JP2015051887A - Method for producing glass fine particles and glass fine particles - Google Patents
Method for producing glass fine particles and glass fine particles Download PDFInfo
- Publication number
- JP2015051887A JP2015051887A JP2013184254A JP2013184254A JP2015051887A JP 2015051887 A JP2015051887 A JP 2015051887A JP 2013184254 A JP2013184254 A JP 2013184254A JP 2013184254 A JP2013184254 A JP 2013184254A JP 2015051887 A JP2015051887 A JP 2015051887A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- glass
- mol
- liquid phase
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Glass Compositions (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
【課題】平均粒径10〜1000nmの,B2O3含有ガラス微粒子の提供。【解決手段】2族〜12族元素の酸化物,InO1.5,SnO,PbO,SbO1.5,BiO1.5,及びTeO2よりなる群より選ばれる酸化物(MOx)を合計で0.5〜15mol%含み且つBO1.5を80〜99mol%含んでなる液相Aからなる均一な融液を調製し,液相Aに相分離を起こさせて分散媒である液相Bと分散質である液相Cとからなる組成物であるエマルジョンを生成させ,エマルジョンを冷却して液相B及び液相Cをそれぞれ対応するガラスである固相B及び固相Cへと固化させ,それにより分散媒である固相B中に固相Bより高いmol濃度でMOxを含有する分散質である固相Cが分散した形態の固体分散系を得,固体分散系を固相Bに対する溶媒で処理し固相Bを溶解除去して固相Cを回収することとを含んでなる,ガラス微粒子の製造方法。【選択図】なしTo provide glass particles containing B2O3 having an average particle diameter of 10 to 1000 nm. An oxide (MOx) selected from the group consisting of oxides of group 2 to group 12 elements, InO1.5, SnO, PbO, SbO1.5, BiO1.5, and TeO2 is 0.5 to 0.5 in total. A uniform melt composed of a liquid phase A containing 15 mol% and containing BO1.5 in an amount of 80 to 99 mol% is prepared, and the liquid phase A is phase-separated to form a liquid medium B and a dispersoid. An emulsion which is a composition comprising liquid phase C is produced, and the emulsion is cooled to solidify liquid phase B and liquid phase C into corresponding solid phase B and solid phase C, respectively. A solid dispersion system is obtained in which a solid phase C, which is a dispersoid containing MOx at a higher molar concentration than the solid phase B, is dispersed in the solid phase B, and the solid dispersion system is treated with a solvent for the solid phase B to be solidified. Recovering solid phase C by dissolving and removing phase B Comprising a method for producing glass particles. [Selection figure] None
Description
本発明は無機酸化物の微粒子を製造する方法,特にガラス微粒子を製造する方法及び当該方法によって製造できるガラス微粒子に関する。 The present invention relates to a method for producing fine particles of inorganic oxide, and more particularly to a method for producing glass fine particles and glass fine particles that can be produced by the method.
種々の微粒子が,例えば,化学反応触媒・光触媒,医薬品,電子材料等におけるフィラーや焼結助剤など様々な分野で使用されている。そのような用途に用いる粒子としては,粒径や形状の制御により各種特性を向上させたものが求められている。 Various fine particles are used in various fields such as fillers and sintering aids in chemical reaction catalysts / photocatalysts, pharmaceuticals, electronic materials, and the like. As particles used for such applications, particles having various properties improved by controlling the particle size and shape are required.
粒子の製造方法は,原料の大きな塊を粉砕すること(ブレイクダウン)による方法と,分子レベルの小さな原料から成長させていくこと(ビルドアップ)による方法との2つに大まかに分けることができる。ブレイクダウンによる方法では原料の大きな塊さえあればどのような組成の粒子でも製造することができるが,到達できる粒径としてはせいぜいサブミクロンオーダーが技術的な限界であり,実際上は量産における粒径の下限はこれより大きい。ビルドアップによる方法は更に気相法と液相法に分けられる。気相法は蒸気の凝縮・核成長を利用するものであり,CVD法,プラズマ法等がある。物質の蒸気圧等の物性に依存して,気相法では微粒子化できる材料とできない材料があり,また,気相法で大量に粒子を製造することは困難である。液相法には水熱合成法,ゾル−ゲル法などがある。液相は気相に比べて濃度の高い流体であるため,液相法は量産に向いているが,粒径が小さい段階で粒子成長を止めることが難しく,また,化学反応を利用するため微粒子化できる材料も限られる。 The particle production method can be roughly divided into two methods: a method by crushing a large lump of raw material (breakdown) and a method by growing from a raw material with a small molecular level (build-up). . With the breakdown method, particles of any composition can be produced as long as there is a large lump of raw material, but the sub-micron order is the technical limit for the particle size that can be reached. The lower limit of the diameter is larger than this. The build-up method can be further divided into a gas phase method and a liquid phase method. The vapor phase method uses vapor condensation / nuclear growth, and includes a CVD method and a plasma method. Depending on the physical properties such as the vapor pressure of the substance, there are materials that can be made fine particles by the gas phase method and materials that cannot be made by the gas phase method, and it is difficult to produce a large amount of particles by the gas phase method. Liquid phase methods include hydrothermal synthesis and sol-gel methods. Since the liquid phase is a fluid with a higher concentration than the gas phase, the liquid phase method is suitable for mass production, but it is difficult to stop particle growth when the particle size is small, and fine particles are used because chemical reactions are used. The materials that can be made are limited.
近年,セラミックコンデンサ(キャパシタ)の分野で焼結助剤等としてガラス微粒子が用いられている。同分野では,特に近年,コンデンサの小型化,高機能化を達成するために粒径の小さいガラスが用いられており,例えば,粒子径が100〜150nmのガラス微粒子を焼結助剤として用いるのが有利であることが特許文献1,2に記載されている。当該文献では,1100℃以下という低温での焼結が可能なものが求められており,低温焼結はSiO2微粒子ではできないとされている。また,希土類〔Sc,Y,及びランタノイド(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu)〕酸化物は,セラミック誘電体粒子の表面に固溶してコア・シェルを形成し,セラミック誘電体の高温絶縁抵抗特性が向上させることが記載されており(特許文献1),セラミック誘電体と共に用いる上で希土類酸化物を含有したガラスは有用である。 In recent years, glass fine particles have been used as sintering aids in the field of ceramic capacitors. In this field, in particular, in recent years, glass having a small particle size has been used in order to achieve miniaturization and high functionality of the capacitor. For example, glass fine particles having a particle size of 100 to 150 nm are used as a sintering aid. Are described in Patent Documents 1 and 2. In this document, a material capable of being sintered at a low temperature of 1100 ° C. or lower is required, and low temperature sintering cannot be performed with SiO 2 fine particles. In addition, rare earth [Sc, Y, and lanthanoid (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)] oxides are ceramic dielectric particles. It is described that a high temperature insulation resistance characteristic of a ceramic dielectric is improved by forming a core / shell by solid solution on the surface of the ceramic (Patent Document 1), which contains a rare earth oxide when used with a ceramic dielectric. Glass is useful.
更には,CaZrO3系セラミックとLi2O−MgO−ZnO−B2O3−SiO2系ガラスとを含んだ積層セラミック電子部品が,特許文献3に開示されている。同文献には,1000℃以下の温度で焼成できることが好ましいことが記載されている。 Further, Patent Document 3 discloses a multilayer ceramic electronic component including CaZrO 3 ceramic and Li 2 O—MgO—ZnO—B 2 O 3 —SiO 2 glass. This document describes that it is preferable to be able to fire at a temperature of 1000 ° C. or lower.
他方,複数の酸化物を成分とするガラスについて,加熱下における相分離現象が知られている(非特許文献1)。 On the other hand, a phase separation phenomenon under heating is known for glass composed of a plurality of oxides (Non-Patent Document 1).
本発明の出願時点で未公開である国際出願PCT/JP2013/056239には,Na2O−B2O3−SiO2系等のガラスの相分離現象を利用した球状ガラス粒子の製造方法が記載されている。しかし,SiO2を含む系から得られる粒子は90mol%以上のSiO2を含む組成ものとなってしまう。BaTiO3等を用いた積層セラミックコンデンサ用の焼結助剤として低融点材料とすることや,希土類元素を多く含有させることは困難である。 The international application PCT / JP2013 / 056239, which has not been published at the time of filing of the present invention, describes a method for producing spherical glass particles using the phase separation phenomenon of glass such as Na 2 O—B 2 O 3 —SiO 2 system. Has been. However, the particles obtained from a system containing SiO 2 becomes a composition comprising SiO 2 of more than 90 mol%. It is difficult to use a low-melting-point material as a sintering aid for a multilayer ceramic capacitor using BaTiO 3 or the like, or to contain a large amount of rare earth elements.
本発明はガラス微粒子の製造のための,上述した従来の製造方法とは異なる新たな製造方法であって,特に10〜1000nmという非常に粒径の小さい,B2O3系ガラス微粒子を得ることを可能にする製造方法の提供を目的とする。 The present invention is a new production method different from the above-described conventional production method for producing glass fine particles, and in particular, B 2 O 3 glass fine particles having a very small particle size of 10 to 1000 nm are obtained. It is an object of the present invention to provide a manufacturing method that makes it possible.
本発明者は,ガラスの融液における液−液相分離現象を利用し,すなわち,均一な液相Aを液相Bと液相Cとに相分離させ,液相Bの中に球状の液相Cが分散して分離した状態とし,この状態で融液を冷却し固化させて,固相Bの中に球状の固相Cが分離した状態とした後,固相Bを溶媒で溶解除去することで,ガラス微粒子を簡便に製造できることを見出した。また特に,2族〜12族元素酸化物,例えば,InO1.5,SnO,PbO,SbO1.5,BiO1.5,TeO2から選択される酸化物(MOx)を合計で0.5〜15mol%,BO1.5を80〜99mol%含んでなる液相Aを用いた場合には,10〜1000nmのガラス微粒子ができることを見出した。本発明はこれらの発見に基づき完成させたものであり,以下を提供する。 The inventor makes use of the liquid-liquid phase separation phenomenon in a glass melt, that is, a uniform liquid phase A is phase-separated into a liquid phase B and a liquid phase C, and a spherical liquid is contained in the liquid phase B. After the phase C is dispersed and separated, the melt is cooled and solidified in this state, and the solid phase B is separated into the solid phase B, and then the solid phase B is dissolved and removed with a solvent. As a result, it was found that glass particles can be easily produced. In particular, Group 2 12 group element oxide, e.g., InO 1.5, SnO, PbO, SbO 1.5, BiO 1.5, 0 oxide selected from the TeO 2 a (MO x) in total. When liquid phase A containing 5 to 15 mol% and BO 1.5 to 80 to 99 mol% was used, it was found that 10 to 1000 nm glass fine particles were formed. The present invention has been completed based on these findings and provides the following.
(1)2族〜12族元素の酸化物,InO1.5,SnO,PbO,SbO1.5,BiO1.5,及びTeO2よりなる群より選ばれる1種又は2種以上の酸化物(MOx)を合計で0.5〜15mol%含み且つBO1.5を80〜99mol%含んでなる液相Aからなる均一な組成物である融液を調製することと,液相Aに相分離を起こさせて分散媒である液相Bと分散質である液相Cとからなる組成物であるエマルジョンを生成させることと,該エマルジョンを冷却して液相B及び液相Cをそれぞれ対応するガラスである固相B及び固相Cへと固化させ,それにより分散媒である該固相B中に該固相Bより高いmol濃度でMOxを含有する分散質である該固相Cが分散した形態の固体分散系を得ることと,該固体分散系を該固相Bに対する溶媒で処理し該固相Bを溶解除去して該固相Cを回収することとを含んでなる,ガラス微粒子の製造方法。
(2)該液相Aが更にAlO1.5,GaO1.5,GeO2のいずれか1種又は2種以上を更に含み,これらの成分の合計量が0.1〜10mol%である,上記(1)の製造方法。
(3)該溶媒が,水及び/又はアルコールを含んでなるものである,上記(1)又は(2)の製造方法。
(4)該相分離が,軟化点以上且つ融点未満の温度領域内の温度まで液相Aを冷却することにより行われるものである,上記(1)〜(3)の何れかの製造方法。
(5)該相分離が,該融液を軟化点未満の温度まで一旦冷却した後,軟化点以上且つ融点未満の温度領域内の温度まで再加熱することにより行われるものである,上記(1)〜(3)の何れかの製造方法。
(6)該ガラス微粒子の平均粒径が10〜1000nmである,上記(1)〜(5)の何れかの製造方法。
(7)2族〜12族元素の酸化物,InO1.5,SnO,PbO,SbO1.5,BiO1.5,及びTeO2よりなる群より選ばれる1種又は2種以上の酸化物(MOx)を合計で7〜80mol%,
BO1.5を8〜90mol%,及び
AlO1.5+GaO1.5+GeO2を0〜25mol%の範囲でそれぞれ含有し,
平均粒径が30〜300nmであることを特徴とするガラス微粒子。
(8)MOx,BO1.5,AlO1.5,GaO1.5,及びGeO2
の合計含有量が90mol%以上であることを特徴とする上記(7)のガラス微粒子。
(9)ガラス軟化点が300〜800℃であることを特徴とする上記(7)又は(8)のガラス微粒子。
(10)平均粒径が50〜150nmであることを特徴とする上記(7)〜(9)の何れかのガラス微粒子。
(11)上記(7)〜(10)の何れかのガラス微粒子を含んでなる積層セラミックコンデンサ用焼結助剤。
(12)上記(7)〜(10)の何れかのガラス微粒子を使用した積層セラミックコンデンサ。
(1) One or more oxides selected from the group consisting of Group 2 to Group 12 oxides, InO 1.5 , SnO, PbO, SbO 1.5 , BiO 1.5 , and TeO 2 Preparing a melt which is a uniform composition comprising liquid phase A containing (MO x ) in a total amount of 0.5 to 15 mol% and containing BO 1.5 in an amount of 80 to 99 mol%; Phase separation is caused to produce an emulsion that is a composition comprising liquid phase B that is a dispersion medium and liquid phase C that is a dispersoid, and the emulsion is cooled to form liquid phase B and liquid phase C, respectively. solidified into the corresponding solid is glass to phase B and solid phase C, whereby said solid phase is a dispersoid containing MO x with higher mol concentration than the solid phase B in the solid phase B is a dispersion medium Obtaining a solid dispersion in which C is dispersed; and Solid phase comprising a that is treated with a solvent to dissolve and remove the solid phase B to recover the solid phase C relative to B, the production method of the glass particles.
(2) The liquid phase A further contains one or more of AlO 1.5 , GaO 1.5 and GeO 2 , and the total amount of these components is 0.1 to 10 mol%. The manufacturing method of said (1).
(3) The production method of (1) or (2) above, wherein the solvent comprises water and / or alcohol.
(4) The method according to any one of (1) to (3) above, wherein the phase separation is performed by cooling the liquid phase A to a temperature in a temperature region not lower than the softening point and lower than the melting point.
(5) The phase separation is carried out by once cooling the melt to a temperature below the softening point and then reheating it to a temperature in the temperature region above the softening point and below the melting point. ) To (3).
(6) The method according to any one of (1) to (5) above, wherein the glass fine particles have an average particle size of 10 to 1000 nm.
(7) One or more oxides selected from the group consisting of oxides of group 2 to group 12 elements, InO 1.5 , SnO, PbO, SbO 1.5 , BiO 1.5 , and TeO 2 (MO x ) in total 7 to 80 mol%,
Each containing BO 1.5 in the range of 8-90 mol% and AlO 1.5 + GaO 1.5 + GeO 2 in the range of 0 to 25 mol%,
Glass fine particles having an average particle size of 30 to 300 nm.
(8) MO x , BO 1.5 , AlO 1.5 , GaO 1.5 , and GeO 2
(7) The glass fine particle according to (7), wherein the total content of is 90 mol% or more.
(9) The glass fine particles according to (7) or (8) above, wherein the glass softening point is 300 to 800 ° C.
(10) The glass fine particles according to any one of (7) to (9) above, wherein the average particle diameter is 50 to 150 nm.
(11) A sintering aid for a multilayer ceramic capacitor comprising the glass fine particles according to any one of (7) to (10) above.
(12) A multilayer ceramic capacitor using the glass fine particles according to any one of (7) to (10) above.
本発明によれば,平均粒径が10〜1000nmのB2O3含有ガラス微粒子であって,1000℃以下,更には800℃以下の低い軟化点を有するものを得ることができる。これらは,積層セラミックコンデンサの製造において小型化を容易にする焼結助材として有利である。また,本発明のガラス微粒子であって希土類元素を含有するものは,セラミック誘電体の高温絶縁抵抗特性を向上させ,絶縁性能を高めた積層セラミックコンデンサを与えることができる。 According to the present invention, it is possible to obtain B 2 O 3 -containing glass fine particles having an average particle diameter of 10 to 1000 nm and having a low softening point of 1000 ° C. or lower, and further 800 ° C. or lower. These are advantageous as sintering aids that facilitate downsizing in the production of multilayer ceramic capacitors. Further, the glass fine particles of the present invention containing a rare earth element can provide a multilayer ceramic capacitor having improved high-temperature insulation resistance characteristics of the ceramic dielectric and enhanced insulation performance.
本発明は,均一な融液から液相−液相分離させたとき,分散質側の液相が粒径の揃った球状となり,そのまま冷却し固化すれば粒径の揃ったガラス微粒子が分散媒中に分散した形の固体分散系が形成される,という現象を利用したものである。従って,本発明は,均一な融液から相分離が生じ且つ冷却固化して得られる固体分散系の分散媒のみを溶媒で溶解除去できるものである限り,種々の組成のガラスを用いて行うことができる。 In the present invention, when the liquid phase and the liquid phase are separated from a uniform melt, the liquid phase on the dispersoid side becomes a spherical shape with a uniform particle size. It utilizes the phenomenon that a solid dispersion is formed in a dispersed form. Therefore, the present invention is carried out using glass of various compositions as long as phase separation occurs from a uniform melt and only a solid dispersion medium obtained by cooling and solidification can be dissolved and removed with a solvent. Can do.
本明細書において,組成物又はその部分について「液相」というときは,それらが融点以上の温度にある場合のみならず,軟化点以上融点未満の温度範囲にある場合も含む。 In the present specification, the term “liquid phase” for a composition or a part thereof includes not only the case where they are at a temperature higher than the melting point, but also the case where they are in the temperature range above the softening point and lower than the melting point.
特に,本発明においては,BO1.5を一成分として含む均一な融液(液相A)を先ず調製し,次いでこれに相分離を起こさせる。相分離によって,液相Aは,分散媒をなす連続相(液相B)と,この連続相中に分散された分散質(液相C)とに分かれ,全体としてエマルジョンが形成されるから,これを冷却して両相を固化させて(それぞれ,固相B及びC)固体分散系とし,分散媒(固相B)に対する溶媒を用いてこれを溶解除去することで,その中に分散されていた固相Cをガラス微粒子として得ることができる。 In particular, in the present invention, a uniform melt (liquid phase A) containing BO 1.5 as one component is first prepared, and then phase separation is caused. By phase separation, liquid phase A is divided into a continuous phase (liquid phase B) forming a dispersion medium and a dispersoid (liquid phase C) dispersed in the continuous phase, and an emulsion is formed as a whole. This is cooled to solidify both phases (solid phases B and C, respectively) to form a solid dispersion system, and this is dissolved and removed using a solvent for the dispersion medium (solid phase B). The solid phase C that has been obtained can be obtained as glass fine particles.
本発明において,MOx(2族〜12族元素の酸化物,InO1.5,SnO,PbO,SbO1.5,BiO1.5,及びTeO2よりなる群より選ばれる1種又は2種以上の酸化物)を合計で0.5〜15mol%,BO1.5を80〜99mol%含んでなる均一な融液は,温度の低下による液相−液相分離を起こし,微粒子を生ずる。液相Aは,BO1.5濃度が高くこのため非常に粘性の高いものであるため,生じた液相Cの粒子の成長や2個以上の粒子の合体が効果的に抑えられる。その結果,好ましくは平均粒径(個数平均粒径)が10〜1000nm,より好ましくは20〜500nm,特に好ましくは30〜300nmの範囲にある非常に細かいガラス粒子が連続相中に分散した分散系が形成される。 In the present invention, MO x (Group 2 to Group 12 oxide, InO 1.5 , SnO, PbO, SbO 1.5 , BiO 1.5 , and TeO 2 is selected from one or two kinds. A uniform melt containing 0.5 to 15 mol% of the above oxide) and 80 to 99 mol% of BO 1.5 causes liquid phase-liquid phase separation due to a decrease in temperature and produces fine particles. Since the liquid phase A has a high BO 1.5 concentration and is therefore very viscous, the growth of the generated liquid phase C particles and the coalescence of two or more particles can be effectively suppressed. As a result, a dispersion in which very fine glass particles having an average particle size (number average particle size) of preferably 10 to 1000 nm, more preferably 20 to 500 nm, and particularly preferably 30 to 300 nm are dispersed in the continuous phase. Is formed.
この分散系を冷却固化して得られるガラスは,BO1.5を相対的に高いmol%で含有する固相(ガラス)である分散媒中に,BO1.5を相対的に低いmol%で含有する球状の固相(ガラス)である分散質が分散した固体分散系である。この分散媒は,BO1.5の濃度(mol%)が分散質である固相に比べて高いためプロトン性極性溶媒への溶解性が高く,実質上に分散媒のみを,それらの溶媒を用いて溶解させて除去でき,それにより分散質であるガラス微粒子を回収することができる。こうして,平均粒径が好ましくは10〜1000nm,より好ましくは20〜500nm,更に好ましくは30〜300nm,特に好ましくは50〜150nmのガラス微粒子が得られる。 Glass obtained The dispersion was cooled and solidified, in a dispersion medium is a solid phase containing BO 1.5 at a relatively high mol% (glass), the BO 1.5 relatively low mol% It is a solid dispersion system in which a dispersoid which is a spherical solid phase (glass) contained in is dispersed. Since this dispersion medium has a higher concentration (mol%) of BO 1.5 compared to the solid phase that is a dispersoid, it has high solubility in a protic polar solvent. It can be dissolved and removed by use, whereby the fine glass particles that are dispersoids can be recovered. Thus, glass fine particles having an average particle diameter of preferably 10 to 1000 nm, more preferably 20 to 500 nm, still more preferably 30 to 300 nm, and particularly preferably 50 to 150 nm are obtained.
成分面では,本発明によれば,(i) 2族〜12族元素の酸化物,InO1.5,SnO,PbO,SbO1.5,BiO1.5,及びTeO2よりなる群より選ばれる1種又は2種以上の酸化物(MOx)を合計で好ましくは7〜80mol%の範囲で,(ii) BO1.5を好ましくは8〜90mol%の範囲で,及び (iii)
AlO1.5,GaO1.5,GeO2の1種又は2種以上を合計で好ましくは0〜25mol%の範囲で,それぞれ含有する種々のガラス微粒子を容易に得ることができる。
In terms of components, according to the present invention, (i) selected from the group consisting of oxides of group 2 to group 12 elements, InO 1.5 , SnO, PbO, SbO 1.5 , BiO 1.5 , and TeO 2. One or more oxides (MO x ) in total preferably in the range of 7-80 mol%, (ii) BO 1.5 in the range of 8-90 mol%, and (iii)
Various glass fine particles each containing one or more of AlO 1.5 , GaO 1.5 and GeO 2 in a total amount of preferably 0 to 25 mol% can be easily obtained.
こうして得られるBO1.5を含有するガラス微粒子は,1000℃以下,更には800℃以下の低い軟化点,より具体的には800〜300℃の範囲の低い軟化点を有する。 The glass fine particles containing BO 1.5 thus obtained have a low softening point of 1000 ° C. or lower, more preferably 800 ° C. or lower, more specifically a low softening point in the range of 800 to 300 ° C.
本発明におけるガラスの均一な融液の組成について,以下により詳しく説明する。
2族〜12族元素酸化物,InO1.5,SnO,PbO,SbO1.5,BiO1.5,TeO2から選択される1種又は2種以上の酸化物(MOx)は,BO1.5とガラスを形成する成分であり,80mol%を超えるBO1.5を含む液相において相分離を引き起こす成分であり,水等の溶媒に対しては難溶性を示す固相を構成する成分である。原料を溶融させて得られる均一な液相A中のMOxの含有量が多過ぎると,相分離の進行速度が速くなる結果,粒子径が大きくなり過ぎてしまい,平均粒径が10〜1000nmの微粒子を得ることはできない。逆に液相A中のMOxの含有量が少な過ぎると,不溶性の相の収率が低くなってしまう。このため,液相A中の(従って,原料中の)MOxの含有量は,その合計量が,好ましくは,0.5〜15mol%,より好ましくは0.7〜10mol%,更に好ましくは0.8〜8mol%,特に好ましくは0.9〜6mol%である。
The composition of the uniform glass melt in the present invention will be described in more detail below.
One or more oxides (MO x ) selected from Group 2 to Group 12 element oxides, InO 1.5 , SnO, PbO, SbO 1.5 , BiO 1.5 , TeO 2 are BO. 1.5 is a component that forms glass, and is a component that causes phase separation in a liquid phase containing more than 80 mol% of BO 1.5 , and constitutes a solid phase that is hardly soluble in solvents such as water. It is an ingredient. If the content of MO x in the uniform liquid phase A obtained by melting the raw material is too large, the speed of phase separation will increase, resulting in an excessively large particle size and an average particle size of 10 to 1000 nm. Of fine particles cannot be obtained. Conversely, if the MO x content in the liquid phase A is too small, the yield of the insoluble phase will be low. Therefore, the total amount of MO x in the liquid phase A (and therefore in the raw material) is preferably 0.5 to 15 mol%, more preferably 0.7 to 10 mol%, and still more preferably 0.8 to 8 mol%, particularly preferably 0.9 to 6 mol%.
また,MOxの選択あたっては,BO1.5とガラスを形成しやすく,かつ水に難溶解性なガラスを与えるものである成分を少なくとも1種含有させることが特に好ましい。MOxにおけるそのような特に好ましい成分としては,例えば,MgO,BaO,MnO2,YO1.5,ZrO2,NbO2.5,TiO2,WO3,VO2.5,FeO1.5,ZnO2,及び希土類金属酸化物例えば,DyO1.5,HoO1.5等のランタノイド酸化物,並びにPbO,SbO1.5,BiO1.5,TeO2が挙げられる。なお,上記MOXにおいては複数の原子価を有するものが存在するが,上記の酸化物の原子価は例示である。すなわち,「MOX」はカチオンの数を既定するための表記に過ぎず,上記で具体的に表示した以外の原子価によるものも含まれる。 Further, when selecting MO x , it is particularly preferable to contain at least one component that easily forms glass with BO 1.5 and gives glass that is hardly soluble in water. Such particularly preferred components in MO x include, for example, MgO, BaO, MnO 2 , YO 1.5 , ZrO 2 , NbO 2.5 , TiO 2 , WO 3 , VO 2.5 , FeO 1.5 , Examples include ZnO 2 and rare earth metal oxides such as lanthanoid oxides such as DyO 1.5 and HoO 1.5 , and PbO, SbO 1.5 , BiO 1.5 and TeO 2 . In addition, although there exists what has a some valence in said MO X , the valence of said oxide is an illustration. In other words, “MO X ” is merely a notation for determining the number of cations, and includes valences other than those specifically shown above.
BO1.5は,溶媒に溶解性の固相Bを構成する主成分である。液相A中のBO1.5の含有量は好ましくは80〜99mol%,より好ましくは85〜99mol%,更に好ましくは90〜99mol%である。 BO 1.5 is a main component constituting a solid phase B that is soluble in a solvent. The content of BO 1.5 in the liquid phase A is preferably 80 to 99 mol%, more preferably 85 to 99 mol%, still more preferably 90 to 99 mol%.
液相Aに含有させておくことができる任意成分であるAlO1.5,GaO1.5,GeO2は,MOxとBO1.5との相溶性を高め,均一な液相Aを生成させ易くする効果,及び液相Aを急冷してガラスフレークを作製する短時間における相分離を抑制する効果がある。よって,MOxの含有量を多くしてガラス微粒子の収率を高めつつ粒子径を小さくするためには,AlO1.5,GaO1.5,GeO2の1種又は2種以上を積極的に含有させることが好ましい。ただし,これらの成分は最終的に固相Cに含まれることとなるから,ガラス微粒子の熱物性を考慮して含有量を決定することが好ましい。AlO1.5+GaO1.5+GeO2を含有させる場合その含有量は,好ましくは0.1〜10mol%,より好ましくは0.5〜7mol%,更に好ましくは1〜5mol%である。 AlO 1.5 , GaO 1.5 , and GeO 2 , which are optional components that can be contained in the liquid phase A, increase the compatibility of MO x and BO 1.5 to produce a uniform liquid phase A. It has the effect of facilitating the prevention and the effect of suppressing phase separation in a short time in which the liquid phase A is rapidly cooled to produce glass flakes. Accordingly, in order to reduce the particle size while increasing the yield of the glass particles by increasing the content of MO x is, AlO 1.5, GaO 1.5, 1 kind of GeO 2 or active two or more It is preferable to make it contain. However, since these components are finally contained in the solid phase C, it is preferable to determine the content in consideration of the thermophysical properties of the glass fine particles. When AlO 1.5 + GaO 1.5 + GeO 2 is contained, the content is preferably 0.1 to 10 mol%, more preferably 0.5 to 7 mol%, and still more preferably 1 to 5 mol%.
また,任意成分として,液相Aにアルカリ金属酸化物LiO0.5,NaO0.5,KO0.5の1種又は2種以上を含有させておくことができる。これらの成分は固相Cに残存し,ガラス微粒子の軟化点を下げる。しかし同時にガラス微粒子の耐水性も下げるため,それらの含有量は,好ましくは5mol%以下,より好ましくは3mol%以下,更に好ましくは1mol%以下に止めるべきである。 As an optional component, the liquid phase A may contain one or more of alkali metal oxides LiO 0.5 , NaO 0.5 , and KO 0.5 . These components remain in the solid phase C and lower the softening point of the glass particles. However, in order to reduce the water resistance of the glass fine particles at the same time, their content should be preferably 5 mol% or less, more preferably 3 mol% or less, and still more preferably 1 mol% or less.
また,MOx,BO1.5,AlO1.5,GaO1.5,及びGeO2
の合計含有量を,好ましくは90mol%以上,より好ましくは95%以上とし,任意成分として,MOxを含んだ分散質の相分離に実質的影響を及ぼさない程度に,液相Aに他の成分,例えばSiO2等を少量含有させることは差し支えない。
Also, MO x , BO 1.5 , AlO 1.5 , GaO 1.5 , and GeO 2
The total content is preferably 90 mol% or more, more preferably 95% or more, as an optional component, to the extent that does not substantially affect the phase separation of the dispersoid containing MO x, the other liquid phase A A small amount of a component such as SiO 2 may be contained.
液相Aに,任意成分として,上記以外の金属酸化物や,ハロゲン化金属(フッ化,塩化,臭化又はヨウ化金属)等の金属塩を含有させてもよい。液相A中のそれら任意成分の少なくとも一部は,不溶性の固相Cに側にも含有されることになり,その結果,多成分の球状ガラス微粒子が得られる。このことは,含有させる任意成分の種類や組み合わせ,及びそれらの量の調節を通じて,ガラス微粒子に新たな光学特性や触媒特性等の機能を付加するための手段を提供する。 The liquid phase A may contain, as an optional component, metal oxides other than those described above and metal salts such as metal halides (fluoride, chloride, bromide or iodide). At least a part of these optional components in the liquid phase A is also contained in the insoluble solid phase C, and as a result, multicomponent spherical glass fine particles are obtained. This provides a means for adding new functions such as optical properties and catalytic properties to the glass fine particles through adjustment of the types and combinations of optional components to be contained and their amounts.
本発明において,相分離は,原料を高温で相溶させた状態の液相Aからなる均一な組成物である融液を,軟化点以上且つ融点未満の温度領域(以下,「相分離温度領域」ともいう。)内の温度にまで冷却することによって起こさせることができる。冷却の速度は適宜選択でき,例えば,組成物を融液の状態から自然放冷することにより,相分離温度領域を単に通過させるだけでもよく,また,相分離温度領域内において,組成物をある一定温度で適宜の時間保持してもよく,更には,相分離温度領域内である限り,再加熱して組成物の温度を高めてもよい。液相Aを相分離温度領域におく時間を長くとると,微粒子の成長が促され,粒径を増大させ易い。 In the present invention, the phase separation is performed in such a manner that the melt, which is a uniform composition composed of the liquid phase A in a state in which the raw materials are mixed at a high temperature, is melted into a temperature range above the softening point and below the melting point (hereinafter referred to as “phase separation temperature range” It can also be caused by cooling to the temperature within. The rate of cooling can be selected as appropriate. For example, the composition may be allowed to cool naturally from the melt state, and simply pass through the phase separation temperature region, and the composition may be within the phase separation temperature region. The composition may be kept at a constant temperature for an appropriate time, and may be reheated to raise the temperature of the composition as long as it is within the phase separation temperature range. If the time for putting the liquid phase A in the phase separation temperature region is long, the growth of fine particles is promoted and the particle size is easily increased.
相分離はまた,組成物を均一な融液の状態から軟化点未満の温度(例えば,室温)まで一旦急冷した後,再度相分離温度領域まで加熱して適宜の時間相分離温度領域内に保持することによっても,起こさせることができる。融液の状態から軟化点未満の温度まで急冷しただけでは,冷却速度が速い程相分離は起こり難く,たとえ起こってもごく僅かであるが,そのようにして得られた固化物(ガラス)を,相分離温度領域内の温度まで再加熱することで,相分離を進行させ,液相C(粒子)の発生と粒子の成長とを促すことができる。 In phase separation, the composition is rapidly cooled from a uniform melt state to a temperature lower than the softening point (for example, room temperature), and then heated again to the phase separation temperature region and maintained in the phase separation temperature region for an appropriate time. Can also be awakened. Just by rapidly cooling from the melt state to a temperature below the softening point, the higher the cooling rate, the more difficult the phase separation occurs. Even if it occurs, the solidified product (glass) obtained in this way is negligible. By reheating to a temperature within the phase separation temperature region, phase separation can be advanced, and generation of liquid phase C (particles) and particle growth can be promoted.
相分離にはまた,上述の2通りの方法の組み合わせを用いてもよい。すなわち,原料を高温で相溶させた状態の液相Aからなる均一な組成物である融液を,相分離温度領域内の温度にまで冷却して相分離を起こさせ,次いで冷却(例えば室温まで)して固化させてガラスとしたものを,その後適宜の時期に,再度相分離温度領域まで加熱して粒子の成長を更に促してもよい。 A combination of the two methods described above may also be used for phase separation. That is, the melt, which is a uniform composition composed of the liquid phase A in which the raw materials are mixed at a high temperature, is cooled to a temperature within the phase separation temperature region to cause phase separation, and then cooled (for example, at room temperature). The glass that has been solidified by heating to the phase separation temperature region may be heated again at an appropriate time to further promote particle growth.
相分離に要する時間は,ガラス組成,相分離時の温度,目標とする粒径によって異なるが,通常は数分〜数時間の熱処理を行えばよい。 The time required for the phase separation varies depending on the glass composition, the temperature at the time of phase separation, and the target particle size, but usually heat treatment for several minutes to several hours may be performed.
本発明において,「分散媒(固相B)に対する溶媒」というときは,実質的に分散媒のみを溶解させて後に分散質(固相C)である微粒子を溶液中に残すことのできる溶媒であればよい。
固体分散系の分散媒を溶解させる溶媒については,実質上分散質を溶解させずに分散媒のみを溶解させる溶媒であればよく,それ以外に特に限定はない。好ましいのはプロトン性極性溶媒であり,特に,水,アルコール又はこれらの混合物を好適に用いることができる。固相C(微粒子)が水溶性の酸化物を多く含む場合には,アルコールを用いるのが好ましい。また,溶媒を加熱してBO1.5の溶解度を上げることによっても,分散質の選択的溶解を促進できる。
In the present invention, the term “solvent for the dispersion medium (solid phase B)” is a solvent that can substantially dissolve only the dispersion medium and later leave the fine particles as the dispersoid (solid phase C) in the solution. I just need it.
The solvent for dissolving the dispersion medium of the solid dispersion system is not particularly limited as long as it is a solvent that can dissolve only the dispersion medium without substantially dissolving the dispersoid. Preferable is a protic polar solvent, and in particular, water, alcohol or a mixture thereof can be suitably used. When the solid phase C (fine particles) contains a lot of water-soluble oxides, it is preferable to use alcohol. Also, selective dissolution of the dispersoid can be promoted by heating the solvent to increase the solubility of BO 1.5 .
上記のアルコールとしては,特に限定されるわけではないが,炭素数1〜4のアルコールが好ましい。また,モノアルコールでもポリアルコールでもよく,ポリアルコールとしては,例えばグリコール類が挙げられる。取り扱い上好ましいアルコールの例として,エタノールが挙げられる。 Although it does not necessarily limit as said alcohol, A C1-C4 alcohol is preferable. Monoalcohol or polyalcohol may be used, and examples of the polyalcohol include glycols. An example of a preferable alcohol for handling is ethanol.
更に,固相Cの溶解度が低くなるように,上記溶媒に酸又は塩基を加えてpHを調整することもできる。 Furthermore, the pH can be adjusted by adding an acid or a base to the solvent so that the solubility of the solid phase C becomes low.
固体分散系を溶媒で処理して得られる微粒子が分散した溶液からの微粒子の取り出しは,遠心分離等,適宜の固液分離手段を用いて行うことができる。 Extraction of fine particles from a solution in which fine particles obtained by treating a solid dispersion with a solvent are dispersed can be performed using an appropriate solid-liquid separation means such as centrifugation.
以下,実施例を参照して本発明を更に具体的に説明するが,本発明がそれら実施例に限定されることは意図しない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not intended to be limited to these examples.
〔実施例1〜16〕
表1〜3に記載の組成を与えるように混合した原料を白金坩堝にて表に示した溶融温度で溶融させた後,融液をステンレススチール製の冷却ロールにて急冷し,厚さ0.2〜0.3mmのガラスフレークを作製した。ガラスフレークは透明又はわずかに濁っていた。このガラスフレークを表に示した条件で熱処理して,相分離を起こさせた。熱処理後のガラスは軟化により変形・融着していた。これを粉末X線回折により分析し,非晶質中に結晶質のB2O3が含まれたものであることを確認した。BO1.5を相対的に高いmol%で含有するものである連続相を80℃の水に溶解させ,濁った水溶液を得た。水溶液を遠心分離に付して微粒子を沈殿させた。洗浄工程として,沈殿した微粒子に再度水を加えて超音波によって分散させ,2度目の遠心分離に付して微粒子を沈殿させた。沈殿した微粒子にさらに水を加えて超音波分散させたのち,凍結乾燥に付して微粒子を回収した。粉末X線回折により,回収した微粒子が非晶質であることを確認した。走査型電子顕微鏡(SEM)での観察により粒子径を測定した。電顕像より求められた平均粒径(個数平均粒径)を表に示す。また,粒子についてDTAによりガラス転移点,屈伏点,軟化点を調べた。すなわち,各ガラス組成物の粉末状試料の約20〜50mgを白金セルに入れ,示差熱分析装置(型名「TG−8120」,(株)リガク製)を用いて,アルミナ粉末を標準試料として大気雰囲気下において室温から1000℃まで20℃/分の昇温速度でDTA曲線を得た。最初の吸熱ピークの開始点(外挿点)をガラス転移点とし,その吸熱の極小値の温度を屈伏点とし,第二の吸熱ピークの開始点(外挿点)をガラス軟化点とした。
[Examples 1 to 16]
After the raw materials mixed so as to give the compositions shown in Tables 1 to 3 were melted at a melting temperature shown in the table in a platinum crucible, the melt was quenched with a stainless steel cooling roll to obtain a thickness of 0. 2-0.3 mm glass flakes were prepared. The glass flakes were clear or slightly cloudy. This glass flake was heat-treated under the conditions shown in the table to cause phase separation. The glass after the heat treatment was deformed and fused by softening. This was analyzed by powder X-ray diffraction, and it was confirmed that amorphous B 2 O 3 was contained in the amorphous material. A continuous phase containing BO 1.5 at a relatively high mol% was dissolved in water at 80 ° C. to obtain a cloudy aqueous solution. The aqueous solution was centrifuged to precipitate fine particles. As a washing step, water was added again to the precipitated fine particles, dispersed by ultrasonic waves, and subjected to a second centrifugation to precipitate the fine particles. Water was further added to the precipitated microparticles and dispersed ultrasonically, followed by freeze drying to collect the microparticles. The collected fine particles were confirmed to be amorphous by powder X-ray diffraction. The particle diameter was measured by observation with a scanning electron microscope (SEM). The average particle diameter (number average particle diameter) determined from the electron microscope image is shown in the table. The particles were examined for glass transition point, yield point, and softening point by DTA. That is, about 20 to 50 mg of a powdery sample of each glass composition is put in a platinum cell, and using a differential thermal analyzer (model name “TG-8120”, manufactured by Rigaku Corporation), alumina powder is used as a standard sample. A DTA curve was obtained at a heating rate of 20 ° C./min from room temperature to 1000 ° C. in an air atmosphere. The first endothermic peak start point (extrapolated point) was the glass transition point, the endothermic minimum temperature was the yield point, and the second endothermic peak start point (extrapolated point) was the glass softening point.
〔実施例17,18〕
BO1.5を相対的に高いmol%で含有するものである連続相を溶解させる溶媒及び洗浄工程に用いる溶媒が無水エタノールである点,凍結乾燥ではなく70℃に加熱して乾燥させる点を除いて,実施例1と同様にしてガラス微粒子を作製した。
[Examples 17 and 18]
The point that the solvent for dissolving the continuous phase containing BO 1.5 at a relatively high mol% and the solvent used for the washing step are absolute ethanol, and that the solvent is dried by heating to 70 ° C. instead of freeze drying. Except for the above, glass fine particles were produced in the same manner as in Example 1.
表1〜3に見られるように,800℃以下の低い軟化点を有する,数十〜数百nmの平均粒子径のガラス微粒子が得られた。 As can be seen from Tables 1 to 3, glass fine particles having a low softening point of 800 ° C. or less and an average particle diameter of several tens to several hundreds of nm were obtained.
本発明は,BO1.5を含む平均粒径が10〜1000nmのガラス微粒子であって,1000℃以下,更には800℃以下の低い軟化点を有するものの製造を可能にし,またそのようなガラス微粒子であってセラミック誘電体と共に用いる上で特に有利な,希土類元素を含有するものを得ることも可能にすることから,セラミックコンデンサの製造における焼結助剤等として有用性が高い。
The present invention makes it possible to produce glass fine particles having an average particle size of 10 to 1000 nm containing BO 1.5 and having a low softening point of 1000 ° C. or lower, further 800 ° C. or lower, and such glass. Since it is possible to obtain fine particles containing a rare earth element, which is particularly advantageous when used with a ceramic dielectric, it is highly useful as a sintering aid in the production of ceramic capacitors.
Claims (12)
BO1.5を8〜90mol%,及び
AlO1.5+GaO1.5+GeO2を0〜25mol%の範囲でそれぞれ含有し,
平均粒径が30〜300nmであることを特徴とするガラス微粒子。 One or more oxides selected from the group consisting of oxides of Group 2 to 12 elements, InO 1.5 , SnO, PbO, SbO 1.5 , BiO 1.5 , and TeO 2 (MO x ) In total 7 to 80 mol%,
Each containing BO 1.5 in the range of 8-90 mol% and AlO 1.5 + GaO 1.5 + GeO 2 in the range of 0 to 25 mol%,
Glass fine particles having an average particle size of 30 to 300 nm.
の合計含有量が90mol%以上であることを特徴とする請求項7のガラス微粒子。 MO x , BO 1.5 , AlO 1.5 , GaO 1.5 , and GeO 2
The glass fine particles according to claim 7, wherein the total content of is 90 mol% or more.
A multilayer ceramic capacitor using the glass fine particles according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013184254A JP6279859B2 (en) | 2013-09-05 | 2013-09-05 | Method for producing glass fine particles and glass fine particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013184254A JP6279859B2 (en) | 2013-09-05 | 2013-09-05 | Method for producing glass fine particles and glass fine particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015051887A true JP2015051887A (en) | 2015-03-19 |
JP6279859B2 JP6279859B2 (en) | 2018-02-14 |
Family
ID=52701212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013184254A Active JP6279859B2 (en) | 2013-09-05 | 2013-09-05 | Method for producing glass fine particles and glass fine particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6279859B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479030A (en) * | 1987-09-22 | 1989-03-24 | Asahi Glass Co Ltd | Production of porous small glass sphere |
JPH0624795A (en) * | 1992-06-30 | 1994-02-01 | Tdk Corp | Glass, dielectric composition, multilayer circuit board and multilayer ceramic capacitor |
EP0974558A2 (en) * | 1998-07-24 | 2000-01-26 | Murata Manufacturing Co., Ltd. | Electrically conductive paste and glass substrate having a circuit thereon |
JP2005336048A (en) * | 2004-04-26 | 2005-12-08 | Matsushita Electric Ind Co Ltd | Glass composition, paste composition and plasma display panel |
JP2007261861A (en) * | 2006-03-28 | 2007-10-11 | Kyocera Corp | Glass powder and production method thereof |
WO2008143189A1 (en) * | 2007-05-18 | 2008-11-27 | Asahi Glass Company, Limited | Glass microparticle assembly, and method for production thereof |
WO2013133357A1 (en) * | 2012-03-08 | 2013-09-12 | 日本山村硝子株式会社 | Spherical particle manufacturing method |
-
2013
- 2013-09-05 JP JP2013184254A patent/JP6279859B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6479030A (en) * | 1987-09-22 | 1989-03-24 | Asahi Glass Co Ltd | Production of porous small glass sphere |
JPH0624795A (en) * | 1992-06-30 | 1994-02-01 | Tdk Corp | Glass, dielectric composition, multilayer circuit board and multilayer ceramic capacitor |
EP0974558A2 (en) * | 1998-07-24 | 2000-01-26 | Murata Manufacturing Co., Ltd. | Electrically conductive paste and glass substrate having a circuit thereon |
JP2000048642A (en) * | 1998-07-24 | 2000-02-18 | Murata Mfg Co Ltd | Conductive paste and glass circuit substrate |
JP2005336048A (en) * | 2004-04-26 | 2005-12-08 | Matsushita Electric Ind Co Ltd | Glass composition, paste composition and plasma display panel |
JP2007261861A (en) * | 2006-03-28 | 2007-10-11 | Kyocera Corp | Glass powder and production method thereof |
WO2008143189A1 (en) * | 2007-05-18 | 2008-11-27 | Asahi Glass Company, Limited | Glass microparticle assembly, and method for production thereof |
WO2013133357A1 (en) * | 2012-03-08 | 2013-09-12 | 日本山村硝子株式会社 | Spherical particle manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6279859B2 (en) | 2018-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7572141B2 (en) | Lithium ion conductive composite material comprising at least one polymer and lithium ion conductive particles, and method for producing a lithium ion conductor from said composite material | |
Jeon et al. | Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles | |
CN102369162B (en) | Method for producing alkali metal niobate particles, and alkali metal niobate particles | |
Zhou et al. | A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals | |
Yang et al. | Formation mechanism of CaTiO3 hollow crystals with different microstructures | |
WO2018040749A1 (en) | Low temperature co-fired ceramic material and preparation method therefor | |
Wang et al. | Self-assembled growth of PbTiO3 nanoparticles into microspheres and bur-like structures | |
EP1716076B1 (en) | Method for making metal oxides | |
Karbovnyk et al. | Impedance characterization of Cr3+, Y3+ and Zr4+ activated forsterite nanoceramics synthesized by sol–gel method | |
EP3126310B1 (en) | Transparent metal fluoride ceramic | |
TW201141812A (en) | Dielectric ceramic materials and associated methods | |
JP6099625B2 (en) | Method for producing spherical particles | |
JP5479147B2 (en) | Method for producing inorganic oxide | |
JP5879078B2 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
TW583154B (en) | Method for producing dielectric particles | |
JP6279859B2 (en) | Method for producing glass fine particles and glass fine particles | |
JP6068749B2 (en) | Barium titanate fine particles, barium titanate fine particles, and methods for producing them | |
JP2011196007A (en) | Inorganic fiber | |
RU2467983C1 (en) | Method of producing nanocrystalline powder and ceramic materials based on mixed oxides of rare-earth elements and subgroup ivb metals | |
JP2010285334A (en) | Method for producing composite oxide fine particles | |
CN102219386B (en) | Preparation method of ultrafine powder of SiO2-based composite oxide system glass | |
JP2010254574A (en) | Spherical multicomponent glass fine particle | |
Chatterjee et al. | Synthesis of Yttrium–Aluminum–Garnet Hollow Microspheres by Reverse‐Emulsion Technique | |
Wang et al. | A new strategy to realize phase structure and morphology of BaTiO3 nanowires controlled in ZnO-B2O3-SiO2 glass | |
JP2008024582A (en) | Spherical multicomponent glass fine particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160817 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170519 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170710 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6279859 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |