[go: up one dir, main page]

JP2015068387A - Control device of vehicle - Google Patents

Control device of vehicle Download PDF

Info

Publication number
JP2015068387A
JP2015068387A JP2013201719A JP2013201719A JP2015068387A JP 2015068387 A JP2015068387 A JP 2015068387A JP 2013201719 A JP2013201719 A JP 2013201719A JP 2013201719 A JP2013201719 A JP 2013201719A JP 2015068387 A JP2015068387 A JP 2015068387A
Authority
JP
Japan
Prior art keywords
clutch
engine
rotational speed
coasting
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201719A
Other languages
Japanese (ja)
Inventor
聡 山中
Satoshi Yamanaka
聡 山中
隆弘 横川
Takahiro Yokogawa
隆弘 横川
伊藤 良雄
Yoshio Ito
良雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013201719A priority Critical patent/JP2015068387A/en
Priority to PCT/JP2014/076230 priority patent/WO2015046616A1/en
Publication of JP2015068387A publication Critical patent/JP2015068387A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30421Torque of the output shaft
    • F16D2500/30425Estimation of the transmitted clutch torque, e.g. applying dynamic torque balance equation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3101Detection of a brake actuation by a sensor on the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3108Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/312External to the vehicle
    • F16D2500/3125Driving resistance, i.e. external factors having an influence in the traction force, e.g. road friction, air resistance, road slope
    • F16D2500/3127Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/316Other signal inputs not covered by the groups above
    • F16D2500/3166Detection of an elapsed period of time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50293Reduction of vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/508Relating driving conditions
    • F16D2500/5085Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)

Abstract

【課題】クラッチにおけるショックの発生と供給油圧の増大と完全係合に至るまでの長期化を抑制すること。【解決手段】エンジン10側に接続された第1係合部31と駆動輪W側に接続された第2係合部32とを有するクラッチ30を通常走行中に解放させることによって、エンジン10と駆動輪Wとの間の動力伝達を遮断して、車両を惰行走行させる惰行制御部と、惰行走行から通常走行へと復帰させる場合、クラッチ30における第1係合部31と第2係合部32の差回転が所定回転数以下まで小さくなり、この所定回転数以下の差回転の状態が所定時間継続しているならば、クラッチ30を完全係合させる復帰制御部と、を走行制御ECU1に備えること。【選択図】図1An object of the present invention is to suppress the occurrence of a shock in a clutch, an increase in supply hydraulic pressure, and a long period of time until complete engagement. By releasing a clutch 30 having a first engagement portion 31 connected to the engine 10 side and a second engagement portion 32 connected to a drive wheel W during normal traveling, When the power transmission between the driving wheels W is interrupted and the vehicle is coasting, the coasting control unit, and when the coasting traveling is returned to the normal traveling, the first engaging unit 31 and the second engaging unit in the clutch 30 If the differential rotation of 32 is reduced to a predetermined rotational speed or less, and the differential rotational state of the predetermined rotational speed or less continues for a predetermined time, a return control unit for completely engaging the clutch 30 is provided to the travel control ECU 1. To prepare. [Selection] Figure 1

Description

本発明は、走行中の駆動力を制御する車両の制御装置に関する。   The present invention relates to a vehicle control apparatus that controls driving force during traveling.

従来、車両においては、走行中の燃料消費量を低減させるための技術として、走行中にエンジンと駆動輪との間の動力伝達を遮断して惰性で進行させる惰行走行が知られている。制御装置は、エンジンと駆動輪との間に配置されている係合状態のクラッチを通常走行中に解放させることで、その間の動力の伝達を遮断し、惰行走行へと移行させる。また、制御装置は、その惰行走行から通常走行へと復帰させる場合、その解放状態のクラッチを係合させる。例えば、下記の特許文献1及び2には、通常走行中にエンジンと駆動輪との間の動力伝達を遮断し、エンジンを作動させたままで惰行(以下、「ニュートラル惰行」という。)させる技術が開示されている。特許文献1のニュートラル惰行走行では、有段自動変速機を内部のクラッチの解放によってニュートラル状態に制御することで、エンジンと駆動輪との間の動力伝達を遮断する。また、特許文献2のニュートラル惰行走行では、エンジンと無段自動変速機との間のクラッチを解放させることによってエンジンと駆動輪との間の動力伝達を遮断する。   2. Description of the Related Art Conventionally, in a vehicle, coasting traveling is known as a technique for reducing fuel consumption during traveling, in which power transmission between an engine and driving wheels is interrupted during traveling and the vehicle travels with inertia. The control device disengages the engaged clutch disposed between the engine and the drive wheel during normal traveling, thereby interrupting transmission of power between them and shifting to coasting traveling. Further, when returning from the coasting traveling to the normal traveling, the control device engages the released clutch. For example, in Patent Documents 1 and 2 below, there is a technology that interrupts power transmission between an engine and driving wheels during normal traveling and coasts with the engine operating (hereinafter referred to as “neutral coasting”). It is disclosed. In the neutral coasting of Patent Document 1, power transmission between the engine and the drive wheels is interrupted by controlling the stepped automatic transmission to the neutral state by releasing the internal clutch. Further, in the neutral coasting of Patent Document 2, the power transmission between the engine and the drive wheels is interrupted by releasing the clutch between the engine and the continuously variable automatic transmission.

特開2004−316605号公報JP 2004-316605 A 特開2003−341387号公報JP 2003-341387 A

ところで、惰行走行から通常走行へと復帰させる場合には、解放させたクラッチを再び係合させるが、そのクラッチにおけるエンジン側と駆動輪側との差回転が大きい状態のときに完全係合状態にまで素早く係合させると、このクラッチでショックが発生し、これが車両に伝わってしまう可能性がある。よって、そのショックの発生を抑えるためには、クラッチの差回転が小さくなるのを待ってから完全係合させることが望ましい。しかしながら、完全係合させる時機が遅れてしまった場合には、エンジンの回転の吹け上がりや駆動輪への外乱の入力などと共にクラッチの差回転が再び大きくなってしまう可能性がある。そして、この場合には、その吹け上がり前や外乱の入力前よりも大きな油圧をクラッチに供給しなければ完全係合させることができず、また、完全係合させるまでに時間を要してしまう。   By the way, when returning from coasting traveling to normal traveling, the released clutch is re-engaged. When the differential rotation between the engine side and the drive wheel side of the clutch is large, the clutch is fully engaged. If it is quickly engaged, there is a possibility that a shock will be generated by this clutch and this will be transmitted to the vehicle. Therefore, in order to suppress the occurrence of the shock, it is desirable to wait for the differential rotation of the clutch to decrease before completely engaging. However, if the timing for complete engagement is delayed, there is a possibility that the differential rotation of the clutch will become large again along with an increase in engine rotation or the input of disturbance to the drive wheels. In this case, the clutch cannot be completely engaged unless the hydraulic pressure is supplied to the clutch before it is blown up or before the disturbance is input, and it takes time until the clutch is completely engaged. .

そこで、本発明は、かかる従来例の有する不都合を改善し、クラッチにおけるショックの発生と供給油圧の増大と完全係合に至るまでの長期化を抑制可能な車両の制御装置を提供することを、その目的とする。   Therefore, the present invention provides a vehicle control device that improves the disadvantages of the conventional example and can suppress the occurrence of shock in the clutch, the increase in supply hydraulic pressure, and the lengthening until full engagement. For that purpose.

上記目的を達成する為、本発明は、エンジン側に接続された第1係合部と駆動輪側に接続された第2係合部とを有する動力断接装置を通常走行中に解放させることによって、該エンジンと当該駆動輪との間の動力伝達を遮断して、車両を惰行走行させる惰行制御部と、惰行走行から通常走行へと復帰させる場合、前記動力断接装置における前記第1係合部と前記第2係合部の差回転が所定回転数以下まで小さくなり、該所定回転数以下の差回転の状態が所定時間継続しているならば、該動力断接装置を完全係合させる復帰制御部と、を備えることを特徴としている。   In order to achieve the above object, the present invention releases a power connection / disconnection device having a first engagement portion connected to the engine side and a second engagement portion connected to the drive wheel side during normal traveling. The coasting control unit that shuts off the power transmission between the engine and the drive wheel and coasts the vehicle, and the first engagement in the power connection / disconnection device when returning from coasting traveling to normal traveling. If the differential rotation between the joint portion and the second engaging portion is reduced to a predetermined rotational speed or less and the differential rotational state below the predetermined rotational speed continues for a predetermined time, the power connection / disconnection device is fully engaged. And a return control unit for making it possible.

ここで、前記復帰制御部は、惰行走行から通常走行へと復帰させる場合、前記第1係合部の回転数と前記第2係合部の回転数とが同期する前に、該第1係合部と当該第2係合部の差回転が前記所定回転数以下まで小さくなり、該所定回転数以下の差回転の状態が前記所定時間継続しているならば、前記動力断接装置を完全係合させることが望ましい。   Here, when returning from coasting traveling to normal traveling, the return control unit is configured to perform the first engagement before the rotation speed of the first engagement portion and the rotation speed of the second engagement portion are synchronized. If the differential rotation between the joint portion and the second engagement portion is reduced to the predetermined rotational speed or less and the differential rotational state below the predetermined rotational speed continues for the predetermined time, the power connection / disconnection device is completely It is desirable to engage.

また、前記復帰制御部は、前記エンジンと前記駆動輪との間に配置された変速機の変速比が大きいほど前記所定時間を長くすることが望ましい。   In addition, it is desirable that the return control unit lengthens the predetermined time as the transmission ratio of the transmission disposed between the engine and the drive wheel is larger.

本発明に係る車両の制御装置は、惰行走行から通常走行へと復帰させる場合、動力断接装置における第1係合部と第2係合部の差回転が所定回転数以下まで小さくなり、この所定回転数以下の差回転の状態が所定時間継続しているならば、その動力断接装置を完全係合させる。このため、この制御装置は、完全係合させる際のクラッチのショックの発生を抑えることができる。更に、この制御装置は、第1係合部の回転数と第2係合部の回転数とが完全に同期するのを待たずに動力断接装置を完全係合させる。このため、この制御装置は、動力断接装置の完全な同期を待ってから完全係合させるものと比較して、エンジンの回転の吹け上がりや駆動輪への外乱の入力などによる影響を受けにくく、小さくなってきた第1係合部と第2係合部の差回転が再び拡大してしまう可能性を低く抑えることができる。従って、この制御装置は、エンジンの回転の吹け上がりなどに伴う動力断接装置の滑りの増大を抑制することができる。よって、この制御装置は、動力断接装置の係合時のショックの発生を抑制できるだけでなく、動力断接装置の耐久性の低下を抑制することができ、また、動力断接装置の完全係合に過大な供給油圧を必要とせず、また、完全係合に至るまでの応答性の低下を抑えることもできる。   In the vehicle control device according to the present invention, when returning from coasting traveling to normal traveling, the differential rotation between the first engagement portion and the second engagement portion in the power disconnection device is reduced to a predetermined number of rotations or less. If the state of differential rotation below the predetermined number of rotations continues for a predetermined time, the power connection / disconnection device is completely engaged. For this reason, this control apparatus can suppress generation | occurrence | production of the shock of the clutch at the time of making it engage completely. Further, the control device fully engages the power connection / disconnection device without waiting for the rotation speed of the first engagement portion and the rotation speed of the second engagement portion to be completely synchronized. For this reason, this control device is less susceptible to influences such as engine blow-up and disturbance input to the drive wheels, compared to a device that waits for complete synchronization of the power connection / disconnection device and then fully engages the control device. The possibility that the differential rotation between the first engaging portion and the second engaging portion, which have become smaller, will again increase can be kept low. Therefore, this control device can suppress an increase in the slippage of the power connection / disconnection device due to the engine speeding up. Therefore, this control device not only can suppress the occurrence of shock when the power connection / disconnection device is engaged, but also can suppress a decrease in durability of the power connection / disconnection device. In this case, an excessive supply hydraulic pressure is not required, and a decrease in responsiveness until full engagement can be suppressed.

図1は、本発明に係る車両の制御装置と当該車両について示す図である。FIG. 1 is a diagram showing a vehicle control device and the vehicle according to the present invention. 図2は、惰行走行から通常走行へと復帰させる際のタイムチャートである。FIG. 2 is a time chart when returning from coasting traveling to normal traveling. 図3は、惰行走行から通常走行へと復帰させる際のフローチャートである。FIG. 3 is a flowchart for returning from coasting traveling to normal traveling.

以下に、本発明に係る車両の制御装置の実施例を図面に基づいて詳細に説明する。尚、この実施例によりこの発明が限定されるものではない。   Embodiments of a vehicle control apparatus according to the present invention will be described below in detail with reference to the drawings. The present invention is not limited to the embodiments.

[実施例]
本発明に係る車両の制御装置の実施例を図1から図3に基づいて説明する。
[Example]
An embodiment of a vehicle control apparatus according to the present invention will be described with reference to FIGS.

最初に、この制御装置の適用対象となる車両の一例について説明する。   First, an example of a vehicle to which this control device is applied will be described.

ここで例示する車両は、図1に示すように、動力源としてのエンジン10と、このエンジン10の動力を駆動輪W側へと伝える自動変速機20と、を備える。また、この車両は、エンジン10と駆動輪Wとの間に動力断接装置を備え、この動力断接装置を制御することによって、その間の動力伝達を走行中に遮断することができるものである。   As shown in FIG. 1, the vehicle exemplified here includes an engine 10 as a power source, and an automatic transmission 20 that transmits the power of the engine 10 to the drive wheel W side. In addition, the vehicle includes a power connection / disconnection device between the engine 10 and the drive wheel W, and by controlling the power connection / disconnection device, power transmission therebetween can be interrupted during traveling. .

更に、この車両は、制御装置として、車両の走行に関わる制御を行う電子制御装置(以下、「走行制御ECU」という。)1と、エンジン10の制御を行う電子制御装置(以下、「エンジンECU」という。)2と、自動変速機20の制御を行う電子制御装置(以下、「変速機ECU」という。)3と、を備える。走行制御ECU1は、エンジンECU2や変速機ECU3との間でセンサの検出情報や演算処理結果等の授受を行う。また、走行制御ECU1は、エンジンECU2や変速機ECU3に指令を送り、その指令に応じたエンジン10の制御をエンジンECU2に実施させ、また、その指令に応じた自動変速機20の制御を変速機ECU3に実施させる。   Further, this vehicle has, as control devices, an electronic control device (hereinafter referred to as “travel control ECU”) 1 that performs control related to travel of the vehicle, and an electronic control device (hereinafter referred to as “engine ECU”) that controls the engine 10. ) 2 and an electronic control unit (hereinafter referred to as “transmission ECU”) 3 for controlling the automatic transmission 20. The travel control ECU 1 exchanges sensor detection information, calculation processing results, and the like with the engine ECU 2 and the transmission ECU 3. The travel control ECU 1 sends a command to the engine ECU 2 and the transmission ECU 3, causes the engine ECU 2 to control the engine 10 according to the command, and controls the automatic transmission 20 according to the command to the transmission. Let ECU3 carry out.

エンジン10は、内燃機関等の機関であり、供給された燃料によって動力をエンジン回転軸11に発生させる。   The engine 10 is an engine such as an internal combustion engine, and generates power on the engine rotation shaft 11 with supplied fuel.

動力断接装置は、エンジン10と駆動輪Wとの間(つまりエンジン10から出力された動力の伝達経路上)に配置し、その間の動力伝達を可能にする一方で、その間の動力伝達を遮断することもできる。この例示の車両においては、この動力断接装置を自動変速機20に設ける。   The power connection / disconnection device is disposed between the engine 10 and the drive wheel W (that is, on the transmission path of the power output from the engine 10), and enables power transmission therebetween while interrupting power transmission therebetween. You can also In the illustrated vehicle, this power connection / disconnection device is provided in the automatic transmission 20.

この車両に搭載される自動変速機20としては、例えば、一般的な有段自動変速機や無段自動変速機だけでなく、デュアルクラッチ式変速機(DCT:デュアルクラッチトランスミッション)、自動変速可能な有段手動変速機(MMT:マルチモードマニュアルトランスミッション)なども適用対象に含まれる。本実施例では、有段自動変速機や無段自動変速機を例に挙げて説明する。   As the automatic transmission 20 mounted on the vehicle, for example, not only a general stepped automatic transmission and a continuously variable automatic transmission, but also a dual clutch transmission (DCT: dual clutch transmission), an automatic transmission is possible. A stepped manual transmission (MMT: multimode manual transmission) is also included in the scope of application. In this embodiment, a stepped automatic transmission or a continuously variable automatic transmission will be described as an example.

本実施例の自動変速機20は、上記の動力断接装置として作用するクラッチ30と、自動変速部としての変速機本体40と、エンジン10の動力を変速機本体40に伝えるトルクコンバータ50と、を備える。   The automatic transmission 20 of the present embodiment includes a clutch 30 that functions as the power connection / disconnection device, a transmission main body 40 as an automatic transmission unit, a torque converter 50 that transmits the power of the engine 10 to the transmission main body 40, Is provided.

この自動変速機20においては、変速機入力軸21がエンジン回転軸11に連結され、変速機出力軸22が駆動輪W側に連結される。その変速機入力軸21は、トルクコンバータ50のポンプインペラ51と一体になって回転できるように接続されている。一方、このトルクコンバータ50のタービンランナ52には、中間軸23が一体となって回転できるように接続されている。その中間軸23は、更に、クラッチ30の第1係合部31と一体になって回転できるように接続されている。クラッチ30の第2係合部32は、変速機本体40の入力軸41と一体になって回転できるように接続されている。その変速機本体40は、変速機出力軸22にも接続されている。つまり、この車両においては、エンジン10側からの動力伝達経路を順に見ていくと、エンジン10、トルクコンバータ50、クラッチ30、変速機本体40、駆動輪Wの順に配置されていることになる。尚、トルクコンバータ50は、ロックアップクラッチ(図示略)も備えている。   In this automatic transmission 20, a transmission input shaft 21 is connected to the engine rotation shaft 11, and a transmission output shaft 22 is connected to the drive wheel W side. The transmission input shaft 21 is connected so as to rotate integrally with the pump impeller 51 of the torque converter 50. On the other hand, the intermediate shaft 23 is connected to the turbine runner 52 of the torque converter 50 so as to rotate together. The intermediate shaft 23 is further connected so as to rotate together with the first engagement portion 31 of the clutch 30. The second engagement portion 32 of the clutch 30 is connected so as to rotate together with the input shaft 41 of the transmission main body 40. The transmission main body 40 is also connected to the transmission output shaft 22. That is, in this vehicle, when the power transmission path from the engine 10 side is viewed in order, the engine 10, the torque converter 50, the clutch 30, the transmission main body 40, and the drive wheels W are arranged in this order. The torque converter 50 also includes a lockup clutch (not shown).

有段自動変速機の場合、変速機本体40は、図示しないが、複数の係合装置(クラッチやブレーキ)と複数の歯車群を備えており、その係合装置の係合状態と解放状態の組み合わせによって変速段(変速比)が切り替わる。変速機ECU3の変速制御部は、その係合装置の状態を制御することによって、変速制御を行う。また、無段自動変速機の場合には、例えばベルト式無段変速機が変速機本体40となる。   In the case of a stepped automatic transmission, the transmission main body 40 is provided with a plurality of engagement devices (clutch and brake) and a plurality of gear groups (not shown). The gear stage (gear ratio) is switched depending on the combination. The shift control unit of the transmission ECU 3 performs shift control by controlling the state of the engagement device. In the case of a continuously variable automatic transmission, for example, a belt-type continuously variable transmission is the transmission main body 40.

クラッチ30は、動力伝達経路上でエンジン10側と駆動輪W側とに各々接続された第1係合部31と第2係合部32とを有し、その第1係合部31と第2係合部32の内の少なくとも一方に摩擦材を設けた摩擦クラッチである。このクラッチ30は、その第1係合部31と第2係合部32の内の少なくとも一方に作動油を供給することで、この第1係合部31と第2係合部32とが接触し、係合状態となる。その係合状態(後述する半係合状態や完全係合状態)においては、エンジン10と駆動輪Wとの間での動力伝達が可能になる。一方、このクラッチ30は、その供給された作動油を排出することで、第1係合部31と第2係合部32とが離れ、解放状態となる。その解放状態においては、エンジン10と駆動輪Wとの間の動力伝達が遮断される。   The clutch 30 has a first engagement portion 31 and a second engagement portion 32 respectively connected to the engine 10 side and the drive wheel W side on the power transmission path. 2 is a friction clutch in which a friction material is provided on at least one of the engaging portions 32. The clutch 30 supplies hydraulic oil to at least one of the first engagement portion 31 and the second engagement portion 32 so that the first engagement portion 31 and the second engagement portion 32 come into contact with each other. And it will be in an engagement state. In the engaged state (a semi-engaged state or a fully engaged state described later), power transmission between the engine 10 and the drive wheels W is possible. On the other hand, the clutch 30 discharges the supplied hydraulic oil, whereby the first engagement portion 31 and the second engagement portion 32 are separated from each other, and the clutch 30 is released. In the released state, power transmission between the engine 10 and the drive wheel W is interrupted.

このクラッチ30は、その第1係合部31と第2係合部32との間の係合動作又は解放動作をアクチュエータ33に実施させる。そのアクチュエータ33は、変速機ECU3のクラッチ制御部の指令によって動作する例えば電磁弁(図示略)を備えており、その電磁弁の開閉動作によってクラッチ30への作動油の供給油圧を調整する。   The clutch 30 causes the actuator 33 to perform an engaging operation or a releasing operation between the first engaging portion 31 and the second engaging portion 32. The actuator 33 includes, for example, an electromagnetic valve (not shown) that operates according to a command from the clutch control unit of the transmission ECU 3, and adjusts the hydraulic oil supply hydraulic pressure to the clutch 30 by opening and closing the electromagnetic valve.

このクラッチ30は、電磁弁を開弁させ、供給油圧を増圧させることで係合状態となる。ここで、クラッチ制御部は、電磁弁の開弁量を調整することで、クラッチ30への供給油圧(増圧量)を調整し、半係合状態と完全係合状態とを分けて作り出すことができる。半係合状態とは、第1係合部31と第2係合部32との間の滑りを許容する係合状態のことである。一方、完全係合状態とは、第1係合部31と第2係合部32との間の滑りを許容せず、第1係合部31と第2係合部32の内の少なくとも一方にトルクが入力されたとしても、互いを一体になって回転させる係合状態のことである。クラッチ制御部は、供給油圧を所定範囲内の圧力まで増圧させることでクラッチ30を半係合させ、その所定範囲内の最高圧よりも供給油圧を更に増圧させることでクラッチ30を完全係合させる。また、このクラッチ30は、電磁弁を閉弁させ、供給油圧を減圧させることで解放状態となる。   The clutch 30 is brought into an engaged state by opening the electromagnetic valve and increasing the supply hydraulic pressure. Here, the clutch control unit adjusts the valve opening amount of the electromagnetic valve to adjust the hydraulic pressure supplied to the clutch 30 (pressure increase amount), and creates the semi-engaged state and the fully engaged state separately. Can do. The half-engaged state is an engaged state that allows slippage between the first engaging portion 31 and the second engaging portion 32. On the other hand, the fully engaged state does not allow slippage between the first engagement portion 31 and the second engagement portion 32, and is at least one of the first engagement portion 31 and the second engagement portion 32. Even if torque is input to the gears, they are in an engaged state in which they are rotated together. The clutch control unit causes the clutch 30 to be semi-engaged by increasing the supply hydraulic pressure to a pressure within a predetermined range, and further increases the supply hydraulic pressure beyond the maximum pressure within the predetermined range to fully engage the clutch 30. Combine. The clutch 30 is released by closing the solenoid valve and reducing the supply hydraulic pressure.

次に、制御装置の演算処理について説明する。   Next, calculation processing of the control device will be described.

本実施例の車両は、エンジン10と駆動輪Wとの間の動力伝達を遮断して惰性で走行(惰行走行)することができる。このため、走行制御ECU1は、惰行走行に関わる制御(以下、「惰行制御」という。)を実行させる惰行制御部を有している。惰行制御部は、通常走行中にクラッチ30を解放させることによって、走行中にエンジン10と駆動輪Wとの間の動力伝達を遮断する。その通常走行とは、エンジン10の動力を駆動輪Wに伝えて走行している状態のことをいう。走行制御ECU1は、通常走行モードと惰行走行モードとを切り替える走行モード切替部を有する。   The vehicle of the present embodiment can travel with inertia (coasting) while interrupting power transmission between the engine 10 and the drive wheels W. For this reason, the traveling control ECU 1 has a coasting control unit that executes control related to coasting traveling (hereinafter referred to as “coasting control”). The coasting control unit interrupts power transmission between the engine 10 and the drive wheels W during traveling by releasing the clutch 30 during normal traveling. The normal travel refers to a state where the power of the engine 10 is transmitted to the drive wheels W to travel. The travel control ECU 1 includes a travel mode switching unit that switches between a normal travel mode and a coasting travel mode.

ここで、この例示の車両は、惰行走行として、ニュートラル惰行走行(以下、「N惰行走行」という。)と減速ストップ&スタート走行(以下、「減速S&S走行」という。)とフリーラン走行の内の少なくとも1つを実施することができる。このため、走行制御ECU1には、車両に設けられている惰行走行モードに応じて、N惰行制御部と減速S&S制御部とフリーラン制御部の内の少なくとも1つが惰行制御部として設けられている。ここでは、N惰行走行と減速S&S走行とフリーラン走行の全てが実施可能である。   Here, the illustrated vehicle includes, as coasting travel, neutral coasting travel (hereinafter referred to as “N coasting travel”), deceleration stop and start travel (hereinafter referred to as “deceleration S & S travel”), and free-run travel. At least one of the following can be implemented. Therefore, the traveling control ECU 1 is provided with at least one of the N coasting control unit, the deceleration S & S control unit, and the free-run control unit as the coasting control unit according to the coasting traveling mode provided in the vehicle. . Here, all of N coasting traveling, deceleration S & S traveling, and free-run traveling are possible.

N惰行走行とは、前述したように、エンジン10と駆動輪Wとの間の動力伝達を遮断し、エンジン10を作動させたままで惰行する走行のことである。このN惰行走行は、運転者がブレーキ操作を行っている状態(アクセルオフ&ブレーキオン)で実行される。   As described above, the N coasting traveling is traveling that coasts with the engine 10 operating while the power transmission between the engine 10 and the drive wheels W is interrupted. This N coasting traveling is executed in a state where the driver is operating a brake (accelerator off & brake on).

減速S&S走行とフリーラン走行は、エンジン10と駆動輪Wとの間の動力伝達を遮断し、更にエンジン10を停止させて惰行する走行のことである。減速S&S走行は、運転者がブレーキ操作を行っている状態で(アクセルオフ&ブレーキオン)、かつ、自車両が所定車速以下の低速で減速走行しているときに実行される。一方、フリーラン走行は、運転者がアクセル操作もブレーキ操作も行っていない状態(アクセルオフ&ブレーキオフ)で実行される。   The deceleration S & S traveling and the free-run traveling are traveling in which the power transmission between the engine 10 and the drive wheels W is interrupted and the engine 10 is further stopped to coast. Decelerated S & S travel is executed when the driver is operating a brake (accelerator off & brake on) and when the host vehicle is traveling at a low speed below a predetermined vehicle speed. On the other hand, the free-run traveling is executed in a state where the driver does not perform the accelerator operation or the brake operation (accelerator off & brake off).

尚、走行制御ECU1には、アクセル操作量センサ61とブレーキ操作量センサ62が接続されている。アクセル操作量センサ61は、運転者によるアクセル開度等を検出するものである。よって、走行制御ECU1では、運転者のアクセルオフ状態(アクセルオフ操作)やアクセルオン状態(アクセルオン操作)を把握することができる。また、ブレーキ操作量センサ62は、運転者によるブレーキ踏み込み量等を検出するものである。よって、走行制御ECU1では、運転者のブレーキオフ状態(ブレーキオフ操作)やブレーキオン状態(ブレーキオン操作)を把握することができる。そのブレーキオフ状態(ブレーキオフ操作)やブレーキオン状態(ブレーキオン操作)の把握には、運転者のブレーキ操作に連動するストップランプスイッチ(図示略)の検出信号を利用してもよい。   An accelerator operation amount sensor 61 and a brake operation amount sensor 62 are connected to the travel control ECU 1. The accelerator operation amount sensor 61 detects an accelerator opening degree or the like by the driver. Therefore, the travel control ECU 1 can grasp the driver's accelerator-off state (accelerator-off operation) and accelerator-on state (accelerator-on operation). The brake operation amount sensor 62 detects the amount of brake depression by the driver. Therefore, the travel control ECU 1 can grasp the driver's brake-off state (brake-off operation) and brake-on state (brake-on operation). In order to grasp the brake-off state (brake-off operation) and the brake-on state (brake-on operation), a detection signal from a stop lamp switch (not shown) linked to the driver's brake operation may be used.

ここで、走行モード切替部は、通常走行中に運転者のアクセルオフ状態(アクセルオフ操作)とブレーキオン状態(ブレーキオン操作)を検出した場合、惰行走行モードとしてN惰行モード又は減速S&Sモードを選択することができる。その選択の際、走行モード切替部は、例えば、自車両の走行路の勾配や車速に応じて、N惰行モードと減速S&Sモードの内の何れか一方を選択する。自車両の走行路の勾配は、勾配センサ63によって検出する。その勾配センサ63としては、前後方向の車両加速度を検出する前後加速度センサを利用すればよい。また、自車両の車速は、車速センサ64によって検出する。その勾配センサ63と車速センサ64は、走行制御ECU1に接続されている。   Here, when the driving mode switching unit detects the driver's accelerator-off state (accelerator-off operation) and brake-on state (brake-on operation) during normal driving, the driving mode switching unit selects N coasting mode or deceleration S & S mode as the coasting traveling mode. You can choose. At the time of selection, the traveling mode switching unit selects one of the N coasting mode and the deceleration S & S mode according to, for example, the gradient of the traveling path of the host vehicle and the vehicle speed. The gradient of the traveling path of the host vehicle is detected by the gradient sensor 63. As the gradient sensor 63, a longitudinal acceleration sensor that detects vehicle acceleration in the longitudinal direction may be used. Further, the vehicle speed of the host vehicle is detected by a vehicle speed sensor 64. The gradient sensor 63 and the vehicle speed sensor 64 are connected to the travel control ECU 1.

N惰行モードが選択された場合、N惰行制御部は、エンジンECU2と変速機ECU3に指令を送り、エンジン10を例えばアイドル状態に制御させると共に、クラッチ制御部にクラッチ30を解放させる。これにより、車両は、エンジン10を作動させたままでエンジン10と駆動輪Wとの間の動力伝達を遮断し、N惰行走行を始める。一方、減速S&Sモードが選択された場合、減速S&S制御部は、エンジンECU2と変速機ECU3に指令を送り、エンジン10の停止とクラッチ30の解放を指示する。これにより、車両は、所定の車速域でブレーキオン操作が実施されている状態において、エンジン10を停止し、かつ、エンジン10と駆動輪Wとの間の動力伝達を遮断して、減速S&S走行を始める。   When the N coasting mode is selected, the N coasting control unit sends a command to the engine ECU 2 and the transmission ECU 3 to control the engine 10 to an idle state, for example, and causes the clutch control unit to release the clutch 30. As a result, the vehicle cuts off the power transmission between the engine 10 and the drive wheels W while the engine 10 is operated, and starts N coasting traveling. On the other hand, when the deceleration S & S mode is selected, the deceleration S & S control unit sends a command to the engine ECU 2 and the transmission ECU 3 to instruct the engine 10 to stop and the clutch 30 to be released. Thus, the vehicle decelerates the S & S travel while the engine 10 is stopped and the power transmission between the engine 10 and the drive wheels W is interrupted in a state where the brake-on operation is performed in a predetermined vehicle speed range. Begin.

また、走行モード切替部は、通常走行中に運転者のアクセルオフ状態(アクセルオフ操作)とブレーキオフ状態を検出した場合、惰行走行モードとしてフリーランモードを選択することができる。フリーランモードが選択された場合、フリーラン制御部は、エンジンECU2と変速機ECU3に減速S&Sモードと同様の指令を送り、エンジン10の停止とクラッチ30の解放を指示する。これにより、車両は、アクセル操作もブレーキ操作も実施されていないので、エンジン10を停止し、かつ、エンジン10と駆動輪Wとの間の動力伝達を遮断して、フリーラン走行を始める。   The traveling mode switching unit can select the free-run mode as the coasting traveling mode when detecting the driver's accelerator-off state (accelerator-off operation) and brake-off state during normal traveling. When the free-run mode is selected, the free-run control unit sends a command similar to that in the deceleration S & S mode to the engine ECU 2 and the transmission ECU 3 to instruct the engine 10 to stop and the clutch 30 to be released. Thereby, since neither the accelerator operation nor the brake operation is performed, the vehicle stops the engine 10, interrupts the power transmission between the engine 10 and the drive wheels W, and starts free-running.

走行モード切替部は、その何れかの惰行走行中に通常走行への復帰条件が成立した場合、通常走行モードを選択する。復帰条件が成立した場合とは、例えば運転者のアクセルオン状態(アクセルオン操作)を検出した場合などである。通常走行モードが選択された場合、走行制御ECU1の復帰制御部は、エンジンECU2と変速機ECU3に実施中の惰行走行モードに応じた指令を送り、惰行走行から通常走行に復帰させる。その復帰制御においては、何れの惰行走行モードからの復帰であっても、解放状態のクラッチ30を係合させ、エンジン10と駆動輪Wとの間の動力伝達を可能にする。   The travel mode switching unit selects the normal travel mode when a condition for returning to normal travel is satisfied during any coasting travel. The case where the return condition is satisfied is, for example, a case where the driver's accelerator-on state (accelerator-on operation) is detected. When the normal travel mode is selected, the return control unit of the travel control ECU 1 sends a command according to the coasting travel mode being performed to the engine ECU 2 and the transmission ECU 3 to return from coasting travel to normal travel. In the return control, the released clutch 30 is engaged to enable power transmission between the engine 10 and the drive wheels W regardless of the coasting traveling mode.

ここで、惰行走行中は、タービンランナ52の回転数(以下、「タービン回転数」という。)Ntと変速機本体40の入力軸41の回転数(以下、「入力回転数」という。)Ninとの間、つまりクラッチ30における第1係合部31の回転数と第2係合部32の回転数との間に差が生じている。例えば、惰行走行中は、入力回転数Nin(=第2係合部32の回転数)の方がタービン回転数Nt(=第1係合部31の回転数)よりも高回転になっている(図2)。このため、クラッチ30においては、第1係合部31と第2係合部32の差回転(以下、「クラッチ差回転」という。)ΔNclが大きいときに供給油圧を完全係合になるまで増圧させると、急激な係合動作となり、ショックが発生してしまう。尚、図2は、N惰行走行からの復帰を表したタイムチャートである。   Here, during coasting, the rotational speed of the turbine runner 52 (hereinafter referred to as “turbine rotational speed”) Nt and the rotational speed of the input shaft 41 of the transmission main body 40 (hereinafter referred to as “input rotational speed”) Nin. That is, there is a difference between the rotational speed of the first engaging portion 31 and the rotational speed of the second engaging portion 32 in the clutch 30. For example, during coasting, the input rotational speed Nin (= the rotational speed of the second engaging portion 32) is higher than the turbine rotational speed Nt (= the rotational speed of the first engaging portion 31). (FIG. 2). Therefore, in the clutch 30, when the differential rotation between the first engagement portion 31 and the second engagement portion 32 (hereinafter referred to as “clutch differential rotation”) ΔNcl is large, the supply hydraulic pressure is increased until full engagement. When the pressure is applied, a sudden engagement operation occurs and a shock occurs. FIG. 2 is a time chart showing the return from N coasting traveling.

そこで、復帰制御部は、惰行走行中に通常走行への復帰条件が成立した場合、エンジン10の出力制御によってエンジン回転数Neを上昇させ、このエンジン回転数Neの上昇に伴ってタービン回転数Ntを上昇させることで、タービン回転数Nt(=第1係合部31の回転数)を入力回転数Nin(=第2係合部32の回転数)に近づけていく。つまり、復帰制御部には、惰行走行から通常走行へと復帰させる際に、エンジン10の出力制御によってクラッチ差回転ΔNclを小さくさせる。   Therefore, the return control unit increases the engine speed Ne by the output control of the engine 10 when the return condition to the normal travel is satisfied during coasting travel, and the turbine speed Nt is increased as the engine speed Ne increases. , The turbine rotational speed Nt (= the rotational speed of the first engaging portion 31) is brought closer to the input rotational speed Nin (= the rotational speed of the second engaging portion 32). That is, the return control unit reduces the clutch differential rotation ΔNcl by the output control of the engine 10 when returning from coasting traveling to normal traveling.

そのタービン回転数Nt(=第1係合部31の回転数)は、エンジン10のクランク角センサ65の検出信号を利用して、エンジン回転数Neとトルクコンバータ50の速度比から推定することができる。このタービン回転数Nt(=第1係合部31の回転数)を検出するためには、タービンランナ52又は第1係合部31の回転角を検出する回転センサ(図示略)を設けてもよい。また、入力回転数Nin(=第2係合部32の回転数)は、変速機出力軸22の回転角を検出する回転センサ66の検出信号を利用し、その回転数と変速機本体40の変速比から推定することができる。この入力回転数Nin(=第2係合部32の回転数)を検出するためには、入力軸41又は第2係合部32の回転角を検出する回転センサ(図示略)を設けてもよい。   The turbine rotational speed Nt (= the rotational speed of the first engaging portion 31) can be estimated from the engine rotational speed Ne and the speed ratio of the torque converter 50 using the detection signal of the crank angle sensor 65 of the engine 10. it can. In order to detect the turbine rotation speed Nt (= the rotation speed of the first engagement portion 31), a rotation sensor (not shown) for detecting the rotation angle of the turbine runner 52 or the first engagement portion 31 may be provided. Good. Further, the input rotational speed Nin (= the rotational speed of the second engagement portion 32) uses a detection signal of the rotational sensor 66 that detects the rotational angle of the transmission output shaft 22, and the rotational speed and the transmission main body 40 are detected. It can be estimated from the gear ratio. In order to detect the input rotation speed Nin (= the rotation speed of the second engagement portion 32), a rotation sensor (not shown) for detecting the rotation angle of the input shaft 41 or the second engagement portion 32 may be provided. Good.

復帰制御部には、惰行走行中に通常走行への復帰条件が成立した場合、クラッチ差回転ΔNclが小さくなったときにクラッチ30を完全係合させることで、その係合時のショックの発生を抑制させ、かつ、クラッチ30における例えば摩擦材等の耐久性の低下も抑制させる。   When the condition for returning to normal driving is established during coasting, the return control unit causes the clutch 30 to be fully engaged when the clutch differential rotation ΔNcl becomes small, thereby generating a shock at the time of engagement. In addition, the durability of the clutch 30 such as a friction material is also suppressed.

また、本実施例の復帰制御部には、惰行走行中に通常走行への復帰条件が成立した場合、クラッチ30を完全係合させる前までに、クラッチ30が半係合状態になるように供給油圧を増圧させ、完全係合状態にする際のショックの発生を更に抑制させる(図2)。復帰制御部は、その半係合制御(スリップ制御)において、クラッチ30における半係合状態の伝達トルク容量を増大させていくように、供給油圧を徐々に増圧させる。   Further, when the return condition for normal running is established during coasting, the return control unit of the present embodiment is supplied so that the clutch 30 is in a half-engaged state before the clutch 30 is completely engaged. The hydraulic pressure is increased to further suppress the occurrence of shock when the fully engaged state is established (FIG. 2). In the half-engagement control (slip control), the return control unit gradually increases the supply hydraulic pressure so as to increase the transmission torque capacity of the clutch 30 in the half-engaged state.

ところで、タービン回転数Ntは、緩やかに下降している入力回転数Ninに対して、エンジン回転数Neの上昇に応じた大きな上昇勾配で近づいていく。そして、このタービン回転数Ntは、半係合状態のクラッチ30によって、その上昇勾配が小さくなりながら、入力回転数Ninと同期する。   By the way, the turbine rotational speed Nt approaches the input rotational speed Nin, which is gradually decreasing, with a large upward gradient according to the increase in the engine rotational speed Ne. The turbine rotation speed Nt is synchronized with the input rotation speed Nin while the rising gradient is reduced by the half-engaged clutch 30.

ここで、クラッチ30は、タービン回転数Ntと入力回転数Ninが同期してから(つまり第1係合部31の回転数と第2係合部32の回転数が同期してから)完全係合制御を行う場合、完全係合制御前の例えばエンジン10の回転の吹け上がりや駆動輪Wへの外乱の入力などによって、クラッチ差回転ΔNclが大きくなってしまう可能性がある。そして、クラッチ差回転ΔNclが大きくなってしまったときには、この状態で完全係合制御が実施されるので、その係合に際して、クラッチ30でショックが発生してしまう可能性があり、また、クラッチ30の耐久性の低下を招いてしまう可能性もある。更に、このときには、クラッチ30を完全係合させるために、タービン回転数Ntと入力回転数Ninが同期しているときよりも大きな供給油圧が必要になり、完全係合に至るまでの応答性が低下してしまう可能性もある。   Here, the clutch 30 is completely engaged after the turbine rotation speed Nt and the input rotation speed Nin are synchronized (that is, after the rotation speed of the first engagement portion 31 and the rotation speed of the second engagement portion 32 are synchronized). When joint control is performed, there is a possibility that the clutch differential rotation ΔNcl may increase due to, for example, an increase in rotation of the engine 10 or an input of disturbance to the drive wheels W before the complete engagement control. When the clutch differential rotation ΔNcl becomes large, complete engagement control is performed in this state, so that there is a possibility that a shock will occur in the clutch 30 during the engagement. There is also a possibility that the durability will be lowered. Further, at this time, in order to fully engage the clutch 30, a larger supply hydraulic pressure is required than when the turbine rotational speed Nt and the input rotational speed Nin are synchronized, and the responsiveness until full engagement is achieved. There is also the possibility of a decline.

よって、本実施例の復帰制御部には、タービン回転数Ntと入力回転数Ninとが完全に同期してからクラッチ30の完全係合制御の実施が可能であると判定させるのではなく、タービン回転数Ntと入力回転数Ninとが完全に同期する前に、クラッチ30の完全係合制御の実施が可能であると判定させる。具体的には、クラッチ差回転ΔNclが所定回転数Ncl0以下まで小さくなり、その所定回転数Ncl0以下の差回転の状態が所定時間継続している場合に、クラッチ30の完全係合制御の実施が可能であると判定させ、このクラッチ30を完全係合させる。尚、クラッチ差回転ΔNclが正の場合には所定回転数Ncl0も正になり、クラッチ差回転ΔNclが負の場合には所定回転数Ncl0も負になる。   Therefore, the return control unit of the present embodiment does not determine that the complete engagement control of the clutch 30 can be performed after the turbine rotational speed Nt and the input rotational speed Nin are completely synchronized. Before the rotation speed Nt and the input rotation speed Nin are completely synchronized, it is determined that the complete engagement control of the clutch 30 can be performed. Specifically, when the clutch differential rotation ΔNcl is reduced to a predetermined rotational speed Ncl0 or lower and the differential rotational speed of the predetermined rotational speed Ncl0 or lower continues for a predetermined time, the complete engagement control of the clutch 30 is performed. It is determined that it is possible, and the clutch 30 is completely engaged. Note that when the clutch differential rotation ΔNcl is positive, the predetermined rotational speed Ncl0 is also positive, and when the clutch differential rotation ΔNcl is negative, the predetermined rotational speed Ncl0 is also negative.

この例示では、所定回転数Ncl0以下になって所定時間経過したときのクラッチ差回転ΔNclがクラッチ30の完全係合制御を開始可能な回転数(以下、「完全係合可能な回転数」という。)となる。その完全係合可能な回転数とは、ショックを所定の大きさ以下に抑えたクラッチ30の完全係合動作が可能なクラッチ差回転ΔNclのことである。その所定の大きさとは、発生したクラッチ30のショックが駆動輪Wや車体に伝わったとしても、そのショックを乗員が感じ取ることのできない大きさのことである。   In this example, the clutch differential rotation ΔNcl when the predetermined time elapses after reaching a predetermined rotational speed Ncl0 or less is referred to as a rotational speed at which the complete engagement control of the clutch 30 can be started (hereinafter referred to as “a fully engaged rotational speed”). ) The fully engageable rotation speed is a clutch differential rotation ΔNcl that enables a complete engagement operation of the clutch 30 with a shock suppressed to a predetermined magnitude or less. The predetermined magnitude is such a magnitude that the occupant cannot feel the shock even if the generated shock of the clutch 30 is transmitted to the drive wheels W or the vehicle body.

所定時間は、例えば、復帰制御時の変速機本体40の変速比に応じて変更する。具体的には、クラッチ30がエンジン10と変速機本体40の間に配置されている場合、復帰制御時の変速機本体40の変速比が大きいほど(つまりローギヤであるほど)、入力回転数Nin(=第2係合部32の回転数)がタービン回転数Nt(=第1係合部31の回転数)に対して高回転になる。このため、所定時間は、復帰制御時の変速機本体40の変速比が大きいほど(つまりローギヤであるほど)長く設定する。これにより、この制御装置は、クラッチ30の完全係合制御が可能か否かの判定精度を高め、完全係合させた際のクラッチ30のショックの発生を抑えることができる。復帰制御部は、例えば、予め用意してあるマップに現状の変速比を照らし合わせ、この変速比に応じた所定時間を読み込んで設定する。尚、クラッチ30が変速機本体40と駆動輪Wの間に配置されている場合には、復帰制御時の変速機本体40の変速比が大きいほど(つまりローギヤであるほど)、タービン回転数Nt(=第1係合部31の回転数)が入力回転数Nin(=第2係合部32の回転数)に対して低回転になる。このため、この場合についても、所定時間は、復帰制御時の変速機本体40の変速比が大きいほど(つまりローギヤであるほど)長く設定すればよい。   The predetermined time is changed according to the gear ratio of the transmission main body 40 at the time of return control, for example. Specifically, when the clutch 30 is disposed between the engine 10 and the transmission main body 40, the larger the gear ratio of the transmission main body 40 during the return control (that is, the lower the gear), the more the input rotation speed Nin. (= The number of rotations of the second engagement portion 32) becomes higher than the turbine rotation number Nt (= the number of rotations of the first engagement portion 31). For this reason, the predetermined time is set longer as the gear ratio of the transmission main body 40 during the return control is larger (that is, the lower gear is). Thereby, this control apparatus can improve the determination accuracy of whether or not the complete engagement control of the clutch 30 is possible, and can suppress the occurrence of the shock of the clutch 30 when the clutch 30 is completely engaged. For example, the return control unit compares a current gear ratio with a map prepared in advance, and reads and sets a predetermined time according to the gear ratio. When the clutch 30 is disposed between the transmission main body 40 and the drive wheel W, the turbine speed Nt increases as the transmission ratio of the transmission main body 40 during the return control increases (that is, the lower the gear). (= The number of rotations of the first engaging portion 31) is lower than the input number of rotations Nin (= the number of rotations of the second engaging portion 32). Therefore, in this case as well, the predetermined time may be set longer as the speed ratio of the transmission main body 40 during the return control is larger (that is, the lower the gear is).

所定回転数Ncl0は、完全係合可能な回転数と所定時間とから逆算して決める。例えば、復帰制御部には、惰行走行中に通常走行への復帰条件が成立した場合、自車両の車速、自車両の車両加速度、変速機本体40の変速比、エンジン回転数Neの変化、タービン回転数Nt(=第1係合部31の回転数)、入力回転数Nin(=第2係合部32の回転数)等に基づいて、今後のクラッチ差回転ΔNclを推定させる。復帰制御部は、その推定したクラッチ差回転ΔNclが完全係合可能な回転数となる時点を求め、この時点から起算して所定時間だけ手前の時点における推定クラッチ差回転ΔNclを所定回転数Ncl0として決める。   The predetermined rotational speed Ncl0 is determined by calculating backward from the rotational speed at which full engagement is possible and the predetermined time. For example, the return control unit may include a vehicle speed of the own vehicle, a vehicle acceleration of the own vehicle, a transmission ratio of the transmission main body 40, a change in the engine speed Ne, The future clutch differential rotation ΔNcl is estimated based on the rotational speed Nt (= the rotational speed of the first engaging portion 31), the input rotational speed Nin (= the rotational speed of the second engaging portion 32), and the like. The return control unit obtains a time point at which the estimated clutch differential rotation ΔNcl reaches a fully engageable rotational speed, and the estimated clutch differential rotation ΔNcl at a time point that is a predetermined time earlier from this point is set as the predetermined rotational speed Ncl0. Decide.

以下に、惰行走行から通常走行へと復帰させる際の演算処理を図3のフローチャートに基づき説明する。   In the following, a calculation process when returning from coasting traveling to normal traveling will be described with reference to the flowchart of FIG.

復帰制御部は、惰行制御中であるのか否かを判定する(ステップST1)。この例示の車両では、N惰行制御と減速S&S制御とフリーラン制御の内の何れか1つでも実行中であるのか否かを判定する。復帰制御部は、その何れも実行していない場合、惰行制御中でないと判定し、この演算処理を繰り返す。   The return control unit determines whether coasting control is being performed (step ST1). In this exemplary vehicle, it is determined whether any one of N coasting control, deceleration S & S control, and free-run control is being executed. If none of them is executed, the return control unit determines that coasting control is not being performed, and repeats this calculation process.

復帰制御部は、惰行制御中の場合、惰行走行から通常走行への復帰条件が成立しているのか否かを判定する(ステップST2)。復帰制御部は、復帰条件が成立していない場合、ステップST1に戻る。   When the coasting control is being performed, the return control unit determines whether a return condition from coasting traveling to normal traveling is satisfied (step ST2). If the return condition is not satisfied, the return control unit returns to step ST1.

復帰制御部は、復帰条件が成立している場合、実行中の惰行走行モードに応じた惰行走行から通常走行への復帰制御を開始させる(ステップST3)。   When the return condition is satisfied, the return control unit starts the return control from the coasting traveling to the normal traveling according to the coasting traveling mode being executed (step ST3).

具体的に、N惰行走行からの復帰の場合、復帰制御部は、エンジンECU2と変速機ECU3に指令を送り、運転者のアクセル開度に応じたエンジン10の出力制御を開始させると共に、解放状態のクラッチ30に対する半係合制御を開始させる。減速S&S走行とフリーラン走行からの復帰の場合、復帰制御部は、エンジンECU2と変速機ECU3に指令を送り、停止中のエンジン10を再起動させると共に、解放状態のクラッチ30に対する半係合制御を開始させる。   Specifically, in the case of a return from N coasting, the return control unit sends a command to the engine ECU 2 and the transmission ECU 3 to start the output control of the engine 10 according to the accelerator opening of the driver, and in the released state. The half-engagement control for the clutch 30 is started. In the case of return from deceleration S & S travel and free-run travel, the return control unit sends a command to the engine ECU 2 and the transmission ECU 3 to restart the stopped engine 10 and to perform half-engagement control for the clutch 30 in the released state. To start.

車両においては、この復帰制御の開始に伴い、タービン回転数Nt(=第1係合部31の回転数)が入力回転数Nin(=第2係合部32の回転数)に近づいていく。このため、復帰制御部は、そのタービン回転数Nt(=第1係合部31の回転数)と入力回転数Nin(=第2係合部32の回転数)に基づいてクラッチ差回転ΔNclを算出し、このクラッチ差回転ΔNclが前述した所定回転数Ncl0以下になったのか否かを判定する(ステップST4)。   In the vehicle, with the start of the return control, the turbine rotational speed Nt (= the rotational speed of the first engaging portion 31) approaches the input rotational speed Nin (= the rotational speed of the second engaging portion 32). For this reason, the return control unit calculates the clutch differential rotation ΔNcl based on the turbine rotation speed Nt (= the rotation speed of the first engagement section 31) and the input rotation speed Nin (= the rotation speed of the second engagement section 32). It is calculated, and it is determined whether or not the clutch differential rotation ΔNcl is equal to or less than the predetermined rotation speed Ncl0 described above (step ST4).

復帰制御部は、クラッチ差回転ΔNclが所定回転数Ncl0以下になっていない場合、このステップST4の演算処理を繰り返す。そして、クラッチ差回転ΔNclが所定回転数Ncl0以下になった場合、復帰制御部は、クラッチ差回転ΔNclが所定回転数Ncl0以下になっている状態について前述した所定時間の経過まで継続しているのか否かを判定する(ステップST5)。その際、復帰制御部は、例えば、カウンタでカウントを開始し、その所定時間が経過するまで演算周期毎のカウントを累積していく。   When the clutch differential rotation ΔNcl is not less than or equal to the predetermined rotation speed Ncl0, the return control unit repeats the calculation process of step ST4. If the clutch differential rotation ΔNcl becomes equal to or lower than the predetermined rotational speed Ncl0, the return control unit continues until the predetermined time described above has elapsed for the state where the clutch differential rotation ΔNcl is equal to or lower than the predetermined rotational speed Ncl0. It is determined whether or not (step ST5). At that time, for example, the return control unit starts counting with a counter, and accumulates the count for each calculation cycle until the predetermined time elapses.

復帰制御部は、そのようなクラッチ30の状態が所定時間続かなかった場合(ステップST5でNo)、ステップST4に戻り、再びクラッチ差回転ΔNclが所定回転数Ncl0以下になったのか否かを判定する。   When the state of the clutch 30 has not continued for a predetermined time (No in step ST5), the return control unit returns to step ST4 and determines again whether or not the clutch differential rotation ΔNcl has become equal to or lower than the predetermined rotation speed Ncl0. To do.

このようなステップST5で否定判定される場合とは、例えば、減速S&S走行から復帰させる際に起こり得る。減速S&S走行から通常走行へと復帰させる際には、停止中のエンジン10を低速走行時に再起動させるので、エンジン再起動時のエンジン回転数Neの立ち上がりによって、タービン回転数Nt(=第1係合部31の回転数)が入力回転数Nin(=第2係合部32の回転数)を上回る可能性がある。そして、エンジン再起動時にタービン回転数Ntが入力回転数Ninを上回るときには、クラッチ差回転ΔNclが所定回転数Ncl0以下になっても、その状態を所定時間継続させることができず、ステップST5で否定判定される可能性がある。しかしながら、その後のタービン回転数Ntは、エンジン10の再起動完了と共に低下して、再び入力回転数Ninに近づいていく。このため、減速S&S走行から復帰させる際には、再度ステップST4で肯定判定が為され、再びステップST5の判定に移る。   The case where a negative determination is made in step ST5 can occur, for example, when returning from deceleration S & S travel. When returning from the deceleration S & S traveling to the normal traveling, the stopped engine 10 is restarted at low speed traveling, and therefore, the turbine rotational speed Nt (= first relation) is increased by the rise of the engine rotational speed Ne at the time of engine restart. There is a possibility that the rotational speed of the joint portion 31) exceeds the input rotational speed Nin (= the rotational speed of the second engaging portion 32). When the turbine speed Nt exceeds the input speed Nin when the engine is restarted, the state cannot be continued for a predetermined time even if the clutch differential speed ΔNcl becomes equal to or lower than the predetermined speed Ncl0. May be judged. However, the subsequent turbine speed Nt decreases as the restart of the engine 10 is completed, and approaches the input speed Nin again. For this reason, when returning from the deceleration S & S travel, an affirmative determination is made again in step ST4, and then the process proceeds to determination in step ST5 again.

復帰制御部は、クラッチ差回転ΔNclが所定回転数Ncl0以下になっている状態が所定時間続いた場合(ステップST5でYes)、クラッチ30の完全係合制御が可能な状態になっていると判定し、変速機ECU3に指令を送って、クラッチ30を完全係合させる(ステップST6)。   When the state where the clutch differential rotation ΔNcl is equal to or less than the predetermined rotational speed Ncl0 continues for a predetermined time (Yes in step ST5), the return control unit determines that the complete engagement control of the clutch 30 is possible. Then, a command is sent to the transmission ECU 3 to fully engage the clutch 30 (step ST6).

以上示したように、この制御装置は、惰行走行から通常走行へと復帰させる場合、先ずはクラッチ30を半係合し、第1係合部31と第2係合部32との間に滑りを発生させることによって、係合時のクラッチ30のショックの発生を抑えることができる。そして、この制御装置は、クラッチ差回転ΔNclが所定回転数Ncl0以下となり、その状態が所定時間継続したならば、クラッチ30を完全係合させることによって、完全係合させる際のクラッチ30のショックの発生を抑えることができる。   As described above, when the control device returns from coasting traveling to normal traveling, first, the clutch 30 is half-engaged and slips between the first engaging portion 31 and the second engaging portion 32. By generating the above, it is possible to suppress the occurrence of a shock of the clutch 30 at the time of engagement. When the clutch differential rotation ΔNcl becomes equal to or less than the predetermined rotational speed Ncl0 and this state continues for a predetermined time, the control device performs a complete engagement of the clutch 30 to cause a shock of the clutch 30 when the clutch 30 is completely engaged. Occurrence can be suppressed.

更に、この制御装置は、惰行走行から通常走行へと復帰させる場合、ステップST5で否定判定されたときを除き、タービン回転数Nt(=第1係合部31の回転数)と入力回転数Nin(=第2係合部32の回転数)とが完全に同期するのを待たずにクラッチ30を完全係合させる。つまり、この制御装置においては、そのときを除いて、タービン回転数Nt(=第1係合部31の回転数)と入力回転数Nin(=第2係合部32の回転数)とが同期する前に、クラッチ差回転ΔNclが所定回転数Ncl0以下まで小さくなり、その所定回転数Ncl0以下の差回転の状態が所定時間継続しているならば、クラッチ30を完全係合させる。このため、この制御装置は、クラッチ30の完全な同期を待ってから完全係合させるものと比較して、エンジン10の回転の吹け上がりや駆動輪Wへの外乱の入力などによる影響を受けにくく、小さくなってきたクラッチ差回転ΔNclが再び拡大してしまう可能性を低く抑えることができる。従って、この制御装置は、エンジン10の回転の吹け上がりなどに伴うクラッチ30の滑りの増大を抑制することができる。よって、この制御装置は、クラッチ30の係合時のショックの発生を抑制できるだけでなく、クラッチ30の耐久性の低下を抑制することができ、また、クラッチ30の完全係合に過大な供給油圧を必要とせず、また、完全係合に至るまでの応答性の低下を抑えることもできる。   Further, when returning from coasting traveling to normal traveling, this control device, except when the negative determination is made in step ST5, is the turbine rotational speed Nt (= the rotational speed of the first engaging portion 31) and the input rotational speed Nin. The clutch 30 is completely engaged without waiting for (= the rotational speed of the second engaging portion 32) to be completely synchronized. That is, in this control device, except for that time, the turbine rotational speed Nt (= the rotational speed of the first engaging portion 31) and the input rotational speed Nin (= the rotational speed of the second engaging portion 32) are synchronized. If the clutch differential rotation ΔNcl is reduced to a predetermined rotational speed Ncl0 or less before the rotation, and the differential rotational state of the predetermined rotational speed Ncl0 or less continues for a predetermined time, the clutch 30 is completely engaged. For this reason, this control device is less susceptible to the effects of the rising of the rotation of the engine 10 or the input of disturbance to the drive wheels W, compared to the case where the clutch 30 is completely engaged after waiting for the complete synchronization. The possibility that the clutch differential rotation ΔNcl, which has become smaller, will expand again can be kept low. Therefore, this control device can suppress an increase in slipping of the clutch 30 due to the rising of the rotation of the engine 10 or the like. Therefore, this control device not only can suppress the occurrence of shock when the clutch 30 is engaged, but also can suppress a decrease in durability of the clutch 30, and the supply hydraulic pressure that is excessive for the complete engagement of the clutch 30. In addition, it is possible to suppress a decrease in responsiveness until full engagement is achieved.

このように、この制御装置は、クラッチ30におけるショックの発生を抑制できるので、惰行走行から通常走行へと復帰させる際に運転者が感じる違和感を低減させることができる。また、この制御装置は、クラッチ30を完全係合させるまでの応答性の低下を抑制できるので、惰行走行から通常走行へと復帰させる際に、運転者のアクセル操作に応じた駆動力を応答性良く車両に発生させることができ、この点においても運転者の違和感を低減させることができる。   Thus, since this control apparatus can suppress generation | occurrence | production of the shock in the clutch 30, it can reduce the discomfort which a driver | operator feels when returning from coasting driving | running | working to normal driving | running | working. Further, since this control device can suppress a decrease in responsiveness until the clutch 30 is completely engaged, when returning from coasting traveling to normal traveling, the driving force corresponding to the driver's accelerator operation is responsive. It can be generated in the vehicle well, and the driver's uncomfortable feeling can be reduced also in this respect.

1 走行制御ECU
2 エンジンECU
3 変速機ECU
10 エンジン
20 自動変速機
30 クラッチ
31 第1係合部
32 第2係合部
40 変速機本体
50 トルクコンバータ
52 タービンランナ
W 駆動輪
1 Travel control ECU
2 Engine ECU
3 Transmission ECU
DESCRIPTION OF SYMBOLS 10 Engine 20 Automatic transmission 30 Clutch 31 1st engaging part 32 2nd engaging part 40 Transmission main body 50 Torque converter 52 Turbine runner W Drive wheel

Claims (3)

エンジン側に接続された第1係合部と駆動輪側に接続された第2係合部とを有する動力断接装置を通常走行中に解放させることによって、該エンジンと当該駆動輪との間の動力伝達を遮断して、車両を惰行走行させる惰行制御部と、
惰行走行から通常走行へと復帰させる場合、前記動力断接装置における前記第1係合部と前記第2係合部の差回転が所定回転数以下まで小さくなり、該所定回転数以下の差回転の状態が所定時間継続しているならば、該動力断接装置を完全係合させる復帰制御部と、
を備えることを特徴とした車両の制御装置。
By releasing a power connection / disconnection device having a first engagement portion connected to the engine side and a second engagement portion connected to the drive wheel side during normal traveling, the engine and the drive wheel are separated from each other. A coasting control unit that intercepts the power transmission of the vehicle and coasts the vehicle,
When returning from coasting traveling to normal traveling, the differential rotation between the first engaging portion and the second engaging portion in the power connection / disconnection device is reduced to a predetermined rotational speed or less, and the differential rotation of the predetermined rotational speed or less. If the state continues for a predetermined time, a return control unit for fully engaging the power disconnection device,
A vehicle control apparatus comprising:
前記復帰制御部は、惰行走行から通常走行へと復帰させる場合、前記第1係合部の回転数と前記第2係合部の回転数とが同期する前に、該第1係合部と当該第2係合部の差回転が前記所定回転数以下まで小さくなり、該所定回転数以下の差回転の状態が前記所定時間継続しているならば、前記動力断接装置を完全係合させることを特徴とした請求項1記載の車両の制御装置。   When returning from coasting traveling to normal traveling, the return control unit is configured so that the rotation speed of the first engagement portion is synchronized with the rotation speed of the second engagement portion. If the differential rotation of the second engagement portion is reduced to the predetermined rotational speed or less and the differential rotational state of the predetermined rotational speed or less continues for the predetermined time, the power connection / disconnection device is completely engaged. The vehicle control device according to claim 1. 前記復帰制御部は、前記エンジンと前記駆動輪との間に配置された変速機の変速比が大きいほど前記所定時間を長くすることを特徴とした請求項1又は2に記載の車両の制御装置。   3. The vehicle control device according to claim 1, wherein the return control unit lengthens the predetermined time as a speed ratio of a transmission disposed between the engine and the drive wheel increases. 4. .
JP2013201719A 2013-09-27 2013-09-27 Control device of vehicle Pending JP2015068387A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013201719A JP2015068387A (en) 2013-09-27 2013-09-27 Control device of vehicle
PCT/JP2014/076230 WO2015046616A1 (en) 2013-09-27 2014-09-24 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201719A JP2015068387A (en) 2013-09-27 2013-09-27 Control device of vehicle

Publications (1)

Publication Number Publication Date
JP2015068387A true JP2015068387A (en) 2015-04-13

Family

ID=51730546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201719A Pending JP2015068387A (en) 2013-09-27 2013-09-27 Control device of vehicle

Country Status (2)

Country Link
JP (1) JP2015068387A (en)
WO (1) WO2015046616A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129216A (en) * 2016-01-20 2017-07-27 トヨタ自動車株式会社 Control device of power transmission device for vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437891B2 (en) * 2015-07-03 2018-12-12 日立オートモティブシステムズ株式会社 Automotive control device
FR3047955B1 (en) * 2016-02-19 2019-07-19 Renault S.A.S. COMPLEMENTARY SYSTEM FOR CONTROLLING A VEHICLE CLUTCH
GB2559546B (en) * 2017-02-01 2020-06-17 Jaguar Land Rover Ltd Apparatus, method and computer program for controlling a vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160729A (en) * 1981-03-27 1982-10-04 Aisin Seiki Co Ltd Automatic clutch control
JPS6449747A (en) * 1987-08-20 1989-02-27 Toyota Motor Corp Returning device for controlling coasting time of automatic transmission of vehicle
US5535863A (en) * 1994-09-02 1996-07-16 General Motors Corporation Controlled capacity torque converter clutch control during vehicle coast
JP2001304305A (en) * 2000-04-18 2001-10-31 Mitsubishi Motors Corp Transmission control device for mechanical automatic transmission
JP2004270944A (en) * 2003-03-06 2004-09-30 Luk Lamellen & Kupplungsbau Beteiligungs Kg Method for controlling clutch
JP2004301141A (en) * 2003-03-28 2004-10-28 Suzuki Motor Corp Speed changing controller of automatic transmission
US20090156355A1 (en) * 2007-12-13 2009-06-18 Hyundai Motor Company System and method for controlling clutch engagement in hybrid vehicle
JP2010169168A (en) * 2009-01-21 2010-08-05 Yamaha Motor Co Ltd Clutch control device and vehicle with the same
JP2012031939A (en) * 2010-07-30 2012-02-16 Isuzu Motors Ltd Coasting control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078884B2 (en) 2002-05-30 2008-04-23 トヨタ自動車株式会社 Coordinated control device for internal combustion engine and starting clutch
JP4075671B2 (en) 2003-04-18 2008-04-16 トヨタ自動車株式会社 Vehicle control device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160729A (en) * 1981-03-27 1982-10-04 Aisin Seiki Co Ltd Automatic clutch control
JPS6449747A (en) * 1987-08-20 1989-02-27 Toyota Motor Corp Returning device for controlling coasting time of automatic transmission of vehicle
US5535863A (en) * 1994-09-02 1996-07-16 General Motors Corporation Controlled capacity torque converter clutch control during vehicle coast
JP2001304305A (en) * 2000-04-18 2001-10-31 Mitsubishi Motors Corp Transmission control device for mechanical automatic transmission
JP2004270944A (en) * 2003-03-06 2004-09-30 Luk Lamellen & Kupplungsbau Beteiligungs Kg Method for controlling clutch
JP2004301141A (en) * 2003-03-28 2004-10-28 Suzuki Motor Corp Speed changing controller of automatic transmission
US20090156355A1 (en) * 2007-12-13 2009-06-18 Hyundai Motor Company System and method for controlling clutch engagement in hybrid vehicle
JP2010169168A (en) * 2009-01-21 2010-08-05 Yamaha Motor Co Ltd Clutch control device and vehicle with the same
JP2012031939A (en) * 2010-07-30 2012-02-16 Isuzu Motors Ltd Coasting control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129216A (en) * 2016-01-20 2017-07-27 トヨタ自動車株式会社 Control device of power transmission device for vehicle
CN107031638A (en) * 2016-01-20 2017-08-11 丰田自动车株式会社 controller and control method for vehicle
CN107031638B (en) * 2016-01-20 2019-06-25 丰田自动车株式会社 Controller and control method for vehicle

Also Published As

Publication number Publication date
WO2015046616A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6064868B2 (en) Vehicle control device
JP5494839B2 (en) Vehicle control device
JP6197874B2 (en) Vehicle control device
WO2013190653A1 (en) Vehicle controller
JP5954306B2 (en) Vehicle control device
JP5724985B2 (en) Vehicle travel control device
JP6241424B2 (en) Vehicle control device
JP5696490B2 (en) Vehicle control device
CN104755781A (en) Vehicle travel control device
WO2017069071A1 (en) Method and system for controlling sailing stop in vehicle
JP2011183963A (en) Vehicle control system
JP4077414B2 (en) Continuously variable transmission control device
JP6115685B2 (en) Vehicle control system and vehicle control method
JP2010143308A (en) Drive torque controller for vehicle
JP2015068387A (en) Control device of vehicle
US20170151952A1 (en) Lock-up-clutch control device for vehicle
EP2607670A1 (en) Control device for vehicle engine
JP5728421B2 (en) Lock-up control device and lock-up control method
JP5310941B2 (en) Control device for vehicle engine
JP6287874B2 (en) Vehicle control device
JP2012220010A (en) Vehicular control device
JP6897171B2 (en) Vehicle control system
JP2018119608A (en) Coast stop control device and coast stop control method for vehicle
JP2018119607A (en) Coast stop control device and coast stop control method for vehicle
JP2017137986A (en) Vehicle control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126