JP2015035354A - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2015035354A JP2015035354A JP2013166130A JP2013166130A JP2015035354A JP 2015035354 A JP2015035354 A JP 2015035354A JP 2013166130 A JP2013166130 A JP 2013166130A JP 2013166130 A JP2013166130 A JP 2013166130A JP 2015035354 A JP2015035354 A JP 2015035354A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- overcharge
- aqueous electrolyte
- battery
- overcharge additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 80
- 239000000654 additive Substances 0.000 claims abstract description 99
- 230000000996 additive effect Effects 0.000 claims abstract description 95
- 239000007774 positive electrode material Substances 0.000 claims description 42
- 229920006395 saturated elastomer Polymers 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 42
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 24
- 229910052744 lithium Inorganic materials 0.000 description 20
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 17
- 239000000463 material Substances 0.000 description 14
- 235000010290 biphenyl Nutrition 0.000 description 12
- 239000004305 biphenyl Substances 0.000 description 12
- -1 LiCrMnO 4 Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000003094 microcapsule Substances 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZZLCFHIKESPLTH-UHFFFAOYSA-N 4-Methylbiphenyl Chemical group C1=CC(C)=CC=C1C1=CC=CC=C1 ZZLCFHIKESPLTH-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 150000004997 alkyl benzene derivatives Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- IDBYQQQHBYGLEQ-UHFFFAOYSA-N 1,1,2,2,3,3,4-heptafluorocyclopentane Chemical compound FC1CC(F)(F)C(F)(F)C1(F)F IDBYQQQHBYGLEQ-UHFFFAOYSA-N 0.000 description 1
- UNEATYXSUBPPKP-UHFFFAOYSA-N 1,3-Diisopropylbenzene Chemical compound CC(C)C1=CC=CC(C(C)C)=C1 UNEATYXSUBPPKP-UHFFFAOYSA-N 0.000 description 1
- SGJNVYYELDBNLA-UHFFFAOYSA-N 1,3-di(butan-2-yl)benzene Chemical compound CCC(C)C1=CC=CC(C(C)CC)=C1 SGJNVYYELDBNLA-UHFFFAOYSA-N 0.000 description 1
- SPPWGCYEYAMHDT-UHFFFAOYSA-N 1,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(C(C)C)C=C1 SPPWGCYEYAMHDT-UHFFFAOYSA-N 0.000 description 1
- KLECYOQFQXJYBC-UHFFFAOYSA-N 1-fluoro-2-phenylbenzene Chemical group FC1=CC=CC=C1C1=CC=CC=C1 KLECYOQFQXJYBC-UHFFFAOYSA-N 0.000 description 1
- GAYJHUJLHJWCTH-UHFFFAOYSA-N 1-fluoro-3-(3-fluorophenyl)benzene Chemical group FC1=CC=CC(C=2C=C(F)C=CC=2)=C1 GAYJHUJLHJWCTH-UHFFFAOYSA-N 0.000 description 1
- PZDAAZQDQJGXSW-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)benzene Chemical group C1=CC(F)=CC=C1C1=CC=C(F)C=C1 PZDAAZQDQJGXSW-UHFFFAOYSA-N 0.000 description 1
- RUYZJEIKQYLEGZ-UHFFFAOYSA-N 1-fluoro-4-phenylbenzene Chemical group C1=CC(F)=CC=C1C1=CC=CC=C1 RUYZJEIKQYLEGZ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910016365 Ni0.33Co0.33Mn0.33 Inorganic materials 0.000 description 1
- 241000080590 Niso Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- VDIHFNQRHGYISG-UHFFFAOYSA-N cyclopentylbenzene Chemical compound C1CCCC1C1=CC=CC=C1 VDIHFNQRHGYISG-UHFFFAOYSA-N 0.000 description 1
- XAYGUHUYDMLJJV-UHFFFAOYSA-Z decaazanium;dioxido(dioxo)tungsten;hydron;trioxotungsten Chemical compound [H+].[H+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].[NH4+].O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O.[O-][W]([O-])(=O)=O XAYGUHUYDMLJJV-UHFFFAOYSA-Z 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- ZJMWRROPUADPEA-UHFFFAOYSA-N sec-butylbenzene Chemical compound CCC(C)C1=CC=CC=C1 ZJMWRROPUADPEA-UHFFFAOYSA-N 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、圧力感知型の電流遮断機構(CID)を備える非水電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery including a pressure sensing type current interruption mechanism (CID).
リチウム二次電池等の非水電解液二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、いわゆるポータブル電源や車両搭載用の高出力電源等に好ましく利用されている。かかる非水電解液二次電池は、一般に所定の電圧領域に収まるよう制御された状態で使用される。しかしながら誤操作等により電池に過剰な電流が供給されて過充電状態に陥ると、電解液が分解して電池ケース内にガスが発生する等の問題が生じるおそれがある。そのため、このような問題を未然に防止し、より高い安全性を得る目的で、過充電状態に伴う電池内圧の上昇を検知すると電流を遮断する電流遮断機構(CID)を設けた電池が提案されている。また、過充電時にかかるCIDの作動を速やかに実現するために、過充電時に酸化分解されてガスを発生させる過充電添加剤を非水電解液に添加することもなされている(例えば、特許文献1〜2等参照)。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are preferably used for so-called portable power supplies, high output power supplies for vehicles, and the like because they are lighter and have higher energy density than existing batteries. Such a nonaqueous electrolyte secondary battery is generally used in a controlled state so as to be within a predetermined voltage range. However, when an excessive current is supplied to the battery due to an erroneous operation or the like and the battery is overcharged, there is a possibility that problems such as decomposition of the electrolyte and generation of gas in the battery case may occur. Therefore, for the purpose of preventing such problems and obtaining higher safety, a battery provided with a current interruption mechanism (CID) that interrupts current when an increase in battery internal pressure associated with an overcharge state is detected has been proposed. ing. Further, in order to quickly realize the operation of the CID at the time of overcharge, an overcharge additive that is oxidatively decomposed to generate gas at the time of overcharge is also added to the non-aqueous electrolyte (for example, Patent Documents). 1-2).
ところで、シクロヘキシルベンゼン(CHB)やビフェニル(BP)等の過充電添加剤は、過充電時に正極活物質の表面において重合反応が活性化して、水素ガスを発生させる。しかしながら、電池の充放電が繰り返し行われるにつれ、かかる充電防止添加剤の重合反応が抑制されて、酸化分解が起こり難くなる。すなわち、過充電状態となっても正極でのガス発生添加剤の酸化分解反応が迅速に進まず、CIDの作動に必要なガス量を早期に確保することが難しい。この問題に対しては、非水電解液中の過充電添加剤の添加量を増加させることで対応が可能であるが、過充電添加剤の量を単純に増加させてしまうと電池の内部抵抗が上昇するという問題があった。
本発明はかかる事情に鑑みてなされたものであり、内部抵抗の増大を抑制しつつ、繰り返し充放電後でもCIDを作動させ得るガス量を速やかに発生させることができ、より安全が確保された非水電解液二次電池の製造方法を提供することを課題としている。
By the way, an overcharge additive such as cyclohexylbenzene (CHB) or biphenyl (BP) activates a polymerization reaction on the surface of the positive electrode active material during overcharge to generate hydrogen gas. However, as the battery is repeatedly charged and discharged, the polymerization reaction of the anti-charge additive is suppressed, and oxidative decomposition is less likely to occur. That is, even if the battery is overcharged, the oxidative decomposition reaction of the gas generating additive at the positive electrode does not proceed rapidly, and it is difficult to ensure the amount of gas necessary for CID operation at an early stage. This problem can be addressed by increasing the amount of overcharge additive in the non-aqueous electrolyte, but if the amount of overcharge additive is simply increased, the internal resistance of the battery There was a problem of rising.
The present invention has been made in view of such circumstances, and it is possible to promptly generate a gas amount capable of operating the CID even after repeated charging and discharging, while suppressing an increase in internal resistance, thereby ensuring more safety. It is an object to provide a method for producing a non-aqueous electrolyte secondary battery.
CHBやBP等の過充電添加剤は、上記のとおり、電池が過充電状態に陥ると、正極表面に重合皮膜を形成して電池の内部抵抗を増大させ、さらなる充電を停止させたり、酸化分解されてガスを発生したりして、過充電状態の進行を抑制する。ここで、本発明者の知見によると、これらの過充電添加剤がその機能を発揮するためには、ある一定以上の濃度で非水電解液中に存在することが効果的である。すなわち、非水電解液中に高濃度で存在することでより効果的に上記機能を発揮することができる。しかしながら、実際には、非水電解液中の過充電添加剤は通常の電池使用時(特にハイレートでの通常使用時)に生じる変動負荷によって分解され消費され得る。すなわち、通常の電池使用時においても重合皮膜を形成し得ることから、内部抵抗の上昇を招き、サイクル特性の劣化を促進する要因ともなっていた。また、過充電時には過充電添加剤が消費されてしまい、十分な量のガスを迅速に発生させるのが困難となっていた。
本発明は、上記の事情を鑑み、従来技術の課題を解決するものとして、正極、負極、セパレータ、非水電解液、および、所定の圧力を感知すると導電経路を遮断する電流遮断機構を備える非水電解液二次電池を提供する。かかる非水電解液二次電池において、上記非水電解液は、過充電時にガスを発生する第1の過充電添加剤を常温における飽和量で含み、上記セパレータは、過充電時にガスを発生する第2の過充電添加剤を含むことを特徴としている。
Overcharge additives such as CHB and BP, as described above, when the battery falls into an overcharged state, a polymer film is formed on the surface of the positive electrode to increase the internal resistance of the battery, stop further charging, or oxidative decomposition Gas is generated and the progress of the overcharge state is suppressed. Here, according to the knowledge of the present inventors, in order for these overcharge additives to exhibit their functions, it is effective to exist in the non-aqueous electrolyte at a certain concentration or more. That is, the above functions can be more effectively exhibited by being present at a high concentration in the non-aqueous electrolyte. However, in practice, the overcharge additive in the non-aqueous electrolyte can be decomposed and consumed by the fluctuating load that occurs during normal battery use (particularly during normal use at high rates). That is, since a polymerized film can be formed even when a normal battery is used, the internal resistance is increased, and the deterioration of cycle characteristics is promoted. Also, overcharge additives are consumed during overcharge, making it difficult to quickly generate a sufficient amount of gas.
In view of the above circumstances, the present invention provides a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and a current blocking mechanism that blocks a conductive path when a predetermined pressure is sensed. A water electrolyte secondary battery is provided. In such a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte includes a first overcharge additive that generates a gas at the time of overcharge in a saturated amount at room temperature, and the separator generates a gas at the time of overcharge. It is characterized by including a second overcharge additive.
例えば、過充電状態に陥り始めた電池の内部温度は上昇(例えば、70℃程度以上)を始める。したがって、常温で非水電解液に溶解しきれない分の過充電添加剤を、第2の過充電添加剤として予めセパレータに含有させておく。すると、(1)非水電解液に豊富に含まれる第1の過充電添加剤が酸化分解されて過充電添加剤の溶解量が飽和量を下回ったとき、および、(2)過充電により電池内部の温度が上昇し、非水電解液の過充電添加剤の溶解度が上昇したとき、などにセパレータ内に含まれる第2の過充電防止剤が非水電解液中に溶解する。これにより、非水電解液中に過充電添加剤を高濃度(好ましくは飽和濃度)に維持することができ、過充電時にかかる過充電添加剤の機能を好適に発現させることができる。なお、第1の過充電添加剤と第2の過充電添加剤とは、その一部または全部が同一の化合物から構成されていても良いし、異種の化合物から構成されていても良い。望ましくは同一の化合物である。 For example, the internal temperature of the battery that has begun to fall into an overcharge state starts to rise (for example, about 70 ° C. or higher). Therefore, the overcharge additive that cannot be completely dissolved in the non-aqueous electrolyte at room temperature is previously contained in the separator as the second overcharge additive. Then, (1) when the first overcharge additive abundantly contained in the nonaqueous electrolyte is oxidatively decomposed and the dissolved amount of the overcharge additive falls below the saturation amount, and (2) the battery is overcharged. When the internal temperature rises and the solubility of the overcharge additive of the non-aqueous electrolyte increases, the second overcharge inhibitor contained in the separator is dissolved in the non-aqueous electrolyte. Thereby, the overcharge additive can be maintained at a high concentration (preferably a saturated concentration) in the non-aqueous electrolyte, and the function of the overcharge additive during overcharge can be suitably expressed. In addition, the 1st overcharge additive and the 2nd overcharge additive may be comprised from the same compound in part or all, and may be comprised from a different compound. Desirably the same compound.
ここに開示される非水電解液二次電池の好ましい態様において、上記正極は、少なくともタングステン(W)を含む正極活物質を備えていることを特徴としている。例えば、Wを含む正極活物質を用いた電池は、出力特性が良好で、内部抵抗の増大が抑制されることが知られている。その一方で、Wを含む正極活物質、とりわけ粒子表面のWの濃度が高い正極活物質については、過充電添加剤と正極との反応場が減少して、過充電時のガス発生量が低下し得ることも知られている。これに対し、上記構成の非水電解液二次電池によると、過充電添加剤と正極との反応効率が十分に高められるため、過充電時のガス発生量を迅速に確保できるとともに、電池の内部抵抗の増大を抑制することが可能となる。 In a preferred aspect of the non-aqueous electrolyte secondary battery disclosed herein, the positive electrode includes a positive electrode active material containing at least tungsten (W). For example, it is known that a battery using a positive electrode active material containing W has good output characteristics and suppresses an increase in internal resistance. On the other hand, for a positive electrode active material containing W, particularly a positive electrode active material having a high W concentration on the particle surface, the reaction field between the overcharge additive and the positive electrode is reduced, and the amount of gas generated during overcharge is reduced. It is also known that it can. On the other hand, according to the non-aqueous electrolyte secondary battery having the above configuration, the reaction efficiency between the overcharge additive and the positive electrode is sufficiently increased, so that the amount of gas generated during overcharge can be secured quickly, and the battery An increase in internal resistance can be suppressed.
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば過充電添加剤の配合形態等)以外の事柄であって本発明の実施に必要な事柄(例えば電池の一般的な構造や製造プロセス等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than the matters specifically mentioned in the present specification (for example, overcharge additive blending form, etc.) and matters necessary for the implementation of the present invention (for example, general structure and manufacturing process of the battery) Can be understood as a design matter of those skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
ここで開示される非水電解液二次電池は、基本的な構成として、正極、負極、セパレータ、非水電解液、および、所定の圧力を感知すると導電経路を遮断する電流遮断機構を備えている。そして、非水電解液は、過充電時にガスを発生する第1の過充電添加剤を常温における飽和量で含み、セパレータは、過充電時にガスを発生する第2の過充電添加剤を含んでいる。以下に各構成要素について説明する。 The non-aqueous electrolyte secondary battery disclosed herein includes, as a basic configuration, a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and a current blocking mechanism that blocks a conductive path when a predetermined pressure is sensed. Yes. The non-aqueous electrolyte includes a first overcharge additive that generates gas at the time of overcharge in a saturated amount at room temperature, and the separator includes a second overcharge additive that generates gas at the time of overcharge. Yes. Each component will be described below.
正極は、典型的には、正極集電体上に正極活物質層が備えられることで構成されている。この正極活物質層は、正極活物質を備えるものであれば特に限定されないが、典型的には、正極活物質が導電材と共にバインダ(結着剤)により互いに結合され、正極集電体に固着された形態であり得る。このような正極は、例えば、正極活物質と導電材とバインダ(結着剤)とを適当な溶媒(例えばN−メチル−2−ピロリドン)に分散させてなる正極ペーストを正極集電体の表面に供給した後、乾燥して溶媒を除去することにより作製することができる。正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を好適に使用することができる。 The positive electrode is typically configured by providing a positive electrode active material layer on a positive electrode current collector. The positive electrode active material layer is not particularly limited as long as it includes a positive electrode active material, but typically, the positive electrode active material is bonded together with a conductive material together with a binder (binder), and is fixed to the positive electrode current collector. It can be in the form of Such a positive electrode includes, for example, a positive electrode paste obtained by dispersing a positive electrode active material, a conductive material, and a binder (binder) in an appropriate solvent (for example, N-methyl-2-pyrrolidone). And then dried to remove the solvent. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum, nickel, titanium, stainless steel, etc.) can be preferably used.
正極活物質としては特に限定されず、非水電解液二次電池の正極活物質として使用し得る各種のものを、1種を単独で、または2種以上を混合または複合体化する等して、用いることができる。好適な例として、層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO2、LiCoO2、LiFeO2、LiMn2O4、LiNi0.5Mn1.5O4,LiCrMnO4、LiFePO4等)が挙げられる。なかでも、構成元素としてLi,Ni,CoおよびMnを含む層状構造(典型的には、六方晶系に属する層状岩塩型構造)のリチウムニッケルコバルトマンガン複合酸化物を好ましく用いることができる。例えば、具体的には、LiNi1/3Co1/3Mn1/3O2等のいわゆる三元系のリチウム遷移金属複合酸化物は、熱安定性に優れ、且つ高いエネルギー密度を実現し得る正極活物質として好ましい。ここで、リチウムニッケルコバルトマンガン複合酸化物とは、Li,Ni,CoおよびMnのみを構成金属元素とする酸化物のほか、さらにマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、チタン(Ti)、ジルコニウム(Zr)、バナジウム(V)、ニオブ(Nb)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、ロジウム(Rh)、パラジウム(Pb)、白金(Pt)、銅(Cu)、亜鉛(Zn)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、スズ(Sn)、ランタン(La)、セリウム(Ce)の元素のうちの1種または2種以上を含む酸化物をも包含する。これらの付加的な金属元素の量は特に限定されないが、通常0.01質量%〜5質量%(典型的には0.05質量%〜2質量%、例えば0.1質量%〜0.8質量%)であり得る。 The positive electrode active material is not particularly limited, and various kinds of materials that can be used as the positive electrode active material of the non-aqueous electrolyte secondary battery are used singly or in combination of two or more. Can be used. As a suitable example, lithium composite metal oxides such as layered and spinel (for example, LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4 Etc.). Among these, lithium nickel cobalt manganese composite oxide having a layered structure (typically a layered rock salt structure belonging to a hexagonal system) containing Li, Ni, Co, and Mn as constituent elements can be preferably used. For example, specifically, so-called ternary lithium transition metal composite oxides such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 are excellent in thermal stability and can realize a high energy density. Preferred as a positive electrode active material. Here, the lithium-nickel-cobalt-manganese composite oxide is not only an oxide containing only Li, Ni, Co and Mn as a constituent metal element, but also magnesium (Mg), calcium (Ca), strontium (Sr), titanium ( Ti), zirconium (Zr), vanadium (V), niobium (Nb), chromium (Cr), molybdenum (Mo), tungsten (W), iron (Fe), rhodium (Rh), palladium (Pb), platinum ( Pt), copper (Cu), zinc (Zn), boron (B), aluminum (Al), gallium (Ga), indium (In), tin (Sn), lanthanum (La), cerium (Ce) An oxide containing one or more of them is also included. The amount of these additional metal elements is not particularly limited, but is usually 0.01% by mass to 5% by mass (typically 0.05% by mass to 2% by mass, for example, 0.1% by mass to 0.8% by mass). Mass%).
本発明の好ましい一態様では、正極活物質がWを含んでいる。例えば、具体的には、上記のいずれかのリチウム複合金属酸化物がWを含んだ形態が例示される。より好ましくは、粒状の正極活物質の表面にWが配置された構成であり得る。特に限定するものではないが、例えば、平均組成が一般式:LixNiaCobMncWdO2で表され、表面にWが偏在している形態のリチウム複合金属酸化物が例示される。なお、ここで式中、1.0≦x≦1.25,0.95≦a+b+c+d≦1.05および0<d≦0.05である。かかるWを表面に備える正極活物質は従来公知の手法で製造することができる。特に限定されるものではないが、例えば、Li成分以外の金属成分(典型的には、遷移金属成分とW成分)を所望の正極活物質組成に応じた化学量論比で含む水溶液を調製し、かかる水溶液をpH制御の下で中和することで、これら金属元素の水酸化物を晶析させる。このようにして得た複合水酸化物と、適切なリチウム塩(炭酸リチウム、水酸化リチウム等)との混合物を、例えば、700〜800℃程度で1〜12時間程度焼成した後、800〜1000℃程度で2〜24時間程度焼成することで、上記の表面にWが偏析した正極活物質を得ることができる。かかる正極活物質を用いることで、非水電解液二次電池の内部抵抗を低減する効果が得られる。
正極活物質としての好ましい平均粒径(二次粒径であり得る。)は、例えば、3μm〜7μm程度であり得る。比表面積は、0.5〜1.8m2/gの範囲にあることが好ましい。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料等を採用し得る。
In a preferred embodiment of the present invention, the positive electrode active material contains W. For example, specifically, a mode in which any of the above lithium composite metal oxides contains W is exemplified. More preferably, W may be arranged on the surface of the granular positive electrode active material. Although not particularly limited, for example, average composition formula: is represented by Li x Ni a Co b Mn c W d O 2, a lithium composite metal oxide forms W are unevenly distributed on the surface is exemplified The In the formula, 1.0 ≦ x ≦ 1.25, 0.95 ≦ a + b + c + d ≦ 1.05 and 0 <d ≦ 0.05. The positive electrode active material having W on the surface can be produced by a conventionally known method. Although not particularly limited, for example, an aqueous solution containing a metal component other than the Li component (typically a transition metal component and a W component) in a stoichiometric ratio according to a desired positive electrode active material composition is prepared. By neutralizing such an aqueous solution under pH control, these metal element hydroxides are crystallized. A mixture of the composite hydroxide thus obtained and an appropriate lithium salt (lithium carbonate, lithium hydroxide, etc.) is calcined, for example, at about 700 to 800 ° C. for about 1 to 12 hours, and then 800 to 1000 A positive electrode active material in which W is segregated on the surface can be obtained by baking at about 0 ° C. for about 2 to 24 hours. By using such a positive electrode active material, an effect of reducing the internal resistance of the nonaqueous electrolyte secondary battery can be obtained.
A preferable average particle size (which may be a secondary particle size) as the positive electrode active material may be, for example, about 3 μm to 7 μm. The specific surface area is preferably in the range of 0.5 to 1.8 m 2 / g. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be employed.
負極としては、負極活物質をバインダ等とともに組成物として負極集電体上に付着させ、負極活物質層を形成した形態のものを用いることができる。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に採用し得る。負極活物質としては、例えば、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料等を用いることができ、なかでもアモルファスコートグラファイト(黒鉛粒子の表面にアモルファスカーボンがコートされた形態のもの)を好適に採用し得る。バインダとしては、例えば、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等の各種のポリマー材料を採用し得る。 As the negative electrode, it is possible to use a negative electrode active material layer in which a negative electrode active material is deposited on a negative electrode current collector as a composition together with a binder or the like. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper) can be suitably used. As the negative electrode active material, for example, a carbon material such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), etc. can be used. A material whose surface is coated with amorphous carbon can be suitably employed. As the binder, for example, various polymer materials such as styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PTFE) can be adopted.
非水電解液としては、典型的には非水溶媒中に支持塩を含有させたものを用いることができる。支持塩としては、例えば、リチウム塩、ナトリウム塩、マグネシウム塩等を用いることができ、なかでもLiPF6、LiBF4等のリチウム塩を好適に採用し得る。非水溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。 As the non-aqueous electrolyte, typically, a non-aqueous solvent containing a supporting salt can be used. As the supporting salt, for example, a lithium salt, a sodium salt, a magnesium salt, or the like can be used, and among them, a lithium salt such as LiPF 6 or LiBF 4 can be preferably used. As the non-aqueous solvent, for example, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones can be used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used.
そして、かかる非水電解液には、上述した非水溶媒および支持塩以外に、過充電時にガスを発生する第1の過充電添加剤が常温における飽和量で含まれている。かかる第1の過充電添加剤としては、目的の非水電解液二次電池についてあらかじめ設定された電圧以上になると反応してガスを発生させる各種の化合物を考慮することができる。例えば、電解液の分解電位よりも酸化電位が低い化合物を好ましく採用し得る。上記化合物の好適例として、ビフェニル化合物、アルキルベンゼン誘導体、シクロアルキルベンゼン誘導体などが挙げられる。ビフェニル化合物としては、ビフェニル、4−フルオロビフェニル、4−メチルビフェニル、2−フルオロビフェニル、3,3’−ジフルオロビフェニル、4,4’−ジフルオロビフェニル等が例示される。アルキルベンゼン誘導体としては、クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン、1−メチルプロピルベンゼン、1,3−ビス(1−メチルプロピル)ベンゼン等が例示される。また、シクロアルキルベンゼン誘導体としては、シクロヘキシルベンゼン(CHB)、シクロペンチルベンゼン等が例示される。かかる化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。なかでも、シクロヘキシルベンゼン(CHB)およびビフェニル(BP)のいずれか一方、あるいはこれらを組み合わせて用いることがより好ましい。これらCHBやBPは共役系をとりやすく、電子授受が容易であり、過充電時には好適に酸化分解され、大量の水素ガスを発生させ得る。従って、CIDをより迅速に作動させることができ、電池の信頼性を高め得る。かかる過充電添加剤の添加量は、例えば、用いる非水溶媒の溶解度曲線において、25℃、1atmにおける溶解度として把握することができる。例えば、ECとEMCとDMCとを3:4:3の体積比で混合した非水溶媒について、CHBおよびBPの溶解度は、概ね、両者の合計で10質量%程度の値を目安とすることができる。
なお、非水電解液には、上記の過充電添加剤以外に、例えば、充放電に伴い電極の表面に電解液/電極界面(SEI:Solid Electrolyte Interface)皮膜を好適に形成する皮膜形成剤等の各種添加剤を適宜添加することもできる。
And in this non-aqueous electrolyte, the 1st overcharge additive which generate | occur | produces a gas at the time of overcharge other than the nonaqueous solvent and support salt which were mentioned above is contained by the saturated amount in normal temperature. As such a first overcharge additive, various compounds that react to generate gas when the voltage exceeds a preset voltage for the target nonaqueous electrolyte secondary battery can be considered. For example, a compound having an oxidation potential lower than the decomposition potential of the electrolytic solution can be preferably used. Preferable examples of the above compound include biphenyl compounds, alkylbenzene derivatives, cycloalkylbenzene derivatives and the like. Examples of the biphenyl compound include biphenyl, 4-fluorobiphenyl, 4-methylbiphenyl, 2-fluorobiphenyl, 3,3′-difluorobiphenyl, 4,4′-difluorobiphenyl, and the like. Examples of alkylbenzene derivatives include cumene, 1,3-diisopropylbenzene, 1,4-diisopropylbenzene, 1-methylpropylbenzene, 1,3-bis (1-methylpropyl) benzene and the like. Examples of the cycloalkylbenzene derivative include cyclohexylbenzene (CHB) and cyclopentylbenzene. Such compounds may be used singly or in combination of two or more. Among these, it is more preferable to use one of cyclohexylbenzene (CHB) and biphenyl (BP), or a combination thereof. These CHB and BP are easily conjugated and easily exchanged with electrons, and can be suitably oxidized and decomposed during overcharge to generate a large amount of hydrogen gas. Therefore, the CID can be operated more quickly, and the reliability of the battery can be improved. The addition amount of such an overcharge additive can be grasped as, for example, the solubility at 25 ° C. and 1 atm in the solubility curve of the nonaqueous solvent to be used. For example, for a non-aqueous solvent in which EC, EMC, and DMC are mixed at a volume ratio of 3: 4: 3, the solubility of CHB and BP may generally be about 10% by mass in total. it can.
In addition to the above-described overcharge additive, the non-aqueous electrolyte includes, for example, a film forming agent that suitably forms an electrolyte / electrode interface (SEI: Solid Electrolyte Interface) film on the surface of the electrode due to charge and discharge, etc. These various additives can also be added as appropriate.
セパレータとしては、過充電時にガスを発生する第2の過充電添加剤を含んでいる。例えば、従来からこの種の非水電解液二次電池のセパレータとして用いられている各種の物を基材とし、かかる基材の表面または内部に第2の過充電添加剤が配設された形態のものを考慮することができる。
第2の過充電添加剤の配設形態としては、例えば、一例として、電池が正常に作動する環境においては上記の非水電解液に常温で接触しても当該非水電解液に溶解しないが、過充電状態において非水電解液に溶解し得る形態であってよい。具体的には、例えば、上記の第1の過充電添加剤を粉末等の固体状態でセパレータの基材に直接配設したものであっても良い。かかる構成によると、過充電状態にある電池の温度上昇に伴い非水電解液における過充電添加剤の溶解度が上昇し、セパレータに配設された第2の過充電添加剤が非水電解液に徐々に溶解し得る。
The separator includes a second overcharge additive that generates gas during overcharge. For example, a configuration in which various materials conventionally used as separators of this type of non-aqueous electrolyte secondary battery are used as a base material, and a second overcharge additive is disposed on the surface or inside of the base material. Can be considered.
As an arrangement form of the second overcharge additive, for example, in an environment where the battery operates normally, even if it contacts the nonaqueous electrolyte at room temperature, it does not dissolve in the nonaqueous electrolyte. It may be in a form that can be dissolved in the non-aqueous electrolyte in an overcharged state. Specifically, for example, the first overcharge additive described above may be directly disposed on the base material of the separator in a solid state such as a powder. According to such a configuration, the solubility of the overcharge additive in the non-aqueous electrolyte increases as the temperature of the battery in the overcharge state increases, and the second overcharge additive disposed in the separator becomes the non-aqueous electrolyte. Can dissolve gradually.
また、第2の過充電添加剤の配設形態の他の一例として、例えば、過充電時にガスを発生させる物質(ガス発生物質)をマイクロカプセル内に内包させた状態でセパレータの基材に配設したものであって良い。この場合、ガス発生物質としては、固体、液体、気体およびゲル状体などの何れの状態のものであっても良い。かかるマイクロカプセルは、過充電状態にある電池の電位上昇あるいは温度上昇により分解される材料から構成されるものや、マイクロカプセル内で発生したガス圧により破裂するものなどを考慮することができる。このようなマイクロカプセルとしては、アクリル鎖、オレフィン鎖、メチレン鎖、パラフィン鎖等を含む構造のポリマーからなり、直径がマイクロメートルオーダー(即ち平均径(D50)が1μm〜1000μm程度)またはそれ以下(即ち平均径が1μm以下であるナノメートルオーダー)の微小な粒子状のカプセルを考慮することができる。固体状のガス発生物質としては、例えば、粉末状態の上記の第1の過充電添加剤が挙げられる。液体状のガス発生物質の好ましい例としては、例えば、1,1,2,2,3,3,4−ヘプタフルオロシクロペンタン(沸点82.5℃)、1,1,2,2,3,4,4−オクタフルオロシクロペンタン(沸点79℃)等の沸点が70℃以上の液体フッ素系液体が挙げられる。 Further, as another example of the arrangement form of the second overcharge additive, for example, a substance that generates a gas at the time of overcharge (gas generating substance) is placed on the separator substrate in a state of being encapsulated in the microcapsule. It may be set. In this case, the gas generating substance may be in any state such as solid, liquid, gas, and gel. Such a microcapsule can be considered to be composed of a material that is decomposed by an increase in potential or temperature of a battery in an overcharged state, or a material that bursts due to gas pressure generated in the microcapsule. Such a microcapsule is made of a polymer having a structure including an acrylic chain, an olefin chain, a methylene chain, a paraffin chain, etc., and has a diameter of the order of micrometers (that is, an average diameter (D50) of about 1 μm to 1000 μm) or less ( That is, a microparticulate capsule having an average diameter of 1 μm or less (on the order of nanometers) can be considered. Examples of the solid gas generating substance include the first overcharge additive in the powder state. Preferable examples of the liquid gas generant include, for example, 1,1,2,2,3,3,4-heptafluorocyclopentane (boiling point 82.5 ° C.), 1,1,2,2,3, Examples thereof include liquid fluorine-based liquids having a boiling point of 70 ° C. or higher, such as 4,4-octafluorocyclopentane (boiling point 79 ° C.).
上記の第2の過充電添加剤(マイクロカプセルに内包されたものを包含する)は、第2の過充電添加剤をセパレータ基材上に散布してセパレータの孔内に入れることで、セパレータに配設することができる。あるいは、第2の過充電添加剤とバインダとを含むペーストを調製してセパレータ基材の表面に供給するようにしても良い。
かかる構成により、非水電解液に含まれる第1の過充電添加剤が過充電時に消費されても、第2の過充電添加剤が非水電解液中に供給されるため、非水電解液中の過充電添加剤の濃度を高い値に維持することができ、CIDの作動に必要なガス発生量を早期に確保することができる。また、上記の第2の過充電添加剤をセパレータ基材に直接配設する形態においては、通常の電池使用時に第1の過充電添加剤が消費された場合においても、非水電解液中の過充電添加剤の濃度が飽和濃度となるように第2の過充電添加剤が供給される。そのため、過充電状態に陥った際により迅速に大量のガスを発生させることができる点で好ましい。
The second overcharge additive (including those encapsulated in microcapsules) can be applied to the separator by spraying the second overcharge additive onto the separator substrate and placing it in the separator holes. It can be arranged. Or you may make it prepare the paste containing a 2nd overcharge additive and a binder, and supply it to the surface of a separator base material.
With this configuration, even if the first overcharge additive contained in the nonaqueous electrolyte is consumed during overcharge, the second overcharge additive is supplied into the nonaqueous electrolyte. The concentration of the overcharge additive therein can be maintained at a high value, and the amount of gas generated necessary for the operation of CID can be secured early. In the embodiment in which the second overcharge additive is directly disposed on the separator substrate, even when the first overcharge additive is consumed during normal battery use, The second overcharge additive is supplied so that the concentration of the overcharge additive becomes a saturated concentration. Therefore, it is preferable in that a large amount of gas can be generated more quickly when the battery is overcharged.
そして、上記の正極と負極とをセパレータを介して積層することで電極体を構成することができる。かかる電極体は、例えば、複数の正極および負極が積層された積層型電極体であっても良いし、長尺の正極シートおよび負極シートを積層し捲回してなる捲回型電極体であっても良い。正負極の初期容量比、すなわち正極の初期充電容量(CP)に対する負極の初期充電容量(CN)の比として算出される容量比(CN/CP)については特に制限はないが、例えば1.0〜2.1程度とすることができる。
かかる電極体は、非水電解液と共に電池ケースに収容される。具体的には、電極体の正極は、正極集電端子を介して電池ケースの外部に配設された正極外部接続端子に電気的に接続される。また電極体の負極は、典型的には、負極集電端子を介して電池ケースの外部に配設された負極外部接続端子に電気的に接続される。正負の外部接続端子は、典型的には、電池ケースの蓋体に絶縁を保ちながら配設されており、電極体は上記の通り蓋体に固定されることで電気の出入力がスムーズに行えるとともに、電池ケース内の位置が安定化されている。電極体は電池ケースのケース本体に挿入されるとともに、当該ケース本体の開口部が蓋体により閉じられて、溶接等により密閉される。電池ケースとしては、例えばアルミニウム合金等の軽量な金属製のものを好適に採用し得る。また、電池ケース(典型的には蓋体)には、電池ケースの内圧が所定値を超えるとケース外部と連通する安全弁や、非水電解液を注入する注液口およびこれを封止する注液口栓等が設けられていてもよい。そして、典型的には、外部接続端子と集電端子との間に、電池ケースの内圧が所定値を超えると作動するCIDが設けられている。CIDは、所定の作動圧において導電経路を遮断し得るものである限り、具体的な構成等は制限されない。CIDの具体的な構成については本発明の本質とは関わらないため詳細な説明は省略する。
And an electrode body can be comprised by laminating | stacking said positive electrode and negative electrode through a separator. The electrode body may be, for example, a stacked electrode body in which a plurality of positive electrodes and negative electrodes are stacked, or a wound electrode body in which a long positive electrode sheet and a negative electrode sheet are stacked and wound. Also good. The capacity ratio (C N / C P ) calculated as the initial capacity ratio of the positive and negative electrodes, that is, the ratio of the initial charge capacity (C N ) of the negative electrode to the initial charge capacity (C P ) of the positive electrode is not particularly limited, For example, it can be set to about 1.0 to 2.1.
Such an electrode body is accommodated in a battery case together with a non-aqueous electrolyte. Specifically, the positive electrode of the electrode body is electrically connected to a positive electrode external connection terminal disposed outside the battery case via a positive electrode current collecting terminal. The negative electrode of the electrode body is typically electrically connected to a negative external connection terminal disposed outside the battery case via a negative current collector terminal. The positive and negative external connection terminals are typically arranged while maintaining insulation on the battery case lid, and the electrode body is fixed to the lid as described above, so that electricity can be smoothly input and output. At the same time, the position in the battery case is stabilized. The electrode body is inserted into the case main body of the battery case, and the opening of the case main body is closed by a lid and sealed by welding or the like. As the battery case, for example, a lightweight metal case such as an aluminum alloy can be preferably used. In addition, a battery case (typically a lid) has a safety valve communicating with the outside of the case when the internal pressure of the battery case exceeds a predetermined value, a liquid injection port for injecting a non-aqueous electrolyte, and a note for sealing the same. A liquid spout or the like may be provided. Typically, a CID that operates when the internal pressure of the battery case exceeds a predetermined value is provided between the external connection terminal and the current collecting terminal. As long as the CID can block the conductive path at a predetermined operating pressure, the specific configuration or the like is not limited. Since the specific configuration of the CID is not related to the essence of the present invention, a detailed description thereof will be omitted.
上記のとおり構築された非水電解液二次電池は、適切なコンディショニング処理やエージング処理を施した後、所定の充放電性能を備える製品として提供され得る。
以上のように、ここで開示される非水電解液二次電池は、非水電解液中に過充電添加剤が飽和濃度で含まれているとともに、セパレータにも過充電添加剤が含まれている。したがって、繰り返しの充放電(特にはハイレートでの充放電)を行った後であっても、非水電解液中の過充電添加剤の濃度を高い値(例えば飽和濃度)に維持することができ、正極活物質の表面における過充電添加剤の分解反応が良好に行われ得る。したがって、例えば図1(A)に示すように、過充電時には迅速に所定の量のガスを発生させることができ、繰り返し充放電前の初期の段階と同等に迅速に(例えば、より低いSOC状態で)CIDを作動させることが可能である。なお、例えば、従来の二次電池においては、繰り返し充放電後に正極活物質の表面における過充電添加剤の分解反応が抑制されると、所定の量のガスを発生させるのに長時間が必要であった。その結果として、例えば図1(B)に示すように、過充電時のCIDの作動に時間を要し、過充電がより進行した状態で(例えば、より高いSOC状態で)ないとCIDが作動し得ないという事態が起こり得た。かかるCIDの作動の遅れは、電池の急激な温度上昇を招き得るために安全面で好ましくない。このように、ここに開示される非水電解液二次電池は、長期に亘って過充電時の安全性が確保されたものとして提供される。
かかる非水電解液二次電池は、長期に亘る高出力特性や高耐久性、さらには安全性が求められる用途に特に好適に利用することができる。なかでも、理論容量が10〜100Ah程度の高容量型の電池や、ハイレートでの充放電を繰り返し行う用途の電池等、具体的には、例えばプラグインハイブリッド自動車(PHV)等の車両に搭載されるモーター用の動力源(駆動用電源)等として好適である。なお、かかる用途において非水電解液二次電池は複数個が相互に電気的に接続されてなる組電池の形態で用いることができる。
The non-aqueous electrolyte secondary battery constructed as described above can be provided as a product having a predetermined charge / discharge performance after performing an appropriate conditioning process or aging process.
As described above, the non-aqueous electrolyte secondary battery disclosed herein includes the overcharge additive at a saturated concentration in the non-aqueous electrolyte and the separator also includes the overcharge additive. Yes. Therefore, the concentration of the overcharge additive in the non-aqueous electrolyte can be maintained at a high value (for example, a saturated concentration) even after repeated charge / discharge (particularly charge / discharge at a high rate). The decomposition reaction of the overcharge additive on the surface of the positive electrode active material can be performed satisfactorily. Therefore, for example, as shown in FIG. 1 (A), a predetermined amount of gas can be quickly generated at the time of overcharge, and as quickly as the initial stage before repeated charge / discharge (for example, a lower SOC state). CID) can be activated. For example, in a conventional secondary battery, if the decomposition reaction of the overcharge additive on the surface of the positive electrode active material is suppressed after repeated charge and discharge, it takes a long time to generate a predetermined amount of gas. there were. As a result, for example, as shown in FIG. 1 (B), it takes time to operate the CID during overcharge, and the CID operates if the overcharge is more advanced (for example, in a higher SOC state). A situation that couldn't have happened. Such a delay in the operation of the CID is not preferable in terms of safety because it may cause a rapid temperature increase of the battery. Thus, the non-aqueous electrolyte secondary battery disclosed herein is provided as a product that ensures safety during overcharging over a long period of time.
Such a non-aqueous electrolyte secondary battery can be particularly suitably used for applications that require long-term high output characteristics, high durability, and safety. Among them, high capacity type batteries having a theoretical capacity of about 10 to 100 Ah, batteries for applications that repeatedly charge and discharge at a high rate, and the like, such as plug-in hybrid vehicles (PHV), are specifically mounted. It is suitable as a power source (drive power source) for a motor. In such applications, a plurality of non-aqueous electrolyte secondary batteries can be used in the form of an assembled battery in which a plurality are electrically connected to each other.
以下、具体的な実施例として、ここに開示される非水電解液二次電池を作製した。なお、本発明をかかる具体例に示すものに限定することを意図したものではない。
<例1>
正極活物質としてのリチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3O2)粉末と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、質量比が94:3:3となるようにN−メチルピロリドン(NMP)と混合し、スラリー状組成物を調製した。この組成物を、厚みおよそ15μmの長尺状アルミニウム箔(正極集電体)に塗布して正極活物質層を形成した。得られた正極を乾燥およびプレスし、シート状の正極を作製した。
Hereinafter, the nonaqueous electrolyte secondary battery disclosed here was produced as a specific example. It should be noted that the present invention is not intended to be limited to those shown in the specific examples.
<Example 1>
Lithium nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) powder as a positive electrode active material, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder ) Was mixed with N-methylpyrrolidone (NMP) so that the mass ratio was 94: 3: 3 to prepare a slurry composition. This composition was applied to a long aluminum foil (positive electrode current collector) having a thickness of about 15 μm to form a positive electrode active material layer. The obtained positive electrode was dried and pressed to produce a sheet-like positive electrode.
次に、負極活物質としてのアモルファスコートグラファイト粉末と、スチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、質量比が98.3:1.0:0.7となるようにイオン交換水と混合して、スラリー状組成物を調製した。この組成物を、厚みおよそ10μmの長尺状銅箔(負極集電体)に塗布して負極活物質層を形成した。得られた負極を乾燥およびプレスし、シート状の負極を作製した。 Next, the ion-exchange of amorphous coated graphite powder as the negative electrode active material, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) so that the mass ratio is 98.3: 1.0: 0.7. A slurry-like composition was prepared by mixing with water. This composition was applied to a long copper foil (negative electrode current collector) having a thickness of about 10 μm to form a negative electrode active material layer. The obtained negative electrode was dried and pressed to produce a sheet-like negative electrode.
セパレータとしては、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造の微多孔質シートを基材とし、かかる基材の表面に過充電添加剤を分散配置させたものを用いた。かかる過充電添加剤含有セパレータは、過充電添加剤としての粉末状のBPを基材である微多孔質シート上に散布し、当該シートの孔内に粉末状のBPを配置させることで用意したものである。 As the separator, a microporous sheet having a three-layer structure in which a polypropylene (PP) layer is laminated on both sides of a polyethylene (PE) layer is used as a base material, and an overcharge additive is dispersedly arranged on the surface of the base material. Was used. Such an overcharge additive-containing separator was prepared by spraying powdery BP as an overcharge additive on a microporous sheet as a base material and arranging the powdery BP in the holes of the sheet. Is.
次に、上記で作製した正極シートと負極シートとを、セパレータを介して重ね合わせて捲回し、断面形状が楕円形状の捲回電極体を構築した。そして、かかる捲回電極体の正極集電体の端部を正極集電端子と、負極集電体の端部を負極集電端子と溶接し、正負の外部接続端子とそれぞれ電気的に接合した。なお、正極集電体と正極外部端子との間の導電経路内には圧力感知型のCID機構が備えられている。
この電極体を電池ケースに収容し、非水電解液を注入した。なお、非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とを3:4:3の体積比率で含む混合溶媒に、電解質としてのLiPF6を約1mol/Lの濃度で溶解し、さらに、過充電添加剤を溶解させたものを用いた。本実施形態において、非水電解液に添加する過充電添加剤としてはBPを用い、上記の組成の非水電解液に対して常温(25℃)で飽和状態となる量、すなわち電解液全体の質量に対して約10質量%の濃度となるように調整して添加した。そして、電池ケースの開口部に蓋体を装着し、溶接して接合することによって計40個のリチウム二次電池を作製した。なお、これらリチウム二次電池の容量比(CN/CP)は1.36に調整されている。
Next, the positive electrode sheet and the negative electrode sheet produced above were overlapped and wound through a separator to construct a wound electrode body having an elliptical cross-sectional shape. Then, the end of the positive electrode current collector of the wound electrode body is welded to the positive electrode current collector terminal, the end of the negative electrode current collector is welded to the negative electrode current collector terminal, and electrically connected to the positive and negative external connection terminals, respectively. . A pressure sensing type CID mechanism is provided in the conductive path between the positive electrode current collector and the positive electrode external terminal.
This electrode body was accommodated in a battery case and a non-aqueous electrolyte was injected. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of 3: 4: 3, and LiPF 6 as an electrolyte is about What melt | dissolved in the density | concentration of 1 mol / L, and also dissolved the overcharge additive was used. In this embodiment, BP is used as an overcharge additive to be added to the non-aqueous electrolyte, and the amount of the non-aqueous electrolyte having the above composition is saturated at room temperature (25 ° C.), that is, the entire electrolyte. It adjusted and added so that it might become a density | concentration of about 10 mass% with respect to mass. Then, a total of 40 lithium secondary batteries were manufactured by attaching a lid to the opening of the battery case and welding and joining. The capacity ratio (C N / C P ) of these lithium secondary batteries is adjusted to 1.36.
<例2>
上記例1で用いたリチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3O2)の遷移金属サイトにタングステン(W)を置換配合させた正極活物質を用い、その他の条件は例1と同様にして、40個のリチウム二次電池を用意した。なお、この正極活物質は、平均組成(元素モル比)がLi1.03Ni0.33Co0.33Mn0.33W0.03O2.06で表され、遷移金属元素の合計量を100質量%として、3質量%の割合のタングステンを含んでいる。かかる正極活物質は、出発原料として硫酸ニッケル(NiSO4)、硫酸コバルト(CoSO4)、硫酸マンガン(MnSO4)およびパラタングステン酸アンモニウム[(NH4)10(H2W12O42)・4H2O]を、Ni,Co,Mn,Wのモル比が0.33:0.33:0.33:0.03(化学量論比)となるよう水に溶解させて調製したNiCoMnW水溶液から、これらの元素の複合水酸化物を晶析させ、更にリチウム源としての炭酸リチウム(LiCO3)をLi:(Ni+Co+Mn+W)が1:1となるように混合し焼成して固相拡散させることで得たものである。このようにして得られた正極活物質は、特に活物質粒子の表面に(粒子が凝集体を構成している場合には粒界に)Wが偏析している。
<Example 2>
The positive electrode active material in which tungsten (W) is substituted and compounded at the transition metal site of the lithium nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) used in Example 1 above, In the same manner as in Example 1, 40 lithium secondary batteries were prepared. The positive electrode active material has an average composition (element molar ratio) represented by Li 1.03 Ni 0.33 Co 0.33 Mn 0.33 W 0.03 O 2.06 , and the total amount of transition metal elements Is 100% by mass and contains 3% by mass of tungsten. Such positive electrode active materials are nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ), manganese sulfate (MnSO 4 ), and ammonium paratungstate [(NH 4 ) 10 (H 2 W 12 O 42 ) · 4H as starting materials. 2 O] is dissolved in water so that the molar ratio of Ni, Co, Mn, and W is 0.33: 0.33: 0.33: 0.03 (stoichiometric ratio). By crystallizing a composite hydroxide of these elements, and further mixing lithium carbonate (LiCO 3 ) as a lithium source so that Li: (Ni + Co + Mn + W) is 1: 1, firing and solid phase diffusing. It is obtained. In the positive electrode active material thus obtained, W is segregated particularly on the surface of the active material particles (in the case where the particles constitute an aggregate, at the grain boundary).
<例3>
上記例1におけるセパレータに代えて、過充電添加剤を含まない、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造の微多孔質シートを用い、その他の条件は例1と同様にして、40個のリチウム二次電池を用意した。すなわち、例1のセパレータ基材のみをセパレータとして用い、リチウム二次電池を構築した。
<Example 3>
Instead of the separator in Example 1 above, a microporous sheet having a three-layer structure in which a polypropylene (PP) layer is laminated on both sides of a polyethylene (PE) layer that does not contain an overcharge additive is used. 40 lithium secondary batteries were prepared in the same manner as in Example 1. That is, a lithium secondary battery was constructed using only the separator substrate of Example 1 as a separator.
<例4>
上記例3において、非水電解液に添加する過充電添加剤の量を13質量%に増量し、その他の条件は例3と同様にして、40個のリチウム二次電池を用意した。すなわち、例1のセパレータ基材のみをセパレータとして用い、さらに、非水電解液に添加する過充電添加剤の量を過飽和状態としてリチウム二次電池を構築した。
<Example 4>
In Example 3, 40 lithium secondary batteries were prepared in the same manner as in Example 3 except that the amount of the overcharge additive added to the non-aqueous electrolyte was increased to 13% by mass. That is, a lithium secondary battery was constructed using only the separator base material of Example 1 as a separator and further setting the amount of the overcharge additive added to the non-aqueous electrolyte to a supersaturated state.
<例5>
上記例2におけるセパレータに代えて、過充電添加剤を含まない、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造の微多孔質シートを用い、その他の条件は例2と同様にして、40個のリチウム二次電池を用意した。すなわち、例1のセパレータ基材のみをセパレータとして用い、タングステンを含む正極活物質を用いることでてリチウム二次電池を構築した。
<Example 5>
Instead of the separator in Example 2 above, a microporous sheet having a three-layer structure in which a polypropylene (PP) layer is laminated on both sides of a polyethylene (PE) layer that does not contain an overcharge additive is used. 40 lithium secondary batteries were prepared in the same manner as described above. That is, a lithium secondary battery was constructed by using only the separator base material of Example 1 as a separator and using a positive electrode active material containing tungsten.
<例6>
上記例2において、非水電解液に添加する過充電添加剤の量を8質量%に減量し、その他の条件は例3と同様にして、40個のリチウム二次電池を用意した。すなわち、例1の正極活物質に代えてタングステンを含む正極活物質を用い、非水電解液に添加する過充電添加剤の量を飽和に満たない状態としてリチウム二次電池を構築した。
<Example 6>
In Example 2, 40 lithium secondary batteries were prepared in the same manner as in Example 3 except that the amount of the overcharge additive added to the non-aqueous electrolyte was reduced to 8% by mass. That is, a lithium secondary battery was constructed by using a positive electrode active material containing tungsten instead of the positive electrode active material of Example 1 and setting the amount of the overcharge additive added to the non-aqueous electrolyte to less than saturation.
[コンディショニング]上記例1〜例6で用意したリチウム二次電池に対し、25℃にて1CでSOC85%まで定電流(CC)充電するコンディショニング処理を行った。その後、1/5Cの放電レートで3.0VまでCC放電したときの容量を初期容量とし、その測定結果を、下記表1に示した。 [Conditioning] The lithium secondary batteries prepared in Examples 1 to 6 were subjected to a conditioning process in which constant current (CC) charging was performed at 25C to 1% SOC at 1C. Then, the capacity | capacitance when CC discharge was carried out to 3.0V with the discharge rate of 1 / 5C was made into the initial stage capacity | capacitance, and the measurement result was shown in following Table 1.
[初期ガス発生量の評価]上記で用意した例1〜例6の各電池のうち、各電池20個について、初期ガス発生量の評価を行った。すなわち、60℃にて1Cで高SOC(過充電状態)まで定電流(CC)充電した際のCIDの作動状況を確認し、その結果を下記の表1の欄に示した。なお、表1中のCIDの作動状況に係る欄は、CIDが迅速に開弁した場合については記号「◎」を、CIDが開弁しなかった場合については記号「×」を示した。 [Evaluation of Initial Gas Generation Amount] Of each of the batteries prepared in Examples 1 to 6, the initial gas generation amount was evaluated for 20 batteries. That is, the operating state of the CID when charging at a constant current (CC) up to a high SOC (overcharged state) at 1 C at 60 ° C. was confirmed, and the result is shown in the column of Table 1 below. The column related to the operating status of the CID in Table 1 indicates the symbol “◎” when the CID opens quickly, and the symbol “X” when the CID does not open.
[耐久性および容量維持率の評価]上記で用意した例1〜例6の各電池のうち、各電池の残りの20個について、温度25℃の環境下、1/5Cのレートで4.1Vまで定電流(CC)充電した後、電流値が1/50Cになるまで定電圧(CV)充電を行い、満充電状態とした。
次いで、各電池を60℃に設定した恒温槽内に2時間以上静置した後、以下のハイレートでの充放電操作(1)〜(2)を500サイクル繰り返した(耐久試験)。
(1)2Cのレートで4.1VまでCC充電し、10分間休止する。
(2)2Cのレートで3.0VまでCC放電し、10分間休止する。
その後、上記初期容量の測定方法と同様の手順で放電容量を測定し、耐久後の容量とした。そして、容量維持率(%)を、初期容量に対する耐久後の容量の割合((耐久後の容量/初期容量)×100(%))として算出した。得られた値(容量維持率)を、表1に併せて示した。また、同時に正負極間の抵抗を測定し、その結果を耐久後抵抗として併せて下記の表1に示した。
[Evaluation of Durability and Capacity Maintenance Rate] Among the batteries prepared in Examples 1 to 6, the remaining 20 batteries were 4.1 V at a rate of 1/5 C in an environment at a temperature of 25 ° C. After constant current (CC) charging, constant voltage (CV) charging was performed until the current value reached 1/50 C to obtain a fully charged state.
Subsequently, after leaving each battery in a thermostat set at 60 ° C. for 2 hours or longer, the following charge / discharge operations (1) to (2) at a high rate were repeated 500 cycles (endurance test).
(1) CC charge to 4.1V at a rate of 2C and rest for 10 minutes.
(2) CC discharge to 3.0 V at a rate of 2 C and rest for 10 minutes.
Thereafter, the discharge capacity was measured by the same procedure as the above initial capacity measurement method to obtain the capacity after endurance. The capacity retention rate (%) was calculated as a ratio of the capacity after endurance to the initial capacity ((capacity after endurance / initial capacity) × 100 (%)). The obtained values (capacity maintenance ratio) are shown together in Table 1. At the same time, the resistance between the positive and negative electrodes was measured, and the results are shown in Table 1 below together as the resistance after durability.
[耐久後のガス発生量の評価]
上記耐久試験後の各電池に対し、60℃にて1Cで高SOC(過充電状態)までCC充電した際のCIDの作動状況を確認し、その結果を下記の表1の欄に示した。なお、表1中のCIDの作動状況に係る欄は、CIDが迅速に開弁した場合については記号「◎」を、CIDが開弁しなかった場合については記号「×」を示した。
[Evaluation of gas generation after endurance]
For each battery after the endurance test, the operating status of CID when CC was charged at 60C to 1C at high SOC (overcharged state) was confirmed, and the result is shown in the column of Table 1 below. The column related to the operating status of the CID in Table 1 indicates the symbol “◎” when the CID opens quickly, and the symbol “X” when the CID does not open.
[評価]
例1の電池は、非水電解液中に常温で飽和量の過充電添加剤を含むとともに、さらにセパレータに過充電添加剤を含んでいる。そのため、二次電池の使用初期の段階で過充電状態となった場合と、繰り返し充放電を行った後(耐久後)に過充電状態となった場合とのいずれにおいても、SOCが高まると迅速に十分な量の過充電添加剤が酸化分解されてガスが発生し、CIDが速やか作動することが確認された。すなわち、二次電池の使用初期の段階において、過充電初期に非水電解液中の過充電添加剤が酸化分解されて過充電添加剤の濃度が低下するとともに、過充電の進行に伴い電池温度が上昇する。すると、過充電添加剤の非水電解液への溶解性が高められ、セパレータに添加されていた過充電添加剤が非水電解液中に溶解し、非水電解液中の過充電添加剤の濃度はより高い状態に維持される。これにより、過充電が進行しても十分な濃度の過充電添加剤が非水電解液中、延いては正極表面に供給され、十分な量のガスの発生が可能とされる。一方で、耐久後の二次電池においては、正極の表面での過充電添加剤の重合が抑制され得る。しかしながら、かかる場合であっても充電の進行に伴い電池温度が上昇すると、非水電解液への過充電添加剤の溶解性が高められ、セパレータに添加されていた過充電添加剤が非水電解液中に溶解する。これにより、非水電解液中の過充電添加剤の濃度がさらに高まり、正極により多くの過充電添加剤を供給することができ、過充電状態でも十分な量のガスの発生と迅速なCIDの作動が可能となる。このような例1の電池によると、過充電状態に陥った場合により早期にCIDが作動し、更なる過充電の進行が抑止されて、より安全な状態で二次電池の電気化学反応を停止させることができる。
なお、例1の電池において、過充電添加剤は過充電時にのみ常温での飽和量以上が供給され、通常の電池使用時において過充電添加剤による内部抵抗が必要以上に増大されることがないことも確認できた。
[Evaluation]
The battery of Example 1 contains a saturated amount of an overcharge additive at normal temperature in the non-aqueous electrolyte, and further contains an overcharge additive in the separator. Therefore, both when the secondary battery is overcharged at the initial stage of use and when it is overcharged after repeated charge / discharge (after endurance), the SOC quickly increases. It was confirmed that a sufficient amount of the overcharge additive was oxidized and decomposed to generate gas, and the CID operated quickly. That is, in the initial stage of use of the secondary battery, the overcharge additive in the non-aqueous electrolyte is oxidized and decomposed at the initial stage of overcharge, and the concentration of the overcharge additive is lowered. Rises. Then, the solubility of the overcharge additive in the non-aqueous electrolyte is increased, and the overcharge additive added to the separator is dissolved in the non-aqueous electrolyte, and the overcharge additive in the non-aqueous electrolyte is dissolved. The concentration is kept higher. Thereby, even if overcharge progresses, an overcharge additive having a sufficient concentration is supplied in the non-aqueous electrolyte and then to the surface of the positive electrode, and a sufficient amount of gas can be generated. On the other hand, in the secondary battery after durability, the polymerization of the overcharge additive on the surface of the positive electrode can be suppressed. However, even in such a case, when the battery temperature rises with the progress of charging, the solubility of the overcharge additive in the non-aqueous electrolyte is increased, and the overcharge additive added to the separator becomes non-aqueous electrolysis. Dissolve in the liquid. As a result, the concentration of the overcharge additive in the non-aqueous electrolyte is further increased, more overcharge additive can be supplied to the positive electrode, sufficient gas generation and rapid CID generation can be achieved even in the overcharge state. Operation becomes possible. According to the battery of Example 1 as described above, the CID is activated earlier when the battery is overcharged, the progress of further overcharge is suppressed, and the electrochemical reaction of the secondary battery is stopped in a safer state. Can be made.
In the battery of Example 1, the overcharge additive is supplied in a saturation amount or more at normal temperature only during overcharge, and the internal resistance due to the overcharge additive is not increased more than necessary during normal battery use. I was able to confirm that.
例2の電池は、例1の電池構成と比較して、正極活物質にWを含んでいる。したがって、過充電状態(例えばSOC140%程度)におけるCIDの作動状況および電池の安全性はそのままに、内部抵抗がより低く、耐久性に優れた(容量維持率の高い)、より高性能な二次電池が得られることが確認できた。非水電解液が常温で飽和量の過充電添加剤を含むと、過充電添加剤の濃度がより低い非水電解液を用いた場合に比べて、電池の内部抵抗が若干増加することが考えられる。しかしながら、Wを含む正極活物質を用いることで、かかる内部抵抗の増加を十二分に抑制することができ、安全性および耐久性により一層優れた電池を実現することができる。 Compared with the battery configuration of Example 1, the battery of Example 2 contains W in the positive electrode active material. Therefore, while maintaining the operating status of the CID and the safety of the battery in an overcharged state (for example, about SOC 140%), the internal resistance is lower, the durability is higher (the capacity retention rate is higher), and the higher performance secondary. It was confirmed that a battery was obtained. If the non-aqueous electrolyte contains a saturated amount of overcharge additive at room temperature, the internal resistance of the battery may increase slightly compared to the case of using a non-aqueous electrolyte with a lower concentration of overcharge additive. It is done. However, by using a positive electrode active material containing W, the increase in internal resistance can be sufficiently suppressed, and a battery that is more excellent in safety and durability can be realized.
これに対し、例3の電池は、例1の電池構成と比較して、セパレータに過充電添加剤が含まれていない。そのため、耐久後抵抗および容量維持率は例1と同程度に良好であった。しかしながら、使用初期においては過充電状態においてCIDを作動させるに十分な量のガスを発生させることができたが、耐久試験における繰り返しの充放電に伴い非水電解液中の過充電添加剤が消費されてしまい、耐久後は過充電状態においてCIDを作動させるに十分な量のガスを発生させることができなかった。 On the other hand, the battery of Example 3 does not contain an overcharge additive in the separator as compared with the battery configuration of Example 1. Therefore, the resistance after endurance and the capacity retention ratio were as good as in Example 1. However, in the initial stage of use, a sufficient amount of gas could be generated to operate the CID in the overcharged state, but the overcharge additive in the non-aqueous electrolyte was consumed with repeated charge and discharge in the durability test. Therefore, after the endurance, a sufficient amount of gas could not be generated to operate the CID in the overcharged state.
例4の電池は、例1の電池構成と比較して、セパレータに過充電添加剤が含まれておらず、その分非水電解液中に過飽和の状態で過充電添加剤が含まれている。そのため、使用初期においては過充電状態においてCIDを作動させるに十分な量のガスを発生させることができた。しかしながら、耐久試験においては例3よりも多くの過充電添加剤が正極の表面に皮膜を形成し、正極活物質間の空隙を皮膜が閉塞してしまい、過充電状態においてはCIDを作動させるに十分な量のガスを発生させることができなかった。また、繰り返しの充放電において正極表面に重合皮膜が多量に形成されたことから、内部抵抗の上昇が大きく、容量維持率も低い値であった。 Compared with the battery configuration of Example 1, the battery of Example 4 does not contain an overcharge additive in the separator, and accordingly includes an overcharge additive in a supersaturated state in the nonaqueous electrolyte. . Therefore, in the initial stage of use, a sufficient amount of gas could be generated to operate the CID in the overcharged state. However, in the endurance test, more overcharge additive than in Example 3 forms a film on the surface of the positive electrode, and the film closes the gap between the positive electrode active materials, so that the CID is activated in the overcharged state. A sufficient amount of gas could not be generated. In addition, since a large amount of the polymer film was formed on the positive electrode surface during repeated charging and discharging, the increase in internal resistance was large and the capacity retention rate was also low.
例5の電池は、例1の電池構成と比較して、正極活物質にWを含み、セパレータに過充電添加剤が含んでいない。この例5の電池は正極活物質がWを含んでいることから、耐久後の抵抗については例1〜例6の電池の中で最も低く抑えられており、耐久後の容量維持率も高い値であった。また、正極活物質の表面にWが偏析しているものの、使用初期においてはCIDを作動させるに十分な量のガスを発生させることができた。しかしながら、正極活物質表面におけるWの偏析により正極と過充電添加剤とが高効率で反応できないこと、および、耐久試験における繰り返しの充放電に伴い非水電解液中の過充電添加剤が消費されてしまったことから、耐久後は過充電状態においてもCIDを作動させるに十分な量のガスを発生させることができなかった。 Compared with the battery configuration of Example 1, the battery of Example 5 contains W in the positive electrode active material and does not contain the overcharge additive in the separator. In the battery of Example 5, since the positive electrode active material contains W, the resistance after endurance is suppressed to the lowest among the batteries of Examples 1 to 6, and the capacity retention rate after endurance is also high. Met. In addition, although W was segregated on the surface of the positive electrode active material, a sufficient amount of gas could be generated to operate the CID at the initial stage of use. However, due to segregation of W on the surface of the positive electrode active material, the positive electrode and the overcharge additive cannot react with high efficiency, and the overcharge additive in the non-aqueous electrolyte is consumed due to repeated charge and discharge in the durability test. Therefore, after the endurance, a sufficient amount of gas could not be generated to operate the CID even in the overcharged state.
例6の電池は、例1の電池構成と比較して、正極活物質にWを含んでおり、非水電解液中の過充電添加剤の濃度が低く設定されている。この例6の電池は、正極活物質がWを含んでいること、および、非水電解液中の過充電添加剤の濃度が低いことから、使用初期と過充電状態との両方でCIDを作動させるに十分な量のガスを発生させることができなかった。なお、正極活物質がWを含むことから、耐久後の抵抗については比較的低い値であったが、Wの溶出により容量維持率は低下したと考えられる。セパレータに過充電添加剤が含まれていることから耐久後の過充電状態において例3〜5の電池に比べて多くのガスが発生されたことは確認できた。 Compared with the battery configuration of Example 1, the battery of Example 6 contains W in the positive electrode active material, and the concentration of the overcharge additive in the non-aqueous electrolyte is set low. In the battery of Example 6, the positive electrode active material contains W, and the concentration of the overcharge additive in the non-aqueous electrolyte is low, so that the CID operates in both the initial use state and the overcharge state. A sufficient amount of gas could not be generated. In addition, since the positive electrode active material contains W, the resistance after endurance was a relatively low value, but it is considered that the capacity retention rate was reduced by elution of W. Since the overcharge additive was contained in the separator, it was confirmed that more gas was generated than in the batteries of Examples 3 to 5 in the overcharged state after durability.
以上のことから、本発明の非水電解液二次電池は、電池内での過充電添加剤の配設形態が最適に設計されていることから、内部抵抗の増大を招くことなくサイクル後のガス発生量を高く維持することができ、電池特性の劣化が抑制されているばかりでなく、高い安全性が確保されていることが確認された。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
From the above, the non-aqueous electrolyte secondary battery of the present invention is optimally designed for the arrangement of the overcharge additive in the battery, so that after the cycle without increasing the internal resistance It was confirmed that the amount of gas generated can be kept high, the deterioration of battery characteristics is suppressed, and high safety is ensured.
As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
Claims (2)
前記非水電解液は、過充電時にガスを発生する第1の過充電添加剤を常温における飽和量で含み、
前記セパレータは、過充電時にガスを発生する第2の過充電添加剤を含む、非水電解液二次電池。 A positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, and a current interruption mechanism that interrupts a conductive path when a predetermined pressure is sensed,
The non-aqueous electrolyte contains a first overcharge additive that generates gas during overcharge in a saturated amount at room temperature,
The separator is a non-aqueous electrolyte secondary battery including a second overcharge additive that generates gas during overcharge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013166130A JP2015035354A (en) | 2013-08-09 | 2013-08-09 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013166130A JP2015035354A (en) | 2013-08-09 | 2013-08-09 | Non-aqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015035354A true JP2015035354A (en) | 2015-02-19 |
Family
ID=52543744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013166130A Pending JP2015035354A (en) | 2013-08-09 | 2013-08-09 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015035354A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109148789A (en) * | 2017-06-16 | 2019-01-04 | 宁德时代新能源科技股份有限公司 | Diaphragm, preparation method thereof and lithium ion battery using diaphragm |
-
2013
- 2013-08-09 JP JP2013166130A patent/JP2015035354A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109148789A (en) * | 2017-06-16 | 2019-01-04 | 宁德时代新能源科技股份有限公司 | Diaphragm, preparation method thereof and lithium ion battery using diaphragm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6287707B2 (en) | Nonaqueous electrolyte secondary battery | |
KR101739642B1 (en) | Non-aqueous electrolyte secondary battery | |
JP6519577B2 (en) | Lithium ion secondary battery | |
JP5822089B2 (en) | Sealed lithium secondary battery | |
JP5709008B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
WO2013021630A1 (en) | Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery | |
CN108172772B (en) | Lithium ion secondary battery | |
US8257847B2 (en) | Lithium secondary battery | |
JP6152825B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5858288B2 (en) | Sealed lithium secondary battery | |
JP2013235653A (en) | Sealed nonaqueous electrolyte secondary battery | |
JP2016018731A (en) | Non-aqueous secondary battery | |
JP2013218895A (en) | Electrode and manufacturing method therefor and nonaqueous electrolyte battery having the electrode | |
JP5682801B2 (en) | Method for manufacturing lithium secondary battery | |
JP5962956B2 (en) | Lithium secondary battery | |
JP5704409B2 (en) | Sealed lithium secondary battery | |
JP2014036010A (en) | Nonaqueous electrolyte secondary battery | |
JP2011146158A (en) | Lithium secondary battery | |
JP2011103181A (en) | Lithium secondary battery | |
JP2015103306A (en) | Positive electrode active material and nonaqueous electrolyte secondary battery including the same | |
JP5835617B2 (en) | Sealed lithium secondary battery | |
JP2015026559A (en) | Method for manufacturing nonaqueous electrolytic secondary battery | |
KR101888775B1 (en) | Nonaqueous electrolyte secondary battery | |
JP2012186035A (en) | Pretreatment method and usage method of lithium ion secondary battery | |
JP2015035354A (en) | Non-aqueous electrolyte secondary battery |