let
放熱部材7の下方には、例えば、液冷タイプ冷却のためのウォータージャケットを備えることができる。半導体チップ1は、ダイボンド材(第二接合材)2を介して絶縁基板8の上に接合されている。ダイボンド材2には、銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)、半田等の、熱の良導体である接合材料を用いることができる。半導体チップ1と絶縁基板8とは、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。放熱部材7は導板5と接合材6を用いて固定されている。半導体チップ1は、絶縁基板8の導板3とダイボンド材(第二接合材)2を用いて固定されている。封止樹脂部材21は、絶縁基板8と半導体チップ1を封止している。 Below the heat radiating member 7, for example, a water jacket for liquid cooling type cooling can be provided. The semiconductor chip 1 is bonded onto the insulating substrate 8 via a die bond material (second bonding material) 2. As the die bond material 2, a bonding material that is a good conductor of heat, such as a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (such as Cu—Sn or Ag—Sn), or solder can be used. The semiconductor chip 1 and the insulating substrate 8 may be bonded by direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding. The heat radiating member 7 is fixed by using the conductive plate 5 and the bonding material 6. The semiconductor chip 1 is fixed using a conductive plate 3 of an insulating substrate 8 and a die bond material (second bonding material) 2. The sealing resin member 21 seals the insulating substrate 8 and the semiconductor chip 1.
半導体チップ1は、珪素(Si)によって形成されたものの他に、珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体によって形成したものを好適に使用することができる。ワイドバンドギャップ半導体としては、炭化珪素(SiC)、窒化ガリウム系材料またはダイヤモンドなどがある。ワイドバンドギャップ半導体を用いた場合、許容電流密度が高く、電力損失も低いため、電力用半導体チップを用いた装置の小型化が可能となる。 As the semiconductor chip 1, in addition to the one formed of silicon (Si), one formed of a wide band gap semiconductor having a band gap larger than that of silicon can be suitably used. Examples of the wide band gap semiconductor include silicon carbide (SiC), a gallium nitride material, and diamond. When a wide bandgap semiconductor is used, the allowable current density is high and the power loss is low, so that a device using the power semiconductor chip can be downsized.
図2は、実施の形態1に関する半導体装置の接合構造を示す断面図である。絶縁セラミック4(および絶縁基板8)は裏面となる第一主面4aおよび表面となる第二主面4bに導板(第一導板)5および導板(第二導板)3がそれぞれ接合されている。放熱部材7の上には絶縁基板8と半導体チップ1が接合材料を介して積層され、これにリフロー処理が施されることによって放熱部材7と絶縁基板8と半導体チップ1が接合される。本願では、特に指定なく銅またはアルミニウム等の材料名を記載した場合は、他の添加物を含んだ銅合金またはアルミニウム合金なども包含するものとする。絶縁基板8は、第一主面4aに接合された導板5と第二主面4bに接合された導板3を有している。 FIG. 2 is a cross-sectional view showing the junction structure of the semiconductor device according to the first embodiment. The insulating ceramic 4 (and the insulating substrate 8) are joined to the first main surface 4a serving as the back surface and the second main surface 4b serving as the front surface by the conductive plate (first conductive plate) 5 and the conductive plate (second conductive plate) 3, respectively. Has been. The insulating substrate 8 and the semiconductor chip 1 are laminated on the heat radiating member 7 with a bonding material interposed therebetween, and the heat radiating member 7, the insulating substrate 8 and the semiconductor chip 1 are bonded to each other by performing a reflow process. In the present application, when a material name such as copper or aluminum is described without any particular designation, it also includes a copper alloy or an aluminum alloy containing other additives. The insulating substrate 8 has a conductive plate 5 bonded to the first main surface 4a and a conductive plate 3 bonded to the second main surface 4b.
絶縁基板8は、ダイボンド材2に接する導板3と、放熱部材7に向かい合う導板5と、導板3および導板5に挟まれて配置された絶縁セラミック4とを備えている。これらはろう材等を用いてあらかじめ一体化されている。導板3および導板5には、銅、アルミニウム等の電気および熱の良導体を用いることができる。導板3および導板5が厚い場合には絶縁セラミック4の破壊が発生し、薄い場合には、接合材の破壊および半導体チップで発生した熱の広がりが低下することにより熱抵抗が増加する。そこで導板3および導板5の厚さは0.2mmから1.5mmであることが望ましい。 The insulating substrate 8 includes a conductive plate 3 that is in contact with the die bond material 2, a conductive plate 5 that faces the heat radiating member 7, and an insulating ceramic 4 that is disposed between the conductive plate 3 and the conductive plate 5. These are integrated in advance using a brazing material or the like. For the conductive plate 3 and the conductive plate 5, good electrical and thermal conductors such as copper and aluminum can be used. When the conductive plate 3 and the conductive plate 5 are thick, the insulating ceramic 4 is broken. When the conductive plate 3 is thin, the thermal resistance increases due to the destruction of the bonding material and the spread of heat generated in the semiconductor chip. Therefore, the thickness of the conductive plate 3 and the conductive plate 5 is desirably 0.2 mm to 1.5 mm.
絶縁セラミック4には、窒化珪素、窒化アルミニウム、アルミナ等の、電気的に絶縁体であり、かつ、熱の良導体であるセラミックを用いることができる。接合材6には、銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)、半田等の、電気および熱の良導体である接合材料を用いることができる。接合層は熱抵抗となるので、できるだけ薄いことが望ましいが、過度に薄い場合には熱応力で接合層にクラックが生じる。放熱性の低下を防ぐには、接合層の厚さは例えば0.1mm〜0.7mm程度とすることが望ましい。 As the insulating ceramic 4, a ceramic that is an electrically insulating material and is a good conductor of heat, such as silicon nitride, aluminum nitride, and alumina, can be used. As the bonding material 6, a bonding material that is a good conductor of electricity and heat, such as a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (such as Cu—Sn or Ag—Sn), or solder can be used. Since the bonding layer has thermal resistance, it is desirable that the bonding layer be as thin as possible. In order to prevent a decrease in heat dissipation, it is desirable that the thickness of the bonding layer be, for example, about 0.1 mm to 0.7 mm.
本実施の形態の半導体装置においては、導板5はその平面視中央部が肉厚とされている。すなわち、導板5には絶縁基板8の裏面側から絶縁基板8の厚さ方向に向かって突出する主凸部9が形成されている。主凸部9の周囲には、主凸部9から離間してスペーサとして機能する複数の補助凸部10が形成されている。主凸部9の導板5から突出している部分の高さは、補助凸部10の導板5から突出している高さから補助凹部11に嵌り込んでいる補助凸部10の先端部分の長さを減じた値よりも小さい。主凸部9に接する位置の接合材6の厚さは、主凸部9のない位置の接合材6の厚さの5%から90%程度となることが望ましい。 In the semiconductor device of the present embodiment, the conductive plate 5 has a thick central portion in plan view. That is, the main plate 9 is formed on the conductive plate 5 so as to protrude from the back side of the insulating substrate 8 in the thickness direction of the insulating substrate 8. Around the main convex portion 9, a plurality of auxiliary convex portions 10 that are separated from the main convex portion 9 and function as spacers are formed. The height of the portion of the main convex portion 9 protruding from the conductive plate 5 is the length of the tip portion of the auxiliary convex portion 10 fitted into the auxiliary concave portion 11 from the height of the auxiliary convex portion 10 protruding from the conductive plate 5. Smaller than the value obtained by subtracting the thickness. The thickness of the bonding material 6 at a position in contact with the main convex portion 9 is desirably about 5% to 90% of the thickness of the bonding material 6 at a position without the main convex portion 9.
補助凸部10が形成されていない放熱部材7には、補助凸部10が接合される位置に補助凹部11が形成されている。補助凸部10は、補助凸部10に対応する位置に設けられている補助凹部11に嵌り込んでいる。放熱部材7と絶縁基板8は、補助凸部10が補助凹部11に嵌り込んだ状態で、接合材6を介して接合される。補助凹部11は切削加工、エッチング、あるいはプレス加工により製作できる。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、主凸部9と放熱部材7の間には接合材6が介在している。 An auxiliary recess 11 is formed at a position where the auxiliary protrusion 10 is joined to the heat dissipation member 7 where the auxiliary protrusion 10 is not formed. The auxiliary convex portion 10 is fitted in the auxiliary concave portion 11 provided at a position corresponding to the auxiliary convex portion 10. The heat radiating member 7 and the insulating substrate 8 are joined via the joining material 6 in a state where the auxiliary convex portion 10 is fitted in the auxiliary concave portion 11. The auxiliary recess 11 can be manufactured by cutting, etching, or pressing. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and the bonding material 6 is interposed between the main convex portion 9 and the heat radiating member 7.
図3は実施の形態1に関する導板5の上面視構造を示す断面図である。導板5には主凸部9と複数個の補助凸部10が形成されている。補助凸部10はスペーサとして作用する。主凸部9および補助凸部10は、円柱、三角柱、直方体、円錐、三角錐、四角錐などの形状を有する。主凸部9の面積は導板5の上面視投影面積の10%以上90%以下であることが望ましい。このような構成に依れば、絶縁基板8と放熱部材7の接合時の横ずれを防止することができる。 FIG. 3 is a cross-sectional view showing a top view structure of the conductive plate 5 relating to the first embodiment. A main projection 9 and a plurality of auxiliary projections 10 are formed on the guide plate 5. The auxiliary convex part 10 acts as a spacer. The main convex part 9 and the auxiliary convex part 10 have shapes, such as a cylinder, a triangular prism, a rectangular parallelepiped, a cone, a triangular pyramid, a quadrangular pyramid. The area of the main projection 9 is preferably 10% or more and 90% or less of the projected area of the conductive plate 5 in a top view. According to such a configuration, it is possible to prevent a lateral shift when the insulating substrate 8 and the heat radiating member 7 are joined.
図4は本発明の接合構造における応力と熱流速の分布を示す模式図である。本発明の構成に依れば、図中の矢印で示される横方向の力が加えられたとしても絶縁基板8と放熱部材7の接合時の横ずれを防止することができる。発熱体である半導体チップ1から放熱部材7までの熱抵抗は上面視中央部において小さく、優れた放熱性を示す。また、絶縁基板8と放熱部材7との線膨張係数の相違に起因する熱応力は、相対的に肉厚である上面視外側が吸収するため、絶縁基板8と放熱部材7との間の接続信頼性が確保される。さらに、スペーサとなる補助凸部10により接合材6の厚さが規定されているので、接合材6が過度に薄くなりクラックが発生することを防ぐことができる。 FIG. 4 is a schematic diagram showing the distribution of stress and heat flow rate in the joint structure of the present invention. According to the configuration of the present invention, even when a lateral force indicated by an arrow in the figure is applied, it is possible to prevent a lateral shift when the insulating substrate 8 and the heat radiating member 7 are joined. The thermal resistance from the semiconductor chip 1 that is a heating element to the heat radiating member 7 is small in the central portion when viewed from above, and exhibits excellent heat dissipation. Further, since the thermal stress due to the difference in linear expansion coefficient between the insulating substrate 8 and the heat radiating member 7 is absorbed by the relatively thick outer surface when viewed from above, the connection between the insulating substrate 8 and the heat radiating member 7 is performed. Reliability is ensured. Furthermore, since the thickness of the bonding material 6 is defined by the auxiliary convex portion 10 serving as a spacer, it is possible to prevent the bonding material 6 from becoming excessively thin and causing cracks.
図5は比較例の接合構造における応力と熱流速の分布を示す模式図である。比較例にかかわる半導体装置には、複数個の補助凸部が形成されていない。このような比較例の構成に依れば、接合時に横方向の力が加わった場合、絶縁基板8と放熱部材7に横ずれが生じる。接合材6の厚さが規定されていないので、接合材6が過度に薄くなりクラックが発生しやすい。 FIG. 5 is a schematic diagram showing the distribution of stress and heat flow rate in the joint structure of the comparative example. A plurality of auxiliary convex portions are not formed in the semiconductor device according to the comparative example. According to such a configuration of the comparative example, when a lateral force is applied at the time of joining, a lateral shift occurs between the insulating substrate 8 and the heat dissipation member 7. Since the thickness of the bonding material 6 is not specified, the bonding material 6 becomes excessively thin and cracks are likely to occur.
複数の補助凹部11が形成されている放熱部材7は、構造材を兼ねている。特に車載用途等においては、共振周波数を高く設定して、実使用時に共振しないよう配慮する必要があるため、放熱部材7には一定の厚さが必要である。車載用途等では、放熱部材7は、およそ2mm以上、固定使用の場合でも1mm以上の厚さを有していることが好ましい。逆に放熱部材7の厚さが厚すぎると熱抵抗の増加が顕著になるため、10mm以下の厚さとしておくことが望ましい。 The heat dissipation member 7 in which the plurality of auxiliary recesses 11 are formed also serves as a structural material. Particularly in in-vehicle applications and the like, it is necessary to set the resonance frequency to be high so that it does not resonate during actual use. Therefore, the heat radiating member 7 needs to have a certain thickness. For in-vehicle use etc., it is preferable that the heat radiating member 7 has a thickness of about 2 mm or more, and a thickness of 1 mm or more even in the case of fixed use. On the contrary, if the thickness of the heat radiating member 7 is too thick, the increase in thermal resistance becomes remarkable, so that it is desirable to set the thickness to 10 mm or less.
本実施の形態では、半導体チップ1の搭載数は2つとなっているが、同種、若しくは、IGBTとダイオードとの組み合わせのような機能の異なる半導体チップが、同一の絶縁基板に複数搭載されている場合であってもよい。また、複数の絶縁基板が同一の放熱部材に搭載されている場合等の様々な組み合わせが可能であり、特に制約はない。半導体チップ1の材質に関しては、Siのみならず、SiCまたはGaN等のような所謂ワイドバンドギャップ半導体、あるいはそれらの混載等が可能であり、特に制約はない。 In the present embodiment, the number of semiconductor chips 1 mounted is two, but a plurality of semiconductor chips of the same type or different functions such as a combination of IGBT and diode are mounted on the same insulating substrate. It may be the case. In addition, various combinations are possible, such as when a plurality of insulating substrates are mounted on the same heat radiating member, and there is no particular limitation. With respect to the material of the semiconductor chip 1, not only Si but also a so-called wide band gap semiconductor such as SiC or GaN, or mixed mounting of them can be used, and there is no particular limitation.
ワイドバンドギャップ半導体とは、一般に、およそ2eV以上の禁制帯幅をもつ半導体を指し、GaNに代表される3族窒化物、ZnOに代表される2族窒化物、ZnSeに代表される2族カルコゲナイドおよびSiC等が知られている。特に、Siチップに比べ大電流密度で使用可能で、チップ面積さらには装置全体の小型化が可能なSiCチップは、チップ面積が小さいために発熱密度が高くなる可能性がある。よって放熱性に優れる本発明はSiCチップ搭載の半導体装置に対して好適である。 A wide band gap semiconductor generally refers to a semiconductor having a forbidden band width of about 2 eV or more, and includes a group 3 nitride represented by GaN, a group 2 nitride represented by ZnO, and a group 2 chalcogenide represented by ZnSe. SiC and the like are known. In particular, a SiC chip that can be used at a larger current density than the Si chip and can reduce the chip area and further the size of the entire apparatus may have a high heat generation density because the chip area is small. Therefore, the present invention excellent in heat dissipation is suitable for a semiconductor device mounted with a SiC chip.
実施の形態2.
図6は、実施の形態2に関する半導体装置の接合構造を示す断面図である。本実施の形態の半導体装置においては、導板5はその平面視中央部が肉厚とされている。すなわち、導板5には、主凸部9が、放熱部材7に向かって突出して形成されている。補助凸部10は放熱部材7に主凸部9の周囲から離間して複数個が形成されている。主凸部9および補助凸部10は、円柱、三角柱、直方体、円錐、三角錐、四角錐などの形状である。補助凸部10はスペーサとして作用する。放熱部材7は複数の補助凸部10が形成されている。
Embodiment 2. FIG.
FIG. 6 is a cross-sectional view showing the junction structure of the semiconductor device according to the second embodiment. In the semiconductor device of the present embodiment, the conductive plate 5 has a thick central portion in plan view. That is, the main projection 9 is formed on the guide plate 5 so as to protrude toward the heat radiating member 7. A plurality of auxiliary convex portions 10 are formed on the heat radiating member 7 so as to be separated from the periphery of the main convex portion 9. The main convex part 9 and the auxiliary convex part 10 are shapes, such as a cylinder, a triangular prism, a rectangular parallelepiped, a cone, a triangular pyramid, a quadrangular pyramid. The auxiliary convex part 10 acts as a spacer. The heat radiating member 7 is formed with a plurality of auxiliary convex portions 10.
導板5には、補助凸部10が接合される位置に複数の補助凹部11が形成されている。補助凸部10は、補助凸部10と対応する位置に設けられている補助凹部11に嵌り込む。放熱部材7と絶縁基板8は、補助凸部10が補助凹部11に嵌り込んだ状態で、接合材6を介して接合される。補助凹部11は切削加工、エッチング、あるいはプレス加工により製作できる。このような構成に依れば、絶縁基板8と放熱部材7の接合時の横ずれを防止することができる。 A plurality of auxiliary concave portions 11 are formed in the guide plate 5 at positions where the auxiliary convex portions 10 are joined. The auxiliary convex portion 10 is fitted into the auxiliary concave portion 11 provided at a position corresponding to the auxiliary convex portion 10. The heat radiating member 7 and the insulating substrate 8 are joined via the joining material 6 in a state where the auxiliary convex portion 10 is fitted in the auxiliary concave portion 11. The auxiliary recess 11 can be manufactured by cutting, etching, or pressing. According to such a configuration, it is possible to prevent a lateral shift when the insulating substrate 8 and the heat radiating member 7 are joined.
導板5は主凸部9と複数の補助凹部11を有しており、複数の補助凹部11は主凸部9の周囲に配設されている。主凸部9の導板5から突出している部分の高さは、補助凸部10の放熱部材7から突出している高さから、補助凹部11に嵌り込んでいる補助凸部10の先端部分の長さを減じた値よりも小さい。主凸部9に接する位置の接合材6の厚さは、主凸部9のない位置の接合材6の厚さの5%から90%程度となることが望ましい。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、主凸部9と放熱部材7の間には接合材6が介在している。 The guide plate 5 has a main convex portion 9 and a plurality of auxiliary concave portions 11, and the plurality of auxiliary concave portions 11 are arranged around the main convex portion 9. The height of the portion of the main convex portion 9 protruding from the conductive plate 5 is the height of the auxiliary convex portion 10 fitted into the auxiliary concave portion 11 from the height of the auxiliary convex portion 10 protruding from the heat dissipation member 7. It is smaller than the value obtained by subtracting the length. The thickness of the bonding material 6 at a position in contact with the main convex portion 9 is desirably about 5% to 90% of the thickness of the bonding material 6 at a position without the main convex portion 9. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and the bonding material 6 is interposed between the main convex portion 9 and the heat radiating member 7.
実施の形態3.
図7は、実施の形態3に関する半導体装置の接合構造を示す断面図である。本実施の形態の半導体装置においては、放熱部材7はその平面視中央部が肉厚とされている。すなわち、放熱部材7には、主凸部9が、絶縁基板8の導板5に向かって突出して形成されている。補助凸部10は放熱部材7に主凸部9の周囲から離間して複数個が形成されている。主凸部9および補助凸部10は、円柱、三角柱、直方体、円錐、三角錐、四角錐などの形状である。補助凸部10はスペーサとして作用する。放熱部材7は主凸部9と複数の補助凸部10が形成されている。
Embodiment 3 FIG.
FIG. 7 is a cross-sectional view showing the junction structure of the semiconductor device according to the third embodiment. In the semiconductor device of the present embodiment, the heat radiation member 7 has a thick central portion in plan view. That is, the main projection 9 is formed on the heat radiating member 7 so as to protrude toward the conductive plate 5 of the insulating substrate 8. A plurality of auxiliary convex portions 10 are formed on the heat radiating member 7 so as to be separated from the periphery of the main convex portion 9. The main convex part 9 and the auxiliary convex part 10 are shapes, such as a cylinder, a triangular prism, a rectangular parallelepiped, a cone, a triangular pyramid, a quadrangular pyramid. The auxiliary convex part 10 acts as a spacer. The heat radiating member 7 is formed with a main convex portion 9 and a plurality of auxiliary convex portions 10.
導板5には、補助凸部10が接合される位置に補助凹部11が形成されている。補助凸部10は補助凹部11に嵌り込む。放熱部材7と絶縁基板8は、複数の補助凸部10が複数の補助凹部11に個々に嵌り込んだ状態で、接合材6を介して接合される。補助凹部11は切削加工、エッチング、あるいはプレス加工により製作できる。このような構成に依れば、絶縁基板8と放熱部材7の接合時の横ずれを防止することができる。 An auxiliary concave portion 11 is formed in the guide plate 5 at a position where the auxiliary convex portion 10 is joined. The auxiliary convex portion 10 is fitted into the auxiliary concave portion 11. The heat dissipation member 7 and the insulating substrate 8 are joined via the joining material 6 in a state where the plurality of auxiliary convex portions 10 are individually fitted into the plurality of auxiliary concave portions 11. The auxiliary recess 11 can be manufactured by cutting, etching, or pressing. According to such a configuration, it is possible to prevent a lateral shift when the insulating substrate 8 and the heat radiating member 7 are joined.
主凸部9の放熱部材7から突出している部分の高さは、補助凸部10の放熱部材7から突出している高さから、補助凹部11に嵌り込んでいる補助凸部10の先端部分の長さを減じた値よりも小さい。主凸部9に接する位置の接合材6の厚さは、主凸部9のない位置の接合材6の厚さの5%から90%程度となることが望ましい。導板5は複数の補助凹部11を有しており、複数の補助凸部10は主凸部9よりも背が高くかつ主凸部9の周囲に配設されている。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、主凸部9と導板5の間には接合材6が介在している。 The height of the portion of the main projection 9 protruding from the heat dissipation member 7 is the height of the portion of the auxiliary projection 10 fitted into the auxiliary recess 11 from the height of the auxiliary projection 10 protruding from the heat dissipation member 7. It is smaller than the value obtained by subtracting the length. The thickness of the bonding material 6 at a position in contact with the main convex portion 9 is desirably about 5% to 90% of the thickness of the bonding material 6 at a position without the main convex portion 9. The guide plate 5 has a plurality of auxiliary concave portions 11, and the plurality of auxiliary convex portions 10 are taller than the main convex portions 9 and are disposed around the main convex portions 9. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and a bonding material 6 is interposed between the main convex portion 9 and the conductive plate 5.
実施の形態4.
図8は、実施の形態4に関する半導体装置の接合構造を示す断面図である。本実施の形態の半導体装置においては、放熱部材7はその平面視中央部が肉厚とされている。すなわち、放熱部材7には、主凸部9が、絶縁基板8に向かって突出して形成されている。補助凸部10は導板5に主凸部9の周囲から離間して複数個が形成されている。主凸部9および補助凸部10は、円柱、三角柱、直方体、円錐、三角錐、四角錐などの形状である。補助凸部10はスペーサとして作用する。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view showing the junction structure of the semiconductor device according to the fourth embodiment. In the semiconductor device of the present embodiment, the heat radiation member 7 has a thick central portion in plan view. That is, the main projection 9 is formed on the heat radiating member 7 so as to protrude toward the insulating substrate 8. A plurality of auxiliary convex portions 10 are formed on the guide plate 5 apart from the periphery of the main convex portion 9. The main convex part 9 and the auxiliary convex part 10 are shapes, such as a cylinder, a triangular prism, a rectangular parallelepiped, a cone, a triangular pyramid, and a quadrangular pyramid. The auxiliary convex part 10 acts as a spacer.
放熱部材7は主凸部9と複数の補助凹部11が形成されている。放熱部材7には、補助凸部10が接合される位置に補助凹部11が形成されている。補助凸部10は補助凹部11に嵌り込む。放熱部材7と絶縁基板8は、補助凸部10が補助凹部11に嵌り込んだ状態で、接合材6を介して接合される。補助凹部11は切削加工、エッチング、あるいはプレス加工により製作できる。このような構成に依れば、絶縁基板8と放熱部材7の接合時の横ずれを防止することができる。 The heat radiating member 7 is formed with a main convex portion 9 and a plurality of auxiliary concave portions 11. An auxiliary recess 11 is formed in the heat dissipation member 7 at a position where the auxiliary protrusion 10 is joined. The auxiliary convex portion 10 is fitted into the auxiliary concave portion 11. The heat radiating member 7 and the insulating substrate 8 are joined via the joining material 6 in a state where the auxiliary convex portion 10 is fitted in the auxiliary concave portion 11. The auxiliary recess 11 can be manufactured by cutting, etching, or pressing. According to such a configuration, it is possible to prevent a lateral shift when the insulating substrate 8 and the heat radiating member 7 are joined.
主凸部9の放熱部材7から突出している部分の高さは、補助凸部10の導板5から突出している高さから、補助凹部11に嵌り込んでいる補助凸部10の先端部分の長さを減じた値よりも小さい。主凸部9に接する位置の接合材6の厚さは、主凸部9のない位置の接合材6の厚さの5%から90%程度となることが望ましい。導板5は複数の補助凸部10を有しており、複数の補助凹部11は主凸部9の周囲に配設されている。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、主凸部9と導板5の間には接合材6が介在している。 The height of the portion of the main convex portion 9 protruding from the heat dissipation member 7 is the height of the auxiliary convex portion 10 fitted into the auxiliary concave portion 11 from the height of the auxiliary convex portion 10 protruding from the guide plate 5. It is smaller than the value obtained by subtracting the length. The thickness of the bonding material 6 at a position in contact with the main convex portion 9 is desirably about 5% to 90% of the thickness of the bonding material 6 at a position without the main convex portion 9. The guide plate 5 has a plurality of auxiliary convex portions 10, and the plurality of auxiliary concave portions 11 are arranged around the main convex portion 9. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and a bonding material 6 is interposed between the main convex portion 9 and the conductive plate 5.
実施の形態5.
図9は、実施の形態5に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の主凸部9および補助凸部10を、導板5あるいは放熱部材7とは別部材とし、それぞれ嵌合部材12およびスペーサ部材13とした構成である。導板5には、主凹部14が、設けられている。補助凹部11は、放熱部材7および導板5に設けられている。嵌合部材12およびスペーサ部材13には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。特に嵌合部材12は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。
Embodiment 5 FIG.
FIG. 9 is a cross-sectional view showing the junction structure of the semiconductor device according to the fifth embodiment. In the present embodiment, the main convex portion 9 and the auxiliary convex portion 10 of the first to fourth embodiments are separate members from the conductive plate 5 or the heat radiating member 7, and are configured as a fitting member 12 and a spacer member 13, respectively. is there. A main recess 14 is provided in the guide plate 5. The auxiliary recess 11 is provided in the heat radiating member 7 and the guide plate 5. For the fitting member 12 and the spacer member 13, it is desirable to use a metal such as aluminum or copper which is a good heat conductor. In particular, the material of the fitting member 12 can be selected without considering the brazing property with the insulating ceramic 4. For example, low-purity copper, which is low cost, is used to achieve both heat dissipation and cost. Is possible.
嵌合部材12およびスペーサ部材13はあらかじめ導板5と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前の嵌合部材12およびスペーサ部材13と導板5および放熱部材7との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。嵌合部材12を導板5に先接合する際には、主凹部14を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には主凹部14は不要である。 The fitting member 12 and the spacer member 13 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state in which the fitting member 12 and the spacer member 13 are previously joined to the conductive plate 5. A joining method having a melting point higher than the reflow treatment temperature is used for the pre-joining of the fitting member 12 and the spacer member 13 before the reflow treatment, and the conductive plate 5 and the heat radiating member 7. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the fitting member 12 is pre-joined to the conductive plate 5, positioning is performed using the main recess 14. However, in the case of a joining method that requires a jig such as ultrasonic joining, the main recess 14 is not necessary.
放熱部材7は複数の補助凹部11が形成されている。複数のスペーサ部材13は、嵌合部材12の高さよりも高い高さを有しかつ嵌合部材12の周囲に配設されている。導板5は主凹部14を有しており、嵌合部材12は主凹部14に嵌合されている。複数のスペーサ部材13は複数の補助凹部11と個々に嵌合していて、嵌合部材12と放熱部材7の間には接合材6が介在している。このような構成に依れば、実施の形態1と同じ効果をもつ構造が、より安価に製作できる場合がある。また、上記実施の形態では、各構成要素の材質、材料、実施の条件等についても記載しているが、これらは例示であって記載したものに限られるものではない。 The heat radiating member 7 is formed with a plurality of auxiliary recesses 11. The plurality of spacer members 13 have a height higher than that of the fitting member 12 and are disposed around the fitting member 12. The guide plate 5 has a main recess 14, and the fitting member 12 is fitted in the main recess 14. The plurality of spacer members 13 are individually fitted with the plurality of auxiliary recesses 11, and the bonding material 6 is interposed between the fitting member 12 and the heat radiating member 7. According to such a configuration, a structure having the same effect as that of the first embodiment may be manufactured at a lower cost. Moreover, in the said embodiment, although the material of each component, material, the conditions of implementation, etc. are described, these are illustrations and are not restricted to what was described.
実施の形態6.
図10は、実施の形態6に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の主凸部9および補助凸部10を、導板5あるいは放熱部材7とは別部材とし、それぞれ嵌合部材12およびスペーサ部材13とした構成である。放熱部材7には、主凹部14が設けられている。補助凹部11は、放熱部材7および導板5に設けられている。嵌合部材12およびスペーサ部材13には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。特に嵌合部材12は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。
Embodiment 6 FIG.
FIG. 10 is a cross-sectional view showing the junction structure of the semiconductor device according to the sixth embodiment. In the present embodiment, the main convex portion 9 and the auxiliary convex portion 10 of the first to fourth embodiments are separate members from the conductive plate 5 or the heat radiating member 7, and are configured as a fitting member 12 and a spacer member 13, respectively. is there. The heat radiating member 7 is provided with a main recess 14. The auxiliary recess 11 is provided in the heat radiating member 7 and the guide plate 5. For the fitting member 12 and the spacer member 13, it is desirable to use a metal such as aluminum or copper which is a good heat conductor. In particular, the material of the fitting member 12 can be selected without considering the brazing property with the insulating ceramic 4. For example, low-purity copper, which is low cost, is used to achieve both heat dissipation and cost. Is possible.
嵌合部材12およびスペーサ部材13はあらかじめ放熱部材7と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前の嵌合部材12およびスペーサ部材13と導板5および放熱部材7との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。嵌合部材12を放熱部材7に先接合する際には、主凹部14を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には主凹部14は不要である。 The fitting member 12 and the spacer member 13 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the fitting member 12 and the spacer member 13 are previously joined to the heat radiating member 7. A joining method having a melting point higher than the reflow treatment temperature is used for the pre-joining of the fitting member 12 and the spacer member 13 before the reflow treatment, and the conductive plate 5 and the heat radiating member 7. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the fitting member 12 is pre-joined to the heat radiating member 7, positioning is performed using the main recess 14. However, in the case of a joining method that requires a jig such as ultrasonic joining, the main recess 14 is not necessary.
本実施の形態では放熱部材7は主凹部14が形成されている。複数のスペーサ部材13は、嵌合部材12の高さよりも高い高さを有しかつ嵌合部材12の周囲に配設されている。絶縁基板8は第一主面4aに接合された導板5と第二主面4bに接合された導板3を有し、放熱部材7は導板5と接合材6を用いて固定されている。半導体チップ1は絶縁基板8の導板3とダイボンド材2を用いて固定されている。導板5は複数の補助凹部11を有しており、嵌合部材12は主凹部14に嵌合されている。複数のスペーサ部材13は複数の補助凹部11と個々に嵌合していて、嵌合部材12と導板5の間には接合材6が介在している。 In the present embodiment, the heat radiating member 7 has a main recess 14 formed therein. The plurality of spacer members 13 have a height higher than that of the fitting member 12 and are disposed around the fitting member 12. The insulating substrate 8 has a conductive plate 5 bonded to the first main surface 4 a and a conductive plate 3 bonded to the second main surface 4 b, and the heat radiating member 7 is fixed using the conductive plate 5 and the bonding material 6. Yes. The semiconductor chip 1 is fixed by using the conductive plate 3 of the insulating substrate 8 and the die bond material 2. The guide plate 5 has a plurality of auxiliary recesses 11, and the fitting member 12 is fitted in the main recess 14. The plurality of spacer members 13 are individually fitted with the plurality of auxiliary recesses 11, and the bonding material 6 is interposed between the fitting member 12 and the conductive plate 5.
実施の形態7.
図11は、実施の形態7に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の補助凸部10を、導板5あるいは放熱部材7とは別部材とし、スペーサ部材13とした構成である。放熱部材7には、主凸部9が設けられている。補助凹部11は、放熱部材7および導板5に設けられている。スペーサ部材13には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。スペーサ部材13は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。放熱部材7は主凸部9が形成されている。複数のスペーサ部材13は主凸部9の周囲に配設される。
Embodiment 7 FIG.
FIG. 11 is a cross-sectional view showing the junction structure of the semiconductor device according to the seventh embodiment. In the present embodiment, the auxiliary convex portion 10 according to the first to fourth embodiments is a separate member from the conductive plate 5 or the heat radiating member 7, and is a spacer member 13. The heat radiating member 7 is provided with a main convex portion 9. The auxiliary recess 11 is provided in the heat radiating member 7 and the guide plate 5. It is desirable to use a metal such as aluminum or copper, which is a good heat conductor, for the spacer member 13. The spacer member 13 can be selected without considering the brazing property with the insulating ceramic 4. For example, it is possible to achieve both heat dissipation and cost by, for example, using low-cost low-purity copper. It becomes. The heat radiating member 7 is formed with a main convex portion 9. The plurality of spacer members 13 are disposed around the main convex portion 9.
スペーサ部材13はあらかじめ放熱部材7と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前のスペーサ部材13と導板5または放熱部材7との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。スペーサ部材13を放熱部材7に先接合する際には、導板5の補助凹部11を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には導板5の補助凹部11は不要である。導板5は複数の補助凹部11を有しており、複数のスペーサ部材13は複数の補助凹部11と個々に嵌合している。主凸部9と導板5の間には接合材6が介在している。 The spacer member 13 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the spacer member 13 is pre-joined with the heat radiating member 7 in advance. A joining method having a melting point higher than the reflow treatment temperature is used for the pre-joining of the spacer member 13 and the conductive plate 5 or the heat radiating member 7 before the reflow treatment. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the spacer member 13 is pre-joined to the heat radiating member 7, positioning is performed using the auxiliary recess 11 of the guide plate 5. However, in the case of a joining method that requires a jig such as ultrasonic joining, the auxiliary recess 11 of the guide plate 5 is not necessary. The guide plate 5 has a plurality of auxiliary recesses 11, and the plurality of spacer members 13 are individually fitted with the plurality of auxiliary recesses 11. A bonding material 6 is interposed between the main convex portion 9 and the conductive plate 5.
実施の形態8.
図12は、実施の形態8に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の補助凸部10を、導板5あるいは放熱部材7とは別部材とし、スペーサ部材13とした構成である。導板5には、主凸部9が設けられている。補助凹部11は、放熱部材7および導板5に設けられている。スペーサ部材13には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。スペーサ部材13は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。放熱部材7は複数の補助凹部11が形成されている。複数のスペーサ部材13は複数の補助凹部11と個々に嵌合している。
Embodiment 8 FIG.
FIG. 12 is a cross-sectional view showing the junction structure of the semiconductor device according to the eighth embodiment. In the present embodiment, the auxiliary convex portion 10 according to the first to fourth embodiments is a separate member from the conductive plate 5 or the heat radiating member 7, and is a spacer member 13. A main projection 9 is provided on the guide plate 5. The auxiliary recess 11 is provided in the heat radiating member 7 and the guide plate 5. It is desirable to use a metal such as aluminum or copper, which is a good heat conductor, for the spacer member 13. The spacer member 13 can be selected without considering the brazing property with the insulating ceramic 4. For example, it is possible to achieve both heat dissipation and cost by, for example, using low-cost low-purity copper. It becomes. The heat radiating member 7 is formed with a plurality of auxiliary recesses 11. The plurality of spacer members 13 are individually fitted with the plurality of auxiliary recesses 11.
スペーサ部材13はあらかじめ導板5と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前のスペーサ部材13と導板5または放熱部材7との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。スペーサ部材13を導板5に先接合する際には、放熱部材7の補助凹部11を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には放熱部材7の補助凹部11は不要である。導板5は主凸部9を有しており、複数のスペーサ部材13は主凸部9の周囲に配設されている。主凸部9と放熱部材7の間には接合材6が介在している。 The spacer member 13 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the spacer member 13 is pre-joined with the conductive plate 5 in advance. A joining method having a melting point higher than the reflow treatment temperature is used for the pre-joining of the spacer member 13 and the conductive plate 5 or the heat radiating member 7 before the reflow treatment. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the spacer member 13 is pre-joined to the conductive plate 5, positioning is performed using the auxiliary recess 11 of the heat radiating member 7. However, in the case of a joining method that requires a jig such as ultrasonic joining, the auxiliary recess 11 of the heat radiating member 7 is not necessary. The guide plate 5 has a main convex portion 9, and a plurality of spacer members 13 are arranged around the main convex portion 9. A bonding material 6 is interposed between the main convex portion 9 and the heat dissipation member 7.
実施の形態9.
図13は、実施の形態9に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の主凸部9を、導板5あるいは放熱部材7とは別部材とし、嵌合部材12とした構成である。放熱部材7には、主凹部14が設けられている。補助凹部11は、放熱部材7に設けられている。嵌合部材12には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。嵌合部材12は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。放熱部材7は主凹部14と複数の補助凹部11が形成されている。嵌合部材12は主凹部14に嵌合されている。
Embodiment 9 FIG.
FIG. 13 is a cross-sectional view showing the junction structure of the semiconductor device according to the ninth embodiment. In the present embodiment, the main convex portion 9 of the first to fourth embodiments is a member different from the conductive plate 5 or the heat radiating member 7, and is a fitting member 12. The heat radiating member 7 is provided with a main recess 14. The auxiliary recess 11 is provided in the heat dissipation member 7. The fitting member 12 is preferably made of a metal such as aluminum or copper, which is a good heat conductor. A material can be selected for the fitting member 12 without considering brazing properties with the insulating ceramic 4. For example, it is possible to achieve both heat dissipation and cost by using low-cost low-purity copper. It becomes possible. The heat radiation member 7 is formed with a main recess 14 and a plurality of auxiliary recesses 11. The fitting member 12 is fitted in the main recess 14.
嵌合部材12はあらかじめ放熱部材7と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前の嵌合部材12と放熱部材7との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。嵌合部材12を放熱部材7に先接合する際には、放熱部材7の主凹部14を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には放熱部材7の主凹部14は不要である。導板5は複数の補助凸部10を有しており、複数の補助凹部11は主凹部14の周囲に配設されている。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、嵌合部材12と導板5の間には接合材6が介在している。 The fitting member 12 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the fitting member 12 is pre-joined with the heat radiating member 7 in advance. For the pre-joining of the fitting member 12 and the heat radiating member 7 before the reflow treatment, a joining method having a melting point higher than the reflow treatment temperature is used. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the fitting member 12 is pre-joined to the heat radiating member 7, positioning is performed using the main concave portion 14 of the heat radiating member 7. However, in the case of a joining method that requires a jig such as ultrasonic joining, the main recess 14 of the heat radiating member 7 is not necessary. The guide plate 5 has a plurality of auxiliary convex portions 10, and the plurality of auxiliary concave portions 11 are arranged around the main concave portion 14. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and the bonding material 6 is interposed between the fitting member 12 and the conductive plate 5.
実施の形態10.
図14は、実施の形態10に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の主凸部9を、導板5あるいは放熱部材7とは別部材とし、嵌合部材12とした構成である。導板5には、主凹部14が設けられている。補助凹部11は、放熱部材7に設けられている。嵌合部材12には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。嵌合部材12は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。放熱部材7は複数の補助凹部11が形成されている。嵌合部材12は複数の補助凹部11の内側に配設される。
Embodiment 10 FIG.
FIG. 14 is a cross-sectional view showing the junction structure of the semiconductor device according to the tenth embodiment. In the present embodiment, the main convex portion 9 of the first to fourth embodiments is a member different from the conductive plate 5 or the heat radiating member 7, and is a fitting member 12. A main recess 14 is provided in the guide plate 5. The auxiliary recess 11 is provided in the heat dissipation member 7. The fitting member 12 is preferably made of a metal such as aluminum or copper, which is a good heat conductor. A material can be selected for the fitting member 12 without considering brazing properties with the insulating ceramic 4. For example, it is possible to achieve both heat dissipation and cost by using low-cost low-purity copper. It becomes possible. The heat radiating member 7 is formed with a plurality of auxiliary recesses 11. The fitting member 12 is disposed inside the plurality of auxiliary recesses 11.
嵌合部材12はあらかじめ導板5と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前の嵌合部材12と導板5との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。嵌合部材12を導板5に先接合する際には、導板5の主凹部14を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には導板5の主凹部14は不要である。導板5は主凹部14と複数の補助凸部10を有しており、複数の補助凸部10は主凹部14の周囲に配設されている。嵌合部材12は主凹部14に嵌合されている。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、嵌合部材12と放熱部材7の間には接合材6が介在している。 The fitting member 12 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the fitting member 12 is previously joined to the conductive plate 5. For the pre-joining of the fitting member 12 and the conductive plate 5 before the reflow treatment, a joining method having a melting point higher than the reflow treatment temperature is used. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the fitting member 12 is pre-joined to the conductive plate 5, positioning is performed using the main concave portion 14 of the conductive plate 5. However, in the case of a joining method that requires a jig such as ultrasonic joining, the main recess 14 of the conductive plate 5 is not necessary. The guide plate 5 has a main recess 14 and a plurality of auxiliary projections 10, and the plurality of auxiliary projections 10 are arranged around the main recess 14. The fitting member 12 is fitted in the main recess 14. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and the bonding material 6 is interposed between the fitting member 12 and the heat radiating member 7.
実施の形態11.
図15は、実施の形態11に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の主凸部9を、導板5あるいは放熱部材7とは別部材とし、嵌合部材12とした構成である。導板5には、主凹部14と補助凹部11が設けられている。嵌合部材12には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。嵌合部材12は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。放熱部材7は複数の補助凸部10が形成されている。嵌合部材12は複数の補助凸部10の内側に配設されている。
Embodiment 11 FIG.
FIG. 15 is a cross-sectional view showing the junction structure of the semiconductor device according to the eleventh embodiment. In the present embodiment, the main convex portion 9 of the first to fourth embodiments is a member different from the conductive plate 5 or the heat radiating member 7, and is a fitting member 12. The guide plate 5 is provided with a main recess 14 and an auxiliary recess 11. The fitting member 12 is preferably made of a metal such as aluminum or copper, which is a good heat conductor. A material can be selected for the fitting member 12 without considering brazing properties with the insulating ceramic 4. For example, it is possible to achieve both heat dissipation and cost by using low-cost low-purity copper. It becomes possible. The heat radiating member 7 is formed with a plurality of auxiliary convex portions 10. The fitting member 12 is disposed inside the plurality of auxiliary convex portions 10.
嵌合部材12はあらかじめ導板5と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前の嵌合部材12と導板5との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。嵌合部材12を導板5に先接合する際には、導板5の主凹部14を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には導板5の主凹部14は不要である。導板5は主凹部14と複数の補助凹部11を有しており、嵌合部材12は主凹部14に嵌合されている。複数の補助凸部10は複数の補助凹部11と個々に嵌合していて、嵌合部材12と放熱部材7の間には接合材6が介在している。 The fitting member 12 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the fitting member 12 is previously joined to the conductive plate 5. For the pre-joining of the fitting member 12 and the conductive plate 5 before the reflow treatment, a joining method having a melting point higher than the reflow treatment temperature is used. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the fitting member 12 is pre-joined to the conductive plate 5, positioning is performed using the main concave portion 14 of the conductive plate 5. However, in the case of a joining method that requires a jig such as ultrasonic joining, the main recess 14 of the conductive plate 5 is not necessary. The guide plate 5 has a main recess 14 and a plurality of auxiliary recesses 11, and the fitting member 12 is fitted in the main recess 14. The plurality of auxiliary convex portions 10 are individually fitted with the plurality of auxiliary concave portions 11, and the bonding material 6 is interposed between the fitting member 12 and the heat radiating member 7.
実施の形態12.
図16は、実施の形態12に関する半導体装置の接合構造を示す断面図である。本実施の形態は、実施の形態1〜4の主凸部9を、導板5あるいは放熱部材7とは別部材とし、嵌合部材12とした構成である。放熱部材7には、主凹部14が設けられている。補助凹部11は、導板5に設けられている。嵌合部材12には熱の良電体であるアルミニウム、銅などの金属を用いることが望ましい。嵌合部材12は絶縁セラミック4とのロウ付け性を考慮せずに材料を選定可能であり、例えば、低コストである低純度銅を用いるなどして、放熱性とコストの両立を図ることが可能となる。放熱部材7は主凹部14と複数の補助凸部10とが形成されている。嵌合部材12は主凹部14に嵌合されている。
Embodiment 12 FIG.
FIG. 16 is a cross-sectional view showing the junction structure of the semiconductor device according to the twelfth embodiment. In the present embodiment, the main convex portion 9 of the first to fourth embodiments is a member different from the conductive plate 5 or the heat radiating member 7, and is a fitting member 12. The heat radiating member 7 is provided with a main recess 14. The auxiliary recess 11 is provided in the guide plate 5. The fitting member 12 is preferably made of a metal such as aluminum or copper, which is a good heat conductor. A material can be selected for the fitting member 12 without considering brazing properties with the insulating ceramic 4. For example, it is possible to achieve both heat dissipation and cost by using low-cost low-purity copper. It becomes possible. The heat radiating member 7 is formed with a main concave portion 14 and a plurality of auxiliary convex portions 10. The fitting member 12 is fitted in the main recess 14.
嵌合部材12はあらかじめ放熱部材7と先接合された状態で、絶縁基板8と放熱部材7を接合するリフロー処理が施されても良い。リフロー処理前の嵌合部材12と放熱部材7との先接合には、リフロー処理温度よりも融点の高い接合方法を用いる。具体的には銀ナノ粒子の低温焼結材、液相拡散接合材(Cu−Sn、Ag−Snなど)あるいは半田接合である。さらに、Cu固相拡散接合または超音波接合等の直接接合で接合されていてもよい。嵌合部材12を放熱部材7に先接合する際には、放熱部材7の主凹部14を用いて位置決めを行なう。ただし超音波接合など冶具を必要とする接合方法の場合には放熱部材7の主凹部14は不要である。導板5は複数の補助凹部11を有しており、複数の補助凸部10は複数の補助凹部11と個々に勘合している。嵌合部材12と導板5の間には接合材6が介在している。 The fitting member 12 may be subjected to a reflow process for joining the insulating substrate 8 and the heat radiating member 7 in a state where the fitting member 12 is pre-joined with the heat radiating member 7 in advance. For the pre-joining of the fitting member 12 and the heat radiating member 7 before the reflow treatment, a joining method having a melting point higher than the reflow treatment temperature is used. Specifically, it is a low-temperature sintered material of silver nanoparticles, a liquid phase diffusion bonding material (Cu-Sn, Ag-Sn, etc.) or solder bonding. Further, direct bonding such as Cu solid phase diffusion bonding or ultrasonic bonding may be used. When the fitting member 12 is pre-joined to the heat radiating member 7, positioning is performed using the main concave portion 14 of the heat radiating member 7. However, in the case of a joining method that requires a jig such as ultrasonic joining, the main recess 14 of the heat radiating member 7 is not necessary. The guide plate 5 has a plurality of auxiliary concave portions 11, and the plurality of auxiliary convex portions 10 are individually engaged with the plurality of auxiliary concave portions 11. A bonding material 6 is interposed between the fitting member 12 and the conductive plate 5.
なお、本発明は、その発明の範囲内において、実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.
1 半導体チップ、1a 電力用トランジスタ、1b 電力用ダイオード、2 ダイボンド材、3 導板、4 絶縁セラミック、4a 第一主面、4b 第二主面、5 導板、6 接合材、7 放熱部材、7a 底面、8 絶縁基板、9 主凸部、10 補助凸部、11 補助凹部、12 嵌合部材、13 スペーサ部材、14 主凹部、21 封止樹脂部材、22 ボンディングワイヤ、24 導電端子、20 ケース、100 半導体装置 DESCRIPTION OF SYMBOLS 1 Semiconductor chip, 1a Power transistor, 1b Power diode, 2 Die-bonding material, 3 Conductive plate, 4 Insulating ceramic, 4a 1st main surface, 4b 2nd main surface, 5 Conductive plate, 6 Bonding material, 7 Heat dissipation member, 7a bottom surface, 8 insulating substrate, 9 main convex portion, 10 auxiliary convex portion, 11 auxiliary concave portion, 12 fitting member, 13 spacer member, 14 main concave portion, 21 sealing resin member, 22 bonding wire, 24 conductive terminal, 20 case , 100 Semiconductor device
Claims (14)
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は主凸部と複数の補助凸部を有しており、前記複数の補助凸部は前記主凸部よりも背が高くかつ前記主凸部の周囲に配設されていて、
前記複数の補助凸部は前記複数の凹部と個々に嵌合していて、前記主凸部と前記放熱部材の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a plurality of recesses are formed;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a main convex portion and a plurality of auxiliary convex portions, and the plurality of auxiliary convex portions are taller than the main convex portion and disposed around the main convex portion. ,
The plurality of auxiliary convex portions are individually fitted with the plurality of concave portions, and the first bonding material is interposed between the main convex portion and the heat dissipation member.
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は主凸部と複数の凹部を有しており、前記複数の凹部は前記主凸部の周囲に配設されていて、
前記複数の補助凸部は前記複数の凹部と個々に嵌合していて、前記主凸部と前記放熱部材の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a plurality of auxiliary projections are formed;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a main convex portion and a plurality of concave portions, and the plurality of concave portions are arranged around the main convex portion,
The plurality of auxiliary convex portions are individually fitted with the plurality of concave portions, and the first bonding material is interposed between the main convex portion and the heat dissipation member.
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は複数の凹部を有しており、前記複数の補助凸部は前記主凸部よりも背が高くかつ前記主凸部の周囲に配設されていて、
前記複数の補助凸部は前記複数の凹部と個々に嵌合していて、前記主凸部と前記第一導板の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a main convex portion and a plurality of auxiliary convex portions are formed;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a plurality of recesses, and the plurality of auxiliary projections are taller than the main projections and are arranged around the main projections,
The plurality of auxiliary convex portions are individually fitted with the plurality of concave portions, and the first bonding material is interposed between the main convex portion and the first conductive plate.
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は複数の補助凸部を有しており、前記複数の凹部は前記主凸部の周囲に配設されていて、
前記複数の補助凸部は前記複数の凹部と個々に嵌合していて、前記主凸部と前記第一導板の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat radiating member in which a main convex part and a plurality of concave parts are formed;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a plurality of auxiliary convex portions, and the plurality of concave portions are arranged around the main convex portion,
The plurality of auxiliary convex portions are individually fitted with the plurality of concave portions, and the first bonding material is interposed between the main convex portion and the first conductive plate.
第一高さを有する嵌合部材と、
前記第一高さよりも高い第二高さを有しかつ前記嵌合部材の周囲に配設されている複数のスペーサ部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は主凹部を有しており、前記嵌合部材は前記主凹部に嵌合されていて、
前記複数のスペーサ部材は前記複数の補助凹部と個々に嵌合していて、前記嵌合部材と前記放熱部材の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a plurality of auxiliary recesses are formed;
A fitting member having a first height;
A plurality of spacer members having a second height higher than the first height and disposed around the fitting member;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a main recess, and the fitting member is fitted in the main recess,
The plurality of spacer members are individually fitted with the plurality of auxiliary recesses, and the first bonding material is interposed between the fitting member and the heat dissipation member.
第一高さを有する嵌合部材と、
前記第一高さよりも高い第二高さを有しかつ前記嵌合部材の周囲に配設されている複数のスペーサ部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は複数の補助凹部を有しており、前記嵌合部材は前記主凹部に嵌合されていて、
前記複数のスペーサ部材は前記複数の補助凹部と個々に嵌合していて、前記嵌合部材と前記第一導板の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a main recess is formed;
A fitting member having a first height;
A plurality of spacer members having a second height higher than the first height and disposed around the fitting member;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a plurality of auxiliary recesses, and the fitting member is fitted in the main recess,
The plurality of spacer members are individually fitted with the plurality of auxiliary recesses, and the first bonding material is interposed between the fitting member and the first conductive plate.
前記主凸部の周囲に配設される複数のスペーサ部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は複数の凹部を有しており、前記複数のスペーサ部材は前記複数の凹部と個々に嵌合していて、
前記主凸部と前記第一導板の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a main convex portion is formed;
A plurality of spacer members disposed around the main convex portion;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a plurality of recesses, and the plurality of spacer members are individually fitted with the plurality of recesses,
The semiconductor device, wherein the first bonding material is interposed between the main convex portion and the first conductive plate.
前記複数の凹部と個々に嵌合している複数のスペーサ部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は主凸部を有しており、前記複数のスペーサ部材は前記主凸部の周囲に配設されていて、
前記主凸部と前記放熱部材の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a plurality of recesses are formed;
A plurality of spacer members individually engaged with the plurality of recesses;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a main convex portion, and the plurality of spacer members are arranged around the main convex portion,
The semiconductor device, wherein the first bonding material is interposed between the main convex portion and the heat dissipation member.
前記主凹部に嵌合されている嵌合部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は複数の凸部を有しており、前記複数の補助凹部は前記主凹部の周囲に配設されていて、
前記複数の凸部は前記複数の補助凹部と個々に嵌合していて、前記嵌合部材と前記第一導板の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipation member in which a main recess and a plurality of auxiliary recesses are formed;
A fitting member fitted in the main recess,
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a plurality of convex portions, and the plurality of auxiliary concave portions are arranged around the main concave portion,
The plurality of convex portions are individually fitted with the plurality of auxiliary concave portions, and the first bonding material is interposed between the fitting member and the first conductive plate.
前記複数の補助凹部の内側に配設される嵌合部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は主凹部と複数の凸部を有しており、前記複数の凸部は前記主凹部の周囲に配設されていて、前記嵌合部材は前記主凹部に嵌合されていて、
前記複数の凸部は前記複数の補助凹部と個々に嵌合していて、前記嵌合部材と前記放熱部材の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member in which a plurality of auxiliary recesses are formed;
A fitting member disposed inside the plurality of auxiliary recesses;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a main recess and a plurality of projections, the plurality of projections are arranged around the main recess, and the fitting member is fitted in the main recess. And
The plurality of convex portions are individually fitted with the plurality of auxiliary concave portions, and the first bonding material is interposed between the fitting member and the heat dissipation member.
前記複数の凸部の内側に配設されている嵌合部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は主凹部と複数の補助凹部を有しており、前記嵌合部材は前記主凹部に嵌合されていて、
前記複数の凸部は前記複数の補助凹部と個々に嵌合していて、前記嵌合部材と前記放熱部材の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat dissipating member formed with a plurality of convex portions;
A fitting member disposed inside the plurality of convex portions;
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a main recess and a plurality of auxiliary recesses, and the fitting member is fitted in the main recess,
The plurality of convex portions are individually fitted with the plurality of auxiliary concave portions, and the first bonding material is interposed between the fitting member and the heat dissipation member.
前記主凹部に嵌合されている嵌合部材と、
第一主面に接合された第一導板と第二主面に接合された第二導板を有し、前記放熱部材が前記第一導板と第一接合材を用いて固定されている絶縁基板と、
前記絶縁基板の第二導板と第二接合材を用いて固定されている半導体チップと、
前記絶縁基板と前記半導体チップを封止する樹脂部材と、を備え、
前記第一導板は複数の補助凹部を有しており、前記複数の凸部は前記複数の補助凹部と個々に勘合していて、
前記嵌合部材と前記第一導板の間には前記第一接合材が介在していることを特徴とする半導体装置。 A heat radiating member in which a main concave portion and a plurality of convex portions are formed;
A fitting member fitted in the main recess,
A first conductive plate bonded to the first main surface and a second conductive plate bonded to the second main surface, and the heat dissipation member is fixed using the first conductive plate and the first bonding material. An insulating substrate;
A semiconductor chip fixed using a second conductive plate and a second bonding material of the insulating substrate;
A resin member for sealing the insulating substrate and the semiconductor chip;
The first guide plate has a plurality of auxiliary recesses, and the plurality of protrusions are individually engaged with the plurality of auxiliary recesses,
The semiconductor device, wherein the first bonding material is interposed between the fitting member and the first conductive plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014041190A JP2015167171A (en) | 2014-03-04 | 2014-03-04 | semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014041190A JP2015167171A (en) | 2014-03-04 | 2014-03-04 | semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015167171A true JP2015167171A (en) | 2015-09-24 |
Family
ID=54257927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014041190A Pending JP2015167171A (en) | 2014-03-04 | 2014-03-04 | semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015167171A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110289230A (en) * | 2019-06-17 | 2019-09-27 | 广东美的制冷设备有限公司 | The production tooling and method of intelligent power module |
CN114747000A (en) * | 2019-12-04 | 2022-07-12 | 三菱电机株式会社 | Semiconductor device, power conversion device, and method for manufacturing semiconductor device |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS633443A (en) * | 1986-06-23 | 1988-01-08 | Nec Corp | Semiconductor device |
JPH01184854A (en) * | 1988-01-14 | 1989-07-24 | Hitachi Ltd | Mounting structure of high thermal conductivity semiconductor |
JPH0268451U (en) * | 1988-11-11 | 1990-05-24 | ||
JPH02266557A (en) * | 1989-04-06 | 1990-10-31 | Mitsubishi Electric Corp | Semiconductor device |
JPH1050928A (en) * | 1996-05-27 | 1998-02-20 | Toshiba Corp | Semiconductor device and manufacture thereof |
JPH11265976A (en) * | 1998-03-18 | 1999-09-28 | Mitsubishi Electric Corp | Power-semiconductor module and its manufacture |
JP2000058727A (en) * | 1998-08-12 | 2000-02-25 | Hitachi Ltd | Power semiconductor module |
JP2000349231A (en) * | 1999-06-02 | 2000-12-15 | Hitachi Ltd | Power semiconductor module |
JP2004356261A (en) * | 2003-05-28 | 2004-12-16 | Mitsubishi Electric Corp | Semiconductor device for electric power |
JP2011054732A (en) * | 2009-09-01 | 2011-03-17 | Toyota Motor Corp | Semiconductor module |
JP2012227362A (en) * | 2011-04-20 | 2012-11-15 | Mitsubishi Materials Corp | Power module substrate unit with heat sink and manufacturing method thereof |
JP2013197432A (en) * | 2012-03-22 | 2013-09-30 | Mitsubishi Electric Corp | Power semiconductor device module |
-
2014
- 2014-03-04 JP JP2014041190A patent/JP2015167171A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS633443A (en) * | 1986-06-23 | 1988-01-08 | Nec Corp | Semiconductor device |
JPH01184854A (en) * | 1988-01-14 | 1989-07-24 | Hitachi Ltd | Mounting structure of high thermal conductivity semiconductor |
JPH0268451U (en) * | 1988-11-11 | 1990-05-24 | ||
JPH02266557A (en) * | 1989-04-06 | 1990-10-31 | Mitsubishi Electric Corp | Semiconductor device |
JPH1050928A (en) * | 1996-05-27 | 1998-02-20 | Toshiba Corp | Semiconductor device and manufacture thereof |
JPH11265976A (en) * | 1998-03-18 | 1999-09-28 | Mitsubishi Electric Corp | Power-semiconductor module and its manufacture |
JP2000058727A (en) * | 1998-08-12 | 2000-02-25 | Hitachi Ltd | Power semiconductor module |
JP2000349231A (en) * | 1999-06-02 | 2000-12-15 | Hitachi Ltd | Power semiconductor module |
JP2004356261A (en) * | 2003-05-28 | 2004-12-16 | Mitsubishi Electric Corp | Semiconductor device for electric power |
JP2011054732A (en) * | 2009-09-01 | 2011-03-17 | Toyota Motor Corp | Semiconductor module |
JP2012227362A (en) * | 2011-04-20 | 2012-11-15 | Mitsubishi Materials Corp | Power module substrate unit with heat sink and manufacturing method thereof |
JP2013197432A (en) * | 2012-03-22 | 2013-09-30 | Mitsubishi Electric Corp | Power semiconductor device module |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110289230A (en) * | 2019-06-17 | 2019-09-27 | 广东美的制冷设备有限公司 | The production tooling and method of intelligent power module |
CN110289230B (en) * | 2019-06-17 | 2021-05-28 | 广东美的制冷设备有限公司 | Manufacturing tool and method of intelligent power module |
CN114747000A (en) * | 2019-12-04 | 2022-07-12 | 三菱电机株式会社 | Semiconductor device, power conversion device, and method for manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6234630B2 (en) | Power module | |
JP6300633B2 (en) | Power module | |
CN109314063B (en) | Power semiconductor device | |
JP5863602B2 (en) | Power semiconductor device | |
US20220102249A1 (en) | Dual side cooling power module and manufacturing method of the same | |
US20120306086A1 (en) | Semiconductor device and wiring substrate | |
JP2016018866A (en) | Power module | |
JP2014216459A (en) | Semiconductor device | |
JP2011243839A (en) | Power semiconductor device | |
WO2013171946A1 (en) | Method for manufacturing semiconductor device and semiconductor device | |
JP2015126168A (en) | Power module | |
JP5676413B2 (en) | Power semiconductor device | |
JP6860334B2 (en) | Semiconductor device | |
JP2017092056A (en) | Power semiconductor device | |
JP5899680B2 (en) | Power semiconductor module | |
JP2015167171A (en) | semiconductor device | |
CN111433910B (en) | Semiconductor device and method for manufacturing semiconductor device | |
JP2012209469A (en) | Power semiconductor device | |
JP2014123644A (en) | Power semiconductor device | |
JP5724415B2 (en) | Semiconductor module | |
JP2012009736A (en) | Semiconductor element, method of manufacturing the same and semiconductor device | |
JP2017079217A (en) | Power semiconductor device and manufacturing method therefor | |
JP7570298B2 (en) | Semiconductor Device | |
US20230223317A1 (en) | Resin-sealed semiconductor device | |
JP6167825B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170523 |