[go: up one dir, main page]

WO2012124602A1 - Method for pre-processing lithium ion secondary battery - Google Patents

Method for pre-processing lithium ion secondary battery Download PDF

Info

Publication number
WO2012124602A1
WO2012124602A1 PCT/JP2012/055975 JP2012055975W WO2012124602A1 WO 2012124602 A1 WO2012124602 A1 WO 2012124602A1 JP 2012055975 W JP2012055975 W JP 2012055975W WO 2012124602 A1 WO2012124602 A1 WO 2012124602A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ion secondary
lithium ion
positive electrode
lithium
Prior art date
Application number
PCT/JP2012/055975
Other languages
French (fr)
Japanese (ja)
Inventor
大澤 康彦
建三 押原
伊藤 淳史
智裕 蕪木
松本 太
佐藤 祐一
明尋 渡邉
Original Assignee
日産自動車株式会社
学校法人神奈川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 学校法人神奈川大学 filed Critical 日産自動車株式会社
Publication of WO2012124602A1 publication Critical patent/WO2012124602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a pretreatment method for a lithium ion secondary battery using a solid solution system material made of a lithium composite oxide as a positive electrode active material. Moreover, it is related with the lithium ion secondary battery processed by this pre-processing method.
  • solid solution positive electrode material has attracted attention as a positive electrode material that may satisfy such requirements.
  • the electrochemically inactive layered Li 2 MnO 3 and the electrochemically active layered LiMO 2 (wherein M is a transition metal such as Co or Ni) Solid solutions are expected to exhibit large electrical capacities exceeding 200 mAh / g.
  • the lower limit voltage is set to 2.0 V
  • the upper limit voltage is set to 4.5 V
  • 4.6 V at a current density of 0.2 mA / cm 2 (equivalent to 1 / 12C).
  • 4.7V, 4.8V, and charging / discharging in a stepwise manner have been proposed (see Patent Document 1).
  • Patent Document 1 that employs the method of repeating the charge / discharge treatment while increasing the upper limit voltage stepwise, although the cycle characteristics can be greatly improved, for example, an extremely long treatment time exceeding 5 days is required. There was a problem that it took.
  • an object of the present invention is to provide a pretreatment method of a lithium ion secondary battery that can obtain an effect equivalent to or better than the pretreatment described above in a short time.
  • the pretreatment method of the lithium ion secondary battery of the present invention includes a step of preparing a lithium ion secondary battery containing a positive electrode active material represented by the following chemical formula 1: [Formula 1] aLi [Li 1/3 Mn 2/3 ] O 2.
  • LiMO 2 (A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn) Charging the upper limit potential of the lithium ion secondary battery to 4.5 V or more and less than 5.0 V in terms of a lithium counter electrode, and discharging the lower limit potential to less than 4.0 V in terms of a lithium counter electrode. .
  • the charging and discharging are performed at a current rate of 0.1 C or more and 1.3 C or less.
  • the lithium ion secondary battery of the present invention is characterized by being processed by the pretreatment method of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to an embodiment of the present invention.
  • Pretreatment method of lithium ion secondary battery A pretreatment method for a lithium ion secondary battery according to an embodiment of the present invention will be described in detail.
  • the pretreatment method of this embodiment is performed on a lithium ion secondary battery using a solid solution system positive electrode active material represented by the following chemical formula 1.
  • LiMO 2 (A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn) That is, the upper limit potential is 4.5 V or more and less than 5.0 V converted to the lithium counter electrode, the lower limit potential is also converted to the lithium counter electrode and less than 4.0 V, and the current rate is in the range of 0.1 C to 1.3 C.
  • Perform charge / discharge treatment By using such a charge / discharge rate, the processing time can be significantly shortened while maintaining the effect obtained by the pre-charge / discharge pretreatment characterized by increasing the conventional upper limit voltage stepwise.
  • the lower limit potential during charging and discharging is 4.0 V or more, sufficient Li is not inserted. Therefore, it is considered that an appropriate structural change that should occur in the positive electrode active material is suppressed, and as a result, the effect of improving the cycle durability by the pretreatment is greatly reduced. Therefore, it is preferable to discharge with the lower limit potential being less than 4.0V.
  • the upper limit potential during charging is less than 4.5V, the positive electrode active material is not electrochemically activated.
  • the upper limit potential is 5.0V or more, the electrolyte used is decomposed. There arises a problem that the battery characteristics deteriorate. Therefore, the upper limit potential is preferably 4.5 V or more and less than 5.0 V.
  • the charge / discharge rate is preferably 0.1 C or more and 1.3 C or less.
  • the mechanism by which the charge / discharge rate affects the effects of the present invention has not yet been clarified, but is considered as follows.
  • the crystal structure of the positive electrode material is disturbed by the process of charging at 4.5 V or higher.
  • This disorder of the crystal structure originates from the fact that oxygen ions constituting the crystal at the positive electrode are partially oxidized by charge / discharge and a part thereof is released out of the crystal.
  • the solid solution positive electrode active material is activated and a high capacity can be developed, such a charge / discharge process is an essential process for increasing the capacity of the battery.
  • the repair mechanism of this crystal structure depends not only on the amount of Li + returning into the crystal but also on the return speed.
  • the amount of Li + returning into the crystal depends on the lower limit potential, and the return speed depends on the current rate.
  • the pretreatment method for a lithium ion secondary battery of the present invention it is desirable to repeat the charge / discharge treatment at least several times.
  • the degree of damage to the crystal structure accompanying the oxidation of oxygen ions due to charging at 4.5 V or more may be increased and may not be repaired. Therefore, it is preferable to perform the process partially in a plurality of times.
  • the upper limit potential is increased stepwise when charging and discharging are repeated, that is, the upper limit potential is initially started from a relatively low potential. It is desirable to gradually increase the upper limit potential until a predetermined potential of less than 0V is reached.
  • the effect of reducing the pretreatment time while avoiding a sudden change in the crystal structure of the positive electrode active material and maintaining the battery cycle durability at a high level is more certain.
  • the pretreatment method of the present invention When the pretreatment method of the present invention is applied to the assembled lithium ion secondary battery, first, the upper and lower potentials for charging and discharging are determined. These potentials need to be values converted to the lithium counter electrode based on the charge and discharge curves of the positive and negative electrodes measured in advance.
  • the potential control method may be performed using a reference electrode.
  • control may be performed with an electric quantity corresponding to the electric quantity of each charge / discharge when the potential is controlled. In that case, if batteries of the same standard are connected in series, a large number of batteries can be activated at once by this electric quantity control method.
  • the lithium ion secondary battery 1 of the present invention uses a solid solution system material represented by the following chemical formula 1 as a positive electrode active material.
  • LiMO 2 (A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
  • the lithium ion secondary battery 1 of this invention performs a charging / discharging process by the above upper limit and lower limit electric potential range, and a charging / discharging rate as a pretreatment after a battery assembly. Due to the effect of the pretreatment described above, the lithium ion secondary battery 1 of the present invention can be obtained in a short time and exhibits excellent cycle durability.
  • FIG. 1 shows an example of a lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery 1 of this embodiment has a configuration in which a battery element 10 to which a positive electrode tab 21 and a negative electrode tab 22 are attached is enclosed in an exterior body 30.
  • the positive electrode tab 21 and the negative electrode tab 22 are led out in the opposite directions from the inside of the exterior body 30 toward the outside.
  • the positive electrode tab and the negative electrode tab may be led out in the same direction from the inside of the exterior body toward the outside.
  • such a positive electrode tab and a negative electrode tab can be attached to the positive electrode collector and negative electrode collector which are mentioned later by ultrasonic welding, resistance welding, etc., for example.
  • the positive electrode tab 21 and the negative electrode tab 22 are made of materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), stainless steel (SUS), and alloys thereof.
  • the material is not limited thereto, and a conventionally known material that can be used as a tab for a lithium ion secondary battery can be used.
  • the positive electrode tab and the negative electrode tab may be made of the same material or different materials.
  • a separately prepared tab may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are in a foil shape. In some cases, tabs may be formed by extending each one.
  • the said exterior body 30 is formed with the film-shaped exterior material from a viewpoint of size reduction and weight reduction, for example.
  • the film-shaped exterior material from a viewpoint of size reduction and weight reduction, for example.
  • the conventionally well-known material which can be used for the exterior body for lithium ion secondary batteries can be used.
  • a polymer-metal composite laminate sheet with excellent thermal conductivity should be used to efficiently transfer heat from the heat source of the automobile and to quickly heat the inside of the battery to the battery operating temperature. Is preferred.
  • the battery element 10 in the lithium ion secondary battery 1 of the present embodiment has a configuration in which a plurality of unit cell layers 14 including a positive electrode 11, an electrolyte layer 13, and a negative electrode 12 are stacked. Yes.
  • the positive electrode 11 has a configuration in which a positive electrode active material layer 11B is formed on both main surfaces of the positive electrode current collector 11A.
  • the negative electrode 12 has a configuration in which a negative electrode active material layer 12B is formed on both main surfaces of the negative electrode current collector 12A.
  • the negative electrode active material layer 12 ⁇ / b> B formed on the opposite side is opposed to the electrolyte layer 13.
  • a plurality of positive electrodes, electrolyte layers, and negative electrodes are laminated in this order, and the adjacent positive electrode active material layer 11B, electrolyte layer 13, and negative electrode active material layer 12B constitute one single battery layer. That is, the lithium ion secondary battery 1 according to the present embodiment has a configuration in which a plurality of single battery layers 14 are stacked and electrically connected in parallel.
  • the negative electrode current collector 12A located on the outermost layer of the battery element 10 has a negative electrode active material layer 12B formed only on one side.
  • an insulating layer may be provided on the outer periphery of the unit cell layer 14 in order to insulate between the adjacent positive electrode current collector and negative electrode current collector.
  • Such an insulating layer is preferably formed on the outer periphery of the unit cell layer by a material capable of holding the electrolyte contained in the electrolyte layer and preventing electrolyte leakage.
  • general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and polystyrene (PS) Can be used.
  • thermoplastic olefin rubber, silicone rubber, etc. can also be used.
  • the positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material such as foil or mesh aluminum, copper, stainless steel (SUS), for example.
  • the material is not limited to these, and a conventionally known material that can be used as a current collector for a lithium ion secondary battery can be used.
  • the size of the current collector can be determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the shape of the current collector is not particularly limited.
  • a mesh shape (expanded grid or the like) can be used.
  • the thin film alloy which is a negative electrode active material directly on the negative electrode collector 12A by sputtering method etc. it is desirable to use current collection foil.
  • a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed.
  • the metal include aluminum, nickel, iron, stainless steel, titanium, and copper.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
  • the conductive polymer material examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
  • Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS), and the like.
  • PE polyethylene
  • HDPE high density polyethylene
  • LDPE low density polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PI polyimide
  • PAI polyamideimide
  • PA polyamide
  • PTFE polyt
  • a conductive filler can be added to the conductive polymer material or the non-conductive polymer material as necessary.
  • a conductive filler is essential to impart conductivity to the resin.
  • the conductive filler can be used without particular limitation as long as it is a substance having conductivity.
  • a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion interruption
  • the metal is not particularly limited, but includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals.
  • the conductive carbon is not particularly limited, but preferably acetylene black, Vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon It contains at least one selected from the group consisting of nanoballoons and fullerenes.
  • the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass of the entire current collector.
  • the material is not limited to these, and a conventionally known material used as a current collector for a lithium ion secondary battery can be used.
  • the positive electrode is configured by forming a positive electrode active material layer on one or both sides of a positive electrode current collector made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil.
  • the positive electrode active material layer 11B includes any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and includes a conductive auxiliary agent and a binder as necessary. May be. In addition, it is not specifically limited as a compounding ratio of these positive electrode active materials, a conductive support agent, and a binder in a positive electrode active material layer.
  • a solid solution system material represented by the following chemical formula 1 is used as the positive electrode active material.
  • LiMO 2 (A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
  • Examples of such known positive electrode active materials include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. Can be mentioned.
  • the positive electrode active material made of the solid solution system material represented by the above chemical formula 1 for example, a material synthesized by a solid phase method or a solution method can be used.
  • the solution method include a mixed hydroxide method, a composite carbonate method, and an organic acid method.
  • it can be produced by a general synthesis method such as a coprecipitation method, a sol-gel method, or a PVA method.
  • the lithium composite oxide represented by LiMO 2 contains Ni and Mn as essential components.
  • one or more transition metals selected from Co, Al, Ti, Fe, Cu, Mg and the like can also be contained.
  • the addition of Co can be expected to improve the conductivity of the active material, and the addition of Al, Ti, Fe, Cu, Mg can be expected to improve the durability by stabilizing the crystal structure.
  • the particle size of the positive electrode active material is not particularly limited, but generally finer is more desirable.
  • the average particle diameter may be about 1 to 30 ⁇ m, and more preferably about 5 to 20 ⁇ m.
  • lithium-transition metal composite oxide examples include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements.
  • Examples of the ternary system include nickel / cobalt / manganese composite cathode materials.
  • spinel Mn system include LiMn 2 O 4 .
  • NiMn system examples include LiNi 0.5 Mn 1.5 O 4 .
  • NiCo system examples include Li (NiCo) O 2 .
  • the optimum particle diameters may be blended and used for expressing each unique effect. That is, it is not always necessary to make the particle sizes of all the active materials uniform.
  • the binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector.
  • a binder examples include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins
  • rubber-based materials such as styrene butadiene rubber (SBR) can be used.
  • the conductive assistant is also referred to as a conductive agent, and refers to a conductive additive that is blended to improve conductivity.
  • the conductive auxiliary agent used in the present invention is not particularly limited, and conventionally known ones can be used.
  • carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber can be given.
  • a conductive additive By containing a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improving the output characteristics of the battery and improving reliability by improving the liquid retention of the electrolytic solution.
  • the negative electrode is configured by forming a negative electrode active material layer on one side or both sides of a negative electrode current collector made of a conductive material as described above, similarly to the positive electrode.
  • the negative electrode active material layer 12B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and, if necessary, the above-described positive electrode active material.
  • the same conductive assistant and binder may be included. In addition, it is not specifically limited as a compounding ratio of these negative electrode active materials, a conductive support agent, and a binder in a negative electrode active material layer.
  • the negative electrode active material applied to the lithium ion secondary battery of the present invention is not particularly limited as long as it can reversibly occlude and release lithium, and a conventionally known negative electrode active material can be used.
  • Other negative electrode active materials include, for example, graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen black, acetylene black, channel black) , Lamp black, oil furnace black, thermal black, etc.), carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril.
  • the negative electrode active material Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl , C, N, Sb, Bi, O, S, Se, Te, Cl, and the like
  • oxides include silicon monoxide (SiO), SiO x (0 ⁇ x ⁇ 2), tin dioxide (SnO 2 ), SnO x (0 ⁇ x ⁇ 2), SnSiO 3 and the like.
  • the carbide include silicon carbide (SiC).
  • examples of the negative electrode active material include metal materials such as lithium metal and lithium-transition metal composite oxides such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ).
  • these negative electrode active materials can be used alone or in the form of a mixture of two or more.
  • the positive electrode active material layer and the negative electrode active material layer are formed on one surface or both surfaces of each current collector, as described above.
  • the negative electrode active material layer can also be formed on the other surface.
  • Such an electrode can be applied to a bipolar battery.
  • the electrolyte layer is a layer containing a non-aqueous electrolyte.
  • the non-aqueous electrolyte contained in the electrolyte layer functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge.
  • the thickness of the electrolyte layer is preferably as thin as possible from the viewpoint of reducing internal resistance, and is usually in the range of about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the nonaqueous electrolyte is not particularly limited as long as it can exhibit such a function, and a liquid electrolyte or a polymer electrolyte can be used.
  • the liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent.
  • organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC).
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc.
  • a compound that can be added to the active material layer of the electrode can be employed.
  • polymer electrolytes are classified into a gel polymer electrolyte containing an electrolytic solution (gel electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution.
  • the gel polymer electrolyte is preferably configured by injecting the liquid electrolyte into a matrix polymer (host polymer) made of an ion conductive polymer.
  • the ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited.
  • the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same.
  • the type of the electrolyte solution composed of the lithium salt and the organic solvent is not particularly limited, and an electrolyte salt such as the lithium salt exemplified above and an organic solvent such as carbonates are used.
  • Authentic polymer electrolyte has a lithium salt dissolved in the above matrix polymer and does not contain an organic solvent.
  • an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery is improved.
  • the matrix polymer of the gel polymer electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
  • a polymerization process such as thermal polymerization, ultraviolet polymerization, radiation polymerization, or electron beam polymerization is performed on a polymerizable polymer for forming a polymer electrolyte using an appropriate polymerization initiator. That's fine.
  • the polymer electrolyte resting polymerizable polymer include PEO and PPO.
  • the non-aqueous electrolyte contained in these electrolyte layers may be used alone or in combination of two or more.
  • a separator is used for the electrolyte layer.
  • the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
  • a lithium ion secondary battery has a structure in which a battery element is housed in a battery case such as a can or a laminate container (packaging body).
  • the battery element (electrode structure) is configured by connecting a positive electrode and a negative electrode via an electrolyte layer.
  • the battery element is roughly divided into a wound type battery having a structure in which a positive electrode, an electrolyte layer and a negative electrode are wound, and a stacked type battery in which a positive electrode, an electrolyte layer and a negative electrode are stacked.
  • it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.
  • the total amount of the above four kinds of metal acetates and citric acid were accurately weighed so that the molar ratio was 1: 1. These were put into a sample beaker and dissolved in ultrapure water to obtain an aqueous solution. Then, it applied to the spray-drying apparatus and the mixed precursor of the powder was obtained by the spray-drying method. The obtained mixed precursor sample was put in a crucible and calcined at 450 ° C. for 10 hours in the air. Then, it put into the mortar and grind
  • the pelletized sample was subjected to main firing in the air at a firing temperature of 900 ° C. for 12 hours in the air with a heating time of 7 hours. Then, quenching (rapid cooling) is performed using liquid nitrogen, and 0.6Li [Li 1/3 Mn 2/3 ] O 2 .0.4Li [Ni 0.4575 Co 0.0825 Mn 0.4575 ] O 2 is used.
  • the solid solution positive electrode active material represented was obtained.
  • composition ratio of the obtained positive electrode active material sample was confirmed to be the above composition by inductively coupled plasma (ICP) elemental analysis. Further, the crystal structure of the obtained sample was examined by a powder X-ray diffraction method. As a result, it was confirmed that when a superlattice peak with 2 ⁇ of 21 ° to 25 ° was removed, indexing was possible with the space group R-3m, and the above solid solution system compound was obtained.
  • ICP inductively coupled plasma
  • the metal lithium foil (negative electrode) of diameter 15mm was used as a counter electrode, and the cell was assembled through the glass filter paper as a separator.
  • the electrolytic solution a solution containing lithium hexafluorophosphate (LiPF 6 ) in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2 was used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • Example 1 The charge / discharge rate was set to 0.50C. Further, charging was performed at a constant current, with the positive electrode potential being 4.5 V relative to the lithium counter electrode, with the charge upper limit potential. Thereafter, the discharge was performed until the potential of the positive electrode was equivalent to 2.0 V with respect to the lithium counter electrode, with the discharge lower limit potential. This charge / discharge operation was repeated twice. (2) Next, the battery was charged until the potential of the positive electrode reached 4.6 V relative to the lithium counter electrode, with the upper limit potential being charged. Thereafter, the discharge was performed until the potential of the positive electrode was equivalent to 2.0 V with respect to the lithium counter electrode, with the discharge lower limit potential. This charge / discharge operation was repeated twice in the same manner.
  • Example 2 A charge / discharge treatment similar to that in Example 1 was performed on the evaluation cell except that the charge / discharge rate was set to 0.33C.
  • Example 3 A charge / discharge treatment similar to that of Example 2 was performed on the evaluation cell except that the lower limit discharge potential was set to 3.45V.
  • Example 4 The evaluation cell was subjected to the same charge / discharge treatment as in Example 1 except that the discharge lower limit potential was set to 3.00V.
  • Example 5 As preconditions, the charge / discharge rate is set to 0.67C, the first two charge upper limit potentials are 4.6V, the next two charge upper limit potentials are 4.7V, and the last two times. was set to 4.8V. Except for these changes, the same charge / discharge treatment as in Example 1 was performed on the evaluation cell.
  • Example 1 A charge / discharge treatment similar to that in Example 1 was performed on the evaluation cell except that the charge / discharge rate was set to 0.083C.
  • Example 3 A charge / discharge treatment similar to that in Example 1 was performed on the evaluation cell except that the charge / discharge rate was set to 1.33C.
  • Comparative Example 4 The same charge / discharge treatment as that of Comparative Example 1 was performed on the evaluation cell, except that the lower limit discharge potential was set to 4.10V.
  • the processing conditions for shortening the time required for the pretreatment were found without impairing the effect of the conventional pretreatment corresponding to the result of Comparative Example 1.
  • the current rate of the preprocessing is set to be larger than that in the conventional method and within an appropriate numerical range, and the discharge lower limit potential may be set to an appropriate range. That is, the current rate during charge / discharge is a charge / discharge rate of 0.1 C to 1.3 C.
  • the upper limit potential is converted to a lithium counter electrode and set to 4.5 V or more and less than 5.0 V
  • the lower limit potential is converted to a lithium counter electrode and set to less than 4.0 V. It has been clarified that by performing such pretreatment, it is possible to manufacture a high-energy lithium ion secondary battery excellent in durability with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

This method for pre-processing a lithium ion secondary battery is provided with: a step for preparing a lithium ion secondary battery containing the cathode active material represented by chemical formula (1); and a step for charging with the upper limit potential of the lithium ion secondary battery being at least 4.5 V and less than 5.0 V in terms of a lithium counter electrode, and discharging with the lower limit potential being less than 4.0 V in terms of a lithium counter electrode. Also, the charging and discharging is characterized by being performed at a current rate of 0.1-1.3 C inclusive. Formula 1: aLi[Li1/3Mn2/3]O2·(1-a)LiMO2 (In the formula: a is a value above 0 and less than 1; and LiMO2 is a lithium complex oxide containing Ni and Mn.)

Description

リチウムイオン二次電池の前処理方法Pretreatment method for lithium ion secondary battery
 本発明は、正極活物質として、リチウム複合酸化物からなる固溶体系材料を用いたリチウムイオン二次電池の前処理方法に関する。また、この前処理方法で処理してなるリチウムイオン二次電池に関する。 The present invention relates to a pretreatment method for a lithium ion secondary battery using a solid solution system material made of a lithium composite oxide as a positive electrode active material. Moreover, it is related with the lithium ion secondary battery processed by this pre-processing method.
 近年、環境問題やエネルギー問題の解決を目指して、ハイブリッドタイプの自動車を含めた種々の電気自動車の普及が進んでいる。このような電気自動車を広く普及させるため、これら車両のモータ駆動用電源である電池を高性能化すると共に、低価格化を実現する必要があることは論を俟たない。特に、一回の充電で可能となる電気自動車の走行距離を、ガソリンエンジン車と同等に向上させる必要があるため、より高エネルギーの電池の開発が望まれている。このようなモータ駆動用の二次電池として、各種二次電池の中でも高い理論エネルギーを有するリチウムイオン二次電池が注目されている。 In recent years, various electric vehicles including hybrid type vehicles have been popularized with the aim of solving environmental problems and energy problems. In order to widely disseminate such electric vehicles, there is no doubt that it is necessary to improve the performance of the battery, which is the power source for driving the motors of these vehicles, and to reduce the price. In particular, since it is necessary to improve the mileage of an electric vehicle that can be achieved by a single charge as much as that of a gasoline engine vehicle, development of a higher energy battery is desired. As such a secondary battery for driving a motor, a lithium ion secondary battery having a high theoretical energy among various secondary batteries has attracted attention.
 一般に、リチウムイオン二次電池のエネルギー密度を高めるためには、正極と負極の単位質量当たりに蓄えられる電気量を大きくすることが必要である。このような要求を満たす可能性のある正極材料として、いわゆる固溶体系正極材料が注目を集めている。これら固溶体系材料の中でも、電気化学的に不活性で層状をなすLiMnOと、電気化学的に活性な層状のLiMO(式中のMは、Co,Niなどの遷移金属)との固溶体が、200mAh/gを超える大きな電気容量を示すものとして期待されている。 Generally, in order to increase the energy density of a lithium ion secondary battery, it is necessary to increase the amount of electricity stored per unit mass of the positive electrode and the negative electrode. A so-called solid solution positive electrode material has attracted attention as a positive electrode material that may satisfy such requirements. Among these solid solution system materials, the electrochemically inactive layered Li 2 MnO 3 and the electrochemically active layered LiMO 2 (wherein M is a transition metal such as Co or Ni) Solid solutions are expected to exhibit large electrical capacities exceeding 200 mAh / g.
 このような固溶体系正極材料は、容量的には格段に大きいものの、充放電電位を高くして高容量正極として使用すると、充放電の繰り返しによって容易に劣化してしまうという難点がある。そこで、サイクル耐久性向上のための電池の前処理として、0.2mA/cmの電流密度(1/12C相当)で、下限電圧を2.0Vとし、上限電圧を4.5V,4.6V,4.7V,4.8Vと段階的に増加させながら充放電することが提案されている(特許文献1参照)。 Although such a solid solution positive electrode material is remarkably large in capacity, when it is used as a high-capacity positive electrode with a high charge / discharge potential, there is a problem that it easily deteriorates due to repeated charge / discharge. Therefore, as a battery pretreatment for improving cycle durability, the lower limit voltage is set to 2.0 V, the upper limit voltage is set to 4.5 V, and 4.6 V at a current density of 0.2 mA / cm 2 (equivalent to 1 / 12C). , 4.7V, 4.8V, and charging / discharging in a stepwise manner have been proposed (see Patent Document 1).
特開2008-270201号公報JP 2008-270201 A
 しかしながら、上限電圧を段階的に上げながら充放電処理を繰り返す方法を採用した特許文献1の前処理によれば、サイクル特性が大幅に改善できるものの、例えば5日を超えるような極めて長い処理時間を要するという問題点があった。 However, according to the pretreatment of Patent Document 1 that employs the method of repeating the charge / discharge treatment while increasing the upper limit voltage stepwise, although the cycle characteristics can be greatly improved, for example, an extremely long treatment time exceeding 5 days is required. There was a problem that it took.
 本発明は、上記のような固溶体系材料を正極活物質として用いたリチウムイオン二次電池における上記課題に鑑みてなされたものである。そして、本発明は、上記した前処理と同等以上の効果を短時間で得ることができるリチウムイオン二次電池の前処理方法を提供することを目的とする。 The present invention has been made in view of the above problems in a lithium ion secondary battery using the above solid solution system material as a positive electrode active material. Then, an object of the present invention is to provide a pretreatment method of a lithium ion secondary battery that can obtain an effect equivalent to or better than the pretreatment described above in a short time.
 すなわち、本発明のリチウムイオン二次電池の前処理方法は、下記化学式1で表される正極活物質を含むリチウムイオン二次電池を準備する工程と、
 [化1] aLi[Li1/3Mn2/3]O・(1-a)LiMO
 (式中のaは0を超え1未満の数値であり、LiMOはNi及びMnを含有するリチウム複合酸化物である)
 前記リチウムイオン二次電池の上限電位をリチウム対極に換算して4.5V以上5.0V未満として充電し、かつ下限電位をリチウム対極に換算して4.0V未満として放電する工程と、を備える。そして、上記充電及び放電が、0.1C以上1.3C以下の電流レートで行われることを特徴とする。また、本発明のリチウムイオン二次電池は、上記本発明の前処理方法で処理してなることを特徴とする。
That is, the pretreatment method of the lithium ion secondary battery of the present invention includes a step of preparing a lithium ion secondary battery containing a positive electrode active material represented by the following chemical formula 1:
[Formula 1] aLi [Li 1/3 Mn 2/3 ] O 2. (1-a) LiMO 2
(A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
Charging the upper limit potential of the lithium ion secondary battery to 4.5 V or more and less than 5.0 V in terms of a lithium counter electrode, and discharging the lower limit potential to less than 4.0 V in terms of a lithium counter electrode. . The charging and discharging are performed at a current rate of 0.1 C or more and 1.3 C or less. The lithium ion secondary battery of the present invention is characterized by being processed by the pretreatment method of the present invention.
図1は、本発明の一実施形態に係るリチウムイオン二次電池の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion secondary battery according to an embodiment of the present invention.
 以下、本発明のリチウムイオン二次電池の前処理方法及びこの方法で処理してなるリチウムイオン二次電池について詳細に説明する。 Hereinafter, the pretreatment method of the lithium ion secondary battery of the present invention and the lithium ion secondary battery processed by this method will be described in detail.
[リチウムイオン二次電池の前処理方法]
 本発明の実施形態に係るリチウムイオン二次電池の前処理方法について詳細に説明する。
[Pretreatment method of lithium ion secondary battery]
A pretreatment method for a lithium ion secondary battery according to an embodiment of the present invention will be described in detail.
 本実施形態の前処理方法は、下記化学式1で表される固溶体系正極活物質を用いたリチウムイオン二次電池に対して行うものである。
 [化1]
 aLi[Li1/3Mn2/3]O・(1-a)LiMO
 (式中のaは0を超え1未満の数値であり、LiMOはNi及びMnを含有するリチウム複合酸化物である)
 すなわち、上限電位をリチウム対極に換算して4.5V以上5.0V未満、下限電位を同じくリチウム対極に換算して4.0V未満とし、さらに電流レートを0.1C~1.3Cの範囲として充放電処理を行う。このような充放電レートとすることによって、従来の上限電圧を段階的に上げることを特徴とする充放電前処理で得られる効果を保持しながら、処理時間を大幅に短縮できる。
The pretreatment method of this embodiment is performed on a lithium ion secondary battery using a solid solution system positive electrode active material represented by the following chemical formula 1.
[Chemical 1]
aLi [Li 1/3 Mn 2/3 ] O 2. (1-a) LiMO 2
(A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
That is, the upper limit potential is 4.5 V or more and less than 5.0 V converted to the lithium counter electrode, the lower limit potential is also converted to the lithium counter electrode and less than 4.0 V, and the current rate is in the range of 0.1 C to 1.3 C. Perform charge / discharge treatment. By using such a charge / discharge rate, the processing time can be significantly shortened while maintaining the effect obtained by the pre-charge / discharge pretreatment characterized by increasing the conventional upper limit voltage stepwise.
 本発明のリチウムイオン二次電池の前処理方法において、充放電時の下限電位が4.0V以上となると、充分なLiが挿入されない。そのため、正極活物質に生じるべき適切な構造変化が抑えられると考えられ、その結果、前処理によるサイクル耐久性の改善効果が大幅に低減する。したがって、下限電位を4.0V未満として放電することが好ましい。 In the pretreatment method of the lithium ion secondary battery of the present invention, when the lower limit potential during charging and discharging is 4.0 V or more, sufficient Li is not inserted. Therefore, it is considered that an appropriate structural change that should occur in the positive electrode active material is suppressed, and as a result, the effect of improving the cycle durability by the pretreatment is greatly reduced. Therefore, it is preferable to discharge with the lower limit potential being less than 4.0V.
 また、充電時の上限電位が4.5Vに満たない場合には、正極活物質が電気化学的に活性化されないことになり、5.0V以上の場合には、使用される電解液が分解し電池特性が低下するという不具合が生じる。したがって、上限電位を4.5V以上5.0V未満とすることが好ましい。 In addition, when the upper limit potential during charging is less than 4.5V, the positive electrode active material is not electrochemically activated. When the upper limit potential is 5.0V or more, the electrolyte used is decomposed. There arises a problem that the battery characteristics deteriorate. Therefore, the upper limit potential is preferably 4.5 V or more and less than 5.0 V.
また、充放電レートが1.3Cを超えた場合にも、前処理によるサイクル耐久性の改善効果が大幅に低減することになる。一方、充放電レートが0.1Cに満たない場合には、前処理に要する時間を短縮することができず、本発明本来の効果が得られなくなる。したがって、充放電レートを0.1C以上1.3C以下とすることが好ましい。 Further, even when the charge / discharge rate exceeds 1.3 C, the effect of improving the cycle durability by the pretreatment is greatly reduced. On the other hand, when the charge / discharge rate is less than 0.1 C, the time required for the pretreatment cannot be shortened, and the original effect of the present invention cannot be obtained. Therefore, the charge / discharge rate is preferably 0.1 C or more and 1.3 C or less.
 充放電レートが本発明の効果に影響を及ぼすメカニズムは、まだ必ずしも明確になっていないが、次のように考えられる。電池の組み上げ後における初回の充放電に際し、4.5V以上で充電する工程により、正極材料の結晶構造に乱れが生ずる。この結晶構造の乱れは、正極で結晶を構成している酸素イオンが充放電により部分的に酸化され、その一部が結晶外に放出されることに由来する。このようにして、固溶体系正極活物質が活性化されて高容量を発現できるようになることから、このような充放電工程は、電池の高容量化を図る上で必須のプロセスである。なお、この反応を部分的に行った段階で放電して、少なくとも一部のLiを結晶内に戻すことにより、その際に乱れた結晶構造が修復される。この結晶構造の修復メカニズムは、結晶内に戻るLiの量だけでなく、戻る速度に依存するものと考えられる。ここで、結晶内に戻るLiの量は下限電位に依存し、戻る速度は電流レートに依存する。 The mechanism by which the charge / discharge rate affects the effects of the present invention has not yet been clarified, but is considered as follows. In the first charge / discharge after assembling the battery, the crystal structure of the positive electrode material is disturbed by the process of charging at 4.5 V or higher. This disorder of the crystal structure originates from the fact that oxygen ions constituting the crystal at the positive electrode are partially oxidized by charge / discharge and a part thereof is released out of the crystal. Thus, since the solid solution positive electrode active material is activated and a high capacity can be developed, such a charge / discharge process is an essential process for increasing the capacity of the battery. In addition, by discharging at a stage where this reaction is partially performed and returning at least a part of Li + into the crystal, the disordered crystal structure is restored. It is considered that the repair mechanism of this crystal structure depends not only on the amount of Li + returning into the crystal but also on the return speed. Here, the amount of Li + returning into the crystal depends on the lower limit potential, and the return speed depends on the current rate.
 本発明のリチウムイオン二次電池の前処理方法においては、上記充放電処理を少なくとも複数回繰り返すことが望ましい。上記したような充放電を一度に急激に行う場合、4.5V以上での充電による酸素イオンの酸化に伴う結晶構造の損傷の度合いが大きくなり、修復不能となることもありうる。したがって、部分的に複数回に分けて行うことが好ましい。 In the pretreatment method for a lithium ion secondary battery of the present invention, it is desirable to repeat the charge / discharge treatment at least several times. When the above-described charging / discharging is performed rapidly at a time, the degree of damage to the crystal structure accompanying the oxidation of oxygen ions due to charging at 4.5 V or more may be increased and may not be repaired. Therefore, it is preferable to perform the process partially in a plurality of times.
 特にこの場合、急激な結晶構造の乱れを極力避ける観点から、充放電の繰り返しに際して、上限電位を段階的に高めていくこと、すなわち、最初は上限電位を比較的低電位から開始し、5.0V未満の所定電位に到るまで、徐々に上限電位を高めていくようにすることが望ましい。 Particularly in this case, from the viewpoint of avoiding sudden crystal structure disturbance as much as possible, the upper limit potential is increased stepwise when charging and discharging are repeated, that is, the upper limit potential is initially started from a relatively low potential. It is desirable to gradually increase the upper limit potential until a predetermined potential of less than 0V is reached.
 一方、前処理における充放電レートについては、正極活物質の急激な結晶構造の変化を避け、電池のサイクル耐久性を高レベルに保持しつつ、前処理時間を短縮できるという効果をより確実なものとする観点から、0.2C~0.6Cの範囲とすることがより望ましい。 On the other hand, with regard to the charge / discharge rate in the pretreatment, the effect of reducing the pretreatment time while avoiding a sudden change in the crystal structure of the positive electrode active material and maintaining the battery cycle durability at a high level is more certain. In view of the above, it is more desirable to set the range of 0.2C to 0.6C.
 組み立て後のリチウムイオン二次電池に本発明の前処理方法を施すに際し、まず充放電の上限電位及び下限電位を決定する。これらの電位は、事前に測定した正負極の充放電曲線に基づき、リチウム対極に換算した値にする必要がある。電位制御の方法としては、この他に参照電極を用いて行ってもよい。さらに、このような充放電による前処理方法としては、電位制御した場合の各充放電の電気量に対応した電気量で制御してもよい。その場合には、同じ規格の電池を直列に接続すれば、この電気量制御法により一度に多数の電池を活性化することができる。 When the pretreatment method of the present invention is applied to the assembled lithium ion secondary battery, first, the upper and lower potentials for charging and discharging are determined. These potentials need to be values converted to the lithium counter electrode based on the charge and discharge curves of the positive and negative electrodes measured in advance. In addition to this, the potential control method may be performed using a reference electrode. Furthermore, as a pretreatment method by such charge / discharge, control may be performed with an electric quantity corresponding to the electric quantity of each charge / discharge when the potential is controlled. In that case, if batteries of the same standard are connected in series, a large number of batteries can be activated at once by this electric quantity control method.
 次に、本発明の一実施形態に係るリチウムイオン二次電池の構成やその材料などについて図面を参照しながら詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Next, the configuration and material of the lithium ion secondary battery according to one embodiment of the present invention will be described in detail with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 本発明のリチウムイオン二次電池1は、下記化学式1で表される固溶体系材料を正極活物質として用いている。
 [化1]
 aLi[Li1/3Mn2/3]O・(1-a)LiMO
 (式中のaは0を超え1未満の数値であり、LiMOはNi及びMnを含有するリチウム複合酸化物である)
 そして、本発明のリチウムイオン二次電池1は、電池の組み立て後、前処理として、上記のような上限及び下限電位範囲及び充放電レートにより充放電処理を施してなる。上述した前処理の効果により、本発明のリチウムイオン二次電池1は短時間で得ることができ、優れたサイクル耐久性を発現する。
The lithium ion secondary battery 1 of the present invention uses a solid solution system material represented by the following chemical formula 1 as a positive electrode active material.
[Chemical 1]
aLi [Li 1/3 Mn 2/3 ] O 2. (1-a) LiMO 2
(A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
And the lithium ion secondary battery 1 of this invention performs a charging / discharging process by the above upper limit and lower limit electric potential range, and a charging / discharging rate as a pretreatment after a battery assembly. Due to the effect of the pretreatment described above, the lithium ion secondary battery 1 of the present invention can be obtained in a short time and exhibits excellent cycle durability.
[リチウムイオン二次電池の構成]
 図1に、本発明の一実施形態に係るリチウムイオン二次電池の一例を示す。図1に示すように、本実施形態のリチウムイオン二次電池1は、正極タブ21及び負極タブ22が取り付けられた電池要素10が外装体30の内部に封入された構成を有している。そして、本実施形態においては、正極タブ21及び負極タブ22が、外装体30の内部から外部に向かって、それぞれ反対の方向に導出されている。なお、図示しないが、正極タブ及び負極タブが、外装体の内部から外部に向かって、同一方向に導出される構成としてもよい。また、このような正極タブ及び負極タブは、例えば超音波溶接や抵抗溶接などにより後述する正極集電体及び負極集電体に取り付けることができる。
[Configuration of lithium ion secondary battery]
FIG. 1 shows an example of a lithium ion secondary battery according to an embodiment of the present invention. As shown in FIG. 1, the lithium ion secondary battery 1 of this embodiment has a configuration in which a battery element 10 to which a positive electrode tab 21 and a negative electrode tab 22 are attached is enclosed in an exterior body 30. In the present embodiment, the positive electrode tab 21 and the negative electrode tab 22 are led out in the opposite directions from the inside of the exterior body 30 toward the outside. Although not shown, the positive electrode tab and the negative electrode tab may be led out in the same direction from the inside of the exterior body toward the outside. Moreover, such a positive electrode tab and a negative electrode tab can be attached to the positive electrode collector and negative electrode collector which are mentioned later by ultrasonic welding, resistance welding, etc., for example.
[正極タブ及び負極タブ]
 上記正極タブ21及び負極タブ22は、例えば、アルミニウム(Al)や銅(Cu)、チタン(Ti)、ニッケル(Ni)、ステンレス鋼(SUS)、これらの合金などの材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用のタブとして用いることができる従来公知の材料を用いることができる。なお、正極タブ及び負極タブは、同一材質のものを用いてもよく、異なる材質のものを用いてもよい。また、本実施形態のように、別途準備したタブを後述する正極集電体及び負極集電体に接続してもよいし、後述する各正極集電体及び各負極集電体が箔状である場合は、それぞれを延長することによってタブを形成してもよい。
[Positive electrode tab and negative electrode tab]
The positive electrode tab 21 and the negative electrode tab 22 are made of materials such as aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), stainless steel (SUS), and alloys thereof. However, the material is not limited thereto, and a conventionally known material that can be used as a tab for a lithium ion secondary battery can be used. The positive electrode tab and the negative electrode tab may be made of the same material or different materials. Further, as in the present embodiment, a separately prepared tab may be connected to a positive electrode current collector and a negative electrode current collector described later, and each positive electrode current collector and each negative electrode current collector described later are in a foil shape. In some cases, tabs may be formed by extending each one.
[外装体]
 上記外装体30は、例えば、小型化、軽量化の観点から、フィルム状の外装材で形成されたものであることが好ましい。ただし、これに限定されるものではなく、リチウムイオン二次電池用の外装体に使用可能な従来公知の材料で形成されたものを用いることができる。なお、自動車に適用する場合、自動車の熱源から効率よく熱を伝え、電池内部を迅速に電池動作温度まで加熱するために、例えば、熱伝導性に優れた高分子-金属複合ラミネートシートを用いることが好適である。
[Exterior body]
It is preferable that the said exterior body 30 is formed with the film-shaped exterior material from a viewpoint of size reduction and weight reduction, for example. However, it is not limited to this, What was formed with the conventionally well-known material which can be used for the exterior body for lithium ion secondary batteries can be used. When applying to automobiles, for example, a polymer-metal composite laminate sheet with excellent thermal conductivity should be used to efficiently transfer heat from the heat source of the automobile and to quickly heat the inside of the battery to the battery operating temperature. Is preferred.
[電池要素]
 図1に示すように、本実施形態のリチウムイオン二次電池1における電池要素10は、正極11と、電解質層13と、負極12とからなる単電池層14を複数積層した構成を有している。正極11は、正極集電体11Aの両方の主面上に正極活物質層11Bが形成された構成を有している。また、負極12は、負極集電体12Aの両方の主面上に負極活物質層12Bが形成された構成を有している。
[Battery element]
As shown in FIG. 1, the battery element 10 in the lithium ion secondary battery 1 of the present embodiment has a configuration in which a plurality of unit cell layers 14 including a positive electrode 11, an electrolyte layer 13, and a negative electrode 12 are stacked. Yes. The positive electrode 11 has a configuration in which a positive electrode active material layer 11B is formed on both main surfaces of the positive electrode current collector 11A. The negative electrode 12 has a configuration in which a negative electrode active material layer 12B is formed on both main surfaces of the negative electrode current collector 12A.
 このとき、一の正極11における正極集電体11Aの片方の主面上に形成された正極活物質層11Bと、その正極11に隣接する負極12における負極集電体12Aの片方の主面上に形成された負極活物質層12Bとが電解質層13を介して対向する。このようにして、正極、電解質層、負極が、この順に複数積層されており、隣接する正極活物質層11B、電解質層13及び負極活物質層12Bは、1つの単電池層14を構成する。すなわち、本実施形態のリチウムイオン二次電池1は、単電池層14が複数積層されることにより、電気的に並列接続された構成を有するものとなる。なお、電池要素10の最外層に位置する負極集電体12Aには、片面のみに、負極活物質層12Bが形成されている。 At this time, the positive electrode active material layer 11B formed on one main surface of the positive electrode current collector 11A in one positive electrode 11 and the one main surface of the negative electrode current collector 12A in the negative electrode 12 adjacent to the positive electrode 11 The negative electrode active material layer 12 </ b> B formed on the opposite side is opposed to the electrolyte layer 13. In this way, a plurality of positive electrodes, electrolyte layers, and negative electrodes are laminated in this order, and the adjacent positive electrode active material layer 11B, electrolyte layer 13, and negative electrode active material layer 12B constitute one single battery layer. That is, the lithium ion secondary battery 1 according to the present embodiment has a configuration in which a plurality of single battery layers 14 are stacked and electrically connected in parallel. Note that the negative electrode current collector 12A located on the outermost layer of the battery element 10 has a negative electrode active material layer 12B formed only on one side.
 また、単電池層14の外周には、隣接する正極集電体や負極集電体の間を絶縁するために、図示しない絶縁層が設けられていてもよい。このような絶縁層としては、電解質層などに含まれる電解質を保持し電解質の液漏れを防止できる材料により、単電池層の外周に形成されることが好ましい。具体的には、ポリプロピレン(PP)、ポリエチレン(PE)、ポリウレタン(PUR)、ポリアミド系樹脂(PA)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などの汎用プラスチックを使用することができる。また、熱可塑オレフィンゴムやシリコーンゴムなどを使用することもできる。 Further, an insulating layer (not shown) may be provided on the outer periphery of the unit cell layer 14 in order to insulate between the adjacent positive electrode current collector and negative electrode current collector. Such an insulating layer is preferably formed on the outer periphery of the unit cell layer by a material capable of holding the electrolyte contained in the electrolyte layer and preventing electrolyte leakage. Specifically, general-purpose plastics such as polypropylene (PP), polyethylene (PE), polyurethane (PUR), polyamide resin (PA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and polystyrene (PS) Can be used. Moreover, thermoplastic olefin rubber, silicone rubber, etc. can also be used.
[正極集電体及び負極集電体]
 正極集電体11A及び負極集電体12Aは、例えば、箔状又はメッシュ状のアルミニウム、銅、ステンレス(SUS)などの導電性の材料により構成される。しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として使用可能な従来公知の材料を用いることができる。また、集電体の大きさは、電池の使用用途に応じて決定することができる。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。集電体の形状についても特に制限されない。図1に示す電池要素10では、集電箔のほか、網目形状(エキスパンドグリッド等)等を用いることができる。なお、スパッタ法等により、負極活物質たる薄膜合金を負極集電体12A上に直接形成する場合には、集電箔を用いるのが望ましい。
[Positive electrode current collector and negative electrode current collector]
The positive electrode current collector 11A and the negative electrode current collector 12A are made of a conductive material such as foil or mesh aluminum, copper, stainless steel (SUS), for example. However, the material is not limited to these, and a conventionally known material that can be used as a current collector for a lithium ion secondary battery can be used. The size of the current collector can be determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm. The shape of the current collector is not particularly limited. In the battery element 10 shown in FIG. 1, in addition to the current collector foil, a mesh shape (expanded grid or the like) can be used. In addition, when forming the thin film alloy which is a negative electrode active material directly on the negative electrode collector 12A by sputtering method etc., it is desirable to use current collection foil.
 集電体を構成する材料に特に制限はない。例えば、金属や、導電性高分子材料又は非導電性高分子材料に導電性フィラーが添加された樹脂を採用することができる。具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン及び銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、又はこれらの金属の組み合わせのめっき材などを用いることが好ましい。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。中でも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅及びニッケルが好ましい。 There are no particular restrictions on the materials that make up the current collector. For example, a metal or a resin in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material can be employed. Specifically, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, and copper. In addition to these, it is preferable to use a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals. Moreover, the foil by which aluminum is coat | covered on the metal surface may be sufficient. Among these, aluminum, stainless steel, copper, and nickel are preferable from the viewpoints of electronic conductivity, battery operating potential, and adhesion of the negative electrode active material by sputtering to the current collector.
 また、導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、ポリオキサジアゾールなどが挙げられる。このような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化又は集電体の軽量化の点において有利である。 Examples of the conductive polymer material include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
 非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、ポリスチレン(PS)などが挙げられる。このような非導電性高分子材料は、優れた耐電位性又は耐溶媒性を有する。 Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE), etc.), polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN), polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA) , Polyvinyl chloride (PVC), polyvinylidene fluoride (PVdF), polystyrene (PS), and the like. Such a non-conductive polymer material has excellent potential resistance or solvent resistance.
 上記の導電性高分子材料又は非導電性高分子材料には、必要に応じて導電性フィラーを添加することができる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために導電性フィラーが必須となる。導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性又はリチウムイオン遮断性に優れた材料として、金属、導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb及びKからなる群から選ばれる少なくとも1種の金属若しくはこれらの金属を含む合金又は金属酸化物を含むことが好ましい。また、導電性カーボンとしては特に制限はないが、好ましくはアセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン及びフラーレンからなる群より選ばれる少なくとも1種を含むものである。導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には集電体全体の5~35質量%程度である。 A conductive filler can be added to the conductive polymer material or the non-conductive polymer material as necessary. In particular, when the resin serving as the base material of the current collector is composed of only a non-conductive polymer, a conductive filler is essential to impart conductivity to the resin. The conductive filler can be used without particular limitation as long as it is a substance having conductivity. For example, a metal, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion interruption | blocking property. The metal is not particularly limited, but includes at least one metal selected from the group consisting of Ni, Ti, Al, Cu, Pt, Fe, Cr, Sn, Zn, In, Sb, and K, or these metals. An alloy or metal oxide is preferably included. The conductive carbon is not particularly limited, but preferably acetylene black, Vulcan (registered trademark), black pearl (registered trademark), carbon nanofiber, ketjen black (registered trademark), carbon nanotube, carbon nanohorn, carbon It contains at least one selected from the group consisting of nanoballoons and fullerenes. The amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass of the entire current collector.
 しかしながら、これらに限定されるものではなく、リチウムイオン二次電池用の集電体として用いられている従来公知の材料を用いることができる。 However, the material is not limited to these, and a conventionally known material used as a current collector for a lithium ion secondary battery can be used.
〔正極〕
 リチウムイオン二次電池において、正極は、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔などの導電性材料からなる正極集電体の片面又は両面に、正極活物質層が形成されて構成される。
[Positive electrode]
In the lithium ion secondary battery, the positive electrode is configured by forming a positive electrode active material layer on one or both sides of a positive electrode current collector made of a conductive material such as an aluminum foil, a copper foil, a nickel foil, or a stainless steel foil.
〔正極活物質層〕
 正極活物質層11Bは、正極活物質として、リチウムを吸蔵及び放出することが可能な正極材料のいずれか1種又は2種以上を含んでおり、必要に応じて導電助剤やバインダを含んでいてもよい。なお、正極活物質層中におけるこれら正極活物質、導電助剤、バインダの配合比としては、特に限定されない。
[Positive electrode active material layer]
The positive electrode active material layer 11B includes any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and includes a conductive auxiliary agent and a binder as necessary. May be. In addition, it is not specifically limited as a compounding ratio of these positive electrode active materials, a conductive support agent, and a binder in a positive electrode active material layer.
 本発明の前処理対象としてのリチウムイオン二次電池において、正極活物質としては、下記化学式1で表される固溶体系材料が用いられる。
 [化1]
 aLi[Li1/3Mn2/3]O・(1-a)LiMO
 (式中のaは0を超え1未満の数値であり、LiMOはNi及びMnを含有するリチウム複合酸化物である)
 このような固溶体系正極活物質を必須成分として含有している限り、これ以外の他の正極活物質を併用しても支障はない。このような公知の正極活物質としては、例えば、リチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物、3元系、NiMn系、NiCo系及びスピネルMn系などを挙げることができる。
In the lithium ion secondary battery as the pretreatment target of the present invention, a solid solution system material represented by the following chemical formula 1 is used as the positive electrode active material.
[Chemical 1]
aLi [Li 1/3 Mn 2/3 ] O 2. (1-a) LiMO 2
(A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
As long as such a solid solution positive electrode active material is contained as an essential component, there is no problem even if other positive electrode active materials are used in combination. Examples of such known positive electrode active materials include lithium-transition metal composite oxides, lithium-transition metal phosphate compounds, lithium-transition metal sulfate compounds, ternary systems, NiMn systems, NiCo systems, and spinel Mn systems. Can be mentioned.
 上記化学式1で表される固溶体系材料からなる正極活物質としては、例えば、固相法や溶液法によって合成したものを使用することができる。溶液法としては、例えば混合水酸化物法、複合炭酸塩法又は有機酸法などが挙げられる。これら合成法の中では、複合炭酸塩法を採用することが望ましい。かかる方法によれば、収率が高く、水溶液系であるため均一組成を得ることができ、容易に組成をコントロールできる。他には、共沈法やゾルゲル法、PVA法等の一般的な合成法によっても作製が可能である。 As the positive electrode active material made of the solid solution system material represented by the above chemical formula 1, for example, a material synthesized by a solid phase method or a solution method can be used. Examples of the solution method include a mixed hydroxide method, a composite carbonate method, and an organic acid method. Among these synthesis methods, it is desirable to employ a composite carbonate method. According to this method, since the yield is high and the aqueous solution system is used, a uniform composition can be obtained and the composition can be easily controlled. In addition, it can be produced by a general synthesis method such as a coprecipitation method, a sol-gel method, or a PVA method.
 上記固溶体系正極活物質を表す組成式において、LiMOで表されるリチウム複合酸化物は、Ni及びMnを必須成分として含有するものである。しかしながら、これら以外の成分として、例えばCo,Al,Ti,Fe,Cu,Mg等から選ばれる1種以上の遷移金属を含有することもできる。Coを添加することで活物質の伝導性の向上が期待でき、Al,Ti,Fe,Cu,Mgを添加することで結晶構造の安定化による耐久性の向上を期待できる。 In the composition formula representing the solid solution positive electrode active material, the lithium composite oxide represented by LiMO 2 contains Ni and Mn as essential components. However, as other components, for example, one or more transition metals selected from Co, Al, Ti, Fe, Cu, Mg and the like can also be contained. The addition of Co can be expected to improve the conductivity of the active material, and the addition of Al, Ti, Fe, Cu, Mg can be expected to improve the durability by stabilizing the crystal structure.
 なお、上記正極活物質の粒径としては、特に限定するものではないが、一般には細かいほど望ましい。特に、作業能率や取り扱いの容易さなどを考慮すると、平均粒径で、1~30μm程度であればよく、5~20μm程度であることがより好ましい。 The particle size of the positive electrode active material is not particularly limited, but generally finer is more desirable. In particular, considering the work efficiency and ease of handling, the average particle diameter may be about 1 to 30 μm, and more preferably about 5 to 20 μm.
 リチウム-遷移金属複合酸化物としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni、Mn、Co)O、Li(Li、Ni、Mn、Co)O、LiFePO及びこれらの遷移金属の一部が他の元素により置換されたもの等が挙げられる。3元系としては、ニッケル・コバルト・マンガン系複合正極材等が挙げられる。スピネルMn系としてはLiMn等が挙げられる。NiMn系としては、LiNi0.5Mn1.5等が挙げられる。NiCo系としては、Li(NiCo)O等が挙げられる。これらの正極活物質も複数種を併用することができる。 Examples of the lithium-transition metal composite oxide include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni, Mn, Co) O 2 , Li (Li, Ni, Mn, Co) O 2 , LiFePO 4 and Examples include those in which some of these transition metals are substituted with other elements. Examples of the ternary system include nickel / cobalt / manganese composite cathode materials. Examples of the spinel Mn system include LiMn 2 O 4 . Examples of the NiMn system include LiNi 0.5 Mn 1.5 O 4 . Examples of the NiCo system include Li (NiCo) O 2 . These positive electrode active materials can also be used in combination.
 なお、これらの正極活物質がそれぞれ固有の効果を発現する上で最適な粒径が異なる場合には、それぞれの固有の効果を発現する上で最適な粒径同士をブレンドして用いればよい。すなわち、全ての活物質の粒径を必ずしも均一化させる必要はない。 In addition, when the optimum particle diameter is different for each of these positive electrode active materials to exhibit a unique effect, the optimum particle diameters may be blended and used for expressing each unique effect. That is, it is not always necessary to make the particle sizes of all the active materials uniform.
 バインダは、活物質同士又は活物質と集電体とを結着させて電極構造を維持する目的で添加される。このようなバインダとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリ酢酸ビニル、ポリイミド(PI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリエーテルニトリル(PEN)、ポリエチレン(PE)、ポリプロピレン(PP)およびポリアクリロニトリル(PAN)などの熱可塑性樹脂、エポキシ樹脂、ポリウレタン樹脂、およびユリア樹脂などの熱硬化性樹脂、ならびにスチレンブタジエンゴム(SBR)などのゴム系材料を用いることができる。 The binder is added for the purpose of maintaining the electrode structure by binding the active materials or the active material and the current collector. Examples of such a binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinyl acetate, polyimide (PI), polyamide (PA), polyvinyl chloride (PVC), polymethyl acrylate (PMA), Thermosetting resins such as polymethyl methacrylate (PMMA), polyether nitrile (PEN), polyethylene (PE), polypropylene (PP) and polyacrylonitrile (PAN), epoxy resins, polyurethane resins, and urea resins In addition, rubber-based materials such as styrene butadiene rubber (SBR) can be used.
 導電助剤は、単に導電剤とも言い、導電性を向上させるために配合される導電性の添加物をいう。本発明に使用する導電助剤としては、特に制限されず、従来公知のものを利用することができる。例えば、アセチレンブラック等のカーボンブラック、グラファイト、炭素繊維などの炭素材料を挙げることができる。導電助剤を含有させることによって、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上、電解液の保液性の向上による信頼性向上に寄与する。 The conductive assistant is also referred to as a conductive agent, and refers to a conductive additive that is blended to improve conductivity. The conductive auxiliary agent used in the present invention is not particularly limited, and conventionally known ones can be used. For example, carbon materials such as carbon black such as acetylene black, graphite, and carbon fiber can be given. By containing a conductive additive, an electronic network inside the active material layer is effectively formed, which contributes to improving the output characteristics of the battery and improving reliability by improving the liquid retention of the electrolytic solution.
〔負極〕
 一方、負極は、正極と同様に、上記したような導電性材料からなる負極集電体の片面又は両面に、負極活物質層が形成されて構成される。
[Negative electrode]
On the other hand, the negative electrode is configured by forming a negative electrode active material layer on one side or both sides of a negative electrode current collector made of a conductive material as described above, similarly to the positive electrode.
〔負極活物質層〕
 負極活物質層12Bは、負極活物質として、リチウムを吸蔵及び放出することが可能な負極材料のいずれか1種又は2種以上を含んでおり、必要に応じて、上記した正極活物質の場合と同様の導電助剤やバインダを含んでいてもよい。なお、負極活物質層中におけるこれら負極活物質、導電助剤、バインダの配合比としては、特に限定されない。
[Negative electrode active material layer]
The negative electrode active material layer 12B includes one or more negative electrode materials capable of occluding and releasing lithium as the negative electrode active material, and, if necessary, the above-described positive electrode active material. The same conductive assistant and binder may be included. In addition, it is not specifically limited as a compounding ratio of these negative electrode active materials, a conductive support agent, and a binder in a negative electrode active material layer.
 本発明のリチウムイオン二次電池に適用される負極活物質としては、リチウムを可逆的に吸蔵及び放出できるものであれば特に制限されず、従来公知の負極活物質を使用することができる。他の負極活物質としては、例えば、高結晶性カーボンであるグラファイト(天然グラファイト、人造グラファイト等),低結晶性カーボン(ソフトカーボン,ハードカーボン),カーボンブラック(ケッチェンブラック,アセチレンブラック,チャンネルブラック,ランプブラック,オイルファーネスブラック,サーマルブラック等),フラーレン,カーボンナノチューブ,カーボンナノファイバー,カーボンナノホーン,カーボンフィブリルなどの炭素材料を挙げることができる。また、負極活物質として、Si,Ge,Sn,Pb,Al,In,Zn,H,Ca,Sr,Ba,Ru,Rh,Ir,Pd,Pt,Ag,Au,Cd,Hg,Ga,Tl,C,N,Sb,Bi,O,S,Se,Te,Cl等のリチウムと合金化する元素の単体、これらの元素を含む酸化物及び炭化物等も挙げることができる。このような酸化物としては、一酸化ケイ素(SiO),SiO(0<x<2),二酸化スズ(SnO),SnO(0<x<2),SnSiOなどを挙げることができ、炭化物としては、炭化ケイ素(SiC)などを挙げることができる。さらに、負極活物質としては、リチウム金属等の金属材料、リチウム-チタン複合酸化物(チタン酸リチウム:LiTi12)等のリチウム-遷移金属複合酸化物を挙げることができる。なお、これらの負極活物質は、単独で使用することも、2種以上の混合物の形態で使用することも可能である。 The negative electrode active material applied to the lithium ion secondary battery of the present invention is not particularly limited as long as it can reversibly occlude and release lithium, and a conventionally known negative electrode active material can be used. Other negative electrode active materials include, for example, graphite (natural graphite, artificial graphite, etc.), which is highly crystalline carbon, low crystalline carbon (soft carbon, hard carbon), carbon black (Ketjen black, acetylene black, channel black) , Lamp black, oil furnace black, thermal black, etc.), carbon materials such as fullerene, carbon nanotube, carbon nanofiber, carbon nanohorn, and carbon fibril. Further, as the negative electrode active material, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl , C, N, Sb, Bi, O, S, Se, Te, Cl, and the like, simple elements that form an alloy with lithium, oxides and carbides containing these elements, and the like can also be mentioned. Examples of such oxides include silicon monoxide (SiO), SiO x (0 <x <2), tin dioxide (SnO 2 ), SnO x (0 <x <2), SnSiO 3 and the like. Examples of the carbide include silicon carbide (SiC). Further, examples of the negative electrode active material include metal materials such as lithium metal and lithium-transition metal composite oxides such as lithium-titanium composite oxide (lithium titanate: Li 4 Ti 5 O 12 ). In addition, these negative electrode active materials can be used alone or in the form of a mixture of two or more.
 なお、上記において、正極活物質層及び負極活物質層をそれぞれの集電体の片面又は両面上に形成するものとして説明したように、1枚の集電体における一方の面に正極活物質層を、他方の面に負極活物質層をそれぞれに形成することもできる。このような電極は、双極型電池に適用することができる。 In the above description, the positive electrode active material layer and the negative electrode active material layer are formed on one surface or both surfaces of each current collector, as described above. The negative electrode active material layer can also be formed on the other surface. Such an electrode can be applied to a bipolar battery.
〔電解質層〕
 電解質層は、非水電解質を含む層である。電解質層に含まれる非水電解質は、充放電時に正負極間を移動するリチウムイオンのキャリアーとしての機能を有する。なお、電解質層の厚さとしては、内部抵抗を低減させる観点から薄ければ薄いほどよく、通常1~100μm程度、好ましくは5~50μmの範囲とする。
(Electrolyte layer)
The electrolyte layer is a layer containing a non-aqueous electrolyte. The non-aqueous electrolyte contained in the electrolyte layer functions as a lithium ion carrier that moves between the positive and negative electrodes during charge and discharge. The thickness of the electrolyte layer is preferably as thin as possible from the viewpoint of reducing internal resistance, and is usually in the range of about 1 to 100 μm, preferably 5 to 50 μm.
 非水電解質としては、このような機能を発揮できるものであれば特に限定されず、液体電解質又はポリマー電解質を用いることができる。 The nonaqueous electrolyte is not particularly limited as long as it can exhibit such a function, and a liquid electrolyte or a polymer electrolyte can be used.
 液体電解質は、有機溶媒にリチウム塩(電解質塩)が溶解した形態を有する。有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、メチルプロピルカーボネート(MPC)等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等の電極の活物質層に添加され得る化合物を採用することができる。 The liquid electrolyte has a form in which a lithium salt (electrolyte salt) is dissolved in an organic solvent. Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), Examples include carbonates such as methylpropyl carbonate (MPC). As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiAsF 6, LiTaF 6, LiClO 4, LiCF 3 SO 3 , etc. A compound that can be added to the active material layer of the electrode can be employed.
 一方、ポリマー電解質は、電解液を含むゲルポリマー電解質(ゲル電解質)と、電解液を含まない真性ポリマー電解質に分類される。ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質を注入して構成されることが好ましい。電解質としてゲルポリマー電解質を用いると、電解質の流動性がなくなり、各層間のイオン伝導を遮断することが容易になるという利点がある。 On the other hand, polymer electrolytes are classified into a gel polymer electrolyte containing an electrolytic solution (gel electrolyte) and an intrinsic polymer electrolyte containing no electrolytic solution. The gel polymer electrolyte is preferably configured by injecting the liquid electrolyte into a matrix polymer (host polymer) made of an ion conductive polymer. When a gel polymer electrolyte is used as the electrolyte, there is an advantage that the fluidity of the electrolyte is lost and it is easy to block ion conduction between the layers.
 マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、特に限定されない。例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF-HFP)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリメチルメタクリレート(PMMA)及びこれらの共重合体等を挙げることができる。ここで、上記のイオン伝導性ポリマーは、活物質層において電解質として用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。リチウム塩及び有機溶媒からなる電解液の種類は特に制限されず、上記で例示したリチウム塩などの電解質塩及びカーボネート類などの有機溶媒が用いられる。 The ion conductive polymer used as the matrix polymer (host polymer) is not particularly limited. For example, polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), polyethylene glycol (PEG), polyacrylonitrile (PAN), Examples thereof include polymethyl methacrylate (PMMA) and copolymers thereof. Here, the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the active material layer, but is preferably the same. The type of the electrolyte solution composed of the lithium salt and the organic solvent is not particularly limited, and an electrolyte salt such as the lithium salt exemplified above and an organic solvent such as carbonates are used.
 真性ポリマー電解質は、上記のマトリックスポリマーにリチウム塩が溶解しており、有機溶媒を含まない。このように、電解質として真性ポリマー電解質を用いることによって電池からの液漏れの心配がなくなり、電池の信頼性が向上することになる。 Authentic polymer electrolyte has a lithium salt dissolved in the above matrix polymer and does not contain an organic solvent. Thus, by using an intrinsic polymer electrolyte as the electrolyte, there is no fear of liquid leakage from the battery, and the reliability of the battery is improved.
 ゲルポリマー電解質や真性ポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現することができる。このような架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマーに対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。高分子電解質系静養の重合性ポリマーとしては、例えば、PEOやPPOが挙げられる。これらの電解質層に含まれる非水電解質は、1種のみを単独で用いても、2種以上を混合して用いても差し支えない。 The matrix polymer of the gel polymer electrolyte or the intrinsic polymer electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure. In order to form such a crosslinked structure, a polymerization process such as thermal polymerization, ultraviolet polymerization, radiation polymerization, or electron beam polymerization is performed on a polymerizable polymer for forming a polymer electrolyte using an appropriate polymerization initiator. That's fine. Examples of the polymer electrolyte resting polymerizable polymer include PEO and PPO. The non-aqueous electrolyte contained in these electrolyte layers may be used alone or in combination of two or more.
 なお、電解質層が液体電解質やゲルポリマー電解質から構成される場合には、電解質層にセパレータを用いる。セパレータの具体的な形態としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が挙げられる。 When the electrolyte layer is composed of a liquid electrolyte or a gel polymer electrolyte, a separator is used for the electrolyte layer. Specific examples of the separator include a microporous film made of polyolefin such as polyethylene or polypropylene.
 〔電池の形状〕
 リチウムイオン二次電池は、電池素子を缶体やラミネート容器(包装体)などの電池ケースに収容した構造を有している。電池素子(電極構造体)は、正極と負極とが電解質層を介して接続されて構成されている。なお、電池素子が正極、電解質層及び負極を巻回した構造を有する巻回型の電池と、正極、電解質層及び負極を積層した積層型の電池に大別され、上述の双極型電池は積層型の構造を有する。また、電池ケースの形状や構造に応じて、いわゆるコインセル、ボタン電池、ラミネート電池などと称されることもある。
[Battery shape]
A lithium ion secondary battery has a structure in which a battery element is housed in a battery case such as a can or a laminate container (packaging body). The battery element (electrode structure) is configured by connecting a positive electrode and a negative electrode via an electrolyte layer. The battery element is roughly divided into a wound type battery having a structure in which a positive electrode, an electrolyte layer and a negative electrode are wound, and a stacked type battery in which a positive electrode, an electrolyte layer and a negative electrode are stacked. Has a mold structure. Moreover, it may be called what is called a coin cell, a button battery, a laminate battery, etc. according to the shape and structure of a battery case.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
 〔1〕固溶体系正極活物質の合成正極活物質として、クエン酸法により、リチウム-マンガン複合酸化物とリチウム-ニッケル-コバルト-マンガン複合酸化物とからなる固溶体系材料を合成した。まず、出発材料として、酢酸ニッケル((CHCOO)Ni・4HO)、酢酸マンガン((CHCOO)Mn・4HO)、酢酸コバルト((CHCOO)Co・4HO)、酢酸リチウム(CHCOOLi・2HO)を使用し、これらを所定のモル比(原子比)となるように正確に量り取った。 [1] Synthesis of solid solution based positive electrode active material A solid solution based material composed of a lithium-manganese composite oxide and a lithium-nickel-cobalt-manganese composite oxide was synthesized by a citric acid method as a positive electrode active material. First, as starting materials, nickel acetate ((CH 3 COO) 2 Ni · 4H 2 O), manganese acetate ((CH 3 COO) 2 Mn · 4H 2 O), cobalt acetate ((CH 3 COO) 2 Co · 4H 2 O) and lithium acetate (CH 3 COOLi · 2H 2 O) were used, and these were accurately weighed so as to have a predetermined molar ratio (atomic ratio).
 次に、上記4種類の金属酢酸塩の合計量とクエン酸とを1:1のモル比となるように正確に量り取った。これらを試料ビーカーに入れ、超純水に溶解させ、水溶液とした。その後、スプレードライ装置にかけ、スプレードライ法により粉体の混合前駆体を得た。得られた混合前駆体試料をるつぼに入れ、大気下、450℃で10時間仮焼成した。その後、乳鉢に入れて45分間粉砕し、ハンドプレスを用いて3トンの圧力をかけペレット状に形成した。 Next, the total amount of the above four kinds of metal acetates and citric acid were accurately weighed so that the molar ratio was 1: 1. These were put into a sample beaker and dissolved in ultrapure water to obtain an aqueous solution. Then, it applied to the spray-drying apparatus and the mixed precursor of the powder was obtained by the spray-drying method. The obtained mixed precursor sample was put in a crucible and calcined at 450 ° C. for 10 hours in the air. Then, it put into the mortar and grind | pulverized for 45 minutes, and 3 tons of pressure was applied and formed into the pellet form using the hand press.
 そして、ペレット状にした試料を、昇温時間7時間とし、焼成温度900℃で12時間、大気下で、本焼成を行った。その後、液体窒素を用いてクエンチ(急冷)を行い、0.6Li[Li1/3Mn2/3]O・0.4Li[Ni0.4575Co0.0825Mn0.4575]Oとして表される固溶体系正極活物質を得た。 Then, the pelletized sample was subjected to main firing in the air at a firing temperature of 900 ° C. for 12 hours in the air with a heating time of 7 hours. Then, quenching (rapid cooling) is performed using liquid nitrogen, and 0.6Li [Li 1/3 Mn 2/3 ] O 2 .0.4Li [Ni 0.4575 Co 0.0825 Mn 0.4575 ] O 2 is used. The solid solution positive electrode active material represented was obtained.
 〔2〕固溶体系正極活物質の分析
 得られた正極活物質試料の組成比については、誘導結合プラズマ(ICP)元素分析によって、上記した組成であることを確認した。また、得られた試料について、粉末X線回折法により結晶構造を調べた。その結果、2θが21°から25°の超格子ピークを除いた場合に、空間群R-3mで指数付け可能であり、上記の固溶体系化合物が得られたことを確認した。
[2] Analysis of solid solution positive electrode active material The composition ratio of the obtained positive electrode active material sample was confirmed to be the above composition by inductively coupled plasma (ICP) elemental analysis. Further, the crystal structure of the obtained sample was examined by a powder X-ray diffraction method. As a result, it was confirmed that when a superlattice peak with 2θ of 21 ° to 25 ° was removed, indexing was possible with the space group R-3m, and the above solid solution system compound was obtained.
 〔3〕評価用セルの作製
 上記〔1〕で得られた正極活物質を20mg、導電結着材としてTAB-2を12mgそれぞれ量り取った。これらをメノウ乳鉢に入れて混練し、直径16mmのペレットに成形した。これを同径のステンレスメッシュ(集電体)上に載置して、2トン(0.99ton/cm)の圧力で圧着した。これを真空下、120℃で4時間乾燥させて電極(作用極)を作製した。なお、上記の導電結着材TAB-2とは、テフロン(登録商標)加工されたアセチレンブラック(Teflonized acetyleneblack):グラファイト=2:1の組成(質量比)で構成されるものである。
[3] Preparation of Evaluation Cell 20 mg of the positive electrode active material obtained in the above [1] and 12 mg of TAB-2 as a conductive binder were weighed out. These were put in an agate mortar and kneaded to form pellets having a diameter of 16 mm. This was placed on a stainless steel mesh (current collector) having the same diameter, and pressed with a pressure of 2 tons (0.99 ton / cm 2 ). This was dried under vacuum at 120 ° C. for 4 hours to produce an electrode (working electrode). The conductive binder TAB-2 is composed of a composition (mass ratio) of Teflon (registered trademark) -processed acetylene black: graphite = 2: 1.
 そして、作用極として作製した上記電極(正極)に対して、直径15mmの金属リチウム箔(負極)を対極として用い、セパレータとしてのガラスろ紙を介してセルを組んだ。電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を1:2の体積比で混合した溶媒に六フッ化リン酸リチウム(LiPF)を含む溶液を使用した。これを用い、乾燥アルゴン雰囲気のグローブボックス内で評価用セル(コイン電池)を作製した。 And with respect to the said electrode (positive electrode) produced as a working electrode, the metal lithium foil (negative electrode) of diameter 15mm was used as a counter electrode, and the cell was assembled through the glass filter paper as a separator. As the electrolytic solution, a solution containing lithium hexafluorophosphate (LiPF 6 ) in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 2 was used. Using this, an evaluation cell (coin battery) was produced in a glove box in a dry argon atmosphere.
 〔4〕前処理
 上記で作製した評価用セルに対し、室温下、定電流で、それぞれ前処理を施した。具体的には、各セルごとに電圧範囲又は電流レートを変更し、それぞれについて前処理の完了に要する時間を求めた。なお、ここで用いる電流レートについては、270mA/gを1Cとして測定することとした。
[4] Pretreatment Each of the evaluation cells prepared above was pretreated at room temperature and at a constant current. Specifically, the voltage range or current rate was changed for each cell, and the time required for completion of the pretreatment was determined for each cell. Note that the current rate used here was measured with 270 mA / g as 1C.
(実施例1)
 (1)充放電レートを0.50Cに設定した。また、正極の電位がリチウム対極に対して4.5V相当になるまでを充電上限電位として、定電流で充電した。その後、正極の電位がリチウム対極に対して2.0V相当になるまでを放電下限電位として、放電した。この充放電操作を2回繰り返した。
 (2)次に、正極の電位がリチウム対極に対して4.6V相当になるまでを充電上限電位として充電した。その後、正極の電位がリチウム対極に対して2.0V相当になるまでを放電下限電位として放電した。この充放電操作を同様に2回繰り返した。
 (3)さらに、正極電位が4.7V相当になるまで充電上限電位として充電した。その後、2.0V相当になるまでを放電下限電位として放電した。この充放電操作を同様に2回繰り返した。
 (4)すなわち、合計6回に亘る充放電処理を行った。
Example 1
(1) The charge / discharge rate was set to 0.50C. Further, charging was performed at a constant current, with the positive electrode potential being 4.5 V relative to the lithium counter electrode, with the charge upper limit potential. Thereafter, the discharge was performed until the potential of the positive electrode was equivalent to 2.0 V with respect to the lithium counter electrode, with the discharge lower limit potential. This charge / discharge operation was repeated twice.
(2) Next, the battery was charged until the potential of the positive electrode reached 4.6 V relative to the lithium counter electrode, with the upper limit potential being charged. Thereafter, the discharge was performed until the potential of the positive electrode was equivalent to 2.0 V with respect to the lithium counter electrode, with the discharge lower limit potential. This charge / discharge operation was repeated twice in the same manner.
(3) Further, the battery was charged as a charge upper limit potential until the positive electrode potential became 4.7V. Thereafter, the battery was discharged at a discharge lower limit potential corresponding to 2.0V. This charge / discharge operation was repeated twice in the same manner.
(4) That is, the charging / discharging process was performed 6 times in total.
(実施例2)
 評価用セルに対して、充放電レートを0.33Cに設定したことを除き、実施例1と同様の充放電処理を行った。
(Example 2)
A charge / discharge treatment similar to that in Example 1 was performed on the evaluation cell except that the charge / discharge rate was set to 0.33C.
(実施例3)
 評価用セルに対して、放電下限電位を3.45Vに設定したことを除き、実施例2と同様の充放電処理を行った。
(Example 3)
A charge / discharge treatment similar to that of Example 2 was performed on the evaluation cell except that the lower limit discharge potential was set to 3.45V.
(実施例4)
 評価用セルに対して、放電下限電位を3.00Vに設定したことを除き、実施例1と同様の充放電処理を行った。
Example 4
The evaluation cell was subjected to the same charge / discharge treatment as in Example 1 except that the discharge lower limit potential was set to 3.00V.
(実施例5)
 前処理の条件として、充放電レートを0.67Cに設定すると共に、最初の2回の充電上限電位を4.6Vに、次の2回の充電上限電位を4.7Vに、最後の2回の充電上限電位を4.8Vに設定した。これらの変更点を除き、評価用セルに対して、実施例1と同様の充放電処理を行った。
(Example 5)
As preconditions, the charge / discharge rate is set to 0.67C, the first two charge upper limit potentials are 4.6V, the next two charge upper limit potentials are 4.7V, and the last two times. Was set to 4.8V. Except for these changes, the same charge / discharge treatment as in Example 1 was performed on the evaluation cell.
(比較例1)
 評価用セルに対して、充放電レートを0.083Cに設定したことを除き、実施例1と同様の充放電処理を行った。
(Comparative Example 1)
A charge / discharge treatment similar to that in Example 1 was performed on the evaluation cell except that the charge / discharge rate was set to 0.083C.
(比較例2)
 評価用セルに対して、いかなる前処理をも施すことなく、そのまま、後述するサイクル特性評価試験に供した。
(Comparative Example 2)
The evaluation cell was directly subjected to a cycle characteristic evaluation test described later without any pretreatment.
(比較例3)
 評価用セルに対して、充放電レートを1.33Cに設定したことを除き、実施例1と同様の充放電処理を行った。
(Comparative Example 3)
A charge / discharge treatment similar to that in Example 1 was performed on the evaluation cell except that the charge / discharge rate was set to 1.33C.
(比較例4)
 評価用セルに対して、放電下限電位を4.10Vに設定したことを除き、比較例1と同様の充放電処理を行った。
(Comparative Example 4)
The same charge / discharge treatment as that of Comparative Example 1 was performed on the evaluation cell, except that the lower limit discharge potential was set to 4.10V.
 〔5〕サイクル特性評価
 上記実施例及び比較例の前処理を施したそれぞれのセルに対して、サイクル耐久試験を実施した。このサイクル耐久試験では、充放電の電圧範囲を2.0-4.8V、電流レートを1/12Cに設定し、30サイクル後の保持容量を測定した。これらの測定結果を比較したものを表1に示す。なお、各例の前処理条件を表1に併記する。また、表1における総合評価の判定基準は、30サイクル後の容量が260mAh/gを下回ることなく、前処理に要する時間を1日以下にできることとした。この基準に合致する例については、優れた耐久性を有するものと認め、「○」と評価した。一方、この基準に合致しないものについては、サイクル特性に劣るものと認め、「×」と評価した。
[5] Evaluation of cycle characteristics A cycle endurance test was carried out on each of the cells that had been subjected to the pretreatments of the above examples and comparative examples. In this cycle endurance test, the charge / discharge voltage range was set to 2.0 to 4.8 V, the current rate was set to 1/12 C, and the storage capacity after 30 cycles was measured. Table 1 shows a comparison of these measurement results. The pretreatment conditions for each example are also shown in Table 1. The criteria for comprehensive evaluation in Table 1 were that the time required for pretreatment could be reduced to 1 day or less without the capacity after 30 cycles being less than 260 mAh / g. Examples that meet this criterion were recognized as having excellent durability and were evaluated as “◯”. On the other hand, those not meeting this standard were recognized as being inferior in cycle characteristics and evaluated as “x”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1における総合評価の結果から、比較例1の結果に相当する従来の前処理の効果を損なうことなく、前処理に要する時間を短縮するための処理条件がわかった。このような処理条件としては、前処理の電流レートを従来よりも大きく、かつ適切な数値範囲内に設定し、更に放電下限電位を適切な範囲に設定すればよい。すなわち、充放電の際の電流レートとしては、0.1C以上1.3C以下の充放電レートとする。更に、上限電位をリチウム対極に換算して4.5V以上5.0V未満、かつ、下限電位をリチウム対極に換算して4.0V未満に設定する。このような前処理を行うことで、耐久性に優れた高エネルギーのリチウムイオン二次電池を生産性よく製造することが可能となることが明らかとなった。 From the results of comprehensive evaluation in Table 1, the processing conditions for shortening the time required for the pretreatment were found without impairing the effect of the conventional pretreatment corresponding to the result of Comparative Example 1. As such processing conditions, the current rate of the preprocessing is set to be larger than that in the conventional method and within an appropriate numerical range, and the discharge lower limit potential may be set to an appropriate range. That is, the current rate during charge / discharge is a charge / discharge rate of 0.1 C to 1.3 C. Further, the upper limit potential is converted to a lithium counter electrode and set to 4.5 V or more and less than 5.0 V, and the lower limit potential is converted to a lithium counter electrode and set to less than 4.0 V. It has been clarified that by performing such pretreatment, it is possible to manufacture a high-energy lithium ion secondary battery excellent in durability with high productivity.
 特願2011-057446号(出願日:2011年3月16日)の全内容は、ここに引用される。 The entire contents of Japanese Patent Application No. 2011-057446 (filing date: March 16, 2011) are cited herein.
 以上、実施形態及び実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。 Although the contents of the present invention have been described according to the embodiments and examples, the present invention is not limited to these descriptions, and it is obvious to those skilled in the art that various modifications and improvements can be made. It is.
 本発明によれば、所定の固溶体系正極活物質を含むリチウムイオン二次電池の前処理に際して、所定の上限電位、下限電位及び電流レートで充放電することとした。そのため、短時間の処理によってサイクル耐久性を向上させることができる。 According to the present invention, during the pretreatment of the lithium ion secondary battery containing a predetermined solid solution system positive electrode active material, charging and discharging are performed at a predetermined upper limit potential, lower limit potential and current rate. Therefore, cycle durability can be improved by short-time processing.
  1 リチウムイオン二次電池
  10 電池要素
  11 正極
  11A 正極集電体
  11B 正極活物質層
  12 負極
  12A 負極集電体
  12B 負極活物質層
  13 電解質層
  14 単電池層
  21 正極タブ
  22 負極タブ
  30 外装体
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 10 Battery element 11 Positive electrode 11A Positive electrode collector 11B Positive electrode active material layer 12 Negative electrode 12A Negative electrode collector 12B Negative electrode active material layer 13 Electrolyte layer 14 Single battery layer 21 Positive electrode tab 22 Negative electrode tab 30 Exterior body

Claims (5)

  1.  化学式1で表される正極活物質を含むリチウムイオン二次電池を準備する工程と、
     前記リチウムイオン二次電池の上限電位をリチウム対極に換算して4.5V以上5.0V未満として充電し、かつ、下限電位をリチウム対極に換算して4.0V未満として放電する工程と、
     を備え、
     前記充電及び放電が、0.1C以上1.3C以下の電流レートで行われることを特徴とするリチウムイオン二次電池の前処理方法。
     [化1]
     aLi[Li1/3Mn2/3]O・(1-a)LiMO
     (式中のaは0を超え1未満の数値であり、LiMOはNi及びMnを含有するリチウム複合酸化物である)
    Preparing a lithium ion secondary battery containing a positive electrode active material represented by Chemical Formula 1,
    Charging the upper limit potential of the lithium ion secondary battery as a lithium counter electrode as 4.5 V or more and less than 5.0 V, and discharging the lower limit potential as a lithium counter electrode as less than 4.0 V;
    With
    The pretreatment method for a lithium ion secondary battery, wherein the charging and discharging are performed at a current rate of 0.1 C to 1.3 C.
    [Chemical 1]
    aLi [Li 1/3 Mn 2/3 ] O 2. (1-a) LiMO 2
    (A in the formula is a numerical value greater than 0 and less than 1, and LiMO 2 is a lithium composite oxide containing Ni and Mn)
  2.  前記充電及び放電が、複数回繰り返されることを特徴とする請求項1に記載のリチウムイオン二次電池の前処理方法。 The method for pretreatment of a lithium ion secondary battery according to claim 1, wherein the charging and discharging are repeated a plurality of times.
  3.  前記充電及び放電を複数回繰り返すに際して、上限電位を段階的に高めて行われることを特徴とする請求項2に記載のリチウムイオン二次電池の前処理方法。 3. The method of pretreating a lithium ion secondary battery according to claim 2, wherein when the charging and discharging are repeated a plurality of times, the upper limit potential is increased stepwise.
  4.  前記充電及び放電における電流レートが、0.2C以上0.6C以下であることを特徴とする請求項1~3のいずれか1つの項に記載のリチウムイオン二次電池の前処理方法。 The pretreatment method for a lithium ion secondary battery according to any one of claims 1 to 3, wherein a current rate in the charging and discharging is 0.2 C or more and 0.6 C or less.
  5.  請求項1~4のいずれか1つの項に記載の前処理方法で処理してなることを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery, which is processed by the pretreatment method according to any one of claims 1 to 4.
PCT/JP2012/055975 2011-03-16 2012-03-08 Method for pre-processing lithium ion secondary battery WO2012124602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011057446A JP2012195126A (en) 2011-03-16 2011-03-16 Pretreatment method of lithium ion secondary battery
JP2011-057446 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124602A1 true WO2012124602A1 (en) 2012-09-20

Family

ID=46830675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055975 WO2012124602A1 (en) 2011-03-16 2012-03-08 Method for pre-processing lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP2012195126A (en)
WO (1) WO2012124602A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115390A1 (en) * 2012-02-01 2013-08-08 日産自動車株式会社 Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
WO2015015894A1 (en) * 2013-07-31 2015-02-05 日産自動車株式会社 Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6167775B2 (en) * 2013-09-06 2017-07-26 日産自動車株式会社 Secondary battery control device and control method
KR102007503B1 (en) * 2015-06-26 2019-08-05 주식회사 엘지화학 The Method for Preparing Lithium Secondary Battery and the Lithium Secondary Battery Prepared by Using the Same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095443A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009176533A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Inspection method and manufacturing method of lithium secondary battery
JP2010103086A (en) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd Positive electrode for lithium-ion batteries
JP2010108873A (en) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd Lithium-ion battery and method for using the same
JP2010129481A (en) * 2008-11-28 2010-06-10 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
WO2011016113A1 (en) * 2009-08-04 2011-02-10 トヨタ自動車株式会社 Lithium ion nonaqueous electrolyte secondary battery
WO2011078389A1 (en) * 2009-12-25 2011-06-30 株式会社豊田自動織機 Method for producing complex oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095443A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2009176533A (en) * 2008-01-23 2009-08-06 Toyota Motor Corp Inspection method and manufacturing method of lithium secondary battery
JP2010103086A (en) * 2008-09-26 2010-05-06 Nissan Motor Co Ltd Positive electrode for lithium-ion batteries
JP2010108873A (en) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd Lithium-ion battery and method for using the same
JP2010129481A (en) * 2008-11-28 2010-06-10 Mitsui Mining & Smelting Co Ltd Positive electrode for nonaqueous electrolyte secondary battery
WO2011016113A1 (en) * 2009-08-04 2011-02-10 トヨタ自動車株式会社 Lithium ion nonaqueous electrolyte secondary battery
WO2011078389A1 (en) * 2009-12-25 2011-06-30 株式会社豊田自動織機 Method for producing complex oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115390A1 (en) * 2012-02-01 2013-08-08 日産自動車株式会社 Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
WO2015015894A1 (en) * 2013-07-31 2015-02-05 日産自動車株式会社 Positive electrode for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP2012195126A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5357268B2 (en) Positive electrode material for electric device and electric device using the same
KR101625313B1 (en) Negative electrode active material for electric device
KR101505351B1 (en) Positive electrode active material for lithium ion secondary batteries
KR101511895B1 (en) Negative electrode active material for electric device, negative electrode for electric device and electric device
KR101660100B1 (en) Negative electrode active material for electric device
KR101720832B1 (en) Negative electrode active material for electric device
KR101686720B1 (en) Solid solution lithium-containing transition metal oxide and lithium ion secondary battery
WO2012121240A1 (en) Negative electrode active material for electrical devices
JPWO2011036759A1 (en) Lithium secondary battery and manufacturing method thereof
US9373868B2 (en) Composite cathode active material, method of preparing the same, and cathode and lithium battery containing the same
JP5945903B2 (en) Negative electrode active material for electrical devices
JP5904364B2 (en) Negative electrode active material for electrical devices
JP5691315B2 (en) Positive electrode for lithium ion battery and lithium ion battery using the same
WO2014080892A1 (en) Negative electrode for electrical device and electrical device provided with same
KR101385334B1 (en) Mixed positive electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2012124602A1 (en) Method for pre-processing lithium ion secondary battery
CN111183537A (en) Method for predoping negative electrode active material, electrode for electrical device, and method for manufacturing electrical device
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
WO2014199782A1 (en) Anode active material for electrical device, and electrical device using same
WO2014199781A1 (en) Negative-electrode active material for use in electrical device and electrical device using same
WO2013125465A1 (en) Positive electrode active material
WO2013058091A1 (en) Electrical-device-use negative-electrode active substance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758280

Country of ref document: EP

Kind code of ref document: A1