JP2012186035A - Pretreatment method and usage method of lithium ion secondary battery - Google Patents
Pretreatment method and usage method of lithium ion secondary battery Download PDFInfo
- Publication number
- JP2012186035A JP2012186035A JP2011048640A JP2011048640A JP2012186035A JP 2012186035 A JP2012186035 A JP 2012186035A JP 2011048640 A JP2011048640 A JP 2011048640A JP 2011048640 A JP2011048640 A JP 2011048640A JP 2012186035 A JP2012186035 A JP 2012186035A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- secondary battery
- positive electrode
- ion secondary
- pretreatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 40
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000002203 pretreatment Methods 0.000 title claims abstract description 14
- 239000007774 positive electrode material Substances 0.000 claims abstract description 46
- 238000007600 charging Methods 0.000 claims abstract description 21
- 238000007599 discharging Methods 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 abstract description 15
- 239000000243 solution Substances 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 24
- 208000028659 discharge Diseases 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 17
- 239000011572 manganese Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 239000011149 active material Substances 0.000 description 12
- 239000005518 polymer electrolyte Substances 0.000 description 12
- 239000002131 composite material Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000008151 electrolyte solution Substances 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- 239000002033 PVDF binder Substances 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- -1 polytetrafluoroethylene Polymers 0.000 description 7
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000002482 conductive additive Substances 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 238000007781 pre-processing Methods 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 239000011244 liquid electrolyte Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920002239 polyacrylonitrile Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000002905 metal composite material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910003289 NiMn Inorganic materials 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910005190 Li(Li,Ni,Mn,Co)O2 Inorganic materials 0.000 description 1
- 229910003000 Li(Ni,Mn,Co)O2 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910005790 SnSiO Inorganic materials 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- CXULZQWIHKYPTP-UHFFFAOYSA-N cobalt(2+) manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[O--].[Mn++].[Co++].[Ni++] CXULZQWIHKYPTP-UHFFFAOYSA-N 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 101150004907 litaf gene Proteins 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002116 nanohorn Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229940053662 nickel sulfate Drugs 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000002467 phosphate group Chemical class [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910000319 transition metal phosphate Inorganic materials 0.000 description 1
- 229910000385 transition metal sulfate Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、正極活物質として、リチウム含有複合酸化物から成る固溶体系材料を用いたリチウムイオン二次電池の前処理方法と、前処理後の充放電方法、すなわち当該リチウムイオン二次電池の使用方法に関するものである。 The present invention relates to a pretreatment method for a lithium ion secondary battery using a solid solution system material composed of a lithium-containing composite oxide as a positive electrode active material, and a charge / discharge method after the pretreatment, that is, the use of the lithium ion secondary battery. It is about the method.
近年、大気汚染や地球温暖化への対策として、CO2排出量の低減に向けた種々の取り組みがなされており、自動車業界においては、ハイブリット電気自動車や電気自動車の導入によるCO2排出量の削減が期待されており、これら車両のモータ駆動用電源として、高性能な二次電池の開発が進んでいる。
このようなモータ駆動用の二次電池としては、特に高容量であることやサイクル特性に優れていることが求められることから、各種二次電池の中でも高い理論エネルギを有するリチウムイオン二次電池が着目されている。
In recent years, various efforts have been made to reduce CO 2 emissions as a measure against air pollution and global warming. In the automotive industry, CO 2 emissions have been reduced by introducing hybrid electric vehicles and electric vehicles. High-performance secondary batteries are being developed as a power source for driving these vehicles.
Such a secondary battery for driving a motor is required to have a particularly high capacity and excellent cycle characteristics. Therefore, among various secondary batteries, a lithium ion secondary battery having high theoretical energy is used. It is attracting attention.
このようなリチウムイオン二次電池におけるエネルギ密度を高めるためには、正極と負極の単位質量当たりに蓄えられる電気量を大きくすることが必要であり、このような要求を満たす可能性のある正極材料として、固溶体系材料が着目されている。なかでも、電気化学的に不活性で層状をなすLi2MnO3と、電気化学的に活性な層状のLiMO2(式中のMはCo,Niなどの遷移金属)との固溶体は、200mAh/gを超えるような高容量正極材料の候補として期待されている。 In order to increase the energy density in such a lithium ion secondary battery, it is necessary to increase the amount of electricity stored per unit mass of the positive electrode and the negative electrode, and the positive electrode material that may satisfy such a requirement As a result, solid solution system materials are attracting attention. Among them, a solid solution of electrochemically inactive and layered Li 2 MnO 3 and electrochemically active layered LiMO 2 (wherein M is a transition metal such as Co or Ni) is 200 mAh / It is expected as a candidate for a high-capacity positive electrode material exceeding g.
そして、特許文献1には、上記のような固溶体系の正極材料を用いたリチウムイオン二次電池のサイクル耐久性を改善するために、上記正極材料に酸化処理を施すこと、例えば電極を形成して所定の電位を超えない電位範囲で充放電することによって酸化処理することが開示されている。 And in patent document 1, in order to improve the cycle durability of the lithium ion secondary battery using the positive electrode material of the above solid solution system, the positive electrode material is subjected to an oxidation treatment, for example, an electrode is formed. It is disclosed that the oxidation treatment is performed by charging and discharging in a potential range not exceeding a predetermined potential.
しかしながら、上記特許文献1に記載の固溶体系正極材料を用いたリチウムイオン二次電池においては、所定の電位範囲での充放電による酸化処理、すなわち放電前処理を行うことによって、サイクル特性を大幅に向上させることができるものの、この前処理には5日以上の長時間を要するという問題点があった。 However, in the lithium ion secondary battery using the solid solution positive electrode material described in Patent Document 1, the cycle characteristics are greatly improved by performing an oxidation treatment by charge / discharge in a predetermined potential range, that is, a pre-discharge treatment. Although it can be improved, this pretreatment has a problem that it takes a long time of 5 days or more.
本発明は、上記のような固溶体系の材料を正極活物質として用いたリチウムイオン二次電池における上記課題を解決すべくなされたものであって、その目的とするところは、短時間でサイクル特性を向上させることができるリチウムイオン二次電池の前処理方法を提供することにある。さらには、このような前処理に続く充放電方法、言い換えると当該リチウムイオン二次電池の使用方法を提供することにある。 The present invention has been made to solve the above-mentioned problems in lithium ion secondary batteries using a solid solution system material as a positive electrode active material. The object of the present invention is to achieve cycle characteristics in a short time. It is providing the pre-processing method of the lithium ion secondary battery which can improve this. Furthermore, it is providing the charging / discharging method following such a pretreatment, in other words, the usage method of the said lithium ion secondary battery.
本発明者らは、上記目的を達成すべく鋭意検討を繰り返した結果、固溶体系材料から成る正極活物質を用いたリチウムイオン二次電池の前処理を定電流制御から定電位制御によるものに変更することによって、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors changed the pretreatment of the lithium ion secondary battery using the positive electrode active material made of the solid solution system material from constant current control to constant potential control. As a result, the inventors have found that the above object can be achieved and have completed the present invention.
すなわち、本発明は上記知見に基づくものであって、本発明のリチウムイオン二次電池の前処理方法は、[Li1.5][Li0.5(1−x)Mn1−xM1.5x]O3(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5)の組成式で表される正極活物質を用いたリチウムイオン二次電池の前処理方法において、充電時の上限電圧をLi参照電極に対して、4.0V以上4.9V未満、放電時の下限電圧を2.0V以上3.5V未満の電圧範囲に定電位制御することを特徴とする。
また、本発明のリチウムイオン二次電池の使用方法は、上記正極活物質を用いたリチウムイオン二次電池に、定電位制御による上記前処理を施したのち、充放電時の上限電圧をLi参照電極に対して、4.3V以上4.9V未満、下限電圧を2.0V以上3.0V以下の電圧範囲に定電流制御して充放電することを特徴としている。
That is, the present invention has been made based on the above findings, the pretreatment method of a lithium ion secondary battery of the present invention, [Li 1.5] [Li 0.5 (1-x) Mn 1-x M 1 .5x ] O 3 (wherein x satisfies 0.1 ≦ x ≦ 0.5, M is represented by NiαCoβMnγ, 0 <α ≦ 0.5, 0 ≦ β ≦ 0.33, 0 <γ ≦ 0.5) In the pretreatment method of the lithium ion secondary battery using the positive electrode active material represented by the composition formula, the upper limit voltage during charging is 4.0 V or more and less than 4.9 V with respect to the Li reference electrode, The lower limit voltage at the time of discharging is controlled at a constant potential within a voltage range of 2.0 V or more and less than 3.5 V.
In addition, the method of using the lithium ion secondary battery of the present invention is that the lithium ion secondary battery using the positive electrode active material is subjected to the above pretreatment by constant potential control, and then the upper limit voltage during charge / discharge is referred to Li. It is characterized in that charging / discharging is performed by controlling constant current in a voltage range of 4.3 V to less than 4.9 V and a lower limit voltage of 2.0 V to 3.0 V with respect to the electrode.
本発明によれば、リチウムイオン二次電池の定電流制御による前処理を定電位制御によるものとし、充電時の上限電圧及び放電時の加減電圧をそれぞれ所定の範囲内で行うようにしたため、定電流制御によるこれまでの処理に較べて、前処理時間を大幅に短縮することができる。 According to the present invention, the pretreatment by the constant current control of the lithium ion secondary battery is performed by the constant potential control, and the upper limit voltage at the time of charging and the increasing / decreasing voltage at the time of discharging are performed within a predetermined range. Compared with the conventional processing by current control, the preprocessing time can be greatly shortened.
以下に、本発明のリチウムイオン二次電池の前処理方法について、処理対象としてのリチウムイオン二次電池の構成と共に、詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を表すものとする。 Below, the pre-processing method of the lithium ion secondary battery of this invention is demonstrated in detail with the structure of the lithium ion secondary battery as a process target. In the present specification, “%” represents mass percentage unless otherwise specified.
本発明のリチウムイオン二次電池の前処理方法においては、上記のように、所定の組成式[Li1.5][Li0.5(1−x)Mn1−xM1.5x]O3(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5)で表される固溶体系正極活物質を用いたリチウムイオン二次電池に前処理を施すに際して、充電時の上限電圧をLi参照電極に対して、4.0V以上4.9V未満、放電時の下限電圧を2.0V以上3.5V未満の電圧範囲に定電位制御するようにしている。 In the pretreatment method of the lithium ion secondary battery of the present invention, as described above, the predetermined composition formula [Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3 (wherein x satisfies 0.1 ≦ x ≦ 0.5, M is represented by NiαCoβMnγ, 0 <α ≦ 0.5, 0 ≦ β ≦ 0.33, 0 <γ ≦ 0.5) When a pretreatment is performed on a lithium ion secondary battery using a solid solution system positive electrode active material represented by the formula, the upper limit voltage during charging is 4.0 V or more and less than 4.9 V with respect to the Li reference electrode, and the lower limit during discharge. The voltage is controlled to a constant potential within a voltage range of 2.0 V or more and less than 3.5 V.
本発明の前処理方法において、充電時の上限電圧について、4.0V以上4.9V未満としたのは、充電時の上限電圧が4.0Vに満たない場合には、電気化学的に活性化されないことになり、4.9V以上の場合には、使用される電解液が分解し電池特性が低下するという不具合が生じることによる。
一方、放電時の下限電圧について、2.0V以上3.5V未満としたのは、放電時の下限電圧が2.0V未満では、過放電状態となることになり、逆に3.5V以上の場合には、充分なLiが挿入されないため構造変化が生じず、電気化学的に活性化されないという問題が生じることによる。
In the pretreatment method of the present invention, the upper limit voltage during charging is set to 4.0 V or more and less than 4.9 V. When the upper limit voltage during charging is less than 4.0 V, it is activated electrochemically. In the case of 4.9 V or more, the electrolyte solution used is decomposed and the battery characteristics are deteriorated.
On the other hand, the lower limit voltage during discharge is set to 2.0 V or more and less than 3.5 V. If the lower limit voltage during discharge is less than 2.0 V, an overdischarge state occurs. In some cases, sufficient Li is not inserted, so that the structural change does not occur and the electrochemical activation is not caused.
本発明の前処理方法においては、処理時における正極活物質の急激な構造変化を避ける観点から、10回以下の充放電繰り返し回数ごとに、充電時の上限電圧を0.01V以上1.0V未満ずつ増加させていったり、放電時の下限電圧を0.01V以上1.0V未満ずつ低下させていったりすることが望ましい。 In the pretreatment method of the present invention, from the viewpoint of avoiding a sudden structural change of the positive electrode active material during the treatment, the upper limit voltage during charging is 0.01 V or more and less than 1.0 V every 10 or less charge / discharge cycles. It is desirable that the voltage is increased gradually or the lower limit voltage during discharge is decreased by 0.01 V or more and less than 1.0 V.
また、本発明のリチウムイオン二次電池の使用方法においては、上記正極活物質を用いたリチウムイオン二次電池に、定電位制御による上記の前処理方法を施したのち、充放電時の上限電圧をLi参照電極に対して、4.3V以上4.9V未満、下限電圧を2.0V以上3.0V以下の電圧範囲に定電流制御して充放電するようにしている。
ここで、充放電時の上限電圧を4.3V以上4.9V未満としたのは、上限電圧が4.3Vに満たない場合には、十分に電気化学的な活性化がなされない可能性が生じるようになり、4.9V以上の場合には、使用される電解液が分解し電池特性が低下するという不具合が生じることによる。また、下限電圧が2.0V未満の場合には、過放電状態となることとなり、3.0Vを超えると、充分なLiが挿入されないため構造変化が生じず、電気化学的に活性化されないという不具合が生じることによる。
Further, in the method of using the lithium ion secondary battery of the present invention, the lithium ion secondary battery using the positive electrode active material is subjected to the above pretreatment method by constant potential control, and then the upper limit voltage during charging and discharging. Is charged and discharged with constant current control in a voltage range of 4.3 V to less than 4.9 V and a lower limit voltage of 2.0 V to 3.0 V with respect to the Li reference electrode.
Here, the upper limit voltage during charging / discharging is set to 4.3 V or more and less than 4.9 V. If the upper limit voltage is less than 4.3 V, there is a possibility that the electrochemical activation may not be sufficiently performed. In the case of 4.9 V or more, the electrolyte solution used is decomposed and the battery characteristics are deteriorated. Further, when the lower limit voltage is less than 2.0V, an overdischarge state occurs. When the lower limit voltage exceeds 3.0V, sufficient Li is not inserted, so that no structural change occurs and it is not electrochemically activated. This is due to problems.
なお、前処理における定電位制御の電圧範囲としては、正極活物質の急激な構造変化によるクラック発生を防止する観点から、充電時の上限電圧をLi参照電極に対して4.3V以上4.8V未満の範囲とする一方、放電時の下限電圧を2.5V以上3.0V未満の範囲とすることが望ましい。 The voltage range of constant potential control in the pretreatment is such that the upper limit voltage during charging is 4.3 V or more and 4.8 V with respect to the Li reference electrode from the viewpoint of preventing cracks due to abrupt structural change of the positive electrode active material. On the other hand, it is desirable that the lower limit voltage during discharge is in the range of 2.5V to less than 3.0V.
本発明において、定電位制御を行うことによって前処理が短時間で済む理由については、必ずしも明らかではないが、定電流制御と定電位制御による前処理の相違を模式的に示すと図1のようになるものと考えられる。 In the present invention, the reason why the pretreatment can be completed in a short time by performing the constant potential control is not necessarily clear, but the difference between the constant current control and the pretreatment by the constant potential control is schematically shown in FIG. It is thought to become.
すなわち、定電流制御(図1(a))では反応電位まで上げるのに時間がかかるのに対して、定電位制御(図1(b))においては、前処理を反応電位から開始することができ、反応電位まで増加させるための時間が大幅に短縮されることによるものと考えられる。
なお、反応電位とは、本材料がLiの離脱に伴い構造変化を生じ、電気化学的に活性となる反応を生じる電位を指す。初回の充電時から高い電位で反応させた場合、急激なLiの離脱と共に構造変化を生じるため、クラック発生の原因となり、最終的には劣化し表層をアモルファス化する原因となる。前処理はこの構造変化を徐々に進行させるため、安定な表層を生成し、耐久性の劣化を抑制すると考えられる。
That is, while constant current control (FIG. 1A) takes time to increase to the reaction potential, in constant potential control (FIG. 1B), pretreatment can be started from the reaction potential. This is considered to be due to the fact that the time for increasing the reaction potential is greatly shortened.
Note that the reaction potential refers to a potential at which the material undergoes a structural change with the separation of Li and causes an electrochemically active reaction. When the reaction is carried out at a high potential from the time of the first charge, the structure changes with the rapid release of Li, which causes the generation of cracks and eventually deteriorates to cause the surface layer to become amorphous. Since the pre-treatment gradually advances this structural change, it is considered that a stable surface layer is generated and deterioration of durability is suppressed.
次に、本発明の前処理対象であるリチウムイオン二次電池の構成やその材料などについてそれぞれ説明する。 Next, the configuration and materials of the lithium ion secondary battery that is a pretreatment target of the present invention will be described.
リチウムイオン二次電池は、一般に、正極集電体に正極活物質等を塗布した正極と、負極集電体に負極活物質等を塗布した負極とが、電解質層を介して接続され、電池ケース内に収納された構造を有している。 Generally, a lithium ion secondary battery has a battery case in which a positive electrode obtained by applying a positive electrode active material or the like to a positive electrode current collector and a negative electrode obtained by applying a negative electrode active material or the like to a negative electrode current collector are connected via an electrolyte layer. It has a structure housed inside.
〔正極〕
リチウムイオン二次電池において、正極は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの導電性材料から成る集電体(正極集電体)の片面又は両面に、正極活物質層、すなわち正極活物質と共に、必要に応じて導電助剤やバインダを含む正極活物質層を形成した構造を備えている。
本発明の前処理対象としてのリチウムイオン二次電池において、正極活物質としては、組成式[Li1.5][Li0.5(1−x)Mn1−xM1.5x]O3(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5)で表される固溶体系の材料が用いられる。
[Positive electrode]
In a lithium ion secondary battery, the positive electrode is a positive electrode active material layer, that is, a positive electrode on one or both sides of a current collector (positive electrode current collector) made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil. A structure in which a positive electrode active material layer including a conductive additive and a binder is formed as necessary together with the active material is provided.
In the lithium ion secondary battery as the pretreatment target of the present invention, the positive electrode active material includes a composition formula [Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3. (Wherein x satisfies 0.1 ≦ x ≦ 0.5, M is represented by NiαCoβMnγ, 0 <α ≦ 0.5, 0 ≦ β ≦ 0.33, 0 <γ ≦ 0.5) The material of the solid solution system represented is used.
このような複合酸化物としては、市販品が用いられるが、市販品がない場合には、例えば、固相法や溶液法(混合水酸化物法、複合炭酸塩法など)によって合成したものを使用することができる。
これら合成法の中では、収率が高く、水溶液系であるため均一組成を得ることができ、組成コントロールが容易であることから、複合炭酸塩法を採用することが望ましい。他には、共沈法やゾルゲル法、PVA法等の一般的な合成法によっても作製が可能である。
As such a complex oxide, a commercially available product is used. If there is no commercially available product, for example, a compound synthesized by a solid phase method or a solution method (mixed hydroxide method, complex carbonate method, etc.) is used. Can be used.
Among these synthesis methods, it is desirable to employ a composite carbonate method because the yield is high, and since it is an aqueous solution system, a uniform composition can be obtained and composition control is easy. In addition, it can be produced by a general synthesis method such as a coprecipitation method, a sol-gel method, or a PVA method.
上記複合酸化物を表す組成式においては、上記のように、式中のxを0.1〜0.5とする必要がある。これは、xが0.5を超えると、200mAh/g以上の放電容量が得られず、公知の層状正極活物質と較べて容量面における十分な効果が得られなくなる。また、xが0.1未満では、組成がLi2MnO3に近くなり、充放電できなくなることがある。 In the composition formula representing the composite oxide, as described above, x in the formula needs to be 0.1 to 0.5. When x exceeds 0.5, a discharge capacity of 200 mAh / g or more cannot be obtained, and a sufficient effect in terms of capacity cannot be obtained as compared with a known layered positive electrode active material. If x is less than 0.1, the composition may be close to Li 2 MnO 3 and charge / discharge may not be possible.
NiαCoβMnγで表される組成式中のMについては、αを0を超え0.5以下、βを0〜0.33、γを0を超え0.5以下とし、α+β+γを1とする必要がある。すなわち、上記複合酸化物から成る正極活物質が高容量を示すためには、Niが2価状態である必要があり、αが上記範囲内にあるときに、Niが2価の状態で2電子反応(Ni2+←→Ni4+)することによる。
また、3価のCoを添加してもNiが2価の状態で2電子反応するためには、βが0〜0.33の範囲である必要があり、4価のMnを添加して、Niが同様に2価の状態で2電子反応するためには、γの値が0超過0.5以下の範囲内であることが必要である。なお、上記Coは、材料の純度向上及び電子伝導性向上を目的に、必要に応じて添加される。
For M in the composition formula represented by NiαCoβMnγ, α must be greater than 0 and not greater than 0.5, β must be 0 to 0.33, γ must be greater than 0 and not greater than 0.5, and α + β + γ must be 1. . That is, in order for the positive electrode active material made of the composite oxide to exhibit a high capacity, Ni needs to be in a divalent state, and when α is in the above range, Ni is in a divalent state and two electrons. By reacting (Ni 2+ ← → Ni 4+ ).
In addition, in order for Ni to undergo a two-electron reaction in a divalent state even when trivalent Co is added, β must be in the range of 0 to 0.33, and tetravalent Mn is added, Similarly, in order for Ni to undergo a two-electron reaction in a divalent state, the value of γ needs to be in the range of 0 to 0.5 or less. The Co is added as necessary for the purpose of improving the purity of the material and improving the electronic conductivity.
なお、化学式(1)のMについては、次式
NiαCoβMnγM1σ
(式中のα、β、γ、σはそれぞれ0<α≦0.5、0≦β≦0.33、0<γ≦0.5、0≦σ≦0.1を満たし、且つα+β+γ+σ=1を満足し、M1はAl、Fe、Cu、Mg及びTiから成る群より選ばれた少なくとも1種のものである)で表される成分を好ましく適用することができる。
In addition, about M of Chemical formula (1), following Formula Ni (alpha) Co (beta) Mn (gamma) M1 (sigma)
(Α, β, γ, σ in the formula satisfy 0 <α ≦ 0.5, 0 ≦ β ≦ 0.33, 0 <γ ≦ 0.5, 0 ≦ σ ≦ 0.1, and α + β + γ + σ = 1 is satisfied, and M1 is at least one selected from the group consisting of Al, Fe, Cu, Mg, and Ti).
この場合、α、β及びγの数値限定理由については上記同様であるが、σについては、0≦σ≦0.1を満足することが好ましい。
σが0.1を超えると、正極活物質の可逆容量が低くなることがある。なお、M1としては、上記の元素のうちでも、AlとTiを好ましく用いることができる。
一般に、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)は、材料の純度向上及び電子伝導性向上という観点、アルミニウム(Al)、鉄(Fe)、銅(Cu)、マグネシウム(Mg)及びチタン(Ti)は、結晶構造の安定性向上という観点から、容量及び出力特性に寄与することが知られている。
In this case, the reasons for limiting the numerical values of α, β, and γ are the same as above, but it is preferable that σ satisfies 0 ≦ σ ≦ 0.1.
When σ exceeds 0.1, the reversible capacity of the positive electrode active material may be lowered. As M1, among the above elements, Al and Ti can be preferably used.
In general, nickel (Ni), cobalt (Co), and manganese (Mn) are used in terms of improving material purity and electronic conductivity, aluminum (Al), iron (Fe), copper (Cu), magnesium (Mg) and Titanium (Ti) is known to contribute to capacity and output characteristics from the viewpoint of improving the stability of the crystal structure.
なお、上記正極活物質の粒径としては、特に限定するものではないが、一般には細かいほど望ましく、作業能率や取り扱いの容易さなどを考慮すると、平均粒径で、1〜30μm程度であればよく、5〜20μm程度であることがより好ましい。 In addition, although it does not specifically limit as a particle size of the said positive electrode active material, In general, it is so desirable that it is fine, and if the work efficiency, the ease of handling, etc. are considered, if it is about 1-30 micrometers in average particle diameter, It is preferable that the thickness is about 5 to 20 μm.
本発明における正極活物質としては、上記の組成式[Li1.5][Li0.5(1−x)Mn1−xM1.5x]O3で表される固溶体系の活物質を必須成分とするが、これ以外の他の正極活物質を併用しても支障はない。
このような正極活物質としては、例えば、リチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物、3元系、NiMn系、NiCo系及びスピネルMn系などのものが挙げられる。
As the positive electrode active material in the present invention, an active material of a solid solution system represented by the above composition formula [Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3 is used. Although it is an essential component, there is no problem even if other positive electrode active materials are used in combination.
Examples of such positive electrode active materials include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. Is mentioned.
リチウム−遷移金属複合酸化物としては、例えば、LiMn2O4、LiCoO2、LiNiO2、Li(Ni、Mn、Co)O2、Li(Li、Ni、Mn、Co)O2、LiFePO4及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。
3元系としては、ニッケル・コバルト・マンガン系(複合)正極材等が挙げられる。スピネルMn系としてはLiMn2O4等が挙げられる。NiMn系としては、LiNi0.5Mn1.5O4等が挙げられる。NiCo系としては、Li(NiCo)O2等が挙げられる。
Examples of the lithium-transition metal composite oxide include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements.
Examples of the ternary system include nickel / cobalt / manganese (composite) positive electrode materials. Examples of the spinel Mn system include LiMn 2 O 4 . Examples of the NiMn system include LiNi 0.5 Mn 1.5 O 4 . Examples of the NiCo system include Li (NiCo) O 2 .
これらの正極活物質も複数種を併用することができる。
なお、これらの正極活物質がそれぞれ固有の効果を発現する上で最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士をブレンドして用いればよく、全ての活物質の粒径を必ずしも均一化させる必要はない。
These positive electrode active materials can also be used in combination.
In addition, in the case where the optimum particle diameter is different in expressing the respective intrinsic effects of these positive electrode active materials, the optimum particle diameters may be blended and used for expressing the respective intrinsic effects, It is not always necessary to make the particle sizes of all active materials uniform.
集電体の厚さとしては、特に限定されず、一般には1〜30μm程度とすることが好ましい。また、正極活物質層中におけるこれら正極活物質、導電助剤、バインダの配合比としては、特に限定されない。 The thickness of the current collector is not particularly limited and is generally preferably about 1 to 30 μm. Further, the mixing ratio of these positive electrode active material, conductive additive, and binder in the positive electrode active material layer is not particularly limited.
上記バインダは、活物質同士又は活物質と集電体とを結着させて電極構造を維持する目的で添加される。
このようなバインダとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)およびポリアクリロニトリル(PAN)などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料を用いることができる。
The binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
Examples of such a binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins In addition, rubber-based materials such as styrene butadiene rubber (SBR) can be used.
導電助剤は、導電剤とも称し、導電性を向上させるために配合される導電性の添加物を言う。本発明に使用する導電助剤としては、特に制限されず、従来公知のものを利用することができ、例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料を挙げることができる。
導電助剤を含有させることによって、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上、電解液の保液性の向上による信頼性向上に寄与する。
The conductive assistant is also referred to as a conductive agent, and refers to a conductive additive that is blended to improve conductivity. The conductive aid used in the present invention is not particularly limited, and conventionally known ones can be used, and examples thereof include carbon black such as acetylene black, and carbon materials such as graphite and carbon fiber.
By containing a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improving the output characteristics of the battery and improving reliability by improving the liquid retention of the electrolytic solution.
〔負極〕
一方、負極は、正極と同様に、上記したような導電性材料から成る集電体(負極集電体)の片面又は両面に、負極活物質と共に、必要に応じて、上記した正極活物質の場合と同様の導電助剤やバインダを含有させて成る負極極活物質層を形成した構造を備えている。
本発明のリチウムイオン二次電池に適用される負極活物質としては、リチウムを可逆的に吸蔵及び放出できるものであれば特に制限されず、従来公知の負極活物質を使用することができる。
[Negative electrode]
On the other hand, the negative electrode, like the positive electrode, is formed on one or both sides of a current collector (negative electrode current collector) made of the conductive material as described above together with the negative electrode active material, if necessary. It has a structure in which a negative electrode active material layer containing a conductive additive and binder similar to the case is formed.
The negative electrode active material applied to the lithium ion secondary battery of the present invention is not particularly limited as long as it can reversibly occlude and release lithium, and a conventionally known negative electrode active material can be used.
例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等),低結晶性カーボン(ソフトカーボン,ハードカーボン),カーボンブラック(ケッチェンブラック,アセチレンブラック,チャンネルブラック,ランプブラック,オイルファーネスブラック,サーマルブラック等),フラーレン,カーボンナノチューブ,カーボンナノファイバー,カーボンナノホーン,カーボンフィブリルなどの炭素材料、Si,Ge,Sn,Pb,Al,In,Zn,H,Ca,Sr,Ba,Ru,Rh,Ir,Pd,Pt,Ag,Au,Cd,Hg,Ga,Tl,C,N,Sb,Bi,O,S,Se,Te,Cl等のリチウムと合金化する元素の単体、及びこれらの元素を含む酸化物(一酸化ケイ素(SiO),SiOx(0<x<2),二酸化スズ(SnO2),SnOx(0<x<2),SnSiO3など)及び炭化物(炭化ケイ素(SiC)など)等、リチウム金属等の金属材料、リチウム−チタン複合酸化物(チタン酸リチウム:Li4Ti5O12)等のリチウム−遷移金属複合酸化物を挙げることができる。なお、これらの負極活物質は、単独で使用することも、2種以上の混合物の形態で使用することも可能である。 For example, high crystalline carbon graphite (natural graphite, artificial graphite, etc.), low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen black, acetylene black, channel black, lamp black, oil furnace black, Thermal black, etc.), carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, carbon fibril, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl, and the like, and simple elements of these elements and these elements Oxide containing silicon (silicon monoxide (SiO), SiOx (0 x <2), tin dioxide (SnO 2), SnO x ( 0 <x <2), etc. SnSiO 3) and carbides (such as silicon carbide (SiC)) or the like, a metal material such as lithium metal, a lithium - titanium composite oxide And lithium-transition metal composite oxides such as lithium titanate (Li 4 Ti 5 O 12 ). In addition, these negative electrode active materials can be used alone or in the form of a mixture of two or more.
なお、上記においては、正極活物質層及び負極活物質層をそれぞれの集電体の片面又は両面上に形成するものとして説明したが、1枚の集電体の一方の面に正極活物質層、他方の面に負極活物質層をそれぞれに形成することもでき、このような電極は、双極型電池に適用される。 In the above description, the positive electrode active material layer and the negative electrode active material layer are described as being formed on one or both surfaces of each current collector. However, the positive electrode active material layer is formed on one surface of one current collector. A negative electrode active material layer can be formed on the other surface, respectively, and such an electrode is applied to a bipolar battery.
〔電解質層〕
電解質層は、非水電解質を含む層であって、電解質層に含まれる非水電解質は、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を有する。
なお、電解質層の厚さとしては、内部抵抗を低減させる観点から薄ければ薄いほどよく、通常1〜100μm程度、好ましくは5〜50μmの範囲とする。
(Electrolyte layer)
The electrolyte layer is a layer containing a non-aqueous electrolyte, and the non-aqueous electrolyte contained in the electrolyte layer functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge.
The thickness of the electrolyte layer is preferably as thin as possible from the viewpoint of reducing internal resistance, and is usually in the range of about 1 to 100 μm, preferably 5 to 50 μm.
非水電解質としては、このような機能を発揮できるものであれば特に限定されず、液体電解質又はポリマー電解質を用いることができる。 The nonaqueous electrolyte is not particularly limited as long as it can exhibit such a function, and a liquid electrolyte or a polymer electrolyte can be used.
液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。
また、リチウム塩としては、Li(CF3SO2)2N、Li(C2F5SO2)2N、LiPF6、LiBF4、LiAsF6、LiTaF6、LiClO4、LiCF3SO3等の電極の活物質層に添加され得る化合物を採用することができる。
The liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent. Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC).
As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc. A compound that can be added to the active material layer of the electrode can be employed.
一方、ポリマー電解質は、電解液を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質に分類される。
ゲルポリマー電解質は、好ましくはイオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されて成る構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になる点で優れている。
On the other hand, the polymer electrolyte is classified into a gel polymer electrolyte containing an electrolytic solution (gel electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution.
The gel polymer electrolyte preferably has a structure in which the liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. The use of a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.
マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されず、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF−HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びこれらの共重合体等が挙げられる。
ここで、上記のイオン伝導性ポリマーは、活物質層において電解質として用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。電解液(リチウム塩及び有機溶媒)の種類は特に制限されず、上記で例示したリチウム塩などの電解質塩及びカーボネート類などの有機溶媒が用いられる。
The ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited, and examples thereof include polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), polyvinylidene fluoride and hexafluoropropylene. Examples of the copolymer include PVDF-HFP, polyethylene glycol (PEG), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and copolymers thereof.
Here, the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same. The type of the electrolytic solution (lithium salt and organic solvent) is not particularly limited, and an electrolyte salt such as the lithium salt exemplified above and an organic solvent such as carbonates are used.
真性ポリマー電解質は、上記のマトリックスポリマーにリチウム塩が溶解して成るものであって、有機溶媒を含まない。したがって、電解質として真性ポリマー電解質を用いることによって電池からの液漏れの心配がなくなり、電池の信頼性が向上することになる。 The intrinsic polymer electrolyte is formed by dissolving a lithium salt in the above matrix polymer and does not contain an organic solvent. Therefore, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery is improved.
ゲルポリマー電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現することができる。このような架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
これらの電解質層に含まれる非水電解質は、1種のみから成る単独のものでも、2種以上を混合したものであっても差し支えない。
The matrix polymer of gel polymer electrolyte or intrinsic polymer electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form such a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam is applied to a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator. A polymerization process such as polymerization may be performed.
The non-aqueous electrolyte contained in these electrolyte layers may be a single type consisting of only one type or a mixture of two or more types.
なお、電解質層が液体電解質やゲルポリマー電解質から構成される場合には、電解質層にセパレータを用いる。
セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンから成る微多孔膜が挙げられる。
In addition, when an electrolyte layer is comprised from a liquid electrolyte or a gel polymer electrolyte, a separator is used for the electrolyte layer.
Specific examples of the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
〔電池の形状〕
リチウムイオン二次電池は、上述のような正極と負極とが電解質層を介して接続された電池素子(電極構造体)を有しており、かかる電池素子を缶体やラミネート容器(包装体)などの電池ケースに収容した構造を有している。
なお、電池素子が正極、電解質層及び負極を巻回した構造を有する巻回型の電池と、正極、電解質層及び負極を積層型の電池に大別され、上述の双極型電池は積層型の構造を有する。
また、電池ケースの形状や構造に応じて、いわゆるコインセル、ボタン電池、ラミネート電池などと称されることもある。
[Battery shape]
The lithium ion secondary battery has a battery element (electrode structure) in which the positive electrode and the negative electrode as described above are connected via an electrolyte layer, and the battery element can be used as a can or a laminate container (packaging body). It has a structure housed in a battery case.
The battery element is roughly divided into a wound battery having a structure in which a positive electrode, an electrolyte layer, and a negative electrode are wound, and a positive electrode, an electrolyte layer, and a negative electrode are stacked batteries, and the above bipolar battery is a stacked battery. It has a structure.
Moreover, it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.
以下、本発明を、実施例に基づいて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
〔1〕固溶体系正極活物質の合成
正極活物質として、複合炭酸塩法によって、リチウム含有複合酸化物から成る固溶体を合成した。
まず、出発材料として、硫酸ニッケル、硫酸コバルト、硫酸マンガンを、Ni、Co、Mnが所定のモル比となるように秤量して、イオン交換水に溶解させ、混合水溶液を調整した。
[1] Synthesis of solid solution positive electrode active material A solid solution composed of a lithium-containing composite oxide was synthesized by a composite carbonate method as a positive electrode active material.
First, as a starting material, nickel sulfate, cobalt sulfate, and manganese sulfate were weighed so that Ni, Co, and Mn had a predetermined molar ratio and dissolved in ion-exchanged water to prepare a mixed aqueous solution.
次に、この混合水溶液にアンモニア水をpH7になるまで滴下し、さらに炭酸ナトリウム水溶液を滴下することによって、ニッケル−コバルト−マンガンの複合炭酸塩を沈澱させた。なお、炭酸ナトリウム水溶液を滴下している間、アンモニア水によってpH7に保持するようにした。
得られた複合炭酸塩を吸引ろ過し、水洗した後、乾燥し、700℃の温度で焼成することによって、ニッケル−コバルト−マンガン酸化物を得た。
Next, aqueous ammonia was added dropwise to the mixed aqueous solution until the pH reached 7, and a sodium carbonate aqueous solution was further added dropwise to precipitate a nickel-cobalt-manganese composite carbonate. During the dropwise addition of the aqueous sodium carbonate solution, the pH was maintained at 7 with aqueous ammonia.
The obtained composite carbonate was suction filtered, washed with water, dried, and baked at a temperature of 700 ° C. to obtain a nickel-cobalt-manganese oxide.
そして、得られた複合酸化物に、水酸化リチウムを加えて、自動乳鉢で30分間混合した後、大気中900℃で12時間焼成することによって、Li1.5[Ni0.25Li0.3Co0.1Mn0.85]O3(x=0.4、α=0.417、β=0.166、γ=0.417)、及びLi1.5[Ni0.225Li0.3Co0.15Mn0.825]O3(x=0.4、α=0.375、β=0.25、γ=0.375)で表される2種類の成分組成を有する正極活物質をそれぞれ合成した(表1参照)。 Then, lithium hydroxide was added to the obtained composite oxide, mixed for 30 minutes in an automatic mortar, and then baked at 900 ° C. for 12 hours in the air, whereby Li 1.5 [Ni 0.25 Li 0. 3 Co 0.1 Mn 0.85 ] O 3 (x = 0.4, α = 0.417, β = 0.166, γ = 0.417), and Li 1.5 [Ni 0.225 Li 0 .3 Co 0.15 Mn 0.825 ] O 3 (x = 0.4, α = 0.375, β = 0.25, γ = 0.375) and a positive electrode having two component compositions Each active material was synthesized (see Table 1).
〔2〕電池の作製
上記により得られた正極活物質と、導電助剤としてのアセチレンブラックと、バインダとしてのポリフッ化ビニリデン(PVdF)を85:10:5の質量比となるように配合し、これにN−メチルピロリドン(NMP)を溶媒として添加して希釈することによって、正極スラリーを調整した。
このスラリーを正極集電体であるAl箔上に、単面積あたりの活物質量が10mg程度になるように塗布し、径15mmの正極を得た。
[2] Production of battery The positive electrode active material obtained above, acetylene black as a conductive additive, and polyvinylidene fluoride (PVdF) as a binder were blended so as to have a mass ratio of 85: 10: 5. A positive electrode slurry was prepared by adding N-methylpyrrolidone (NMP) as a solvent and diluting it.
This slurry was applied onto an Al foil as a positive electrode current collector so that the amount of active material per unit area was about 10 mg, and a positive electrode having a diameter of 15 mm was obtained.
120℃の乾燥機により4時間乾燥した正極と金属リチウムから成る負極とを厚さ20μmのポリプロピレンの多孔質膜2枚を介して対向させ、コインセルの底部の上に重ねあわせ、正負極間の絶縁性を保つためにガスケットを装着した。
一方、エチレンカーボネート(EC)とジエチルカーボネート(DEC)を1:2の容積比で混合した混合非水溶媒中に、LiPF6(六フッ化リン酸リチウム)を1Mの濃度となるように溶解させて成る電解液を用意し、この電解液をシリンジを用いて注液した。そして、スプリング及びスペーサーを積層した後、コインセルの上部を重ね合わせて、かしめることによって、リチウムイオン電池を作製した。
The positive electrode dried for 4 hours with a dryer at 120 ° C. and the negative electrode made of metallic lithium are opposed to each other through two 20 μm-thick polypropylene porous membranes, stacked on the bottom of the coin cell, and insulation between the positive and negative electrodes In order to maintain the properties, a gasket was attached.
On the other hand, LiPF 6 (lithium hexafluorophosphate) is dissolved to a concentration of 1M in a mixed nonaqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 2. An electrolyte solution was prepared, and this electrolyte solution was injected using a syringe. And after laminating | stacking a spring and a spacer, the upper part of the coin cell was piled up and crimped, and the lithium ion battery was produced.
〔3〕前処理
上記で作製した電池について、定電位制御及び定電流制御により、それぞれ前処理を施した。
〔3−1〕定電位制御による前処理(実施例1,2)
上記2種類の正極活物質をそれぞれ用いて作成した電池をそれぞれ充放電装置に接続し、表1及び図2に示すように、初期の印加電位を4.4Vとして5分間定電位充電してから、印加電位を2.5Vとして5分間定電位放電を行ない、これを2回繰り返した。次いで、この印加電位を4.5V、4.6V、さらに4.7Vに変えて、同様の定電位充放電を各2回ずつ行なった。
[3] Pretreatment Each of the batteries prepared above was pretreated by constant potential control and constant current control.
[3-1] Pretreatment by constant potential control (Examples 1 and 2)
The batteries prepared using the above two types of positive electrode active materials were respectively connected to a charge / discharge device, and as shown in Table 1 and FIG. 2, the initial applied potential was set to 4.4 V and charged at a constant potential for 5 minutes. The applied potential was set to 2.5 V, and constant potential discharge was performed for 5 minutes, and this was repeated twice. Next, the applied potential was changed to 4.5V, 4.6V, and further 4.7V, and the same constant potential charging / discharging was performed twice each.
〔3−2〕定電流制御による前処理(比較例1)
Li1.5[Ni0.25Li0.3Co0.1Mn0.85]O3の組成を有する固溶体系正極活物質を用いて作製した電池を充放電装置に接続し、表2に示すように、電位差が4.5Vとなるまで電流レートを1/12Cとして定電流充電してから、この電位差が2.0Vとなるまで定電流放電を行ない、これを2回繰り返した。次いで、この電位差を4.6V、4.7V、さらに4.8Vに変えて、同様の定電流充放電を各2回ずつ行なった。
[3-2] Pretreatment by constant current control (Comparative Example 1)
A battery manufactured using a solid solution positive electrode active material having a composition of Li 1.5 [Ni 0.25 Li 0.3 Co 0.1 Mn 0.85 ] O 3 was connected to a charge / discharge device, and Table 2 As shown in the figure, constant current charging was performed at a current rate of 1/12 C until the potential difference reached 4.5 V, and then constant current discharge was performed until the potential difference reached 2.0 V, which was repeated twice. Next, this potential difference was changed to 4.6 V, 4.7 V, and 4.8 V, and the same constant current charging / discharging was performed twice each.
〔4〕電池のサイクル特性評価
上記の前処理を施した電池に対して、定電流制御による50サイクルの充放電試験を行い、容量維持率を調査した。すなわち、最高電圧が4.8Vとなるまで充電して、電池の最低電圧が2.0Vとなるまで放電する方法で、定電流レート(1/12C)にて充放電を行った。なお、比較のため、前処理を施さない電池についても同様の調査を行った(比較例2)。
[4] Evaluation of battery cycle characteristics The batteries subjected to the above pretreatment were subjected to a charge / discharge test of 50 cycles under constant current control, and the capacity retention rate was investigated. That is, charging and discharging were performed at a constant current rate (1 / 12C) by charging until the maximum voltage was 4.8 V and discharging until the minimum voltage of the battery was 2.0 V. For comparison, a similar investigation was performed on a battery not subjected to pretreatment (Comparative Example 2).
その結果を表3に示す。なお、表において「容量維持率」とは、1サイクル目の放電容量に対する50サイクル目の放電容量の割合を百分率で示したものである。
また、上記実施例及び比較例の代表例として、それぞれ50サイクルの充放電を繰り返した後の比較例2(前処理なし)及び実施例1(定電位制御前処理)の電池における正極活物質粒子の透過型電子顕微鏡(TEM)像を図3(a)及び(b)にそれぞれ示す。
The results are shown in Table 3. In the table, “capacity maintenance ratio” is a percentage of the discharge capacity at the 50th cycle to the discharge capacity at the first cycle.
Further, as representative examples of the above examples and comparative examples, positive electrode active material particles in the batteries of Comparative Example 2 (no pretreatment) and Example 1 (constant potential control pretreatment) after 50 cycles of charge and discharge were repeated. FIGS. 3A and 3B show transmission electron microscope (TEM) images, respectively.
この結果、定電位制御によって充放電前処理を行った場合においては、前処理に要する時間が大幅に短縮(約90分の1)されているにも拘わらず、定電流制御による場合とほぼ同様の要領維持率が得られることが確認された。この理由としては以下のようなことが考えられる。
図3に示したTEM画像から、前処理を施さない場合(a)には、活物質粒子の表面近傍のアモルファス化が進んでいるのに対して、前処理を施した場合(b)にはこのような現象が観察されず、前処理によって活物質粒子表面のアモルファス化が阻止されていることが判る。
As a result, when the charge / discharge pretreatment is performed by the constant potential control, the time required for the pretreatment is substantially shortened (about 1/90), but is almost the same as the case of the constant current control. It was confirmed that the maintenance rate was obtained. The reason for this is considered as follows.
From the TEM image shown in FIG. 3, when the pretreatment is not performed (a), the amorphous state in the vicinity of the surface of the active material particles is progressing, whereas when the pretreatment is performed (b) Such a phenomenon is not observed, and it can be seen that the pretreatment prevents the surface of the active material particles from being amorphous.
すなわち、充放電の繰り返しによる固溶体系正極活物質材料の劣化現象は表面から生じる。したがって、バルク内を反応させることが困難な定電位制御であっても、正極活物質粒子の表面を反応させることができ、これによって表面の劣化が改善され、当該正極活物質の耐久性を向上させることができるものと考えられる。 That is, the deterioration phenomenon of the solid solution positive electrode active material material due to repeated charge and discharge occurs from the surface. Therefore, the surface of the positive electrode active material particles can be reacted even at constant potential control where it is difficult to react in the bulk, thereby improving the surface deterioration and improving the durability of the positive electrode active material. It is thought that it can be made to.
Claims (5)
[Li1.5][Li0.5(1−x)Mn1−xM1.5x]O3
(式中のxは0.1≦x≦0.5を満たし、MはNiαCoβMnγで表され、0<α≦0.5、0≦β≦0.33、0<γ≦0.5) When pre-treating a lithium ion secondary battery using a positive electrode active material represented by the following composition formula, the upper limit voltage during charging is 4.0 V or more and less than 4.9 V with respect to the Li reference electrode, and the lower limit during discharging. A pretreatment method for a lithium ion secondary battery, wherein the voltage is controlled at a constant potential in a voltage range of 2.0 V or more and less than 3.5 V.
[Li 1.5 ] [Li 0.5 (1-x) Mn 1-x M 1.5x ] O 3
(Wherein x satisfies 0.1 ≦ x ≦ 0.5, M is represented by NiαCoβMnγ, 0 <α ≦ 0.5, 0 ≦ β ≦ 0.33, 0 <γ ≦ 0.5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011048640A JP5626035B2 (en) | 2011-03-07 | 2011-03-07 | Method for pretreatment and use of lithium ion secondary battery |
KR1020120010156A KR101423818B1 (en) | 2011-03-07 | 2012-02-01 | Pretreatment method and using method of lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011048640A JP5626035B2 (en) | 2011-03-07 | 2011-03-07 | Method for pretreatment and use of lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012186035A true JP2012186035A (en) | 2012-09-27 |
JP5626035B2 JP5626035B2 (en) | 2014-11-19 |
Family
ID=47015942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011048640A Active JP5626035B2 (en) | 2011-03-07 | 2011-03-07 | Method for pretreatment and use of lithium ion secondary battery |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5626035B2 (en) |
KR (1) | KR101423818B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140356718A1 (en) * | 2012-02-01 | 2014-12-04 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
WO2015016272A1 (en) * | 2013-07-31 | 2015-02-05 | 日産自動車株式会社 | Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary cell using transition metal oxide containing solid-solution lithium as positive electrode |
JP2015053167A (en) * | 2013-09-06 | 2015-03-19 | 日産自動車株式会社 | Device and method for controlling secondary battery |
CN105900276A (en) * | 2014-01-09 | 2016-08-24 | 日产自动车株式会社 | Process for producing lithium ion secondary battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005190874A (en) * | 2003-12-26 | 2005-07-14 | Yuasa Corp | Lithium secondary battery and initial activation method thereof |
JP2008270201A (en) * | 2007-03-27 | 2008-11-06 | Univ Kanagawa | Cathode material for lithium-ion batteries |
JP2009152114A (en) * | 2007-12-21 | 2009-07-09 | Gs Yuasa Corporation | Active material for lithium secondary battery, lithium secondary battery, and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005098999A1 (en) * | 2004-04-05 | 2005-10-20 | Kureha Corporation | Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material |
JP5176441B2 (en) | 2006-09-12 | 2013-04-03 | 住友化学株式会社 | Lithium composite metal oxide and non-aqueous electrolyte secondary battery |
JP4715830B2 (en) * | 2007-10-19 | 2011-07-06 | ソニー株式会社 | Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery |
JP2010097756A (en) * | 2008-10-15 | 2010-04-30 | Sony Corp | Secondary battery |
-
2011
- 2011-03-07 JP JP2011048640A patent/JP5626035B2/en active Active
-
2012
- 2012-02-01 KR KR1020120010156A patent/KR101423818B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005190874A (en) * | 2003-12-26 | 2005-07-14 | Yuasa Corp | Lithium secondary battery and initial activation method thereof |
JP2008270201A (en) * | 2007-03-27 | 2008-11-06 | Univ Kanagawa | Cathode material for lithium-ion batteries |
JP2009152114A (en) * | 2007-12-21 | 2009-07-09 | Gs Yuasa Corporation | Active material for lithium secondary battery, lithium secondary battery, and manufacturing method thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140356718A1 (en) * | 2012-02-01 | 2014-12-04 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
US9461299B2 (en) * | 2012-02-01 | 2016-10-04 | Nissan Motor Co., Ltd. | Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery |
WO2015016272A1 (en) * | 2013-07-31 | 2015-02-05 | 日産自動車株式会社 | Transition metal oxide containing solid-solution lithium, and non-aqueous electrolyte secondary cell using transition metal oxide containing solid-solution lithium as positive electrode |
JP2015053167A (en) * | 2013-09-06 | 2015-03-19 | 日産自動車株式会社 | Device and method for controlling secondary battery |
CN105900276A (en) * | 2014-01-09 | 2016-08-24 | 日产自动车株式会社 | Process for producing lithium ion secondary battery |
US10461378B2 (en) * | 2014-01-09 | 2019-10-29 | Nissan Motor Co., Ltd. | Method for producing lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
KR20120101989A (en) | 2012-09-17 |
JP5626035B2 (en) | 2014-11-19 |
KR101423818B1 (en) | 2014-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102539694B1 (en) | Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same | |
KR102325727B1 (en) | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same | |
CN110268561B (en) | Positive active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the positive active material | |
CN113169320B (en) | Positive electrode material for lithium secondary battery, positive electrode comprising same, and lithium secondary battery | |
JP5741908B2 (en) | Positive electrode active material for lithium ion secondary battery | |
JP6523444B2 (en) | Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same | |
JP5063948B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP7357994B2 (en) | Method for producing positive electrode active material for secondary batteries | |
JP7416436B2 (en) | A method for producing a positive electrode material for a lithium secondary battery, and a positive electrode material for a lithium secondary battery manufactured thereby | |
JP7278652B2 (en) | Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same | |
JP2017531901A (en) | Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same | |
CN111602274A (en) | Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery and lithium secondary battery including the same | |
JP7451728B2 (en) | Positive electrode active material precursor for secondary batteries, positive electrode active material, and lithium secondary batteries containing the same | |
CN112106235A (en) | Positive electrode active material for lithium secondary battery, method for producing same, and positive electrode for lithium secondary battery and lithium secondary battery comprising same | |
JP2024500909A (en) | Positive electrode active material for lithium secondary batteries, method for producing the same, positive electrode including the same, and lithium secondary batteries | |
JP2013073818A (en) | Composite negative electrode active material for lithium ion secondary battery | |
KR101385334B1 (en) | Mixed positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP2024520714A (en) | Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the same | |
JP5626035B2 (en) | Method for pretreatment and use of lithium ion secondary battery | |
JP2024504155A (en) | Positive electrode for lithium secondary battery, positive electrode including the same, and lithium secondary battery | |
WO2012124602A1 (en) | Method for pre-processing lithium ion secondary battery | |
EP4361108A1 (en) | Positive electrode active material and lithium secondary battery comprising the same | |
WO2013125465A1 (en) | Positive electrode active material | |
JP2022547282A (en) | BATTERY SYSTEM, USAGE THEREOF AND BATTERY PACK INCLUDING THE SAME | |
JP2024501688A (en) | Positive electrode active material for lithium secondary batteries, positive electrode mixture containing the same, positive electrodes, and lithium secondary batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140618 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140717 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140902 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140915 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5626035 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |